PERFORMANCE OF ANALYSIS ON IEEE 802.15(MAC)

By
Jannatul Ferdous Akhi
(ID: 2010-1-55-003)
And
Mohammad Ashraful Hasan.
(ID: 2010-1-55-017)

Submitted to the
Department of Electronics & Communications Engineering, Faculty of Science and Engineering
East West University
In partial fulfillment of the requirements for the degree of Bachelor of Science in Electronics & Communications Engineering
(B.Sc. in ECE)
Summer, 2014

Approved By

Academic Advisors
M. Ruhul Amin, PhD.
&
Dr. Imdadul Islam

Dr. Gurudas Mandal

Department Chairperson
The thesis title “analytical performance of IEEE802.15 (MAC)” submitted by Jannatul Ferdous Akhi [2010-1-55-003] and Mohammad Ashraful Hasan [2010-1-55-017] in the semester of summer, 2014 is approved satisfactory in partial fulfillment of the requirements for the requirements for the degree of Bachelor of Science in Electrical and Communication Engineering.

M. Ruhul Amin, PhD.
Professor of department of Electronics and Communication Engineering
East West university

Dr. Imdadul Haque
Adjunct Faculty, Department of Electrical and Communication Engineering
East West University, Dhaka, Bangladesh
Declaration

We, hereby certify that our thesis work solely to be our own scholarly work. To the best of our knowledge, it has not been shared from any source without the due acknowledgement and permission. It is being submitted in partial fulfillment of requirements for the degree of Bachelor of Science in Electrical and Communication Engineering. It has been submitted before any degree or examination of any other university.

JannatulFerdousAkhi

Mohammad AshrafulHasan

Summer Semester
July' 2014
Abstract

In this project we deal with the detail analytical model of traffic of CSMA/CA based network. Here we consider mean service time and throughput of the network using statistical model of binary exponential back off algorithm and two dimensional Markov chain. Finally we plot throughput, failure probability & mean frame service time traffic parameters against number of nodes and got the results consistence with theoretical model.
Acknowledgment

It is with immense gratitude that we acknowledge the help of our supervisor, M. Ruhul Amin, PhD. Professor of department of Electronics and Communication Engineering, East West University & Dr. Imdadul Islam, Professor (Adjunct) of Department of Electronics and Communication Engineering, East West University. Without his guidance, encouragement and support this thesis would have remained a dream. We consider it an honor to work with him. We also indebted to our parents, other professors of the department, and friends for their support and encouragements. Finally thanks to almighty who gave us the patience to finish the task successfully.
# Table of Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>03</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>04</td>
</tr>
<tr>
<td>Table of contents</td>
<td>05</td>
</tr>
<tr>
<td>Chapter-1: Introduction</td>
<td>06-07</td>
</tr>
<tr>
<td>Chapter-2: System Model</td>
<td>07-16</td>
</tr>
<tr>
<td>Chapter-3: Results</td>
<td>17-24</td>
</tr>
<tr>
<td>Chapter-4: Conclusion</td>
<td>25-26</td>
</tr>
<tr>
<td>References</td>
<td>27-28</td>
</tr>
</tbody>
</table>
Chapter-1

INTRODUCTION
The wireless networks such as IEEE 802.15, use carrier-sense multiple access with collision avoidance (CSMA/CA) protocol which depends on a distributed backoff mechanism for efficient use of the shared channel. The medium access control (MAC) protocol plays a critical role. To determine the capacity of a wireless network the medium access control (MAC) protocol plays a vital role. The main wireless MAC solution adopts the family of carrier sense multiple access with collision avoidance (CSMA/CA) protocols. Different flavors of CSMA/CA protocols are extensively applied in personal area networks (WPANs), e.g., the IEEE 802.15.4 [1].

The seminal work of Bianchi [4] injected a strong impetus to the Markov chain based MAC modeling. In principle, the Markov modeling could be applied to any CSMA/CA protocol, with either saturated traffic [4], [15], [16] or unsaturated bursty traffic [17]...
Chapter-2

SYSTEM MODEL
**Node-state model:**

$P(SN)$ is denoted as the event probability of $SN$ where $SN$ is the event that a node can detect the carrier or medium. $(s=i)$ means the event that implies the node is in backoff stage $i \in (0, \ldots, M)$. The probability of the event that the node is in backoff stage is $P(s=i)$ considering $M$ as the maximum backoff stage.

The conditional probability is,

$$P(s=i, SN) = P(s=i \mid SN) \cdot P(SN)$$

$$= P(SN \mid s=i) \cdot P(s=i)$$ ............................................................... (1)

By solving we get $\Rightarrow$

$$P(SN \mid s=i) \cdot P(SN) = P(s=i) \cdot P(SN \mid s=i)$$ ............................................................... (2)

As we know backoff stage $i \in (0, \ldots, M)$,

So, considering the range of $i$ we can say,

$$P(SN) = \sum_{i=0}^{M} P(s=i \mid SN) \cdot P(SN \mid s=i) = \sum_{i=0}^{M} P(s = i) = 1$$ .................................................. (3)

The probability of the considering node is sensing the carrier can be shown as,

$$\sigma = P(SN) = 1 / \sum_{i=0}^{M} \frac{P(s=i \mid SN)}{P(SN \mid s=i)}$$ .................................................. (4)
To show that the node is currently sensing the channel is in backoff stage $i$, the conditional probability is considered as $P(s=i|SN)$. The failure probability $\phi$ corresponds to the event that if the channel is found busy in first CCA or in second CCA (if first CCA goes idle).

So, the conditional states can be displayed with simple Markov chain which follows transition probabilities,

\[
P(s(k+1)=i|s(k)=i-1=\phi, \quad i=1, \ldots, M \\
P(s(k+1)=0|s(k)=i=1-\phi, \quad i=0, \ldots, M \\
P(s(k+1)=0|s(k)=M=1, \quad i=M \]
\]

.......................... (5)

With the given finite sensing attempt limit $M$, equation (5) can be solved to obtain the steady-state probability of the tagged sensing node's being in backoff stage $i$,

\[
P(s=i|SN) = \frac{(1-\phi)^i}{1-\phi^{M+1}} \] (6)

A node in backoff stage $i$ spoils time in three ways=>

- When the node comes in backoff stage, it has to wait for some while. The duration of this waiting time is $E[b_i]$ time slots.
- After that time the node starts to sense the carrier. Let, the maximum sensing time is $T_c$. If two time slots is found idle between the interval $[0,T_c]$ interval; it will start to transmit. And if the node doesn't get idle time slots, it will go to $(i+1)$ backoff stage. The average value of carrier sensing duration $[0,T_c]$ of the node is $\pi_{\alpha}$.
- When two time slots are found idle, the node sends a frame. Let, the length of the frame is $L$ time slots.
So, Average duration = $(0.\phi)+L(1-\phi)=L(1-\phi)$

Where $\phi$=probability of failure & $(1-\phi)$=probability of success.

Total spending time = $E[b_i]+\eta_\phi+L(1-\phi)=T_{\text{Expanded}}$

When the node is in stage $i$, the probability of sensing the carrier,

$$= P(SN|s=i)$$

$$=1/E[b_i]+\eta_\phi+L(1-\phi)$$

$$=1/T_{\text{Expanded}}$$

Now taking eq.(4),(6) & (7) together ; we get,

$$\sigma = \frac{1-\phi^{M+1}}{(1-\phi)\sum_{i=0}^{M} \phi^i(E[b_i]+\eta_\phi+(1-\phi)L)}$$

(8)
The Markov Chain:

Applying node equation at 1,

\[ P_1(\emptyset + 1 - \emptyset) = P_0\emptyset = P_2 = P_0\emptyset \]

Applying node equation at 2,

\[ P_2(\emptyset + 1 - \emptyset) = P_1\emptyset = P_2 = P_1\emptyset = P_0\emptyset^2 \]

\[ P_{M-1} = P_0\emptyset^{M-1} \]

\[ P_M = P_0\emptyset^M \]
For entire sampling space,

\[ P_0 + P_1 + P_2 + \ldots + P_M = 1 \]

\[ \Rightarrow P_0 + P_0 \theta + P_0 \theta^2 + \ldots + P_0 \theta^M = 1 \]

\[ \Rightarrow P_0 \sum_{i=0}^{M} \theta^i = 1 \]

\[ \Rightarrow P_0 \frac{1 - \theta^{M+1}}{1 - \theta} = 1 \]

\[ \Rightarrow P_0 = \frac{1 - \theta}{1 - \theta^{M+1}} \]

So, \( P_i = P_0 \theta^i = \frac{(1 - \theta) \theta^i}{1 - \theta^{M+1}} \)
Here we've to use a tiny Markov chain to derive the other relationship regarding $\sigma$ & $\emptyset$. While operating in CAP, the channel should be idle for two successive time slots before a node starts transmission. In a Markov model, the channel state is modeled in terms of the states represented on an adjacent slot-pair basis rather than on a per slot basis to cope with the state-wise memory less property.

The probability is $1-(1-\sigma)^n$ to become a channel busy (IB) after leaving the state of successive idle-slots pair (II); as one or more nodes conduct carrier sensing, the probability of a channel to remain in idle state (II) is $(1-\sigma)^n$. Let the frame length be at least 3 (i.e. $\geq 3$). The probability to retain busy slot pair state (BB) is $\frac{L-2}{L-1}$. The channel takes a transition to state BI with the probability $\frac{1}{L-1}$.
Now the relations among the stationary channel state probabilities are:

\[ P_{bb} = P_{sb} + \frac{L-2}{L-1} P_{bb} \]
\[ P_{bb} = P_{sb} (1-\sigma^n) \]

\[ P_{ii} = P_{ib} + P_{ii} (1-\sigma^n), \quad P_{ib} = P_{bb} \frac{1}{L-1} \]

And, \( P_{bb} + P_{sb} + P_{ai} + P_{ii} = 1 \)

\[ \frac{(L-1)\tau}{1+\tau(1+L)} = P_{bb}, \quad \frac{1}{1+\tau(1+L)} = P_{ii} \]

\[ P_{is} = P_{ib} = \frac{\tau}{1+\tau(1+L)} \]

Here, \( \tau = (1 - (1 - \sigma^n)) \)

During a sensing attempt, a node uses 1 slot with certainty & 1 more slot when the channel stays in II or IB states,

\[ \overline{n}_{s} = 1 + (P_{ii} + P_{ib}) \cdot \frac{2+\tau(2+L)}{1+\tau(1+L)} \]

When channel is in II state, successful carrier sensing is possible. The sensing probability is

\[ \phi = 1 - P_{ii} = \frac{\tau(1+L)}{1+\tau(1+L)} \]
**Proposed model**

Let the number of user or nodes is \( N \) and the number of channel is \( n \) in the network. We can represent the traffic of the network using Engset traffic model like fig. 1 considering \( \lambda \) is the arrival rate per user.

![Fig.1 State transition chain of the network](image)

Applying node equations,

\[
P_{II}(N-n)\lambda + P_{IB} + 0. P_{BB} + P_{BI} = 0
\]

\[
P_{II}.0 + P_{IB}. n\mu. P_{BB} + P_{BI} = 0
\]

\[
P_{II}.0 + P_{IB}. n\mu. P_{BB} + P_{BI} = 0
\]

\[
P_{II} + P_{IB} + P_{BB} + P_{BI} = 1
\]

Solving above equation the probability states can be evaluated as:

\[
P_0 := \begin{bmatrix}
\alpha & 0 & 0 & -1 \\
0 & 1 & -n\mu & 0 \\
0 & 0 & -n\mu & L - 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Chapter-3

RESULTS
MAC Performance Metrics

Fig 1. Shows the probability state of backoff algorithm for M=5 and M=8. This backoff states follow the Exponential Probability Density Function.
Fig 2. Shows the profile of Failure Probability against the no. of nodes taking $\sigma$ as a parameter, where $\sigma$ stands for sensing probability of a node. Failure Probability increases with the increase in both the no. of nodes and $\sigma$. We consider $L=8$, $M=5$. 
Fig 3. Shows the variation of throughput against the no. of nodes taking $\sigma$ as a parameter. The throughput initially increases and reaches at the peak, the decreases exponentially. From this fig we can say, the network operates most effectively with an optimum no. of users.
Fig 4. Failure Probability

Fig 4. Shows the failure probability against the length of frame (L). Here this probability increases with the increase in both the no. of nodes and length of frame.
Fig 5. Shows the variation of throughput against the length of frame taking no. of nodes as a parameter. Here, the throughput increases with the increase in the length of frame but decreases with the increase in the no. of nodes.
**Our contribution**

In Fig 6. Taking the following traffic parameters, \(\sigma := 0.01, \sigma := 20, 25 \ldots 100, \lambda := 0.05 \text{ packets/sec/user} \), \(n := 12\) the blocking probability \(P_{BB}\) is plotted against the number of node \(N\) taking the length of frame \(L\) as a parameter. The blocking probability increases with increase in both \(N\) and \(L\).
The variation of throughput against the number of node is shown in fig 7. The throughput decreases with increase in $L$ and $N$.

The throughput of the network is expressed as, \( \bar{X} = (1 - B) \frac{\lambda}{\mu} \bar{N} \); where $\bar{N}$ is the average number of users in the network.

\[
\binom{x}{y} := \frac{x!}{y!(x-y)!}
\]

\[
\bar{N} \text{bar} := \sum_{x = 0}^{n} \frac{\binom{n}{x} \left( \frac{\lambda}{\mu} \right)^x}{\sum_{i = 0}^{n} \binom{n}{i} \left( \frac{\lambda}{\mu} \right)^i}
\]
Chapter-4

CONCLUSION
In this project work we have performed the study of performance of analysis on IEEE 802.15 (MAC) considering probability of failure, mean service time and throughput. The entire work can be extended for 4g network like WiMax advance using that markov chain of channel allocation of bandwidth reservation.
References

1. KaziAshrafuzzaman and Kyung Sup Kwak, Member, IEEE, IEEE COMMUNICATIONS LETTER, VOL.15 NO 9, SEPTEMBER 2011.

2. Zhuo Lu, Student Member, IEEE, Wenye Wang, Senior Member, IEEE, and Cliff Wang, Senior Member, IEEE IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 8, AUGUST 2012


5. Min Young Chung, Member, IEEE, Myoung-Hee Jung, Tae-Jin Lee, Member, IEEE, and Yutae Lee, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 7, JULY 2006


7. Saeed Rashwand, Jelena Mišić, Senior Member, IEEE, and Vojislav B. Mišić, Senior Member, IEEE, IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z


