

Solving K-Set Partition Problem Using

Genetic Algorithm

Submitted by

Md. Shohan Ahmed

2010-3-60-008

Tarjia Alam Nisha

2010-3-60-003

Supervised by

Dr. Mozammel Huq Azad Khan

East West University
Department of Computer Science and Engineering

Fall 2014

ii

Declaration

We hereby declare that, this project was done under CSE497 and has not been submitted

elsewhere for requirement of any degree or diploma or for any other purposes except for

publication.

_______________ _______________

Tarjia Alam Nisha Md. Shohan Ahmed

ID: 2010-3-60-003 ID: 2010-3-60-008

iii

Letter of Acceptance

I hereby declare that this project is from the student’s own work and all other source of

information used has been acknowledged. This project has been submitted with my approval.

Dr. Mozammel Huq Azad Khan Supervisor

Professor

Department of Computer Science and Engineering

East West University

Dr. Shamim H Ripon Chairperson

Associate Professor and Chairperson

Department of Computer Science and Engineering

East West University

iv

Acknowledgement

Firstly our most heartfelt gratitude goes to our beloved parents for their endless support,

continuous inspiration, great contribution and perfect guidance from the beginning to end.

We owe our thankfulness to my supervisor Dr. Mozammel Huq Azad Khan for his skilled,

utmost direction, encouragement and care to prepare ourselves.

Our sincere gratefulness for the faculty of Computer Science and Engineering whose friendly

attitude and enthusiastic support that has given us for four years.

We are very grateful for the motivation and stimulation from our good friends and seniors.

We also thank the researchers for their works that help us to learn and implement Genetic

Algorithm for K-Set Partition Problem.

v

Abbreviation and Acronyms

SPP= Set Partition Problem

GA = Genetic Algorithm

LISP= List Processing

ACO= Ant Colony Optimization

vi

Table of Contents

 Page no.

Declaration ii

Letter of Acceptance iii

Acknowledgement iv

Abbreviations and Acronyms v

List of Figures viii

List of Tables ix

List of Algorithm x

Abstract xi

Chapter 1

Introduction 1-5

1.1 Definition of Set Partition Problem 1

1.2 Applications of Set Partition Problem 1

1.3 Related Works 2

1.4 The Set Partitioning Problem 3

1.5 Objective of the Research 4

1.6 Methodology of the Research 4

1.7 Contribution 5

1.8 Outline 5

Chapter 2

Introduction of Genetic Algorithm 6-8

2.1 Basics of Genetic Algorithm 6

2.2 Representation of Genetic Algorithm 7

vii

Chapter 3:

Page no.

Proposed Genetic Algorithm for K Set Partition 9-16

3.1 Problem Representation 9

3.2 Proposed Genetic Algorithm for Set Partition Problem 10

3.3 Fitness Function 11

3.4 Deterministic Initialization of Population 12

3.5 Tournament Selection 13

3.6 Crossover 14

3.7 Mutation 15

3.8 Termination Condition 16

Chapter 4

Experimental Results and Analysis 17-20

4.1 Datasets used 17

4.2 Results and Discussion 17

Chapter 5

Conclusions and Future Works 21

References

22-24

viii

List of Figures

 Page no.

Figure 1: Venn diagram for P, NP, NP-complete, and NP-hard set of

problems

4

Figure 2: GA Flow Chart 6

Figure 3: Chromosome 10

Figure 4: Crossover position Selected 14

Figure 5: New offspring generated by crossover 14

Figure 6: Average and best (minimum) fitness for William A. Greene’s

dataset

18

ix

List of Tables

 Page no.

Table 1: Comparison of Obtained Results with reference no. [11] 18

Table 2: Experimental results of reference no. [10]’s datasets 19

Table 3: Experimental results of Created datasets 20

x

List of Algorithms

 Page no.

Algorithm 1: Basic Genetic Algorithm 7

Algorithm 2: Proposed GA procedure 11

Algorithm 3: Initialize population 13

Algorithm 4: Crossover 15

Algorithm 5: Mutation 15

xi

Abstract

In this paper, we solved K-set partition problem with Genetic algorithm. K-set partition is a

problem where we have to partition a given set of numbers into subsets such that their sums

are as nearly equal as possible. In other hand, Genetic algorithm (GA) is a particular class of

evolutionary algorithm that use techniques inspired by evolutionary biology such as

inheritance, mutation, selection, and crossover.GA is implemented as a computer simulation

in which a population of abstract representations (called chromosomes or the genotype or the

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an

optimization problem evolves toward better solutions. We present a GA in conjunction with a

specialized heuristic improvement operator for solving K-set partition problem. The

performance of our algorithm is evaluated on some set of real-world problems.

Computational results show that the genetic algorithm-based heuristic capable of producing

high quality solutions.

1

Chapter 1

Introduction

1.1 Definition of Set Partition Problem

The set partitioning problem (SPP) is a problem where we have to partition n numbers into k

subsets, such that the sums of the subsets are as nearly equal as possible. The SPP is highly

constrained optimization problem which offer greater challenges to solve effectively. Highly

constrained problems may be thought of as those having a high proportion of equality

constraints. These problems have traditionally been in the domain of specialized heuristics

and integer linear programming techniques rather than of meta-heuristics [1]. This is because

meta heuristics find it difficult to obtain and maintain feasible solutions to these problems.

Specialized genetic operators were used to generate solutions [2]. In this paper GA is used as

a medium to create solutions from which the feasibility restoration and improvement can be

applied.

1.2 Application of Set Partition Problem

The SPP is an extremely practical combinatorial optimization problem for which there exists

a variety of applications (see Balas and Padberg [21] for an extensive overview). The most

well known of these is the aircraft crew scheduling problem [22]. Other applications of SPP

are truck scheduling (Balinski and Quant 1964), information retrieval (Day 1965), circuit

design (Root 1964), capacity balancing (Steinman and Schwinn 1969), capital investment

(Valenta 1969), facility location (Revelle, Marks and Liebman 1970), political districting

(Garfinkel and Nemhauser 1970), and radio communication planning (Thuve 1981). The SPP

has been the focus of study by many researchers because of its simple structure and numerous

practical applications. We also feel interested to work with this problem because of its large

amount of applications and simple structure.

2

1.3 Related Works

Because of the importance of the SPP, a number of algorithms have been developed. These

can be classified into two categories: exact algorithms which attempt to solve the SPP to

optimality, and heuristic algorithms which try to find “good” solutions quickly. There are few

heuristic solution algorithms for the SPP in the literature. This is because the SPP is a highly

constrained problem and thus finding any feasible solution to a SPP is itself a difficult

problem [3].In these days it is observed that noticeable applications of meta-heuristic

approaches are used to solve SPP.

There have been relatively few attempts at using standard meta-heuristics to solve highly

constrained problems such as the SPP. Abramson, Dang and Krishnamoorthy [1] are able to

solve relatively small SPP instances to optimality using two variations of simulated

annealing. Crawford and Castro [16] present an ACO algorithm that incorporates constraint

programming lookahead functions that again is able to solve small problems. Due to the large

amount of computational resources required, Levine [17] and Czech [18] have created

parallel genetic algorithms and simulated annealing solvers respectively.

Marcus Randall’s [2] binary ant colony optimization framework is applied to produce

feasible solutions for SPP. This algorithms restore feasibility has been successfully applied to

such problems. To increase its effectiveness, feasibility restoration, solution improvement

algorithms and candidate set strategies are added. The overall results of this approach indicate

that the ant colony optimization algorithm can efficiently solve small to medium sized

problem.

According to Maniezzo and Milandri [15], the traditional ACO framework is ineffectual for

solving the SPP. Hence they use a modified approach in which some elements of ACO are

combined with tree search procedures. This becomes a form of branch and bound. At each

step of their modified algorithm, the partial solution is expanded with up to k nodes

(columns) per ant. The k nodes are produced with the tree search algorithm. Pheromone is

3

applied to the coupling of how well column i covers constraint/row j. The results show that

such an approach is viable.

Chu and Beasley’s [3] GA approach uses an augmented penalty method in order to produce

feasible solutions. Rather than applying a simple penalty term to the fitness (objective)

function; they separate this into two distinct functions, namely fitness and unfitness. The

fitness is the original objective function while the unfitness function is the cumulative

measure of the number of times each row is over or undercovered. Their GA consists of

tailored genetic operators, parent selection techniques and a heuristic to improve the

feasibility of child solutions (though not necessarily guarantee feasibility). The results

showed that not only could feasible solutions be obtained, but many of these were optimal

(even to large size problems).

1.4 The Set Partitioning Problem (SPP)

The set partitioning problem (SPP) is to partition N numbers into K subsets, such that the

sums of the subsets are as nearly equal as possible. The SPP is the following: given a set (or

possibly a multiset) of N positive integers A = { , , …, } , find a partition {1, . . .

,N} that minimizes the discrepancy

Partitions such that E = 0 or E = 1 are called perfect partitions. A decision problem related to

the SPP is that of determining if there is a perfect partition [5].

The SPP is NP-hard problem. The relationship between P and NP problems is shown in

Figure 1. The SPP is an NP-hard problem [6], which means that unless P = NP, there is no

polynomial time algorithm for solving SPP. Since P = NP is widely believed to be false, it is

unlikely that we can solve the problem in polynomial time using exact or approximation

algorithms. Therefore, to solve SPP in polynomial time, various heuristic algorithms are used

- such as greedy heuristics, simulated annealing, neural network and tabu search [6][7].

4

Figure 1: Venn diagram for P, NP, NP-complete, and NP-hard set of problems.

An important characteristic of this problem is that its computational complexity depends on

the type of input numbers , , …, . Ifn is the number of elements in the input set

and N is the sum of elements in the input set then this algorithm runs in time O(Nn) [4].

1.5 Objectives

Assume that we have a set of N numbers and we need to separate them into k subset where

the differences between summations of subsets are equal or close to equal. Our target is to

find the optimal solution to minimize the differences between subset summations. The

problem is known to be NP-hard and we have developed a meta-heuristic algorithm based on

Genetic algorithm (GA) to solve the problem. In this paper, we use GA combined with local

optimizer which will take less time and better result than other approaches.

1.6 Methodology

In this paper, we propose a genetic algorithm (GA) that uses heap tree of the chromosomes to

make initial population, classical crossover as main variation operation and probabilistic

optimization technique of adding or removing bit to get better fitness result at the solution

population. Therefore population of the solution is updated mainly using crossover operation

5

and heuristic improvement technique is applied on the offspring with low probability to

locally improve the solution quality. It produces very good results compared to other well-

known heuristic algorithms. In most of the cases it finds the nearest optimal solution. For a

few cases it generates the exact solution.

1.7 Contribution

An important characteristic of this problem is time complexity. If N is the number of

elements in the input set and K is the number of subset then the time complexity of general

solution is O(K
N
). That means the time complexity increase exponentially with the size of

data. So for a large dataset problem is not soluble in time by general solutions. But our

proposed Genetic Algorithm can give optimal result for larger dataset of K-Set partition in

time. We make improvement in time complexity and our algorithm gives better result from

other heuristic algorithm

1.8 Outline Of The Report

This paper is organized as follow:

Chapter 2:

In chapter 2 we describe basic structure of genetic algorithm and representation of problems

by genetic algorithm.

Chapter 3:

In chapter 3 we discuss about our proposed genetic algorithm. Here we talk about our

problem representation technic, fitness function, deterministic initialization technic,

tournament selection, crossover, mutation and termination condition.

Chapter 4:

In this chapter we compare our algorithm with other algorithm by testing their dataset. Then

we say about our created dataset and the results after applying our algorithm.

Chapter 5:

By this chapter we conclude our thesis by summarizing our works. Finally we outline our

future plan.

6

Chapter 2

Introduction of Genetic algorithms

2.1 Basic Structure of Genetic Algorithm

 Genetic Algorithm (GA) is developed based on the evolutionary process of biological

organisms in nature. During the course of evolution, natural populations evolve according to

the principles of natural selection and “survival of the fittest”. Individuals which are more

successful in adapting to their environment will have a better chance of surviving and

reproducing, whilst individuals which are less fit will be eliminated. This means that the

genes from the highly fit individuals will spread to an increasing number of individuals in

each successive generation. The combination of good characteristics from highly adapted

ancestors may produce even more fit offspring. In this way, species evolve to become more

and more well adapted to their environment [3]. Flow chart of GA is given in figure 2.

Figure 2: Genetic Algorithm Flow Chart

7

 A GA simulates these processes by taking an initial population of individuals and applying

genetic operators in each reproduction. In optimization terms, each individual in the

population encoded into a string or chromosome which represents a possible solution to a

given problem. The fitness of an individual is evaluated with respect to a given objective

function. Highly fit individuals or solutions are given opportunities to reproduce by

exchanging pieces of their genetic information, in a crossover procedure, with other highly fit

individuals. This produces new “offspring” solutions (i.e., children), which share some

characteristics taken from both parents. Mutation is often applied after crossover by altering

some genes in the strings. The offspring can either replace the whole population (generational

approach) or replace less fit individuals (steady-state approach). This evaluation-selection-

reproduction cycle is repeated until a satisfactory solution is found [3]. The basic steps of a

simple GA are shown below.

Algorithm 1: Basic Genetic Algorithm

2.2 Representation of Genetic Algorithm

Representing a chromosomes encoding varies depending on the problem nature.

Traditionally, chromosomes are represented in binary as a string of 0s and 1s; however a

number of different encoding can be used to represent a solution (chromosome). Besides

binary encoding which is a string of 0s and 1s there is integer encoding. In a integer

encoding, every chromosome is a string of numbers, which may represent a number in a

sequence. A direct value encoding can be used in problems, where some complicated value

Generate an initial population;

Evaluate fitness of individuals in the population;

Repeat

 Select parents from the population;

 Recombine (mate) parents to produce children;

 Mutate children;

 Evaluate fitness of the children;

 Replace some or all of the population by the children;

Until a satisfactory solution has been found;

8

such as real numbers are used. In value encoding, chromosomes are represented using some

value and this value can be anything connected to the problem, from numbers, real number,

or chars to some complicated objects. Tree encoding can also be used for genetic algorithm,

where each chromosome is a tree of some objects such as a function or commands in

programming language. Tree encoding is good for evolving programs. Programming

language LISP is often used to this, because programs in it are represented in this form and

can be easily parsed as a tree, so the crossover and mutation can be done relatively easily

[14].

9

Chapter 3

Proposed Genetic Algorithm for k Set Partition

We propose hybrid genetic algorithm using general GA techniques with heap tree properties.

The one of the main features of our GA is to use heap tree to generate initial population. To

evaluate initial population we generate new generation using our fitness function and GA

methods.

3.1 Problem Representation

Assume a problem that has to divide a set of numbers into a particular number of subset

where additions of every subset numbers are almost equal to other subsets.

Suppose we have a set of 11 numbers.

Set, S= {250, 353, 147, 73, 114, 40, 143, 233, 267, 113, 67}

Now we need to divide this set into 4 subsets where additions of every subset numbers are

almost equal.

Our target is,

 So its result will be:

To solve this problem we randomly subset the numbers to generate some trivial solutions.

From that trivial solution we try to get an optimal solution by evaluating these solutions by

GA techniques. To do this we use integer encoding technique [9], where every chromosome

is a string of integer values. Every value indicates the subset number of that positioned

number.

10

Figure 3: Chromosome

By integer encoding technique every chromosome represents a solution of the problem. In

Figure 3 we give a simple example of integer encoding technique where partitions array

represents the string of integer value that I have discussed above and partitions array is

always parallel to number array. The value of partitions array will be at most the number of

partitions we needed.

3.2 Proposed Genetic Algorithm for Set Partition Problem

We used heap tree search method as a local search tool. By using heap tree we generate initial

population. Where each column of every chromosome represent a subset allocated numbers.

From this initial population we generate new generation depending on our fitness function. I

every generation, we replace the weakest chromosome by the fittest offspring by doing

tournament selection, crossover, mutations and others. The structure of our GA’s is shown in

Algorithm 2.

11

Begin

Create an initialize population using heap tree;

While terminating condition is not true

begin

Select parent by tournament selection;

Generate two offspring by Crossover;

Mutate the two offspring;

Evaluate fitness of the offsprings;

Replace two weakest population by this offspring if they better;

Updater Terminating condition;

endfor

End

Algorithm 2: Proposed Genetic Algorithm procedure

3.3 Fitness Function

The most important concept of genetic programming is the fitness function. The fitness

function determines how well a program is able to solve the problem [19]. Fitness function

evaluates how good a potential solution is relative to other potential solutions. The fitness

function is responsible for performing this evaluation and returning a positive number or

fitness value that reflects how optimal the solution is. In our problem low fitness value

indicate better solution. Where the Chromosome fitness is the total difference between its

every partition’s allocated numbers sum and expected fitness. Its mathematical

representation is given below.

Expected Fitness,

Average Fitness of population, =

12

3.4 Deterministic Initialization of Population

The first step in the functioning of a GA is the generation of an initial population. Each

member of this population encodes a possible solution to a problem. After creating the initial

population, each individual evaluated and assigned a fitness value according to the fitness

function. Each column of a Chromosome represents allocated subset of that positioned

number.

To find a good initial population we use min heap tree in 30% of times and other 70% time

we create population randomly. Heaps are a specialized tree-based data structure that used in

applications concerned with priority queues and ordering. Heap can implement by two

properties.

Min heap property: if X is a child of Y, then key(Y) ≤ key(X)

Max heap property: if X is a child of Y, then key(Y) ≥ key(X)

We work using min heaps because always we need to find out the smallest partition of the

chromosome where summation of the allocated numbers is very low. In min heap tree

smallest key is always at the root note because of the property of the element [20].

The time complexity of heap is given below, where N is total Number of node is tree. In our

GA the value of N will be at most “The number of required partitions”.

Find min: Θ(1)

Delete min: Θ(log N)

Insert Node: Θ(log N)

The way of our GA population initiating is shown in Algorithm 3.

13

Algorithm 3: Initialize population

3.5 Tournament Selection

Tournament selection [13] is a variant of rank-based selection methods. Its principle consists

in randomly selecting a set of k individuals. These individuals are then ranked according to

their relative fitness and the fittest individual is selected for reproduction. Here we use

Binary Tournament selection. First we randomly select two individual chromosomes from

population then we chose best one as parents one and then again select two individual

chromosomes from population and take it as parent two.

For i:= 0 to Population Size

 Initialize subsetSum[];

 Deterministic:=randomly taken value from 1 to 100

 If deterministic less than 30 then

 Create min heap tree of partitions sum where every child represent a subset

 For j:=0 to Total Number

 Begin:

 k:=randomly taken value from 1 to 3

pop top child from tree then allocate number into this child

and then insert this child into tree.

Update subsetSum[]

 End for

 End If

 Else

 For j:=0 to Total Number

 Begin:

 Randomly allocate number into any subset.

Update subsetSum[]

 End for

 End else

End for

14

3.6 Crossover

Crossover is the major instrument of variation and innovation in GAs. The simplest form of

crossover is single-point crossover. It chooses a single crossover position at random and the

parts of two parents after the crossover position are exchanged to form two offspring [8].

In figure 3 crossover positions selected of parent 1 & parent 2 at random.

Figure 4: Crossover position Selected

In figure 4 gene of both side of crossover point are interchanges between the two parents to

create two new offspring.

Figure 5: New offspring generated by crossover

We take crossover probability as 80% that means 80% time offspring made by crossover and

other 20% time offspring made by exact copy of parents. Our crossover structure is shown in

Algorithm 4.

15

Offspring1=paprent1

Offspring2=parent2

probability=randomly taken value from 1 to 100

if probability less than or equal 80 then

k=randomly taken value from 1 to Total Number

swap 1 to value from offspring1 to offspring2

End if

Algorithm 4: Crossover

3.7 Mutation

A mutation operator randomly changes each character in a selected chromosome into another

random character with probability Pm. The primary effect of mutation is to introduce new

alleles, the values of genes, into the evolution process to avoid permanent fixed kinds of

alleles in a population [7]. In our generated population there is a high probability to create

local optima because of using heap tree. So, to reduce this local optima we needed to give

high mutation probability and that is 2%. Mutation structure of our GA’s is shown in

Algorithm 5.

For i=1 to total character of offspring

Begin:

 p=randomly taken value from 1 to 100

 If p is less than or equal mutation Probability

 k=randomly taken value from 1 to number of Partition

 Assign character of this offspring is k

End if

End

Algorithm 5: Mutation

16

3.8 Termination Condition

Termination is the criterion by which the genetic algorithm decides whether to continue

searching or stop the search. Each of the enabled termination criterion is checked after each

generation to see if it is time to stop. To make our solution batter we consider average fitness

() of whole population. When average fitness remains unchanged for certain number of

new generation then we decide to stop generating new population. Normally we waited 2N

time where N is total numbers.

17

Chapter 4

Experimental Results and Analysis

We have implemented our algorithm in C++ programming language utilizing GNU GCC

Compiler and its random number generator is used for generating random numbers. We

tasted 10 datasets and testes where run on a Laptop PC having flowing configuration:

CPU: Intel Core i3 2.13GHz

Memory: 6 GB DDR3 1333MHz

Operating System: Windows 7 64-bit

4.1 Datasets Used

Datasets used to test our Genetic Algorithm for SPP are taken from Florida State University’s

partition_problem [10] and William A. Greene’s Genetic Algorithms for Partitioning Sets

[11]. We also create some dataset like spp79num10part, spp116num15part, spp151num20part

and spp189num25part which can be found in [12]. The top value of the dataset means total

numbers, second value means number of partitions and others are the numbers which we

have to divide into k-partitions.

4.2 Results and Discussion

Result of our algorithm is compared with William A. Greene’s Genetic Algorithms for

Partitioning Sets [11] in Table 1. The table has four columns where first column shows in

which section our algorithm is better; other three columns show the comparable results. For

this dataset we set, 4*N to terminate the program where N is total number. The average and

best fitness of for William A. Greene’s dataset is shown in figure 5.

18

Table 1: Comparison of Obtained Results with reference no. [11].

Difference In Falkenauer’s

Greedy GGA

Eager Breeder Our GA Algorithm

for SPP

Population size 50 250 50

Max number

generations

3500 40 499

Trials finding optimal

partition

30 29 0

Best fitness 9,608 3,242 3013

Implementation Stage Theoretical Theoretical Implemented

Figure 6 shows the average fitness and minimum fitness over successive generation for

William A. Greene’s dataset which indicated the dynamicity of our algorithm.

Figure 6: Average and best (minimum) fitness for William A. Greene’s dataset

19

Our GA results of Florida State University’s partition_problem [10] shown in table 2. The

table has four columns where first column shows name of the datasets, second column shows

total number of the datasets, third column shows number of partitions required, fourth

column shows population size for each dataset, fifth column shows the number of generation

need to get the best fitness and last column shows the fitness of our result.

Table 2: Experimental results of reference no. [10]’s datasets.

Dataset

Name

Total

Number

Partitions Population

Size

Generation Fitness

p01_w 10 2 5 1 0

p02_w 10 2 10 51 24

P03_w 9 2 14 34 8

P04_w 5 2 10 10 4

P05_w 9 2 10 1 0

We are failed to find any satisfied large dataset for which we have created four large dataset

to test our algorithm. In this dataset the range of number is large and number of partitions is

also higher than other.

To create this dataset we use GNU GCC random generator. In each data first we give a

partition number () that decide how many partitions will be in this data. Then set of

numbers generated where every set of numbers summation is exactly one thousand. To

generate each set of , randomly we take a number () that indicate how many numbers is

in set . Then randomly of numbers are taken. If is one thousand then we go for

next partitions, otherwise we try again until we found is one thousand. After finding all

 set of numbers, we make a set(S) from set of numbers.

20

Set, S= { }

Then finally we do ten thousand random swaps in set S to make it more promiscuous.

Test result of our created dataset shown in Table 3. The table has four columns where first

column shows name of the datasets, second column shows total number of the datasets, third

column shows number of partitions required, fourth column shows population size for each

dataset, fifth column shows the number of generation need to get the best fitness and last

column shows the fitness of our result.

Table 3: Experimental results of Created datasets

Dataset Name Total

Number

Partitions Population

Size

Generation Fitness

spp79num10part 79 10 50 2912 8

spp116num15part 116 15 80 9202 40

spp151num20part 151 20 80 16911 78

spp189num25part 189 25 190 81984 108

21

Chapter 5

Conclusions and Future Works

In this paper, we propose a genetic algorithm (GA) for k-set partition problem (SPP). Unlike

the previous works, we use heap tree of the chromosomes to make initial population in GA

for the first time for SPP. The main variation operator of our GA is the classical crossover

operator of the genetic algorithm (GA). That means the population of the solutions is updated

mainly using crossover operator. We select two parents randomly and apply the crossover

operator with a high probability. Due to the nature of the encoding, the generated offspring’s

may become invalid and in that case the offspring’s are corrected to valid solution. Then a

deterministic improvement technique is applied on the corrected offspring’s with low

probability to locally improve the solution quality. If the generated offspring’s is better than

the worst solution is replaced by offspring. The combination of the genetic operation and the

deterministic improvement makes the algorithm hybrid.

We test 10 datasets and compare with William a. Greene’s genetic algorithms for partitioning

sets [11] and our solutions are the best solution till now. We obtained better solutions over

recent works for the datasets of Florida State University’s partition_problem [10]. Our

algorithm gives the best solution for very spp79num10part, spp116num15part,

spp151num20part and spp189num25part [12]our meta-heuristic solution takes very small

time compared to others deterministic algorithms to reach the optimal solutions. Overall, it

provides very good solutions, comparable to the best algorithms that have been proposed so

far.

In the future work, we will try to use better data structure and improve the local optimizer.

We have also plans to compare the results of our proposed approach with the results proposed

by other evolutionary algorithm.

22

References

[1] D. Abramson, H. Dang, and M. Krishnamoorthy, “ A comparison of methods for solving

0-1 integer programs using a general purpose simulated annealing algorithm,” Annals of

Operations Research, 63:129–150, 1996.

[2] Marcus Randall and Andrew Lewis, “ Modifications and additions to ant colony

optimization to solve the set partitioning problem,” IEEE Computer Society, 978-0-7695-

4295-9/10, 2010.

[3] P.C Chu and J. E. Beasley, “Constraint Handling in Genetic Algorithms: The Set

Partitioning Problem,” Journal of Heuristics, 11:323-357(1998).

[4] Stephan Mertens, “ The easiest hard problem: Number partitioning,” In A.G. Percus, G.

Istrate, and C. Moore, editors, Computational Complexity and Statistical Physics, pages 125-

139, New York, 2006, Oxford University Press.

[5] Jo~ao Pedro Pedroso and Mikio Kubo, “ Heuristics and exact methods for number

partitioning,” Technical Report Series: DCC-2008-3.

[6] P.M.Pardalos and J.Xue, “The Maximum Clique Problem," Journal of Global

Optimization, 4, 1994,pp.301-328.H. Poor, An Introduction to Signal Detection and

Estimation, Springer-Verlag, New York, ch. 4, 1985.

[7] Bo Huang, “Finding Maximum Clique with a Genetic Algorithm”, The Pennsylvania

State University,Master's Paper, 2002.

[8] M. Mitchell, "An Introduction to Genetic Algorithms," The MIT Press, Cambridge, MA,

1999.

[9] S.N. Sivanandam, S. N. Deepa , “Terminologies and Operators of GA,” in Introduction to

Genetic Algorithms, 1st Edition, New York : Springer, 2007, pp-41-46

[10] Florida State University, in Tallahassee, Florida, (09 May 2012). partition_problem

[Online]. Available FTP:

http://people.sc.fsu.edu/~jburkardt/datasets/partition_problem/partition_problem.html

(Accessed: 20 July 2014).

[11] William A. Greene, “Genetic Algorithms For Partitioning Sets,” World Scientific

Publishing Company, Singapore, Vol 10, Nos. 1&2. pp. 225-241.

[12] Md. Shohan Ahmed (29 November 2014). K-set partitions Dataset [Online]

Available FTP:

https://www.dropbox.com/sh/694mqixkfrezr39/AAA3ule78gZPqlA7ugVcBAC4a?dl=0

http://people.sc.fsu.edu/~jburkardt/datasets/partition_problem/partition_problem.html
https://www.dropbox.com/sh/694mqixkfrezr39/AAA3ule78gZPqlA7ugVcBAC4a?dl=0

23

[13] K. Hingee. K, Hutter. M,“Equivalence of probabilistic tournament and polynomial

ranking selection,” In Evolutionary Computation, 2008, CEC 2008.(IEEE World Congress on

Computational Intelligence), IEEE Congress on 2008; 564-571.

[14] Lenin Hasda and FariaSabnam, “Solving Degree Constrained Minimum Spanning Tree

Problem Using Genetic Algorithm,”, Project Report, Department of CSE, East West

University, 2014.

[15] V. Maniezzo and M. Milandri, “An ant-based framework for very strongly constrained

problems,” In M. Dorigo, G. Di Caro, andM. Sampels, editors, Third International Workshop

on Ant Algorithms, ANTS 2002, volume 2463 of Lecture Notes in Computer Science, pages

222–227, Brussels, Belgium, 2002, Springer-Verlag.

[16] B. Crawford and C. Castro, “ACO with lookahead procedures for solving set partitioning

and covering problems,” Workshop proceedings of “Combination of Metaheuristic and Local

Search with Constraint Programming Techniques”, 2005.

[17] D. Levine, “A parallel genetic algorithm for the set partitioning problem,” In I. Osman

and J. Kelly, editors, Meta-Heuristics: Theory and Application, pages 23–35., Kluwer

Academic Publishers, Norwell, MA, 1996.

[18] Z. Czech, “A parallel genetic algorithm for the set partitioning problem,” In

Euromicro Workshop on Parallel and Distributed Processing, pages 343–350, 2000.

[19] Jaime J. Fernandey .The GP Tutorial [Online].

Available FTP: http://www.geneticprogramming.com/Tutorial/#anchor146647

(Accessed: 2 December 2014).

[20] Soheil Pourhashemi, “Skew Heap, Leftist Heap and Alternatives,” , Project Report,

Department of Computer Science and Engineering, York University, 2007.

[21] E. Balas and M. Padberg, “Set Partitioning - A Survey. In N. Christophides,” A.

Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 151–210, John

Wiley, 1979.

[22] K. Hoffman and M. Padberg, “Solving airline crew-scheduling problems by branch-and-

cut,” Management Science, 39:657–682, 1993.

http://www.geneticprogramming.com/Tutorial/#anchor146647

	page15
	page17
	page19
	page21
	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2
	OLE_LINK5

