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Abstract 

 

In this paper, we solved K-set partition problem with Genetic algorithm. K-set partition is a 

problem where we have to partition a given set of numbers into subsets such that their sums 

are as nearly equal as possible. In other hand, Genetic algorithm (GA) is a particular class of 

evolutionary algorithm that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover.GA is implemented as a computer simulation 

in which a population of abstract representations (called chromosomes or the genotype or the 

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an 

optimization problem evolves toward better solutions. We present a GA in conjunction with a 

specialized heuristic improvement operator for solving K-set partition problem. The 

performance of our algorithm is evaluated on some set of real-world problems. 

Computational results show that the genetic algorithm-based heuristic capable of producing 

high quality solutions. 
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Chapter 1 

 

Introduction  

 

1.1 Definition of Set Partition Problem  

 

The set partitioning problem (SPP) is a problem where we have to partition n numbers into k 

subsets, such that the sums of the subsets are as nearly equal as possible. The SPP is highly 

constrained optimization problem which offer greater challenges to solve effectively. Highly 

constrained problems may be thought of as those having a high proportion of equality 

constraints. These problems have traditionally been in the domain of specialized heuristics 

and integer linear programming techniques rather than of meta-heuristics [1]. This is because 

meta heuristics find it difficult to obtain and maintain feasible solutions to these problems. 

Specialized genetic operators were used to generate solutions [2]. In this paper GA is used as 

a medium to create solutions from which the feasibility restoration and improvement can be 

applied. 

 

 

1.2 Application of Set Partition Problem  

 

The SPP is an extremely practical combinatorial optimization problem for which there exists 

a variety of applications (see Balas and Padberg [21] for an extensive overview). The most 

well known of these is the aircraft crew scheduling problem [22]. Other applications of SPP 

are truck scheduling (Balinski and Quant 1964), information retrieval (Day 1965), circuit 

design (Root 1964), capacity balancing (Steinman and Schwinn 1969), capital investment 

(Valenta 1969), facility location (Revelle, Marks and Liebman 1970), political districting 

(Garfinkel and Nemhauser 1970), and radio communication planning (Thuve 1981). The SPP 

has been the focus of study by many researchers because of its simple structure and numerous 

practical applications. We also feel interested to work with this problem because of its large 

amount of applications and simple structure.  
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1.3 Related Works 

 

Because of the importance of the SPP, a number of algorithms have been developed. These 

can be classified into two categories: exact algorithms which attempt to solve the SPP to 

optimality, and heuristic algorithms which try to find “good” solutions quickly. There are few 

heuristic solution algorithms for the SPP in the literature. This is because the SPP is a highly 

constrained problem and thus finding any feasible solution to a SPP is itself a difficult 

problem [3].In these days it is observed that noticeable applications of meta-heuristic 

approaches are used to solve SPP. 

 

 

There have been relatively few attempts at using standard meta-heuristics to solve highly 

constrained problems such as the SPP. Abramson, Dang and Krishnamoorthy [1] are able to 

solve relatively small SPP instances to optimality using two variations of simulated 

annealing. Crawford and Castro [16] present an ACO algorithm that incorporates constraint 

programming lookahead functions that again is able to solve small problems. Due to the large 

amount of computational resources required, Levine [17] and Czech [18] have created 

parallel genetic algorithms and simulated annealing solvers respectively. 

 

 

Marcus Randall’s [2] binary ant colony optimization framework is applied to produce 

feasible solutions for SPP. This algorithms restore feasibility has been successfully applied to 

such problems. To increase its effectiveness, feasibility restoration, solution improvement 

algorithms and candidate set strategies are added. The overall results of this approach indicate 

that the ant colony optimization algorithm can efficiently solve small to medium sized 

problem. 

 

 

According to Maniezzo and Milandri [15], the traditional ACO framework is ineffectual for 

solving the SPP. Hence they use a modified approach in which some elements of ACO are 

combined with tree search procedures. This becomes a form of branch and bound. At each 

step of their modified algorithm, the partial solution is expanded with up to k nodes 

(columns) per ant. The k nodes are produced with the tree search algorithm. Pheromone is 
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applied to the coupling of how well column i covers constraint/row j. The results show that 

such an approach is viable. 

 

 

Chu and Beasley’s [3] GA approach uses an augmented penalty method in order to produce 

feasible solutions. Rather than applying a simple penalty term to the fitness (objective) 

function; they separate this into two distinct functions, namely fitness and unfitness. The 

fitness is the original objective function while the unfitness function is the cumulative 

measure of the number of times each row is over or undercovered. Their GA consists of 

tailored genetic operators, parent selection techniques and a heuristic to improve the 

feasibility of child solutions (though not necessarily guarantee feasibility). The results 

showed that not only could feasible solutions be obtained, but many of these were optimal 

(even to large size problems). 

 

 

1.4 The Set Partitioning Problem (SPP) 

 

The set partitioning problem (SPP) is to partition N numbers into K subsets, such that the 

sums of the subsets are as nearly equal as possible. The SPP is the following: given a set (or 

possibly a multiset) of N positive integers A = { ,  , …,  } , find a partition {1, . . . 

,N} that minimizes the discrepancy 

 
 

Partitions such that E = 0 or E = 1 are called perfect partitions. A decision problem related to 

the SPP is that of determining if there is a perfect partition [5].  

The SPP is NP-hard problem. The relationship between P and NP problems is shown in 

Figure 1. The SPP is an NP-hard problem [6], which means that unless P = NP, there is no 

polynomial time algorithm for solving SPP. Since P = NP is widely believed to be false, it is 

unlikely that we can solve the problem in polynomial time using exact or approximation 

algorithms. Therefore, to solve SPP in polynomial time, various heuristic algorithms are used 

- such as greedy heuristics, simulated annealing, neural network and tabu search [6][7]. 
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Figure 1: Venn diagram for P, NP, NP-complete, and NP-hard set of problems. 

 

 

An important characteristic of this problem is that its computational complexity depends on 

the type of input numbers ,  , …, . Ifn is the number of elements in the input set 

and N is the sum of elements in the input set then this algorithm runs in time O(Nn) [4]. 

 

1.5 Objectives 

 

Assume that we have a set of N numbers and we need to separate them into k subset where 

the differences between summations of subsets are equal or close to equal. Our target is to 

find the optimal solution to minimize the differences between subset summations. The 

problem is known to be NP-hard and we have developed a meta-heuristic algorithm based on 

Genetic algorithm (GA) to solve the problem. In this paper, we use GA combined with local 

optimizer which will take less time and better result than other approaches. 

 

 

1.6 Methodology 

 

In this paper, we propose a genetic algorithm (GA) that uses heap tree of the chromosomes to 

make initial population, classical crossover as main variation operation and probabilistic 

optimization technique of adding or removing bit to get better fitness result at the solution 

population. Therefore population of the solution is updated mainly using crossover operation 



5 

 

and heuristic improvement technique is applied on the offspring with low probability to 

locally improve the solution quality. It produces very good results compared to other well-

known heuristic algorithms. In most of the cases it finds the nearest optimal solution. For a 

few cases it generates the exact solution.  

 

1.7 Contribution 

An important characteristic of this problem is time complexity. If N is the number of 

elements in the input set and K is the number of subset then the time complexity of general 

solution is O( K
N
 ). That means the time complexity increase exponentially with the size of 

data. So for a large dataset problem is not soluble in time by general solutions. But our 

proposed Genetic Algorithm can give optimal result for larger dataset of K-Set partition in 

time. We make improvement in time complexity and our algorithm gives better result from 

other heuristic algorithm 

 

1.8 Outline  Of The Report 

This paper is organized as follow:  

 

Chapter 2: 

 

In chapter 2 we describe basic structure of genetic algorithm and representation of problems 

by genetic algorithm. 

 

Chapter 3: 

 

In chapter 3 we discuss about our proposed genetic algorithm. Here we talk about our 

problem representation technic, fitness function, deterministic initialization technic, 

tournament selection, crossover, mutation and termination condition.  

 

Chapter 4: 

 

In this chapter we compare our algorithm with other algorithm by testing their dataset. Then 

we say about our created dataset and the results after applying our algorithm.  

 

Chapter 5: 

 

By this chapter we conclude our thesis by summarizing our works. Finally we outline our 

future plan. 
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Chapter 2 
 

Introduction of Genetic algorithms 

 

2.1 Basic Structure of Genetic Algorithm 

 

 Genetic Algorithm (GA) is developed based on the evolutionary process of biological 

organisms in nature. During the course of evolution, natural populations evolve according to 

the principles of natural selection and “survival of the fittest”. Individuals which are more 

successful in adapting to their environment will have a better chance of surviving and 

reproducing, whilst individuals which are less fit will be eliminated. This means that the 

genes from the highly fit individuals will spread to an increasing number of individuals in 

each successive generation. The combination of good characteristics from highly adapted 

ancestors may produce even more fit offspring. In this way, species evolve to become more 

and more well adapted to their environment [3]. Flow chart of GA is given in figure 2. 

 
 

Figure 2: Genetic Algorithm Flow Chart 
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            A GA simulates these processes by taking an initial population of individuals and applying 

genetic operators in each reproduction. In optimization terms, each individual in the 

population encoded into a string or chromosome which represents a possible solution to a 

given problem. The fitness of an individual is evaluated with respect to a given objective 

function. Highly fit individuals or solutions are given opportunities to reproduce by 

exchanging pieces of their genetic information, in a crossover procedure, with other highly fit 

individuals. This produces new “offspring” solutions (i.e., children), which share some 

characteristics taken from both parents. Mutation is often applied after crossover by altering 

some genes in the strings. The offspring can either replace the whole population (generational 

approach) or replace less fit individuals (steady-state approach). This evaluation-selection-

reproduction cycle is repeated until a satisfactory solution is found [3]. The basic steps of a 

simple GA are shown below. 

 

 

 

Algorithm 1: Basic Genetic Algorithm 

 

2.2  Representation of Genetic Algorithm 

 

Representing a chromosomes encoding varies depending on the problem nature. 

Traditionally, chromosomes are represented in binary as a string of 0s and 1s; however a 

number of different encoding can be used to represent a solution (chromosome). Besides 

binary encoding which is a string of 0s and 1s there is integer encoding. In a integer 

encoding, every chromosome is a string of numbers, which may represent a number in a 

sequence.  A direct value encoding can be used in problems, where some complicated value 

Generate an initial population; 

Evaluate fitness of individuals in the population; 

Repeat 

           Select parents from the population; 

           Recombine (mate) parents to produce children; 

           Mutate children; 

           Evaluate fitness of the children; 

           Replace some or all of the population by the children; 

Until a satisfactory solution has been found; 
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such as real numbers are used. In value encoding, chromosomes are represented using some 

value and this value can be anything connected to the problem, from numbers, real number, 

or chars to some complicated objects. Tree encoding can also be used for genetic algorithm, 

where each chromosome is a tree of some objects such as a function or commands in 

programming language. Tree encoding is good for evolving programs. Programming 

language LISP is often used to this, because programs in it are represented in this form and 

can be easily parsed as a tree, so the crossover and mutation can be done relatively easily 

[14]. 
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Chapter 3 

Proposed Genetic Algorithm for k Set Partition  

 

We propose hybrid genetic algorithm using general GA techniques with heap tree properties. 

The one of the main features of our GA is to use heap tree to generate initial population. To 

evaluate initial population we generate new generation using our fitness function and GA 

methods.  

 

3.1  Problem Representation  

 

Assume a problem that has to divide a set of numbers into a particular number of subset 

where additions of every subset numbers are almost equal to other subsets.  

Suppose we have a set of 11 numbers. 

Set, S= {250, 353, 147, 73, 114, 40, 143, 233, 267, 113, 67} 

Now we need to divide this set into 4 subsets where additions of every subset numbers are 

almost equal. 

 

Our target is,  

 So its result will be: 

 

 

 

 

 

To solve this problem we randomly subset the numbers to generate some trivial solutions. 

From that trivial solution we try to get an optimal solution by evaluating these solutions by 

GA techniques. To do this we use integer encoding technique [9], where every chromosome 

is a string of integer values. Every value indicates the subset number of that positioned 

number.  
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Figure 3: Chromosome 

 

 

By integer encoding technique every chromosome represents a solution of the problem. In 

Figure 3 we give a simple example of integer encoding technique where partitions array 

represents the string of integer value that I have discussed above and partitions array is 

always parallel to number array.  The value of partitions array will be at most the number of 

partitions we needed.  

 

 

3.2  Proposed Genetic Algorithm for Set Partition Problem 

 

We used heap tree search method as a local search tool. By using heap tree we generate initial 

population. Where each column of every chromosome represent a subset allocated numbers. 

From this initial population we generate new generation depending on our fitness function. I 

every generation, we replace the weakest chromosome by the fittest offspring by doing 

tournament selection, crossover, mutations and others. The structure of our GA’s is shown in 

Algorithm 2. 

 

 

 

 

 

 



11 

 

Begin 

Create an initialize population using heap tree; 

While terminating condition is not true 

begin 

Select parent by tournament selection; 

Generate two offspring by Crossover; 

Mutate the two offspring; 

Evaluate fitness of the offsprings; 

Replace two weakest population by this offspring if they better; 

Updater Terminating condition; 

endfor 

End 

 

 

Algorithm 2: Proposed Genetic Algorithm procedure 
 

 

3.3  Fitness Function 

 

The most important concept of genetic programming is the fitness function. The fitness 

function determines how well a program is able to solve the problem [19]. Fitness function 

evaluates how good a potential solution is relative to other potential solutions. The fitness 

function is responsible for performing this evaluation and returning a positive number or 

fitness value that reflects how optimal the solution is. In our problem low fitness value 

indicate better solution.  Where the Chromosome fitness is the total difference between its 

every partition’s allocated numbers sum and expected fitness.  Its mathematical 

representation is given below.  

Expected Fitness,  

 

Average Fitness of population, =  
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3.4 Deterministic Initialization of Population  

 

The first step in the functioning of a GA is the generation of an initial population. Each 

member of this population encodes a possible solution to a problem. After creating the initial 

population, each individual evaluated and assigned a fitness value according to the fitness 

function. Each column of a Chromosome represents allocated subset of that positioned 

number. 

To find a good initial population we use min heap tree in 30% of times and other 70% time 

we create population randomly. Heaps are a specialized tree-based data structure that used in 

applications concerned with priority queues and ordering. Heap can implement by two 

properties. 

 

Min heap property: if X is a child of Y, then key(Y) ≤ key(X) 

Max heap property: if X is a child of Y, then key(Y) ≥ key(X) 

 

We work using min heaps because always we need to find out the smallest partition of the 

chromosome where summation of the allocated numbers is very low. In min heap tree 

smallest key is always at the root note because of the property of the element [20]. 

The time complexity of heap is given below, where N is total Number of node is tree. In our 

GA the value of N will be at most “The number of required partitions”.  

 

Find min: Θ(1) 

Delete min: Θ(log N) 

Insert Node: Θ(log N) 

 

The way of our GA population initiating is shown in Algorithm 3. 
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Algorithm 3: Initialize population 

 

 

3.5  Tournament Selection 

 
 

Tournament selection [13] is a variant of rank-based selection methods. Its principle consists 

in randomly selecting a set of k individuals. These individuals are then ranked according to 

their relative fitness and the fittest individual is selected for reproduction.  Here we use 

Binary Tournament selection. First we randomly select two individual chromosomes from 

population then we chose best one as parents one and then again select two individual 

chromosomes from population and take it as parent two.  

 

 

 

 

For i:= 0 to Population Size 

 Initialize subsetSum[]; 

 Deterministic:=randomly taken value from 1 to 100 

 If deterministic less than 30 then 

  Create min heap tree of partitions sum where every child represent a subset 

  For j:=0 to Total Number 

  Begin: 

   k:=randomly taken value from 1 to 3 

pop top   child from tree then allocate  number into this child 

and then insert this child into tree. 

Update subsetSum[] 

  End for 

 End If 

 Else 

  For j:=0 to Total Number 

  Begin: 

   Randomly allocate  number into any subset. 

Update subsetSum[] 

  End for 

 End else 

End for 
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3.6 Crossover 

 

Crossover is the major instrument of variation and innovation in GAs. The simplest form of 

crossover is single-point crossover. It chooses a single crossover position at random and the 

parts of two parents after the crossover position are exchanged to form two offspring [8].  

 

In figure 3 crossover positions selected of parent 1 & parent 2 at random.    

 

 
 

 

Figure 4: Crossover position Selected 

 

 

In figure 4 gene of both side of crossover point are interchanges between the two parents to 

create two new offspring. 

 

 
 

Figure 5: New offspring generated by crossover 

 

 

We take crossover probability as 80% that means 80% time offspring made by crossover and 

other 20% time offspring made by exact copy of parents. Our crossover structure is shown in 

Algorithm 4. 
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Offspring1=paprent1 

Offspring2=parent2 

probability=randomly taken value from 1 to 100 

if probability less than or equal 80 then  

k=randomly taken value from 1 to Total Number 

swap 1 to    value from offspring1 to offspring2 

End if 

 

Algorithm 4: Crossover 

 

 

 

3.7 Mutation 

 

A mutation operator randomly changes each character in a selected chromosome into another 

random character with probability Pm. The primary effect of mutation is to introduce new 

alleles, the values of genes, into the evolution process to avoid permanent fixed kinds of 

alleles in a population [7]. In our generated population there is a high probability to create 

local optima because of using heap tree. So, to reduce this local optima we needed to give 

high mutation probability and that is 2%.  Mutation structure of our GA’s is shown in 

Algorithm 5. 

 

For i=1 to total character of offspring 

Begin: 

 p=randomly taken value from 1 to 100 

 If p is less than or equal mutation Probability  

  k=randomly taken value from 1 to number of Partition 

  Assign character of this offspring is k 

End if 

End  

 

Algorithm 5: Mutation 
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3.8 Termination Condition 

 

Termination is the criterion by which the genetic algorithm decides whether to continue 

searching or stop the search. Each of the enabled termination criterion is checked after each 

generation to see if it is time to stop. To make our solution batter we consider average fitness 

( ) of whole population. When average fitness remains unchanged for certain number of 

new generation then we decide to stop generating new population. Normally we waited 2N 

time where N is total numbers. 
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Chapter 4 

 

Experimental Results and Analysis 

 
 

We have implemented our algorithm in C++ programming language utilizing GNU GCC 

Compiler and its random number generator is used for generating random numbers. We 

tasted 10 datasets and testes where run on a Laptop PC having flowing configuration: 

 

CPU: Intel Core i3 2.13GHz 

Memory: 6 GB DDR3 1333MHz 

Operating System: Windows 7 64-bit 

 

 

4.1 Datasets Used 

 
 

Datasets used to test our Genetic Algorithm for SPP are taken from Florida State University’s 

partition_problem [10] and William A. Greene’s Genetic Algorithms for Partitioning Sets 

[11]. We also create some dataset like spp79num10part, spp116num15part, spp151num20part 

and spp189num25part which can be found in [12]. The top value of the dataset means total 

numbers, second value means number of partitions and others are the numbers which we 

have to divide into k-partitions.  

 

 

4.2 Results and Discussion   

 
 

Result of our algorithm is compared with William A. Greene’s Genetic Algorithms for 

Partitioning Sets [11] in Table 1. The table has four columns where first column shows in 

which section our algorithm is better; other three columns show the comparable results. For 

this dataset we set, 4*N to terminate the program where N is total number. The average and 

best fitness of for William A. Greene’s dataset is shown in figure 5. 
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Table 1: Comparison of Obtained Results with reference no. [11]. 

 

 

Difference In Falkenauer’s 

Greedy GGA 

Eager Breeder Our GA Algorithm 

for SPP 

Population size 50 250 50 

Max number 

generations 

3500 40 499 

Trials finding optimal 

partition 

30 29 0 

Best fitness 9,608 3,242 3013 

Implementation Stage Theoretical Theoretical Implemented 

 

 

Figure 6 shows the average fitness and minimum fitness over successive generation for 

William A. Greene’s dataset which indicated the dynamicity of our algorithm.   

 

 
 

Figure 6: Average and best (minimum) fitness for William A. Greene’s dataset 
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Our GA results of Florida State University’s partition_problem [10] shown in table 2. The 

table has four columns where first column shows name of the datasets, second column shows 

total number of the datasets, third column shows number of partitions required, fourth 

column shows population size for each dataset, fifth column shows the number of generation 

need to get the best fitness and last column shows the fitness of our result. 

 

 

 

Table 2: Experimental results of reference no. [10]’s datasets.  

 

 

Dataset 

Name 

Total 

Number 

Partitions Population 

Size 

Generation Fitness 

p01_w 10 2 5 1 0 

p02_w 10 2 10 51 24 

P03_w 9 2 14 34 8 

P04_w 5 2 10 10 4 

P05_w 9 2 10 1 0 

 

 

 

We are failed to find any satisfied large dataset for which we have created four large dataset 

to test our algorithm. In this dataset the range of number is large and number of partitions is 

also higher than other.  

 

To create this dataset we use GNU GCC random generator. In each data first we give a 

partition number ( ) that decide how many partitions will be in this data. Then  set of 

numbers generated where every set of numbers summation is exactly one thousand. To 

generate each set of , randomly we take a number ( ) that indicate how many numbers is 

in set . Then randomly  of numbers are taken. If  is one thousand then we go for 

next partitions, otherwise we try again until we found  is one thousand. After finding all 

 set of numbers, we make a set(S) from  set of numbers.  
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Set, S= { }  

Then finally we do ten thousand random swaps in set S to make it more promiscuous. 

 

Test result of our created dataset shown in Table 3. The table has four columns where first 

column shows name of the datasets, second column shows total number of the datasets, third 

column shows number of partitions required, fourth column shows population size for each 

dataset, fifth column shows the number of generation need to get the best fitness and last 

column shows the fitness of our result. 

 

 

 

 

Table 3: Experimental results of Created datasets  
 

 

Dataset Name Total 

Number 

Partitions Population 

Size 

Generation Fitness 

spp79num10part 79 10 50 2912 8 

spp116num15part 116 15 80 9202 40 

spp151num20part 151 20 80 16911 78 

spp189num25part 189 25 190 81984 108 
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Chapter 5 

 

Conclusions and Future Works  

 
 

In this paper, we propose a genetic algorithm (GA) for k-set partition problem (SPP). Unlike 

the previous works, we use heap tree of the chromosomes to make initial population in GA 

for the first time for SPP. The main variation operator of our GA is the classical crossover 

operator of the genetic algorithm (GA). That means the population of the solutions is updated 

mainly using crossover operator. We select two parents randomly and apply the crossover 

operator with a high probability. Due to the nature of the encoding, the generated offspring’s 

may become invalid and in that case the offspring’s are corrected to valid solution. Then a 

deterministic improvement technique is applied on the corrected offspring’s with low 

probability to locally improve the solution quality. If the generated offspring’s is better than 

the worst solution is replaced by offspring. The combination of the genetic operation and the 

deterministic improvement makes the algorithm hybrid.  

 

We test 10 datasets and compare with William a. Greene’s genetic algorithms for partitioning 

sets [11] and our solutions are the best solution till now. We obtained better solutions over 

recent works for the datasets of Florida State University’s partition_problem [10]. Our 

algorithm gives the best solution for very spp79num10part, spp116num15part, 

spp151num20part and spp189num25part [12]our meta-heuristic solution takes very small 

time compared to others deterministic algorithms to reach the optimal solutions. Overall, it 

provides very good solutions, comparable to the best algorithms that have been proposed so 

far. 

 

In the future work, we will try to use better data structure and improve the local optimizer. 

We have also plans to compare the results of our proposed approach with the results proposed 

by other evolutionary algorithm.   
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