DEPENDENCE BETWEEN STOCK MARKET AND FOREIGN EXCHANGE MARKET IN SOUTH ASIA: A COPULA-GARCH APPROACH.

by Javed Bin Kamal BBA (Finance), University of Dhaka, 2010

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SOCIAL SCIENCE

in the Department

of

Economics

© Javed bin kamal 2014

EAST WEST UNIVERSITY

All rights reserved.

This work may not be reproduced in whole or in part, by photocopy or other means without permission of the author

APPROVAL

Name:	Javed Bin Kamal
Degree:	M.S.S (Economics)
Title:	Dependence between Stock Market and Foreign Exchange
	Market in South Asia: a Copula-GARCH Approach.

Examining Committee:

Dr. A.K. Enamul Haque Supervisor Professor

Dr. Mudabber Ahmed Chairperson ,Dept. of Economics Professor

Date Approved :_____

ABSTRACT

The thesis studies the dependence pattern between stock market and foreign exchange market of three South Asian countries; namely Bangladesh, India and Sri Lanka by using five copula functions, to reveal asymmetric dependence structure. Using daily return series for the period of July 31, 2009 to July 31, 2013, the thesis applied ARMA-GARCH type model to obtain marginal distributions of return series. The results from marginal models indicate that positive news creates more volatility than negatives; meanwhile such volatility dies immediately after a crisis. The results from copula models indicate existence of asymmetric dependence, with upper tail dependence for all pairs. Both Bangladeshi and Indian pairs provide some diversification possibility, against no diversification for investing in Srilankan market. Copula based dependence between stock market and foreign exchange market provides important implication in international investment decision making.

Keywords: Copula, GARCH, Stock Market, Foreign Exchange Market.

ACKNOWLEDGEMENTS

I am greatly thankful to my thesis supervisor, Professor Dr. A. K. Enamul Haque for giving motivations and directions at every stage of development of the thesis. I am thankful to Professor Dr. Muhammad Sirajul Haque for his great lessons. I can never payback benefits from their training, except acknowledging with sincerity.

All the teachers, staffs and students of Economics Department, East West University cooperated to the highest degree. I am also thankful to Dr. Muhammad Moshfique Uddin of Leeds University Business School, who was the source of motivation for pursuing postgraduate degree in Economics.

Above all, I am indebted inestimably to my mother. Whatever I am and wherever I reach, it's because of her blessings. A word "Thanks" is not enough for my elder brother.

DEDICATION

то

ALMIGHTY ALLAH

TABLE OF CONTENTS

APPROVAL
ACKNOWLEDGEMENTS4
DEDICATION
TABLE OF CONTENTS6
LIST OF TABLES
LIST OF FIGURES9
INTRODUCTION
LITERATURE REVIEW12
2.1 THEORIES ON RELATIONSHIP BETWEEN STOCK MARKET AND FOREX MARKET. 12
2.2EMPIRICAL STUDIES ON RELATIONSHIP BETWEEN STOCK AND FOREX MARKET 12
2.3 DEFICIENCY OF LINEAR MEASURMENTS IN MODELLING DEPENDENIES
2.4 COPULA –AN ALTERNATIVE APPROACH14
2.5 STUDIES BASED ON COPULAS14
2.6 ESTIMATION PROCEDURE OF COPULA PARAMETER15
DATA
3.1 SOURCES OF DATA16
3.2 ATTRIBUTES OF VARIABLES
METHODLOGY19
4.1 STATIONARITY AND NORMALITY OF RETURN SERIES19
4.2 MODELING THE MARGINAL DISTRIBUTIONS
4.3 COPULA FUNCTION
4.4 GOODNESS-OF-FIT TESTS FOR MARGINAL MODELS
FINDINGS
5.1 UNIT ROOT TESTS
5.2 DESCRIPTIVE STATISTICS
5.3 NORMALITY TESTS25
5.4 CORRELATION COEFFICIENTS
5.5 RESULTS OF MARGINAL MODEL27

5.6 GOODNESS-OF-FIT TESTS FOR MARGINAL MODELS 29
5.7 RESULTS OF THE JOINT COPULA MODELS
CONCLUSION
BIBLIOGRAPHY
EVIEWS OUTPUT
COLOMBO ALL SHARE PRICE INDEX
DHAKA STOCK EXCHANGE GENERAL INDEX41
BOMBAY STOCK EXCHANGE INDEX (SENSEX)44
SRILANKAN RUPEE
BANGLADESHI TAKA49
INDIAN RUPEE
MATLAB CODE FOR COPULAFIT (COPULA PARAMETER ESTIMATION)
INDIAN PAIR (SENSEX AND INDIAN RUPEE)
TAIL DEPENDENCE FOR INDIAN PAIR
SRILANKAN PAIR (COLOMBO ALL SHARE PRICE INDEX AND SRILANKAN RUPEE) 55
TAIL DEPENDENCE FOR SRI LANKAN PAIR 56
BANGLADESH PAIR (DHAKA STOCK EXCHANGE ALL SHARE PRICE INDEX AND TAKA)
TAIL DEPENDENCE FOR BANGLADESHI PAIR
GAUSSIAN COPULA LOGLIKLIHOOD FUNCTION
AIC

LIST OF TABLES

Table 1Unit root test result (Augmented Dicky Fuller test) of return series
Table 2 Descriptive statistics of return series
Table 3 Univariate normality test25
Table 4 Bivariate normality26
Table 5 Correlation coefficients
Table 6 AIC criteria of marginal distributions27
Table 7 ARMA-GARCH Filtration 28
Table 8 ARCH effect test of univariate return series 29
Table 9 Kolmogorv – Simirnov one sample test29
Table 10 Copula parameters 30
Table 11 EGARCH output of colombo all share price index
Table 12 ARCH effect test (after GARCH model applied) colombo all share price index40
Table 13 EGARCH output all Dhaka stock exchange general price index
Table 14 ARCH test (after GARCH model applied) Dhaka stock exchange general price index 42
Table 15 CGARCH output of Bombay stock exchange sensex 44
Table 16 ARCH afect test after CGARCH applied Bombay stock exchange sensex
Table 17 EGARCH output of Srilankan rupee47
Table 18 ARCH effect test (after GARCH applied) Srilankan rupee
Table 19EGARCH output of Bangladeshi taka 49
Table 20 ARCH effect test result (after GARCH applied) Bangladeshi taka51
Table 21 CGARCH output of Indian rupee51
Table 22 ARCH effect test after CGARCH applied Indian rupee

LIST OF FIGURES

Figure 1 Stock indices of sample countries17
Figure 2 Exchange rates of sample countries17
Figure 3 Bombay stock exchange index (Sensex) -Indian rupee
Figure 4 DSE General index -Bangladeshi taka32
Figure 5 Colombo all share price index- Sri Lankan rupee32
Figure 6 Correlogram of residuals colombo all share price index
Figure 7 Correlogram of standardized residuals squared colombo all share price index
Figure 8 Conditional standard deviation and conditional variance colombo all share price index
Figure 9 Correlogram of residuals Dhaka stock exchange general price index
Figure 10 Correlogram of residuals squared Dhaka stock exchange general price index42
Figure 11 conditional standard deviation and conditional variance Dhaka stock exchange
general price index
Figure 12 Correlogram of standard residual Bombay stock exchange sensex45
Figure 13 Correlogram of standardized residuals squared Bombay stock exchange sense 45
Figure 14 Conditional standard deviation and conditional variance Bombay stock exchange
sensex
Figure 15 Correlogram of standardized residuals and residuals squared Srilankan rupee48
Figure 16 Conditional standard deviation and conditional variance Srilankan rupee
Figure 17 Correlogram of standardized residuals Bangladeshi taka
Figure 18 Conditional standard deviation and conditional variance Bangladeshi taka
Figure 19 Correlogram of standardised residuals of Indian rupee
Figure 20 Correlogram of standardised residuals squared of Indian rupee

CHAPTER 1

INTRODUCTION

Given the importance of foreign investor's exposure in stock markets of Bangladesh, India and Sri Lanka; the thesis intends to aid investment strategy of multinational corporations, private equity firms, foreign equity investors, focusing South Asia; by analyzing the dependence structure between stock market and foreign exchange market returns using copula functions.

The purpose is to determine the existence of asymmetric ¹dependence structure between asset markets, which deserves closer look for a number of reasons. First, from foreign investor's point of view, understanding dependence is significant for diversification purpose. According to Desislava Dimitrova (2005) the stock market reacts with a less than one percent decline to a one percent depreciation of the exchange rate. Due to positive correlation between markets, risk reduction by diversification strategy becomes ineffective. Second, the thesis is academically appealing, mainly due to relationship between two assets are at the heart of asset pricing in Finance. CAPM (Capital Asset Pricing Model) are based on relationship between expected return and risk (Markowitz, 1951; Sharpe, 1964; Ross, 1976). Third, the dependence structure enables policy makers to explain how one market responds to fluctuations in other market and vice versa and formulate growth oriented policies. The thesis excluded examining data of Pakistan due to political instability it currently facing, whereas Nepal, Maldives, Afghanistan, Bhutan were considered as minor players in these regions in terms of macroeconomics indicators.

South Asian countries have become major growing region, though this region was distinguished by political instability and poverty in 80s. Geared by development of financial systems in 90s, FDIs (Foreign Direct Investment) have not only aided industrialization; but also accelerated wheel of growth of the region. Because of industrial production performance and increasing capital inflows, South Asia is expecting to see an increase in real GDP growth, with 6 percent in 2014, comparing 7% growth by East Asian countries (source: World Bank).

¹Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection).

From the south Asian countries context, profitability of listed MNCs and unrestricted dividend repatriation, exit opportunity for private equity funds upon listings, volatile equity markets have made national stock exchanges as the most attractive business opportunities (compared to fixed bank deposits and government treasuries).Highlighting concentration on primary sectors, financial sectors are developing and stock market capitalization as a perchantage of GDP increasing, offering diversification benefit of investing in stock exchanges.

Markets crash together than boom together, can be traced by tail dependence behavior (Hu, 2006). If there is asymmetric dependence, two returns exhibit greater correlation during market downturns than market upturns, evidenced in Longin and Solnik (2001), and Ang and Chen (2002). The probability of joint extreme events is measured by tail dependence parameters. Though a standard measure of dependence, correlation coefficient is incapable of tracing tail dependence parameter of financial time series. Boyer, Gibson and Loretan (1999) found that correlation is incapable of providing information of asymmetric dependence structure, because the joint² distribution of financial time series data is no longer a Gaussian³ normal distribution. Incapability is further intensified, since distribution of dependence is nonlinear and random variables are non-normal. Linking marginal distributions, conversely copula functions obtain joint distributions of two random variables, resulting in dependence structure with asymmetry and non-linearity. Amid 3 pairs of stock market and foreign currency returns of South Asian regions over the period 2009-2013, the thesis applied copula functions to examine dependence pattern

The thesis is organized as follows. The second chapter presents the literatures. The third chapter presents data source and its features used for the study. The Fourth chapter presents the methods used in this thesis, starting with methods for marginal distributions and the estimation procedure. The Fifth chapter explains the findings. Finally some concluding remarks on the study and summarizes the thesis.

² joint probability distribution for random variable X, Y is a probability distribution that gives the probability that each of X, Y falls in any particular range or discrete set of values specified for that variable.

³ Normal (or Gaussian) distribution is a continuous probability distribution that tells the probability that any real observation will fall between any two real limits or real numbers, as the curve approaches zero on either side.

CHAPTER 2

LITERATURE REVIEW

The current section is devoted to studies on examining mainly co-movement of stock market and foreign exchange market in South Asia, using both copula approaches and other methods. While measuring relationships and integration, prior studies applied Co-integration, Correlation, Vector auto Regression (VAR), Granger Causality test for revealing long term existence of dependence, specifically during pre-crisis and crisis period, post financial liberalization period and foreign currency regime change periods.

2.1 THEORIES ON RELATIONSHIP BETWEEN STOCK MARKET AND FOREX MARKET

There are two main theories regarding nature of interactions between foreign exchange and stock prices: (1) one is "flow oriented models" with a focus on trade balance between countries, proposed by Dornbusch and Fisher (1980). Exchange rate fluctuations effect export performance of firms, hence an appreciation of exporter's currency will diminish exporting firms profit and competitiveness and vice versa. If firms are more competitive, this has a positive effect on firm's stock price, as it reflects future streams of cash flows. In line with firms ability to generate cash flows are linked with exporting goods to foreign countries, which in turn dependant on foreign exchange rate of exporter country. Meanwhile (2) other theoretical base is "stock oriented models" proposed by Frankel (1983) and Branson (1977), which argues flows based models for not considering international capital inflows. According to stock based models, exchange rate equates demand and supply of both domestic and foreign financial assets (stock and bonds). An increase in domestic assets will result in increase in the demand of domestic currency, which results in appreciation of domestic currency. Though this theories are well established, empirical findings on interactions vary.

2.2 EMPIRICAL STUDIES ON RELATIONSHIP BETWEEN STOCK AND FOREX MARKET

Attari et al found flow based relationship from stock price to exchange rate for Pakistani data ranging 1995-2012, using cointegration, VECM and Granger cause test. In revealing directional causation, Zia and Rahman (2011) applied Granger Causality test for Pakistani stock market and foreign exchange market from 1995 to 2010, failed to support any causal relationships which indicates mainly existence of political instability. Meanwhile, Jamil and Ullah

(2013) found exchange rate effects stock prices in short run in Pakistan. Sulku (2011) found bidirectional causality between emerging countries' stock markets and RER (real exchange rate). Rajavat (2013) found that foreign exchange effect Sensex. Daily returns of 2007-2009 depict non normality and unidirectional causality between nifty returns and Indian rupee-USD exchanges (Agarwal et al, 2010). Meanwhile , according to Mishra and Paul , Sensex and Nifty based return are positively related with foreign exchange rate with weak form of market efficiency. Nath and Samanta ((2003) ,using daily data from March 1993 to December 2002, found no causal link ,though they think there is strong causal influence from stock market return to forex market return in India.

Benefitting from diversification strategy largely depends on dependence between markets in pre-crisis and post-crisis periods. Dealing with stock market indices and monetary aggregates (exchange rate and M2), Zubair (2013) found no long run relationships before and during financial crisis of 2008 by using Johansen test, while Granger Casualty resulted in unidirectional casualty in pre-crisis period and lack of casualty during crisis. Though not revealing effects of financial crisis, the study performed by Uddin and Rahman (2009) failed to support any relationship between stock market and exchange rate markets of Bangladesh, India and Pakistan, applying both co-integration technique and Granger-Causality test.

Volatilities of assets markets transmitted to each other, affecting related policies. For Malaysian perspective, multivariate VAR documented that industrial and finance sector are mostly affected due to volatility in both exchange rate market and equity markets (Yusuf and Hamisah, 2012). Unaffected by foreign currency regime change, Karoui found positive transmission between volatilities in equity and foreign exchange rates markets, though significantly affected by ownership restrictions and international capital market controls. Apte applied E-Garch in Indian market returns and found volatility moves from foreign exchange market to stock market.

2.3 DEFICIENCY OF LINEAR MEASURMENTS IN MODELLING DEPENDENIES

However, in modeling dependencies, new issues coming into scenarios, for example, Poon et al (2003) found support for asymptotically independent models for dependence structure of tails of stock returns, which makes existing modeling approaches overstating risk of extreme events. In addition, non-normality in dependence structure cannot be traced by linear measurements of dependence. Longin and Solnik (2001) provided evidence of multivariate non-normality in negative tails. Due to non-stationarity property, time series has no tendency to

return to constant value or linear trend, leading to assumption that asset prices are generated by nonstationary process and follow stochastic trends. Most of the extreme dependence are due to heteroskedasticity in the stock return process, Poon et al (2003) further added. Besides, according to Andersen et al (2007), volatilities and correlations are time varying. According to Boyer et al (1999), correlations computed separately for ordinary and stressful market conditions differ considerably, a pattern widely termed 'correlation breakdown', implies that correlation fails in measuring extreme dependence. They also found that during major market events, correlations change dramatically. Ang and Bekaert (2002), using a regime-switching process, found that correlations and volatilities increase in international bear markets. With excess kurtosis ('leptokurtic') and fat tails in distribution of asset returns, the possibility of extreme events increases. In computing possibility of severe losses to happen together, tail dependence is located, implies the propensity of dependence concentrating in the tails (Kousky and Cooke) .In most cases, financial time series suffer from tail dependence (Embretchs et al,2001). Correlation cannot explain tail dependence as assumes symmetry in both right and left tails.

2.4 COPULA – AN ALTERNATIVE APPROACH

Due to limitations of linear measurements of dependence, Copula proposed by Sklar (1969) performs better in measuring forms of dependence between financial time series, because copula does not require normality neither in marginal distributions nor in joint distributions, relaxing 'Gaussian assumption' contrast to correlation. Costinot et al (2000) showed that correlation does not provide precise information on dependence, instead they used copulas to study a) international equity markets b)analysis of the East Asian crisis .By filtering the return series through GARCH model (Bollerslev, 1986 and 1987), the standardized residuals are used in capturing dependence via copula functions, thus non-constant volatility is addressed. Through Clayton and Gumbel Copula, it is possible to measure lower and upper tail dependence respectively.

2.5 STUDIES BASED ON COPULAS

Many papers used copulas to study co-movement between equity markets, for example, Chakrobarti and Roll (2002), Longin and Solnik (2001), Ciprian Necula, Silvo Dajcman (2013), Jussi Karlqvist and Paula et al established asymmetric co-movement between equity markets. Meanwhile, Wang et al (2011), Boubaker and Sghaier (2014) used time varying copula models for measuring dependence between equity markets. Patton (2006) studied asymmetry in dependence between exchange rates by using conditional copula models.

However, studying dependence pattern using copula functions between two asset markets is limited; for example, Ning (2006) studied between foreign exchange market and equity markets using copulas. Using SJC (symmetrized Joe Clayton) copula, Ning (2006) revealed significant upper and lower tail dependence between equity and foreign exchange market. In another study, Michelis and Ning found asymmetric tail dependence in the joint distribution of Canadian stock prices and USD/Canada exchange rate, which is partly explained by the interest rate differential between Canada and the US. Meanwhile, Righi et al studied Brazilian stock market and exchange rate market using copulas, found negative relations in all time scales. Sewe et al found significant symmetric dependence, along with tail dependence in Kenyan stock market and foreign exchange market. In his master's thesis,

2.6 ESTIMATION PROCEDURE OF COPULA PARAMETER

Distinguished from existing studies, the thesis addresses asymmetric dependence patterns between stock market and foreign exchange market in South Asian countries using copulas. Among estimation procedures for copula, Canonical Maximum likelihood Method (CML) as suggested by Bouye (2000), first data series are transformed into uniform margins, the copula function is estimated without any assumptions on the form of the marginal distributions, is followed in this thesis due to simple execution. Other methods, Exact Maximum Likelihood (EML) estimates margins and copula parameters simultaneously (Cherubini, Luciano and Vecchiato, 2004), while Inference Functions to Margins employs Multistage Maximum Likelihood process (Joe and Xu ,1997).

CHAPTER 3

DATA

3.1 SOURCES OF DATA

This thesis used data sets consisting of daily closing prices of three stock markets and three foreign exchange markets for the period ranging from July 30, 2009 to July 31, 2013, generating total of 702 observations. The data are from the stock market and foreign exchange market of three South Asian countries: India, Bangladesh, and Sri Lanka. Exchange rate data are collected from <u>www.oanada.com</u> and stock indices data from <u>www.yahoofinance.com</u>.

The data represents only trading days, hence all official non-weekly holidays have been eliminated. Meanwhile, trading days between stock market and foreign exchange market have been matched; as a result weekly holidays are eliminated. Due to differences in trading days, weekends, and public holidays, if not matched, would result in inaccurate parameters. To comply with this, trading days common to all three countries are taken into consideration. As a result Monday to Thursday fall into common trading days. About 702 trading days fall into sample, within 1440 days approx. (which is 50% of the total observations period considered).

The returns are calculated as 100 times the logarithm differences of the indices or the exchange rates between the day t and the day t -1.

 $r_t = log(pt - p_{t-1}) * 100$

Equation 1

3.2 ATTRIBUTES OF VARIABLES

Stock markets (Dhaka Stock Exchange of Bangladesh, Bombay Stock Exchange of India and Colombo Stock Exchange of Sri lanka) observed boom during this period .There is also US Dollar appreciation against Bangladeshi Taka (BDT), Indian Rupee (INR), and Sri Lankan Rupee (LKR) during this period.

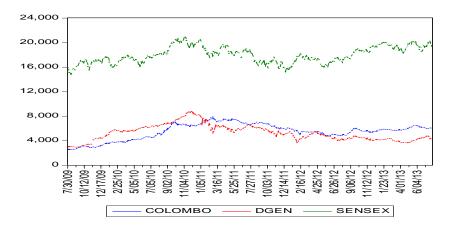


Figure 1 Stock indices of sample countries

The above figure shows stock market indices of three countries Bangladesh, Sri Lanka and India from the period of 30/7/2009 to 31/7/2013. Blue line represents Colombo all share price index, the red one represents DGEN i.e. Dhaka Stock exchange general price index of Bangladesh and the Green one Sensex of India. All indices observed a rise during 2009 and 2010 and decline in 2011 and 2012.Since end of 2012 onward, an upward trend is observed. According to the chart, volatility is visible and one can take advantage of such rise and fall, by trading i.e. buying at low selling at high in a cycle.

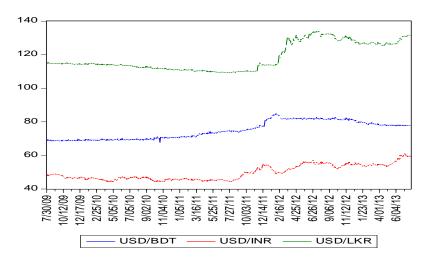


Figure 2 Exchange rates of sample countries

The above figure describes exchange rate of three currencies i.e. Bangladeshi Taka, Indian Rupee, Sri Lankan Rupee from the period of 30/7/2009 to 31/7/2013. Until beginning of 2012, the exchange rate sees little fluctuations. Since 2012 and onwards, there is depreciation in the

value of sample currencies against USD. All three currencies depreciated against USD significantly, this fluctuation smoothed during the period of 2013.

CHAPTER 4

METHODLOGY

The pearson's linear correlation, along with kendalls tau and spearmans rho measures linear dependence between variables, say x and y. However, according to Embrechts et al. (1999) ,it is slightly better to use Kendalls tau and Spearmans rho measures than the pearson correlation coefficient. These standard measures do not provide any information on tail dependence between variables. With respect to fat tail behavior of financial time series, nonzero tail dependence increases the probability of joint extreme events. In this connection, Copula (sklar, 1959) (" link" in latin) not only measures non linear dependence but also tail dependence between variables.

This section explains the estimation procedures of copula parameters. First, the models for the marginal distributions are estimated to get filtered standardized residual return series. After that, copula function between marginal distributions is applied to determine copula parameters.

4.1 STATIONARITY AND NORMALITY OF RETURN SERIES

A data series needed to be stationary, before using in econometric analysis. A stationary process has the property that the mean, variance and autocorrelation structure do not change over time. If the data series are nonstationary, the shocks are perceived to be infinite, whereas shocks die away for a stationary series. In addition, high R² results in a regression analysis, though variables are not related at all, a phenomenon known as spurious regression. The thesis used ADF (Augmented Dicky Fuller) test for both original data series and returns series, to investigate whether there is unit root (implying the data is nonstationary).

$$\Delta yt = \alpha + \beta t + \gamma y_{t-1} + \delta y_{t-1} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \varepsilon_t$$
 Equation 2

H0 : $\theta = 0$ (i.e. the data needs to be differenced to make it stationary) H1: $\theta < 0$ (i.e. the data is stationary and doesn't need to be differenced)

Meanwhile, the thesis applied both Jarque-Bera and Skewness Kurtosis (SK) test for measuring univariate normality of the return series .Meanwhile, Doornik-Hansen test applied to

examine bivariate normality of return series (considering stock market and foreign exchange market of a country as a pair). Jarque-Bera is defined as:

Jarque – Bera Stata =
$$\frac{n}{6}$$
 $(s^2 + \frac{1}{4}(k-3)^2)$ Equation 3

Where n is the number of observations (or degrees of freedom in general); S is the sample skewness, and K is the sample kurtosis:

4.2 MODELING THE MARGINAL DISTRIBUTIONS

This section will present the models to be employed for the marginal distributions. Asset returns exhibit fat tails, long memory and conditional heteroskedasticity. As a result, the marginal distributions are assumed to be characterized by an ARMA(1,1)-GARCH(1,1) model to capture all the stylized facts of return series of stock markets and foreign exchange markets. The model to be employed in this thesis was introduced by Bollerslev (1987) and used in copula context by Patton (2001 and 2006).

The first log difference for stock indices and foreign exchange rates will be assumed to follow the process⁴:

$$xit = \mu i + \sum_{j=1}^{p} \varphi i j Xi, t - j + \sum_{k=1}^{q} \theta i, k \epsilon i, t - k + \epsilon i, t$$
 Equation 4

$$\epsilon_{it} = \sigma i, \eta_{i,t}$$

_ ... $\sigma^2 it = \alpha i, 0 + \sum_{i=1}^m \alpha i.\, j \; \epsilon^2 \; i, t-j + \sum_{k=1}^s \beta i \sigma^2 it - k$

$$\alpha$$
i, $0 > 0$, α i, $j \ge 0$ and $\sum_{j=1}^{\max{(m+S)}} (\alpha$ i, $j + \beta$ i, $j) < 1$

Here μi unconditional mean of the series, $\varphi i j$ are autocorrelation coefficients for lag 1 to p. in variance equation where , αo , αi , βi and are parameters needed to be estimated.

The parameters of the ARMA-GARCH models are estimated using the conditional likelihood approach, where the log-likelihood function is given by:

⁴ The ARMA (1,1)-GARCH(1,1) model estimated in EViews 6. All other models are estimated in Matlab.

$$\mathbf{l}(\boldsymbol{\theta}) = -\frac{n}{2}\mathbf{log}(2\pi) - \frac{1}{2}\sum_{t=1}^{n}\mathbf{log}(\sigma^{2} \mathbf{i}t) - \frac{1}{2}\sum_{t=1}^{n}\frac{\epsilon^{2}\mathbf{i}}{\sigma^{2}}$$
 Equation 6

Then the maximum likelihood estimator maximizes the log likelihood and is given by: $\hat{\theta}_i = \operatorname{argmax} l(\hat{\theta}_i)$

4.3 COPULA FUNCTION

The word copula is a Latin noun which means 'a link, tie or bond', and the word copula was first used in a mathematical sense in the theorem a sklar (1959). The idea of copula combines univariate distributions of two random variables in order to obtain a joint distribution with a particular dependence structure. The asymmetry and the non-linearity in the dependence structure between two vectors can be captured by the copula approach.

Definition 4.3.1 (see Schweizer and Wolf, 1981): A copula is a function C : $[0, 1] \rightarrow [0, 1]$ which satisfies:

- For every u, v in [0, 1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u and C(1, v) = v;
- for every u1, u2, v1, v2 in [0, 1] such that u1 \leq u2 and v1 \leq v2, C(u2, v2) C(u2, v1) C(u1, v2) + C(u1, v1) \geq 0.

The fundamental theory of copula is due following theorem

Theorem 4.3.2 (Sklar theorem, 1959): Let X and Y be random variables with joint distribution function H and marginal distribution functions F and G, respectively. Then there exists a copula C such that

$$H(x, y) = C(F(x), G(y))$$

.If F and G are continuous, then C is unique..Conversely, if C is a copula and F and G are distribution functions, then the function H defined by above equation is a joint distribution function with margins F and G.

Meanwhile, an appealing issue regarding copula is that it can measure tail dependence. Tail dependence measures the dependence between random variables, say x and y, in the upperright and lower-left quadrant of the joint distribution function (Cherubini, Luciano and Vecchiato, 2004). According to Nelson (2006), the parameter of asymptotic lower tail dependence, is the conditional probability in the limit that one variable takes a very low value, given that the other also takes a very low value. Similarly, the parameter of the asymptotic upper tail dependence, is the conditional probability in the limit that one variable takes a very high value, given that the other also takes a very high value. The asymptotic tail dependence parameters for copula function are given by Nelson (2006):

$$\begin{split} \lambda L &= \lim_{t \to 0+} \frac{C(t,t)}{t}. \end{split} \label{eq:lim} Equation 7 \\ \lambda U &= \lim_{t \to 1-} \frac{1-C(t,t)}{1-t}. \end{split} \label{eq:lim} Equation 8 \end{split}$$

In this thesis, Gumbel and Clayton copula are used to capture the tail dependence .Both Frank and Gaussian copula are symmetrical; hence do not exhibit any tail dependence. Let θ is the parameter of clayton and gumbel copula, then tail dependence of clayton copula (lower tail dependence) is given by $\lambda L = 2^{\frac{-1}{\theta}}$ and for gumbel copula (upper tail dependence) is given by $\lambda II = 2 - 2 \frac{1}{\theta}$

Equation 8

Let u and v is the cumulative density functions of the standardized residuals from the marginal models and with a condition $0 \le u$ and $v \le 1$, in addition, linear correlation coefficient ρ with boundary condition $0 \le \rho \le 1$.

Gaussian copula is given by: $C(u, v, p_i) = \Phi_0(\Phi^{-1}(u)(\Phi^{-1}(v)))$ Equation 9

Where, Φ_{a} is the buvariate normal distribution, Φ^{-1} is inverse function of the univariate normal distribution.

Student t copula is given by: $C(u, v, p) = t_v(t^{-1}(u)(t^{-1}(v)))$ **Equation 10**

Where, t_{ν} is the bivariate student t distribution with degree of freedom ν . t^{-1} is the inverse function of univariate student t distribution.

Frank copula is given by: $\frac{1}{\theta} (1 + \frac{\exp(-\theta) - 1)(\exp[(\theta - 1)]}{\exp(-\theta) - 1})$ **Equation 11**

Gumbel copula is given by : $exp = ((-log(u))^{\theta} + (-log(v))^{1/\theta}$ Equation 12

Clayton copula is given by : $(\max\{u^{-\theta} + v^{-\theta} - 1; \})^{-1/\theta}$ Equation 13 There is no widely acceptable statistic criterion that selects the copula that provides the best fit to the data. Dias and Embrechts (2004) and Palaro and Hotta (2006) used the AIC⁵ criterion to select the copula that provides the best fit. However, various simulation studies shows that the Schwarz Information Criterion (SIC or BIC) performs better in large samples whereas the AIC tends to be superior in small samples (Shumway and Stoffer, 2011 ; Steffen Nneberg et al).

$$AIC = -2 * \log likelihood + 2K$$
Equation 14

SIC = -2 * (log liklihood + ln (n) * K) Equation 15

Where, k is the number of parameters of the copula model and n is the number of observations.

4.4 GOODNESS-OF-FIT TESTS FOR MARGINAL MODELS

As noted earlier, the joint copula model requires the correct specification of the marginal distributions. If the marginal distributions are not correct, their probability integral transforms using kernel density smoothing, will not be i.i.d. uniform (0, 1), and hence the copula model will be mis-specified. Patton (2006a) employs then Kolmogorov– Simirnov (K–S) tests to test if they are uniform (0, 1). The thesis used K-S tests for goodness-of-fit measurement of marginal distributions.

⁵ The Akaike information criterion (AIC) is a measure of the relative quality of a statistical model, for a given set of data.

CHAPTER 5

FINDINGS

5.1 UNIT ROOT TESTS

By performing Augmented Dicky Fuller (ADF) test, whether there is unit root in original data series are examined .It is found that raw data are nonstationary. However, unit root test on return series implies return series are stationary.

Table 1Unit root test result (Augmented Dicky Fuller test) of return series

Particulars	P-value of Augment
	Dicky Fuller test
DGEN	0.00
COLOMBOASPI	0.00
BSESENSEX	0.00
BDT	0.00
INR	0.00
SLR	0.00

Note: p-values indicate rejection of null hypotheses at 5% significance level. Null hypothesis implies there is unit root in the univariate return series.

5.2 DESCRIPTIVE STATISTICS

Table 2 Descriptive statistics of return series

,	Minimum	Maximum	Me	ean	Std. Dev	Variance	Skewness	Kurtosis
			Stat.	Std. Error				
DGEN	-17.41	20.39	.056	.093	2.46	6.07	20	14.98
							(.02)	(0.00)
COLOMBOASPI	-5.49	4.96	.125	.044	1.18	1.41	.18	2.54
							(.04)	(0.00)
BSESENSEX	-4.88	5.65	.040	.051	1.36	1.86	.00	1.32
							(.92)	(0.00)

BDT	-3.67	4.43	.017	.017	.46	.21	1.21	20.37
							(0.00)	(0.00)
INR	-2.97	2.56	.031	.024	.66	.43	17	2.93
							(.06)	(0.00)
SLR	-1.68	2.73	.019	.012	.32	.10	1.74	17.06
							(0.00)	(0.00)

Note: number of observation 701. P-values reported in brackets.

Table 2 presents selected summary statistics of daily returns for three stock market and foreign exchange markets. Among the stock markets, Dhaka stock exchange provided highest daily returns, followed by Bombay stock exchange and Colombo stock exchange. For foreign exchange markets, exchange rates of BDT also provided highest daily returns. Except Dhaka stock exchange returns, all other daily returns of both markets fall in closer range. The daily standard deviation follows standard risk-return criteria, as highest return follows highest risk and vice versa. DGEN of Dhaka stock exchange exhibits highest amount of risk, complying with highest amount of daily returns.

Along with volatilities, skewness and kurtosis are considered as important measures of risk,. The significance level of these coefficients individually measures possibility of extreme events, jointly checks normality criteria of uni-variate return series. The skewness of returns is different from zero with most returns slightly skewing to the left i.e positively skewed. All returns show excess Kurtosis ranging from 2.54 to 20.37. And the kurtosis is higher, implying a fatter tail of returns.

5.3 NORMALITY TESTS

Jarque-Bera and SKtest strongly rejects the normality of the uni-variate return series.

Meanwhile Doornik-Hansen rejects bi-variate normality of stock-currency pairs.

	COLOMBOASPI	DGEN	BSESENSEX	BDT	INR	SLR
Jarque-Bera	188.56*	6461.24*	35.49*	12113.4*	249.3*	8731.75*
SK test	0.00	0.00	0.00	0.00	0.00	0.00

Table 3 Univariate normality test

Note: * indicates 1% level significance. SK test measures uni-variate normality by joint probability of both skewness and kurtosis

Table 4 Bivariate normality

	Doornik-Hansen
DGEN-BDT	2353 *
SENSEX-INR	169.67*
COLOMBOASPI-SLR	614.32*

Note: * indicates 1% level significance. D-H test indicates bi-variate normality.

5.4 CORRELATION COEFFICIENTS

	India pair	Bangladesh pair	Sri Lanka pair
Linear Correlation	148*	-0.051	051
Coefficient	(0.00)	(.178)	(.179)
Spearman's Rho	107*	018	029
	(.004)	(.636)	(.438)
Kendalls Tau	-0.073*	-0.012	-0.020
	(.004)	(.641)	(.426)

Table 5 Correlation coefficients

Note: Total observations equal 701 that range 2009-2013.Perason correlation is used for normally distributed data. Meanwhile kendall's tau and spearman's rho fit for non-normal data. Numbers in bracket indicate P-values. * indicates statistical significance at 5% significance level.

In Table 5 the linear correlations, the Kendall's tau and Spearman's rho rank correlations between the stock and the foreign exchange rate return pairs are presented. It is observed that the pair wise correlations are all negative, indicating that the increase (decrease) of the local stock market is associated with the depreciation (appreciation) of the local currency. The Kendall's Taus for are all negative for all pairs ; showing the probability of concordance is lower than the probability of discordance. The Spearman's Rhos for the pairs in each country are also negative, indicating weak rank correlations. The values of Taus and Rhos are consistent with each other and the linear correlation.

5.5 RESULTS OF MARGINAL MODEL

Before estimating the copula model, the marginal distribution model estimated separately. The results from marginal models are used to get the probability integral transforms, which are u and v. First the marginal models estimated, where ARMA (1, 1) -GARCH (p, q) type models are applied for each return series. Experimentation is made based on GARCH, with lag up to p = 2 and q = 2.

EGARCH (1,1) is found to be best fit for Bangladesh and Sri Lankan pair⁶. Bur for Indian pair CARCH is best fit. The estimates of the marginal models are presented in Table 7. Following table shows AIC comparison between two best model EGARCH and GARCH (1,1). Since EGARCH (1,1) model has minimum AIC, EGARCH chosen as fit to the return series of Bangladeshi and sri Lankan pair. For Indian pair, CARCH fitted.

-	EGARCH (AIC) Lag (1,1) Student t	GARCH(1,1) (AIC)
		Student t
COLOMBOASPI	2.93	2.94
SLR	74	76
DGEN	4.01	4.03
BDT	.75	.76
SENSEX	3.3604	3.3676
INR	(GED with Fixed Parameter 1.5)	Student t
	1.86	1.87

Table 6 AIC criteria of marginal distributions

Note: This table compares selected model EGARCH with close contestant GARCH model in terms of minimum AIC. Student t distribution produced best fit. Indian rupee is exception.

Except Indian pair, EGARCH (1,1) is generally able to capture the conditional heteroskedasticity for both stocks and exchange rates. For Indian pair, CARCH is fit. It is seen that β is not large; as a result volatility dies immediately after a crisis. as $\gamma > 0$ positive shocks (good news) generate more volatility than negative shocks(bad news).

⁶ A pair means data series of stock market return and exchange rate return of a country.

	ARMA Model (1,1)		EGARCH			CARCH						
	μ	AR(1)	MA(1)	ω	α	β	γ	ω	ρ	θ	α	δ
COLOMBOASPI	004	.81	67	21	.33	04	.91					
	(.94)	(0.0)	(0.0)	(0.0)	(0.0)	(0.27)	(0.0)					
DGEN	.16	.90	85	12	.26	17	.93	-				
	(.06)	(0.0)	(0.00)	(.001)	(0.0)	(0.0)	(0.00)					
SENSEX	.05	.01	.02					1.53	.97	.03	09	.01
	(.20)	(.97)	(.95)					(.00)	(0.00)	(0.0)	(0.00)	(.97)
INR	.009	.003						.37	.97	.04	06	.34
	(.68)	(.36)						(0.0)	(0.0)	(0.0)	(.01)	(.46)
BDT	.0020	.20	53	89	.50	03	.66					
	(.75)	(0.02)	(0.0)	(0.00)	(0.00)	(0.00)	(0.00)					
SLR	00	.016		55	1.2	.25	.88					
	(.96)	(.62)		(0.0)	(0.08)	(.15)	(0.0)					

Table 7 ARMA-GARCH Filtration

Note: Total observation 701. The coefficients μ and ω are the intercept of mean and variance equations respectively. Meanwhile the parameters αi and βi refer to the ARCH and GARCH effects respectively. P values are in brackets. Here, 5% significance level has been considered.

Follows is arch effect test applied to return series. It is seen that before fitting a GARCH model, null hypothesis is rejected, and there is arch effect. When GARCH model is fitted, ARCH effect test accepts null hypothesis that there is no ARCH effect left in the return series.

	ARCH effect test
	before(after)
COLOMBOASPI	.00 (0.35)
SLR	.00(.99)
DGEN	.00(.99)
BDT	0.00(.97)
SENSEX	.003(.49)
INR	.00(.15)

Table 8 ARCH effect test of univariate return series

Note: ARCH effect test has been applied before using ARCH-GARCH type model on univariate return series, which is indicated by P – values outside brackets. Again same test is conducted after a using ARCH-GARCH type model to see whether any arch effect left, indicated by P-values within brackets. 5% significance level has been considered.

5.6 GOODNESS-OF-FIT TESTS FOR MARGINAL MODELS

Kolmogorov– Simirnov (K–S) test examines the null hypothesis that the data in vector comes from a standard normal distribution, against the alternative that it does not come from such a distribution. The test statistics shows that null hypotheses is rejected at 1% level of significance.

Table 9 Kolmogorv	 Simirnov one 	sample test
-------------------	----------------------------------	-------------

	DGEN	BDT	Colombo	INR	SLR	Sensex
	Std.Res.	Std.Res.	Std. Res.	Std. Res.	Std. Res.	Std. Res.
Kolmogorov-Smirnov Z	14.90*	14.48*	10.17*	13.29*	15.61*	8.53*

Note: * indicates 1% level significance.

5.7 RESULTS OF THE JOINT COPULA MODELS

Table 10 reports parameter estimates for the Gaussian, Student-t, Gumbel , Frank and Clayton copulas. For India and Bangladesh pairs, the dependence parameters, i.e., the correlation coefficient ρ in both Gaussian and t-copulas are negative and close to linear correlation coefficient, whereas the degree of freedom (DoF i.e. ϑ are about 8 in both Indian and Bangladeshi pair. This is not a surprise since both Gaussian and t-copulas belong to elliptical copula family, and the coefficient ρ in these two copulas is just the usual linear correlation coefficient given the elliptical margins (t distributions in this case). Meanwhile, in case of Sri Lankan pair the, unlike the linear correlation coefficient, ρ for Srilankan case is a bit positive, and DoF is 36. Among others, Gumbel copula parameter is about 1 for all three pair. Whereas Frank copula parameter ranges from .02 to .69, and Clayton copula for Indian and Bangladeshi pair is 0 and for sri Lankan pair .019

The DoFs (Degree of Freedom) of the t-copula are 8.04 and 8.91 for Indian and Bangladeshi pair respectively. Meanwhile, DOF is 36 for Sri Lankan pair. It indicates substantial extreme co-movements and tail dependence in all three pairs. Gaussian copula which does not allow for tail dependence is not sufficient in modeling the dependence of the stock-currency pairs.

Tail dependence parameters for the Clayton copula (lower tail dependence) is nil for all pairs. In case of Gumbel copulas, upper tail dependence parameters are positive for Indian and Srilankan pairs. When a country's stock market is booming, investors believe that it is a good place for investment; therefore they will purchase that country's currency to buy stocks there. Hence the demand of the currency increases, which leads to the appreciation of the currency. Since there is upper tail dependence, opposed to no lower tail dependence, implying that dependence between markets increases during bull market state (rise in price of financial instruments) in South Asian countries.

Table 10 Copula parameters

		Indian pair	Bangladesh pair	Sri Lanka pair
Gaussian Copula	Р	-0.137	-0.0422	0.0168
AIC		-13.42	-1.23	1945

Student t Copula	Р	-0.1229	-0.0307*	0.0142
	θ	8.04	8.91	36.52
	θci	(-1.52) -17.6	1.22 - 16.59	(36.52 -89.93i)
				- (36.52+89.93i)
Frank	Θ	0.6945	-0.145	0.0213
	Θci	(-1.14)-(24)	(-0.59)30	(43)47
Gumbel	Θ	1	1 .04*	1.012
	Θci	.95 -1.04	.95- 1.04	.97-1.05
	λ_u	1.63	0	.0168
	Θ	0	0	.019
	Θci	(07)07	(07)07	(0673)1062
Clayton	λ_l	0	0	0

Note: This table presents the copula estimates by using Gaussian copula ,Student t copula , Frank copula , Clayton copula and Gumbel copula. ρ denotes linear correlation coefficient estimates of Gaussian and Student t copula . ϑ represents degree of freedom for Student t copula. λ L and λ U measures lower and upper tail dependence of Clayton and Gumbel copula respectively. Θ denotes parameter of Frank, Gumbel and Clayton copula. ϑ ci and Θ ci measures confidence interval for the respective parameters.

Following are copulafit diagram of Indian, Bangladesh and Srilankan pair.

In x axis, sensex and in y axis exchange rate of Indian rupee is shown.

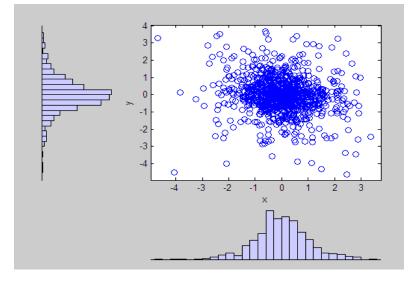


Figure 3 Bombay stock exchange index (Sensex) -Indian rupee

In x axis, DGEN and in y axis exchange rate of Bangladeshi taka is shown.

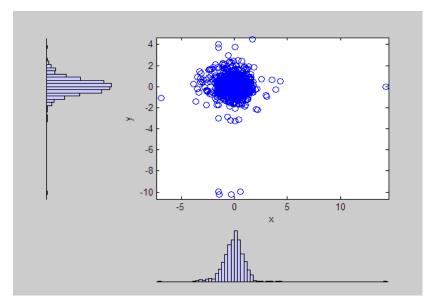


Figure 4 DSE General index -Bangladeshi taka

In x axis, Colombo all share price index and in y axis exchange rate of srilankan rupee is shown.

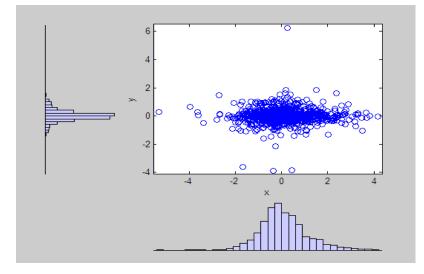


Figure 5 Colombo all share price index- Sri Lankan rupee

CONCLUSION

In this thesis, the degree of dependence of the bivariate distribution of stock market and foreign exchange market returns in 3 south asian countries using copula models over the period 2009-2013 investigated .The thesis considered five dependence structure : (1) Gaussian copula ,similar to Pearson correlation , does not allow tail dependence , (2) Student t copula allows symmetric tail dependence , (3) Frank copula do not exhibit any tail dependence, (4) Gumbel copula reveals asymmetric (upper tail) dependence , (5) Clayton exhibits asymmetric (lower tail) dependence. Results of the thesis show asymmetric dependence with upper tail dependence, opposed to no lower tail dependence. This implies that dependence between markets increases during bull market state (rise in price of financial instruments) in south asian countries. Meanwhile, marginal models exhibit existence of volatility, which is mainly due to positive news rather than negatives. Volatility vanishes immediately after a crisis, indicating rise in investors' confidence and stability after a period of fluctuations. In order to enjoy diversification benefit in selected south asian countries, foreign investors should focus negative relationship between markets for risk management purpose.

BIBLIOGRAPHY

- 1. Agrawal, G., Srivastav, A.K. & Srivastava, A.(2010). A Study of Exchange Rates Movement and Stock Market Volatility. *International Journal of Business and Management*, *5*(12).
- Andersen, T.G., Bollerslev, T., Christoffersen, P.F & Diebold, F.X. (2007). Practical Volatility and Correlation Modeling for Financial Market Risk Management.
- 3. Ang, A. & Bekaert, G. (2002) International Asset Allocation with Regime Shifts. *Review* of *Financial Studies*, *15*(4), 1137-1187.
- Ang, A. & Chen, J. (2002). Asymmetric Correlations of Equity Portfolios. *Journal of Financial Economics*, 63(3), 443-494.
- 5. B. Schweizer & E. F. Wolff. (1981).On Nonparametric Measures of Dependence for Random Variables. *The Annals of Statistics*, *9*(4): 879-88.
- Boyer, B. H.& Gibson, M. S. & Loretan M.(1999).Pitfalls in Tests for Change in Correlations. Board of Governors of the Federal Reserve System, International Finance Discussion Papers No. 597.
- Bollerslev, T. (1986).Generalized Autoregressive Conditional Heteroskedasticity", Journal of *Econometrics*, 31 (3): 307-327.
- Bollerslev T. (1987). A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. *The review of economics and statistics*, 69(3):542 – 547.
- Bouye E. & Durrleman V. & Nikeghbali A. & Riboulet G. & Roncalli T. (2000)
 "Copulas for Finance A Reading Guide and Some Applications".
- Branson, W, Halttunen, H., & Masson, P. (1977). Exchange Rate in the Short Run: The Dollar Deutsche Mark Rate. *European Economic Review*, *10*: 303–324.
- 11. Chakrabarti, R. & Roll, R. (2002) .East Asia and Europe during the 1997 Asian Collapse: A Clinical Study of a Financial Crisis. *Journal of Financial Markets*, 5:1–30.
- 12. Cherubini, U. & Luciano E. (2002). Bivariate Option Pricing with Copulas. *Applied Mathematical Finance*, 9 (2), 69-85.
- 13. Costinot, A., T. Roncalli & J. Teïletche. (2000).Revisiting the Dependence between Financial Markets with Copulas. Working Paper
- 14. Dimitrova D. (2005). The Relationship between Exchange Rates and Stock Prices: Studied in a Multivariate Model. *Issues in Political Economy*, 14.

- 15. Dornbusch, R., & Fischer, S. (1980). Exchange Rates and The Current Account" *American Economic Review*, 70:960–971.
- 16. Dajcman S.(2013). Dependence between Croatian and European Stock Markets.
- 17. Frenkel, J. (ed.), (1983). Exchange Rates and International Macroeconomics. Chicago: University of Chicago Press.
- Embrechts P., Lindskog F. & McNeil A. (2001).Modeling Dependence with Copulas and Appilcations to Risk Management" In: Rachev S. (Ed.), *Handbook of Heavy Tailed Distributions in Finance*, Elsevier, 329-384.
- Embrechts, P. & Dias, A. (2004). Change-point Analysis for Dependence Structures in Finance and Insurance: Risk Measures for the 21st Century, ed. by Giorgio Szegoe, Wiley Finance Series, Chapter 16: 321-335.
- 20. Helder Parra Palaro & Luiz Koodi Hotta (2006). Using Conditional Copula to Estimate Value at Risk. *Journal of Data Science*, 493-115.
- 21. Hamisah A.R. & Yusuf M.M. Granger Causality Relationship between Malaysia Equity Market and Exchange Rate Volatility.
- 22. Heni Boubaker Greqam & Nadia Sghaier (2014) .On the dynamic dependence Between US and other Developed Stock Markets: An Extreme-value Time-Varying Copula Approach.
- 23. Hu, L.(2006). Dependence Patterns Across Financial Markets: A Mixed Copula Approach, *Applied Financial Economics*, *16*(10), 717-729.
- Joe, H. & Xu, J.J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical report, 166, Department of Statistics, University of British Columbia.
- 25. Jussi Karlqvist .Copula Models for Dependence between Equity Index Returns.
- 26. Jamil M.& Ullah N. (2013).Impact of Foreign Exchange rate on stock prices. *Journal of Business and Management, 7*(3): 45-51
- 27. Karoui, A..(2006). The Correlation between Fx Rate Volatility and Stock Exchange Returns Volatility: An Emerging Markets Overview.
- 28. Kousky, C. &. Cooke, R.M. (2009). The Unholy Trinity: Fat Tails, Tail Dependence, and Micro-Correlations"
- 29. Longin, F., Solnik, B. (2001). Extreme correlation of international equity markets. *Journal* of *Finance*, *56*: 649–676.

- Rahman L. & Uddin J. (2008) .Relationship between Stock Prices and Exchange Rates: Evidence from Bangladesh.
- 31. Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1): 77-91.
- 32. Michelis, L. & Ning, C. (2010). The Dependence Structure between the Canadian Stock Market and the US/Canada Exchange Rate: A Copula Approach. *Canadian Journal of Economics*, 43:1016-1039.
- 33. Righi M.B. & Ceretta P.S. & Coronel D.A. "Estimation of Non-Linear Dependence between Exchange Rate and Stock Market through Different Time Scales: Latin Case".
- 34. Necula C. Modeling The Dependency Structure of Stock Index Returns using A Copula Function Approach.
- Nath, G. C. & Samanta, G. P. Relationship between Exchange Rate and Stock Prices in India - An Empirical Analysis.
- Nelson, R.B. (2006). An Introduction to Copulas. Springer Series in Statistics, 2nd ed., Springer.
- 37. Ning C. (2010). Dependence Structure between the Equity Market and the Foreign Exchange Market – A Copula Approach" *Journal of International Money and Finance*, in Press.
- Paula, V., Flavio, T., Osvaldo, Z. C., & Filho S. A Comparison Study of Copula Models for European Financial Index Returns.
- 39. Patton, Andrew J. (2001). Modeling Time-Varying Exchange Rate Dependence Using the Conditional Copula", Working Paper 2001-09, Department of Economics, University of California, San Diego.
- 40. Patton, A.L., (2006a). Modeling asymmetric exchange rate dependence. *International Economic Review*, 47 (2), 527–556.
- 41. Patton, A.L., (2006b). Estimation of Multivariate Models for Time Series of Possibly Different Lengths. *Journal of Applied Econometrics*, *21* (2): 147–173.
- 42. Poon,, Ser-Huang, & Clive, W.J. Granger. (2003). Forecasting Volatility in Financial Markets: A Review. Journal *of Economic Literature*, *41*(2): 478-539.
- 43. Ross, S. (1976). The Arbitrage Theory of Capital Asset Pricing. *Journal of Economics Theory*.341-360.
- 44. Rajavat,Y.S. (2013).Study to Analyse the Impact of Dollar on BSE and NYSE, *Asian Journal of Management*,4(2): 85-88.
- 45. Schweizer, B. & Sklar, A. (1974) .Operations on distribution function not derivable from operations on random variables. *Studia Mathematica* ,52 : 43-52.

- 46. Schweizer, B. & Wolf, E. (1981). on non parametric measures of dependence for random variables . *The annals of statistics* ,9.
- 47. Sharpe, W. F. (1964).Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, *The Journal of Finance*, *19* (3): 425-442.
- 48. Sklar, A. (1959). "Fonctions De Répartition a n Dimensions Et Leurs Marges. Publications De l'Institut De Statistiques De l'Université de Paris, *8*, 229-231.
- 49. Sortino, F. & Price, L..(1994).Performance measurement in a downside e risk framework. *Journal of Investing*, 59-65.
- 50. Sulku S.N. (2011).Causality Relation between Real Exchange Series and Emerging Stock Markets: Panel Common Factor Analysis. *Journal of Applied Economics and Business Research*, *1*(3): 130-148
- 51. Umberto Cherubini, Elisa Luciano & Walter Vecchiato .Copula Methods in Finance. ISBN: 978-0-470-86344-
- 52. Wang, X. (2011). The Relationship between Stock Market Volatility and Macroeconomic Volatility: Evidence from China. *Journal of Chinese Economic and Finance*, 2:67-77
- 53. Zia Q.Z. & Zahid R. The Causality between Stock Market and Foreign Exchange Market of Pakistan. *Interdisciplinary Journal Of Contemporary Research in Business*, *3*(5), 906-919.
- 54. Zubair, A. (2013).Causal Relationship between Stock Market Index and Exchange Rate: Evidence from Nigeria, CBN Journal of Applied Statistics, 4(2): 87-110.

EVIEWS OUTPUT

COLOMBO ALL SHARE PRICE INDEX

LOG(GARCH) = C(4) *RESID(-1)/@SQRT(0				C(6)
Variable	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1) MA(1)	-0.004042 0.818178 -0.672527	0.063207 0.061407 0.081648	-0.063943 13.32389 -8.236860	0.9490 0.0000 0.0000
	Variance	Equation		
C(4) C(5) C(6) C(7)	-0.214843 0.330003 -0.048276 0.917085	0.048210 0.074884 0.044476 0.032012	-4.456428 4.406846 -1.085435 28.64828	0.0000 0.0000 0.2777 0.0000
T-DIST. DOF	4.340367	0.852163	5.093352	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.040487 0.030781 1.170963 948.8382 - 1018.392	Mean deper S.D. depend Akaike info Schwarz crit Hannan-Qui	dent var criterion terion	0.125258 1.189411 2.932548 2.984561 2.952654
F-statistic Prob(F-statistic)	4.171327 0.000164	Durbin-Wate	son stat	1.944740
Inverted AR Roots Inverted MA Roots	.82 .67			

Table 11 EGARCH output of colombo all share price index

Date: 04/18/14 Time: 19:18
Sample: 8/04/2009 7/31/2013
Included observations: 700
Q-statistic probabilities adjusted for 2 ARMA term(s)

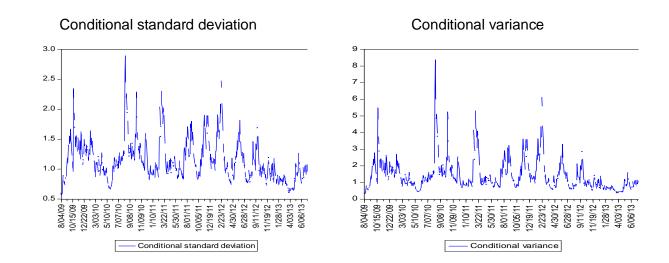
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pr(
ı)	ի	1	0.047	0.047	1.5698	
ığı -	(l	2	-0.025	-0.027	2.0154	
ı (ı	II II	3	-0.049	-0.047	3.7199	0.0
i li	11	4	0.003	0.007	3.7264	0.1
i li	1 1	5	0.003	0.001	3.7349	0.2
ի	ի	6	0.050	0.048	5.5309	0.2
ı))	l 🕪	7	0.031	0.028	6.2320	0.2
փ	ի դե	8	0.016	0.015	6.4040	0.3
1	1	9	-0.003	0.002	6.4093	0.4
- p	ф	10	0.050	0.053	8.1605	0.4
ի	ı)	11	0.063	0.060	11.029	0.2
d i	d	12	-0.063	-0.070	13.859	0.1
A						

Before GARCH model applied

Correlogram of Residuals

ate: 04/18/14 Time: 19:23 ample: 8/04/2009 7/31/2013 cluded observations: 700 -statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	1) 	1 0.045 2 -0.019 3 -0.063	-0.021		0.034
1 1 1		4 -0.040 5 0.006	0.007	5.6752	
		7 -0.007	-0.015	6.8466 6.8850 7.4694	0.22§
		9 0.020		7.1684 7.1777	0.300


Figure 6 Correlogram of residuals colombo all share price index

After GARCH model applied Correlogram of Standardized Residuals Squared						Before	e GARCH mo Correlogram of Res					
Date: 04/18/14 Tim Sample: 8/04/2009 Included observatio Q-statistic probabilit	7/31/2013	MA term(s)				Date: 04/18/14 Tim Sample: 8/04/2009 Included observatio Q-statistic probabilit	7/31/2013	/IA te	rm(s)			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prol	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
		1 0.027 2 -0.080 3 -0.025 4 -0.012 5 -0.009 6 -0.009 7 -0.015 8 0.067 9 0.013 10 -0.023 11 0.019	-0.021 -0.017 -0.012 -0.011 -0.017 0.066 0.006	5.4975 5.5967 5.6533	0.01 0.06 0.13 0.22 0.31 0.17 0.24 0.29 0.36		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 9 10 11	0.232 0.028 0.107 0.087 0.066 0.030 0.067 0.029 0.055 0.042	0.232 -0.027 0.113 0.039 0.054 0.031 -0.001 0.051 -0.014 0.047 0.004	37.815 38.366 46.495 51.875 56.062 59.153 59.793 62.955 63.535 65.656 66.932	0.C 0.C 0.C 0.C 0.C 0.C

Figure 7 Correlogram of standardized residuals squared colombo all share price index

Table 12 ARCH effect test (after GARCH model applied) colombo all share price index

Heteroskedasticity Test:	ARCH		
F-statistic Obs*R-squared	1.103876 5.523200	Prob. F(5,689) Prob. Chi-Square(5)	0.3569 0.3554
Variable	Coefficient	Std. Error t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	1.052966 0.026089 -0.081329 -0.020376 -0.016341 -0.011936	0.1147259.1781650.0380790.6851330.038064-2.1366580.038183-0.5336520.038060-0.4293470.038053-0.313674	0.0000 0.4935 0.0330zz 0.5938 0.6678 0.7539
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.007947 0.000748 2.035641 2855.101 -1477.163 1.103876 0.356923	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	0.952978 2.036402 4.268094 4.307322 4.283263 1.999071

Figure 8 Conditional standard deviation and conditional variance colombo all share price index

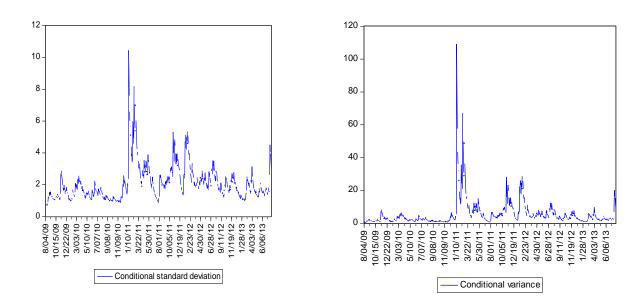
LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)	@SQRT(GARCH	(-1))) + C(6)
*RESID(-1)/@S	QRT(GARCH	(-1)) + C(7))*LOG(GARCH(-1))
Variable	Coeffi St cient	d. Error	z-Statistic	Prob.
C AR(1) MA(1)	0.160 0.905 0.857	0.0855 0.062 0.075	1.87 14.4 -11.28	0.06 0.00 0.00
	Variance Eq	uation		
C(4) C(5) C(6) C(7) T-DIST. DOF	-0.120 0.2687 -0.170 0.9377 4.670	0.038 0.055 0.036 0.017 0.562 538	-3.132 4.84 -4.71 52.88 8.30	0.0017 0.00 0.00 0.00 0.00
R-squared Adjusted R- squared	-0.009 -0.019		pendent var vendent var	0.056 2.46
Squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	2.489 4289.29 -1395.54 2.167965	Schwarz	nfo criterion criterion Quinn criter.	4.01 4.062 4.030
Inverted AR Roots Inverted MA Roots	.91 .86			

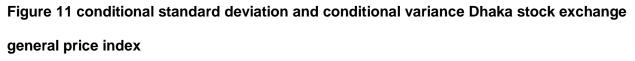
Table 13 EGARCH output all Dhaka stock exchange general price index

After GARCH model applied Correlogram of Standardized Residuals						Befor	e GARCH m Correlogram of		plied		
ate: 05/11/14 Tim ample: 8/04/2009 7 ncluded observatior I-statistic probabilit	//31/2013	MA term(s)				Date: 05/11/14 Tim Sample: 8/04/2009 Included observatio Q-statistic probabilit	7/31/2013	MA term(s)			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pi	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pi
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 -0.037 3 0.062 4 0.055 5 -0.045 6 0.008 7 -0.004 8 0.021 9 -0.013 10 -0.016	0.054 -0.041 0.008 -0.014 0.024 -0.010 -0.016 -0.032	0.0004 0.9615 3.6304 5.7987 7.2332 7.2748 7.2886 7.6118 7.7313 7.9086 8.5612 9.7028	0. 0. 0. 0. 0. 0. 0. 0. 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 0.008 4 0.056 5 0.001 6 0.054 7 0.031 8 -0.006 9 -0.014 10 -0.037 11 -0.008	0.003 -0.019 0.008 0.056 0.001 0.056 0.030 -0.008 -0.014 -0.045 -0.012	0.0074 0.2575 0.3035 2.5356 2.5359 4.6235 5.2886 5.3172 5.4608 6.4554 6.4960	0. 0. 0. 0. 0. 0. 0. 0. 0.

Figure 9 Correlogram of residuals Dhaka stock exchange general price index

Correlogram of Standardized Residuals Squared					Correlogram of Residuals Squared						
Date: 05/11/14 Tim Sample: 8/04/2009 Included observatio Q-statistic probabilit	7/31/2013	MA term(s)				Date: 05/11/14 Tim Sample: 8/04/2009 Included observatio Q-statistic probabilit	7/31/2013	/IA tei	rm(s)		
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pro	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat
1		1 0.000	0.000	7.E-05				1	0.180	0.180	22.843
		2 -0.004		0.0125	0.8	i li		2	0.039	0.007	23.923
		4 -0.002		0.0560	0.0	Ľ		3	0.044	0.037	25.267
. u		5 -0.011	-0.011	0.1406	0.9	i E		5	0.114	0.103	43 245
ų.		6 -0.011	-0.011	0.2191	0.9	in in		6	0.057	0.022	
11	11	7 -0.006		0.2479	0.9	16	ի դի	7	0.069		48.864
		8 -0.008		0.2925	1.0	ų.		8	0.020	-0.016	49.153
		9 -0.006		0.3167	1.0 1.0	ւթ	ի	9	0.053	0.033	51.157
		11 -0.011	0.001	0.3209	1.0	ı þi		10	0.039	0.008	52.217
ili i	l ili	12 -0.007		0.4542		ų.	1 10	11	0.015	-0.011	52.371


Table 14 ARCH test (after GARCH model applied) Dhaka stock exchange general price


index

Heteroskedasticity Test: ARC	Н		
F-statistic	0.027705	Prob. F(5,689)	0.9996
Obs*R-squared	0.139704	Prob. Chi-Square(5)	0.9996

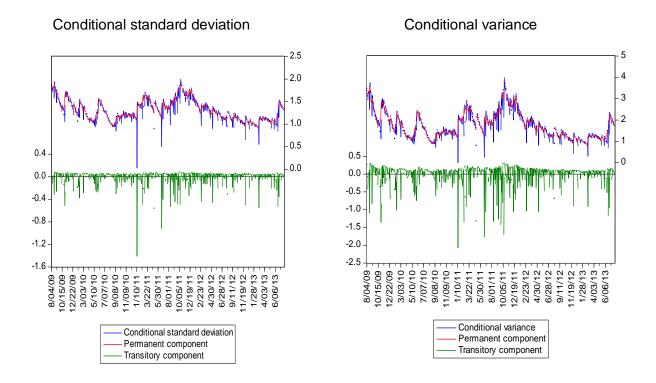
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/26/14 Time: 21:59 Sample (adjusted): 8/19/2009 7/31/2013 Included observations: 695 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	1.261219 0.000267 -0.004287 -0.007711 -0.001881 -0.011001	0.318236 0.038095 0.038095 0.038095 0.038096 0.038095	3.963152 0.007008 -0.112532 -0.202406 -0.049368 -0.288784	0.0001 0.9944 0.9104 0.8397 0.9606 0.7728
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	-0.011001 0.000201 -0.007054 7.913244 43144.79 -2420.783 0.027705 0.999637	Mean depende S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	dent var ent var riterion erion an criter.	1.230841 7.885479 6.983548 7.022776 6.998717 2.000204

$Q = C(4) + C(5)^*(Q(-C))^*$ GARCH = Q + C(7) *)
				-
Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.058039	0.045662	1.271071	0.2037
AR(1)	0.018592	0.493990	0.037637	0.9700
MA(1)	0.027136	0.494586	0.054865	0.9562
	Variance E	quation		
C(4)	1.535153	0.385502	3.982216	0.0001
C(5)	0.979456	0.012636	77.51441	0.0000
C(6)	0.039579	0.014924	2.652066	0.0080
C(7)	-0.090627	0.013059	-6.939812	0.0000
C(8)	0.014291	0.491997	0.029047	0.9768
T-DIST. DOF	5.940153	1.518177	3.912688	0.0001
R-squared	0.002921	Mean depend	dent var	0.027804
Adjusted R- squared	-0.008622	S.D. depende	ent var	1.345554
S.E. of regression	1.351343	Akaike info c	riterion	3.360469
Sum squared resid	1261.854	Schwarz crite		3.418983
Log likelihood	-1167.164	Hannan-Quir	n criter.	3.383088
F-statistic Prob(F-statistic)	0.253064 0.980068	Durbin-Watso	on stat	1.967964
Inverted AR Roots Inverted MA Roots	.02 03			

Table 15 CGARCH output of Bombay stock exchange sensex

Α	fter GARCH	l ap	pliec	ł			Bet	fore GARCH	applied	ł		
Autocorrelation	Partial Correlation		AC F	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pr
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 -1 3 -1 4 -1 5 -1 6 -1 7 -1 8 -1 9 -1	0.032 -0 0.003 -0 0.019 -0 0.029 0 0.061 -0 0.012 -0).005).012).032).003).019).028).063).012	0.0339 0.1388 0.8681 0.8767 1.1206 1.7023 4.3258 4.4324	0.64 0.83 0.89 0.88 0.63 0.72	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 -0.001 2 -0.012 3 -0.025 4 -0.043 5 0.002 6 -0.014 7 0.025 8 -0.061 9 -0.024	-0.012 -0.025 -0.043 0.001 -0.016 0.022 -0.063 -0.024	0.0961 0.5441 1.8602 1.8628 2.0030 2.4312 5.0418 5.4356	0.3 0.6 0.7 0.7 0.5 0.6
10 11		11 -	0.014 -0	.015	7.7829 7.9319 8.0991	0.54		1 0 11 11	10 0.066 11 -0.018 12 -0.011	-0.019		0.4



After GARCH applied

Before GARCH applied

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pr	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
		1 0.019 2 -0.010 3 0.006 4 0.067 5 -0.035	-0.010 0.007 0.067	0.3232 0.3511 3.5461	0.	1) 1) 1)	ין ו ו ש ו ש	2	0.035 0.049	0.035 0.050	0.1063 0.9912 2.6891 17.141	0.10
		5 -0.035 6 -0.018 7 0.021 8 -0.020 9 -0.038 10 -0.010	-0.015 0.021 -0.026 -0.032	4.6164 4.9428 5.2307 6.2735	0. 0. 0. 0.	1) 1) 1) 1)	1) 1) 1) 1) 1)	6 7 8 9	0.051 0.078 0.072 0.009	0.040 0.066 0.052 -0.001	17.452 19.258 23.527 27.180 27.242	0.0 0.0 0.0 0.0
		11 -0.015 12 -0.024		6.4963 6.8048		1)1 1 1 1 1		11	0.005	-0.022	28.292 28.308 29.986	0.0

Figure 13 Correlogram of standardized residuals squared Bombay stock exchange sense

Figure 14 Conditional standard deviation and conditional variance Bombay stock

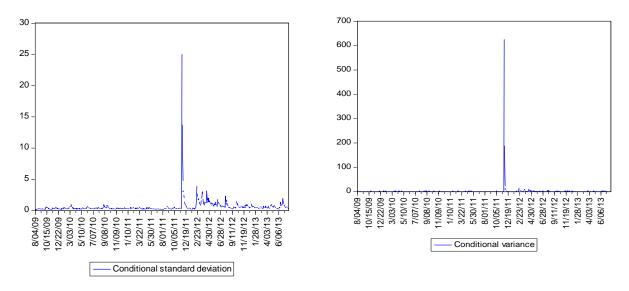
exchange sensex

Table 16 ARCH afect test after CGARCH applied Bombay stock exchange sensex

Heteroskedasticity Tes	st: ARCH			
F-statistic	0.881151	Prob. F(5,689	,	0.4932
Obs*R-squared	4.415884	Prob. Chi-Squ		0.4912
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.999639	0.113505	8.807033	0.0000
WGT_RESID^2(-1)	0.021166	0.038079	0.555859	0.5785
WGT_RESID^2(-2)	-0.00898	0.038000	-0.236410	0.8132
WGT_RESID^2(-3)	0.005067	0.037985	0.133386	0.8939
WGT_RESID^2(-4)	0.067650	0.037984	1.781026	0.0753
WGT_RESID^2(-5)	-0.037160	0.038057	-0.976427	0.3292
R-squared	0.006354	Mean depend	dent var	1.049964

Adjusted R-squared S.E. of regression	-0.000857	S.D. dependent var	1.912282
	1.913102	Akaike info criterion	4.143924
Sum squared resid	2521.711	Schwarz criterion	4.183152
Log likelihood	-1434.014	Hannan-Quinn criter.	4.159093
F-statistic Prob(F-statistic)	0.881151 0.493200	Durbin-Watson stat	2.000687

SRILANKAN RUPEE


Table 17 EGARCH output of Srilankan rupee

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5) *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	-0.000160 0.016976	0.003588 0.034600	-0.044494 0.490633	0.9645 0.6237
	Variance E	quation		
C(3) C(4) C(5) C(6)	-0.551030 1.208975 0.251344 0.889008	0.129188 0.700885 0.176212 0.021408	-4.265328 1.724926 1.426374 41.52778	0.0000 0.0845 0.1538 0.0000
T-DIST. DOF	2.106474	0.128863	16.34667	0.0000
R-squared Adjusted R- squared	0.004359 -0.004261	Mean depende S.D. depende		0.019396 0.327402
S.E. of regression Sum squared resid	0.328099 74.60069	Akaike info c Schwarz crite		-0.743366 -0.697855
Log likelihood F-statistic Prob(F-statistic)	267.1781 0.505689 0.804285	Hannan-Quir Durbin-Watso		-0.725773 1.549059
Inverted AR Roots	.02			

3 0.043 0.041 3.4271 0.18 3 -0.012 0.0012 <	After GARCH applied Correlogram of Standardized Residuals							GARCH appl		s Squar	red	
Multicontension Autocontension Autocontension Acc FAC Clistat Multicontension 1 0.049 0.049 1.7059 1 1 0.012 0	Sample: 8/04/2009 ncluded observatio	ample: 8/04/2009 7/31/2013 cluded observations: 700				[Sample: 8/04/2009 Included observation	7/31/2013 ns: 700	/IA term(s)			
2 0.025 0.022 2.1359 0.14 1 -0.012 -0.012 0.1084 3 0.043 0.041 3.4271 0.18 2 -0.012 -0.012 0.012 0.02078 4 -0.011 -0.016 3.5153 0.31 3 -0.012 -0.012 0.0012 0.3071 5 0.004 0.003 3.5249 0.47 1 4 -0.002 0.002 0.002 0.002 0.002 0.002 0.3094 6 -0.007 -0.009 3.5621 0.61 6 -0.002 -0.002 0.4540 7 0.019 0.021 3.8163 0.70 7 -0.011 -0.012 0.5544 9 -0.012 0.315 0.79 7 -0.011 -0.012 0.5834 9 -0.012 -0.025 0.865 8 -0.007 -0.008 0.5834 10 -0.034 -0.035 4.8401 0.86 10 -0.011 0.7403 11 -0.027 -0.022 5.3609 0.86	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Ρ
1 2 0.022 2.1359 0.14 1 3 0.043 0.041 3.4271 0.18 1 4 -0.011 -0.016 3.5153 0.31 1 4 -0.011 -0.016 3.5153 0.31 1 5 0.004 0.003 3.5249 0.47 5 0.004 0.003 3.5249 0.47 1 6 -0.007 -0.009 3.5621 0.61 1 7 0.019 0.21 3.8163 0.70 1 8 -0.012 0.28815 0.79 7 -0.011 -0.012 0.5834 1 9 -0.013 -0.012 4.8401 0.84 9 9 -0.011 -0.012 0.6684 1 1 -0.027 -0.022 5.3609 0.86 10 -0.010 -0.011 0.7403	ı)		1 0.049	0.049	1.7059		ii		1 -0 012	-0.012	0 1084	=
1 4 -0.011 -0.016 3.5153 0.31 3 -0.012 -0.012 0.3071 1 5 0.004 0.003 3.5249 0.47 1 4 -0.002 -0.002 0.3094 1 6 -0.007 -0.009 3.5621 0.61 1 5 -0.014 -0.015 0.4518 1 7 0.019 0.021 3.8163 0.70 1 6 -0.002 -0.002 0.4540 1 9 -0.012 3.8815 0.79 1 7 -0.011 -0.012 0.5454 1 9 -0.013 -0.012 4.0015 0.855 1 8 -0.007 -0.008 0.5834 1 10 -0.034 -0.035 4.8401 0.84 1 9 -0.011 -0.012 0.6684 1 10 -0.027 -0.022 5.3609 0.86 1 10 -0.010 -0.011 0.7403	i þi						iii ii	l ii				
5 0.004 0.003 3.5249 0.47 6 -0.007 -0.009 3.5621 0.61 5 -0.014 -0.015 0.4518 7 0.019 0.021 3.8163 0.70 1 6 -0.002 -0.002 0.4540 1 8 -0.010 -0.012 3.8163 0.70 1 7 -0.011 -0.012 0.4540 1 9 -0.013 -0.012 3.8815 0.79 1 7 -0.011 -0.012 0.5454 1 9 -0.013 -0.012 4.8015 0.85 1 8 -0.007 -0.008 0.5834 1 10 -0.035 4.8401 0.84 1 9 -0.011 -0.012 0.6684 1 1 -0.027 -0.022 5.3609 0.86 1 10 -0.011 0.7403	2						ų.	l ii	3 -0.012	-0.012	0.3071	0
6 -0.007 -0.009 3.5621 0.61 5 -0.014 -0.015 0.4518 1 7 0.019 0.021 3.8163 0.70 1 6 -0.002 -0.002 0.4540 1 8 -0.010 -0.012 3.8815 0.79 1 7 -0.011 -0.012 0.5454 9 -0.013 -0.012 4.0015 0.85 1 8 -0.007 -0.008 0.5834 10 -0.034 -0.035 4.8401 0.84 1 9 -0.011 -0.012 0.6684 11 -0.027 -0.022 5.3609 0.86 1 10 -0.011 0.7403							i li	1 1	4 -0.002	-0.002	0.3094	0
1 7 0.019 0.021 3.8163 0.70 1 6 -0.002 -0.022 0.022 0.4540 1 8 -0.010 -0.012 3.8815 0.79 1 1 7 -0.011 -0.012 0.5454 1 9 -0.013 -0.012 4.0015 0.85 1 8 -0.007 -0.008 0.5834 1 10 -0.034 -0.035 4.8401 0.84 1 9 -0.011 -0.012 0.6684 1 10 -0.027 -0.022 5.3609 0.86 1 10 -0.010 -0.011 0.7403							ų.	1 10	5 -0.014	-0.015	0.4518	(
III 8 -0.010 -0.012 3.8815 0.79 III III 7 -0.011 -0.012 0.5454 III 9 -0.013 -0.012 4.0015 0.85 III 8 -0.007 -0.008 0.5834 III 10 -0.034 -0.035 4.8401 0.84 III 9 -0.011 -0.012 0.6684 III 11 -0.027 -0.022 5.3609 0.86 III 10 -0.010 -0.011 0.7403						0.01	ılı –	1	6 -0.002	-0.002	0.4540	(
III 9 -0.013 -0.012 4.0015 0.85 III III 8 -0.007 -0.008 0.5834 III III 0 -0.034 -0.035 4.8401 0.84 III III 9 -0.011 -0.012 0.6684 III III -0.027 -0.022 5.3609 0.86 III III 9 -0.010 -0.011 0.7403	ii ii						ų.	1 10	7 -0.011	-0.012	0.5454	(
μ μ 10 -0.034 -0.035 4.8401 0.84 μ μ 9 -0.011 -0.012 0.6684 μ μ μ 11 -0.027 -0.022 5.3609 0.86 μ μ 10 -0.010 -0.011 0.7403	iii -						ı lı	1	8 -0.007	-0.008	0.5834	
10 -0.010 -0.011 0.7403	վե	1 10					ų.	(l)	9 -0.011	-0.012	0.6684	
I I -0.005 -0.031 6 2604 0 85 II I -0.006 -0.007 0.7630		1 10				0.86	ų.	1 10	10 -0.010	-0.011	0.7403	
	ığı -	n[i	12 -0.035	-0.031	6.2604	0.85	ų.		11 -0.006	-0.007	0.7630	

Figure 15 Correlogram of standardized residuals and residuals squared Srilankan rupee

Table 18 ARCH effect test (after GARCH applied) Srilankan rupee

Heteroskedasticity Test:	ARCH			
F-statistic Obs*R-squared	0.091721 0.462285	Prob. F(5,690 Prob. Chi-Squ	,	0.9935 0.9934
Variable	Coefficient	Std. Error	t-Statistic	Prob.

C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	0.302634 -0.012765 -0.012414 -0.012380 -0.002458 -0.014558	0.068094 0.038066 0.038070 0.038070 0.038071 0.038068	4.444353 -0.335325 -0.326073 -0.325198 -0.064555 -0.382427	0.0000 0.7375 0.7445 0.7451 0.9485 0.7023
R-squared Adjusted R-squared	0.000664 -0.006577	Mean depend S.D. depende		0.286931 1.664931
S.E. of regression	1.670397	Akaike info cri		3.872583
Sum squared resid	1925.256	Schwarz crite	-	3.911767
Log likelihood	-1341.659	Hannan-Quinr		3.887734
F-statistic Prob(F-statistic)	0.091721 0.993533	Durbin-Watso	n stat	2.000012

BANGLADESHI TAKA

Table 19EGARCH output of Bangladeshi taka

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5) *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
AR(1) MA(1)	0.202554 -0.537381	0.089715 0.070920	2.257752 -7.577302	0.0240 0.0000
	Variance E	quation		
C(3) C(4) C(5) C(6)	-0.895773 0.502474 -0.034006 0.669250	0.231559 0.116729 0.070907 0.106165	-3.868443 4.304603 -0.479581 6.303880	0.0001 0.0000 0.6315 0.0000
T-DIST. DOF	3.058521	0.430722	7.100920	0.0000
R-squared Adjusted R- squared	0.098137 0.090329	Mean depe S.D. depen		0.017384 0.463309
S.E. of regression Sum squared resid	0.441889 135.3191	Akaike info Schwarz cri		0.750648 0.796158
Log likelihood Durbin-Watson	-255.7266 1.992979	Hannan-Qu	iinn criter.	0.768240

stat

Inverted AR Roots	.20
Inverted MA	.54
Roots	

After GARCH applied					_	Ве	fore GARCH	applied			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	F	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pr
ų.	I			0.1225	-	1		1 -0.003			—
		2 -0.022 3 -0.013			(2 -0.018 3 0.004		0.2360 0.2456	0.
		4 -0.014 5 0.058		0.7235 3.0639	(4 0.012 5 0.066		0.3415 3.4206	
- II	l i	6 0.022	0.022	3.3929	į.	1		6 0.038	0.039	4.4257	0.3
1		7 -0.003 8 0.085		3.4010 8.4800	(7 -0.019 8 0.078			
1)1 1)1		9 0.009 10 0.029		8.5387 9.1545	(i)i		9 0.009 10 0.044		9.1108	
1		11 0.021	0.023	9.4827 12.869	(11 0.028	0.024	11.029	0.
1 LI	I I	112 0.009	0.074	12.809	(· []		12 0.126	0.129	22.294	0.

Figure 17 Correlogram of standardized residuals Bangladeshi taka

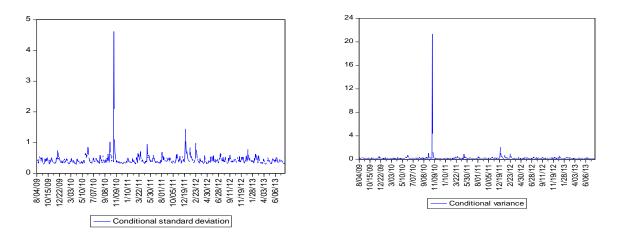


Figure 18 Conditional standard deviation and conditional variance Bangladeshi taka

Table 20 ARCH effect test result (after GARCH applied) Bangladeshi taka

Heteroskedasticity Test: ARCH

F-statistic	0.164622	Prob. F(5,689)	0.9755	
Obs*R-squared	0.829287	Prob. Chi-Square(5)	0.9751	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.921005	0.172408	5.342001	0.0000
WGT_RESID^2(-1)	0.004265	0.038096	0.111958	0.9109
WGT_RESID^2(-2)	-0.012132	0.038082	-0.318577	0.7501
WGT_RESID^2(-3)	-0.017294	0.038079	-0.454145	0.6499
WGT_RESID^2(-4)	0.026077	0.038083	0.684741	0.4937
WGT_RESID^2(-5)	-0.007387	0.038097	-0.193894	0.8463
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001193 -0.006055 4.048740 11294.29 -1955.041 0.164622 0.975450	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	0.915091 4.036538 5.643284 5.682512 5.658453 1.999412	

INDIAN RUPEE

Table 21 CGARCH output of Indian rupee

$Q = C(3) + C(4)^{*}(Q(-1) - C(3)) + C(5)^{*}(RESID(-1)^{2} - GARCH(-1))$
GARCH = Q + C(6) * (RESID(-1)^2 - Q(-1)) + C(7)*(GARCH(-1) - Q(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	0.009304 0.031953	0.023031 0.035245	0.403979 0.906593	0.6862 0.3646
	Variance E	quation		
C(3)	0.376796	0.060452	6.233021	0.0000

C(4)	0.979604	0.010330 94	.82961	0.0000
C(5)	0.044954	0.013105 3.4	430365	0.0006
C(6)	-0.063052	0.024625 -2.	560461	0.0105
C(7)	0.345751	0.476823 0.	725114	0.4684
R-squared	0.000883	Mean depender	nt var	0.030875
Adjusted R-	-0.007767	S.D. dependent	var	0.661544
squared				
S.E. of regression	0.664108	Akaike info crite	erion	1.869978
Sum squared	305.6401	Schwarz criteric	on	1.915489
resid				
Log likelihood	-647.4923	Hannan-Quinn	criter.	1.887571
F-statistic	0.102129	Durbin-Watson	stat	1.957553
Prob(F-statistic)	0.996158			
Inverted AR Roots	.03			

After GARCH applied

Before GARCH applied

,												
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prot	
ı)ı	l ı)	1 0.028	0.028	0.5359				1 0.002	0.002	0.0026		
ų.	1	2 -0.004	-0.005	0.5459	0.46	1	1	2 -0.005	-0.005	0.0173	0.89	
ų.		3 -0.025	-0.024	0.9693	0.61	ı l ı	l di	3 -0.041	-0.041	1.2189	0.5	
ιþ		4 0.067	0.068	4.1328	0.24	ı p	l ip	4 0.072	0.072	4.8844	0.1	
ı)	i)	5 0.037	0.033	5.1073	0.27	ı þi	ի հ	5 0.027	0.027	5.4142	0.2	
ų.	1	6 -0.004	-0.007	5.1209	0.40	I(I	1	6 -0.026	-0.027	5.8846	0.3	
ų p	ip	7 0.105	0.110	12.933	0.04			7 0.123	0.130	16.552	0.0	
- (þ	l i	8 0.043	0.035	14.227	0.04	ı þi	ի	8 0.037	0.034	17.546	0.0	
ų.		9 0.024	0.018	14.645	0.06	- III	l III	9 0.015	0.010	17.713	0.0	
ψ		10 0.002	0.008	14.649	0.10	1		10 -0.001	0.015	17.713	0.0	
ų.	Q	11 -0.037	-0.050	15.648	0.11	ı (ı	1 10	11 -0.025	-0.040	18.158	0.0	
I)	<u> </u>	12 0.010	0.001	15.725	0.15	1	U	12 -0.009	-0.021	18.214	0.0	

Figure 19 Correlogram of standardised residuals of Indian rupee

After GARCH applied						Before GARCH applied						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prot	Autocorrelation P	artial Correlation	AC	PAC	Q-Stat	Pro	
		2 -0.031 3 0.037 4 0.091 5 -0.034 6 -0.039	-0.031 0.036 0.091 -0.030 -0.036 0.021 -0.011 -0.019 -0.026 -0.044	1.7413 7.5538 8.3945 9.4788 10.135 10.143 10.728 11.303 12.168	0.37 0.41 0.05 0.07 0.09 0.11 0.18 0.21 0.25 0.27			5 -0.019 6 -0.029 7 0.084 8 -0.009 9 0.016	-0.010 0.142 0.138 -0.014 -0.049 0.046 -0.022 0.033 -0.002	0.0718 14.186 27.172 27.421 28.004 33.048 33.105 33.283 33.305	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

Figure 20 Correlogram of standardised residuals squared of Indian rupee

Heteroskedasticity Test: AF	RCH			
F-statistic Obs*R-squared	1.619322 8.072295	Prob. F(5,6 Prob. Chi-\$,	0.1526 0.1523
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	1.016860 -0.012975 -0.026776 0.036145 0.090901 -0.030027	0.125812 0.038140 0.037979 0.037967 0.037980 0.038144	8.082387 -0.340180 -0.705025 0.952005 2.393367 -0.787197	0.0000 0.7338 0.4810 0.3414 0.0170 0.4314
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011598 0.004436 2.296461 3638.875 -1563.201 1.619322 0.152585	Mean depe S.D. deper Akaike info Schwarz c Hannan-Q Durbin-Wa	ndent var o criterion riterion uinn criter.	1.078447 2.301571 4.509199 4.548383 4.524350 1.997193

Table 22 ARCH effect test after CGARCH applied Indian rupee

MATLAB CODE FOR COPULAFIT (COPULA PARAMETER ESTIMATION)

INDIAN PAIR (SENSEX AND INDIAN RUPEE)

```
scatterhist (sensex,usd_inr)
```

u = ksdensity(sensex,sensex,'function','cdf');

v = ksdensity(usd_inr,usd_inr,'function','cdf');

scatterhist(u,v)

xlabel('u')

ylabel('v')

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

```
[Rho] = copulafit('gaussian',[u v]);
```

r = copularnd('t',Rho,nu,1000);r = copularnd('t',Rho,nu,1000);

u1 = r(:,1);

v1 = r(:,2);

```
scatterhist(u1,v1)
```

xlabel('u')

ylabel('v')

x1 = ksdensity(sensex,u1,'function','icdf');

y1 = ksdensity(usd_inr,v1,'function','icdf');

scatterhist(x1,y1)

[[paramhat,paramci] = copulafit('clayton',[u v]);

[paramhat,paramci] = copulafit('frank',[u v]);

[paramhat,paramci] = copulafit('gumbel',[u v]);

TAIL DEPENDENCE FOR INDIAN PAIR

tauLU(2,:) = [2^(-1/paramhat),0];% Clayton copula has zero upper tail dependence

tauLU = [0,2-2^(1/paramhat)]; % Gumbel copula has zero lower tail dependence

SRILANKAN PAIR (COLOMBO ALL SHARE PRICE INDEX AND SRILANKAN RUPEE)

scatterhist (colombo,usd_lkr)

u = ksdensity(colombo,colombo,'function','cdf');

v = ksdensity(usd_lkr,usd_lkr,'function','cdf');

scatterhist(u,v)

xlabel('u')

ylabel('v')

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

% fit a t copula

[Rho] = copulafit('gaussian',[u v])

r = copularnd('t',Rho,nu,1000);r = copularnd('t',Rho,nu,1000);

u1 = r(:,1);

v1 = r(:,2);

```
scatterhist(u1,v1)
```

xlabel('u')

ylabel('v')

x1 = ksdensity(colombo,u1,'function','icdf');

y1 = ksdensity(usd_lkr,v1,'function','icdf');

scatterhist(x1,y1)

[paramhat,paramci] = copulafit('clayton',[u v]);

[paramhat,paramci] = copulafit('frank',[u v]);

[paramhat,paramci] = copulafit('gumbel',[u v]);

TAIL DEPENDENCE FOR SRI LANKAN PAIR

tauLU(2,:) = [2^(-1/paramhat),0];% Clayton copula has zero upper tail dependence

tauLU = [0,2-2^(1/paramhat)]; % Gumbel copula has zero lower tail dependence

BANGLADESH PAIR (DHAKA STOCK EXCHANGE ALL SHARE PRICE INDEX AND TAKA)

scatterhist (Dgen,usd_bdt)

u = ksdensity(Dgen,Dgen,'function','cdf');

```
v = ksdensity(usd_bdt,usd_bdt,'function','cdf');
```

```
scatterhist(u,v)
```

xlabel('u')

ylabel('v')

```
[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
```

% fit a t copula

[Rho] = copulafit('gaussian',[u v])

r = copularnd('t',Rho,nu,1000);r = copularnd('t',Rho,nu,1000);

u1 = r(:,1);

v1 = r(:,2);

```
scatterhist(u1,v1)
```

xlabel('u')

ylabel('v')

x1 = ksdensity(Dgen,u1,'function','icdf');

y1 = ksdensity(usd_bdt,v1,'function','icdf');

scatterhist(x1,y1)

[paramhat,paramci] = copulafit('clayton',[u v]);

```
[paramhat,paramci] = copulafit('frank',[u v]);
```

[paramhat,paramci] = copulafit('gumbel',[u v]);

TAIL DEPENDENCE FOR BANGLADESHI PAIR

tauLU(2,:) = [2^(-1/paramhat),0];% Clayton copula has zero upper tail dependence

tauLU = [0,2-2^(1/paramhat)]; % Gumbel copula has zero lower tail dependence

GAUSSIAN COPULA LOGLIKLIHOOD FUNCTION

 $x^2 = norminv(u);$

 $y^2 = norminv(v);$

 $CL = -1^{*}(2^{*}(1-rho^{2}))^{-}(-1)^{*}(x2.^{2}+y2.^{2}-2^{*}rho^{*}x2.^{*}y2);$

 $CL = CL + 0.5^{*}(x2.^{2}+y2.^{2});$

 $CL = sum(CL) - size(x2,1)/2*log(1-rho^{2});$

CL = -CL;

AIC

T = length(u)

params = (1); % number of parameters in each model

AIC = 2*CL + 2/T*params;

The End