
Nameplate Text Detector using Android Application

A project Submitted to the Computer Science and Engineering
Department, East West University In partial fulfillment of the

requirements for the award of the degree of Bachelor of Science in
Engineering.

By
Siddhartha Sarkar
ID. 2011-2-60-006

Supervised By
Dr. Shaikh Muhammad Allayear,

Assistant Professor,
Department of Computer Science and Engineering,

East West University

May14, 2015

1

ABSTRACT

“Nameplate Text Detector using Android Application” based on Android platform. It premises is
to make our daily life easy. With this application anyone can track to his/her vehicle from any
complain on the other hand a traffic surgeon or traffic police can easily update the complaint.
This report provides detailed description on how I created the application and also how I eased
the process of android development while creating the application.

2

Declaration:

I hereby declare that this is submission is my own work and that to the best of my knowledge
and belief it contains neither materials nor fact previously published or written by another
person. Further, it does not contain material or fact which to a substantial extent has been
accepted for the award of any degree of a university or any other institution of tertiary education
except where an acknowledgment.

 Signature of Candidate

………………………………
 (Siddhartha Sarkar)

3

Letter of Acceptance

The project entitled “Nameplate Text Detector using Android Application” submitted by
Siddhartha Sarkar, ID No. 2011-2-60-006, to the Department of Computer Science and
Engineering, East West University, Dhaka-1212, Bangladesh is accepted by the Department for
the partial fulfillment of requirements for the degree of Bachelor of Science in Computer Science
and Engineering on May10, 2015.

Board of Examiners

Dr. Shaikh Muhammad Allayear,
Assistant Professor,
Department of Computer Science and Engineering,
East West University, Dhaka-1212, Bangladesh

Dr. Shamim Hasnat Ripon,
Chairperson and Associate Professor,
Department of Computer Science and Engineering,
East West University Dhaka-1212, Bangladesh

4

Acknowledgements

The application “Nameplate Text Detector using Android Application” would never run
successfully without the valuable encouragement and guidance from my supervisor Dr. Shaikh
Muhammad Allayear, Assistant Professor, Department of Computer Science and Engineering,
East West University. He enlightened, encouraged and provided us with the ingenuity to
transform my vision into reality. I am particularly grateful to Dr. Shamim Hasnat Ripon,
Chairperson and Associate Professor, Department of Computer Science and Engineering, East
West University, for his encouragement. And also grateful to Md. Salahuddin, Teaching Assistant
for his guidance and counseling. I am also grateful to all my teachers and many of my friends
who provided me with necessary hardware and suggestion to test the software as it developed. I
would like to thank Google for creating android platform and keeping it free.

Table of Contents:

5

Abstract 2
Declaration: 3
Letter of Acceptance 4
Acknowledgement 5

Chapter 1
Introduction 8-10

1.1 Introduction 8
1.2 Motivations 9
1.3 Objectives 9
1.4 Contribution 9
1.5 Organization for the Project Report 10

Chapter 2:
Literature Review and Survey of Existing Models 11-36

2.1 What is Android? 11
2.2 History of Android 11
 2.2.1. Foundation 11
 2.2.2. Acquisition by Google 12
 2.2.3. Post-acquisition by Google 12
 2.2.4. Open Handset Alliance 12
 2.2.5. Android Open Source Project 13
 2.2.6. Version history 13
2.3 Design and Architecture of Android 15
2.4. Linux 15
2.5. Architecture of Android 16
2.6. Application 16
2.7. Libraries 17
2.8. Android Runtime 18
2.9. Linux Kernel 18
2.10 Features of Android 18
2.11 Applications 22
2.12. Google Play 22
2.13Security of Application 22
2.14. Privacy 23
2.15. Software development tools 23
 2.15.1. Android SDK 23
 2.15.2. Native development kit 24
 2.15.3. Android Open Accessory Development Kit 24
 2.15.4. App Inventor for Android 25
 2.15.5. Hypertext Android Creator 25
2.16. The Simple Project 25
2.17. App Components 26
2.18. Application Fundamentals 26
2.19 Application Components 27
2.20 Activating Components 29
2.21. The Manifest File 30
2.22. Declaring Components 31

6

2.23. Declaring Components Capabilities 32
2.24. Declaring Application Requirements 32
2.25 Application Resources 34
2.26 Tesseract 35
2.27 Optical Character Recognition 36

Chapter 3:
Proposed Models 37-46

3.1 Design 37
 3.1.1 Flow Chart for the Project 38
3.2 Implementation Procedure 39
Hardware Requirement Tools
 3.2.1 Android Development Environment 39
 3.2.2 Project Setup 39
 3.2.3 Library Insertion 40
3.3. Main Activity 40
 3.3.1 Image View 40
 3.3.2 Select Gallery logo image 41
 3.3.3 Button for select Camera input image 41
 3.3.4 Button for work with database 41
 3.3.5 Number Plate Recognition Activity 41
 3.3.6 Select View 42
 3.3.7 Capture Button 42
 3.3.8 Select option 42
 3.3.9.1 Continuous Preview 43
 3.3.9.2 Recognize Language 43
 3.3.9.3 OCR Engine 43
 3.3.9.4 Auto and Standard Focus Mode 43
 3.3.9.5 Character Whitelist and Blacklist 43
 3.3.9.6 Light 43
 3.3.9.7 Page Segmentation 44
 3.3.9.8 Reverse Camera Image 44
 3.3.10 Option to share copy and send data 44
 3.3.11 Database Activity 45
 3.3.12 Insert Vehicle information 45
 3.3.13 Show all information 46
 3.3.14 Show Particular Vehicle information 46

Chapter 4:
Conclusion and Future Work 47-48

4.1 Conclusion 47
4.2 Future Work 47
References 48

Chapter 1

7

Introduction

1.1 Introduction

A vehicle registration plate, or license plate, is attached to vehicles for official identification
purposes. The identifier, often numerical or alphanumerical, can be used for uniquely identifying
a vehicle within the issuing regions database. There are numerous reasons why it is necessary for
individuals or organizations to identify a vehicle and thus its owner. Examples include law/police
enforcement, traffic control, and access to restricted areas, electronic toll collection or checking
parking permissions purposes. In some of the applications like traffic law enforcement, road
monitoring and expressway toll system, where license plate recognition is used, it is necessary to
process a large number of vehicles in a short time. In daily life there is huge traffic on roads, in
this scenario application has to do very fast processing. Otherwise, violators and criminals can
escape. The detection of a single license plate and the recognition of its characters in a reliable
way is an expensive task, since it relies on computation intensive algorithms. Dedicated systems
have been developed for this purpose delivering the necessary computational power. Once a
license plate has been recognized it needs to be submitted to an, often remote, IT system to
match it against a database finally identifying the vehicle and possibly its driver. Then this
information can be processed and used for dedicated purposes [8].

My creativity is to make an android based application that would be an efficient app for smart
phone and also an entertaining app for user. So I started working to create an android application
for traffic police vehicle holders and that’s will make life became too easy.

1.2. Motivations

8

We have usually lot of vehicles. Sometimes we make some mistake which causes violation of
traffic rule. So we need to know about vehicle, but the task is not so easy instantly. We have so
many nameplate detector machines but they use for particular purpose. So it is difficult to get
information from this source. Where if I have a smart phone and have an app which get image
and give me information about these vehicles then it will be more interesting and life will be
easy. With concerning all of those problems I have motivated to make this application.

1.3. Objectives

The main objectives of my application are:

 Main Activity Interface

 Take input through Camera

 Updating and Show Vehicles from database

 Option for select language and camera type and OCR engine

 Share image with different software and database

 Search and save information with recognizing text

 showing all information of database

 Select image from gallery and detect text

1.4. Contribution

In survey of existing model I discuss the details about the android. I collect all the requirements
to develop an android application there. Software and hardware requirements are also discussed
in the chapter to initialize an android development environment. I then move into my project to
discuss about it in details. I mention proposed model, its database structure, class diagrams, class
descriptions, data flow diagram, requirements, testing results and requirements to run my
application. At last I provide a user manual in Chapter User Manual that describes the proper
way of using my application.

9

The way I followed to reach my goal –

I collected the necessary information about Android.

I learned Android programming technique.

I also collected requirements for my project.

I used SQLite database system for the application.

I made all necessary diagrams of my project Data flow diagram.

I tested my application and it passed in all the method I applied.

I created a manual for the general user.

1.5 Organization of the Project Report

Chapter 2:

Describes the basic information and structure of the Android platform. It also describes all the
related literature and previous work we used in my application.

Chapter 3:

Describes the implementation procedure like setting up android development environment,
installing android development tools, configuring IDEs etc. I have used Eclipse IDE to create our
application’s internal coding and xml based user interface.

This chapter also describes the entire procedure like how I create the app, useful description of
elements that the application contains how to run this application and also testing techniques of
application.

Chapter 4:

Describes conclusion and future work of my application

10

Chapter 2

Literature Review and Survey of Existing Models

2.1. What is Android?

Android is one of the most popular as well as most widely used mobile operating system. It is a
software stack for mobile devices that includes an operating system, middleware and key
applications [9]. The android SDK provides the tools and APIs necessary to create application on
the android platform using JAVA programming language. Android is an open source mobile OS
platform that's running on top of Linux kernel. It uses a non-standard Java Virtual Machine
called Dalvin, specialized to handle mobile device processes. The main programming language
used for Android is JAVA with many libraries from J2SE and third party open source projects,
such as Apache commons, SQLite, web kit, etc. Google purchased the initial developer of the
software, Android Inc., in 2005. The unveiling of the Android distribution on November 5, 2007
was announced with the founding of the Open Handset Alliance, a consortium of 84 hardware,
software and telecommunication companies devoted to advancing open standards for mobile
devices. Google released most of the Android code under the Apache License, a free software
license. The Android Open Source Project (AOSP) is tasked with the maintenance and further
development of Android. Android consists of a kernel based on the Linux kernel, with
middleware, libraries and APIs written in C and application software running on an application
framework which includes Java-compatible libraries based on Apache Harmony. Developers
write primarily in a customized version of Java. Android became the world's leading smart phone
platform at the end of 2010. For the first quarter of 2012, Android had a 59% smart phone market
share worldwide. At the half of 2012, there were 400 million devices activated and 1 million
activations per day. Analysts point to the advantage to Android of being a multi-channel, multi-
carrier OS. [10] At the beginning of 2013, Android captured 70% of smart phone market share
worldwide.

2.2. History of Android

In this portion I will describe the history of android and I also show relation between my project
and android.

2.2.1. Foundation

Android, Inc. was founded in Palo Alto, California, United States in October 2003 by Andy
Rubin (co-founder of Danger), Rich Miner (co-founder of Wildfire Communications, Inc.), Nick
Sears (once VP at T-Mobile), and Chris White (headed design and interface development at

11

WebTV) to develop, in Rubin's words "...smarter mobile devices that are more aware of its
owner's location and preferences". Despite the obvious past accomplishments of the founders and
early employees, Android Inc. operated secretly, revealing only that it was working on software
for mobile phones. That same year, Rubin ran out of money. Steve Perlman, a close friend of
Rubin, brought him $10,000 in cash in an envelope and refused a stake in the company.

2.2.2. Acquisition by Google

Google acquired Android Inc. on August 17, 2005, making Android Inc. a wholly owned
subsidiary of Google. Key employees of Android Inc., including Andy Rubin, Rich Miner and
Chris White, stayed at the company after the acquisition. Not much was known about Android
Inc. at the time of the acquisition, but many assumed that Google was planning to enter the
mobile phone market with this move.

2.2.3. Post-acquisition by Google

At Google, the team led by Rubin developed a mobile device platform powered by the Linux
kernel. Google marketed the platform to handset makers and carriers on the promise of providing
a flexible, upgradable system. Google had lined up a series of hardware component and software
partners and signaled to carriers that it was open to various degrees of cooperation on their part.
Speculation about Google's intention to enter the mobile communications market continued to
build through December 2006. Reports from the BBC and The Wall Street Journal noted that
Google wanted its search and applications on mobile phones and it was working hard to deliver
that. Print and online media outlets soon reported rumors that Google was developing a Google-
branded handset. Some speculated that as Google was defining technical specifications, it was
showing prototypes to cell phone manufacturers and network operators.

In September 2007, InformationWeek covered an Evacuee serve study reporting that Google had
filed several patent applications in the area of mobile telephony.

2.2.4. Open Handset Alliance

On November 5, 2007, the Open Handset Alliance, a consortium of several companies which
include Broadcom Corporation, Google, HTC, Intel, LG, Marvell Technology Group, Motorola,
NVidia, Qualcomm, Samsung Electronics, Sprint Nextel, T-Mobile and Texas Instruments
unveiled itself. The goal of the Open Handset Alliance is to develop open standards for mobile
devices. On the same day, the Open Handset Alliance also unveiled their first product, Android, a
mobile device platform built on the Linux kernel version 2.6. On December 9, 2008, 14 new

12

members joined, including ARM Holdings, Atheros Communications, Asustek Computer Inc.,
Garmin Ltd, Huawei Technologies, PacketVideo, Softbank, Sony Ericsson, Toshiba Corp, and
Vodafone Group Plc. [10]

2.2.5. Android Open Source Project

The Android Open Source Project (AOSP) is led by Google, and is tasked with the maintenance
and development of Android. According to the project "The goal of the Android Open Source
Project is to create a successful real-world product that improves the mobile experience for end
users." AOSP also maintains the Android Compatibility Program, defining an "Android
compatible" device "as one that can run any application written by third-party developers using
the Android SDK and NDK", to prevent incompatible Android implementations. The
compatibility program is also optional and free of charge, with the Compatibility Test Suite also
free and open-source.

2.2.6. Version history

Android has been updated frequently since the original release of "Astro", with each fixing bugs
and adding new features. Each version is named in alphabetical order, with 1.5 "Cupcake" being
the first named after a dessert and every update since following this naming convention. [10]

List of Android version names:

1. Cupcake

2. Donut

3. Eclair

4. Froyo

5. Gingerbread

6. Honeycomb

7. Ice Cream Sandwich

8. Android 4.2 Jelly Bean (API level 17)

9. Android 4.3 Jelly Bean (API level 18)

13

10. Android 4.4 Kit Kat (API level 19)

11. Android 5 Lollipop (API level 21)

2.3 Gingerbread refined the user interface, improved the soft keyboard and copy/paste features,
improved gaming performance, SIP support (VoIP calls), and added support for Near Field
Communication.

3.0 Honeycomb was a tablet-oriented release which supports larger screen devices and
introduces many new user interface features, and supports multi core processors and hardware
acceleration for graphics. The Honeycomb SDK has been released and the first device featuring
this version, the Motorola Xoom tablet, went on sale in February 2011.

3.1 Honeycomb was announced at the 2011 Google I/O on 10 May 2011. One feature focuses on
allowing Honeycomb devices to directly transfer content from USB devices.

3.2 Honeycomb released at July 15 2011, is "an incremental release that adds several new
capabilities for users and developers". Highlights include optimization for a broader range of
screen sizes; new "zoom-to-fill" screen compatibility mode; capability to load media files
directly from the SD card; and an extended screen support API, providing developers with more
precise control over the UI. Android 3.2 Honeycomb is the latest Android version that is
available to tablets.

4.0.x Ice Cream Sandwich released at December 16, 2011, it's easy multitasking, rich
notifications, customizable home screens, resizable widgets, and deep interactivity and adds
powerful new ways of communicating and sharing.

4.1.x Jelly Bean released at July 9, 2012 Based on Linux kernel 3.0.31, Jelly Bean was an
incremental update with the primary aim of improving the functionality and performance of the
user interface. The performance improvement involved "Project Butter", which uses touch
anticipation, triple buffering, and extended vsync timing and a fixed frame rate of 60 fps to
create a fluid and "buttery-smooth" UI. Android 4.1 Jelly Bean was released to the Android Open
Source Project on 9 July 2012, and the Nexus 7 tablet, the first device to run Jelly Bean.

4.2. x Jelly Bean released at November 13, 2012 its API level is 17.

4.3. x Jelly Bean released at July 24, 2013API level is 18.

4.4 Kit Kat released at October 31, 2013 API level is 19.

14

2.3. Design and Architecture of Android

Android consists of a kernel based on the Linux kernel, with middleware, libraries and APIs
written in C and application software running on an application framework which includes Java-
compatible libraries based on Apache Harmony. Android uses the Dalvik virtual machine with
just-in-time compilation to run Dalvikdex-code (Dalvik Executable), which is usually translated
from Java byte code.

The main hardware platform for Android is the ARM architecture. There is support for x86 from
the Android x 86 projects and Google TV uses a special x86 version of Android.

2.4. Linux

Android's kernel is based on the Linux kernel and has further architecture changes by Google
outside the typical Linux kernel development cycle. Android does not have a native X Window
System nor does it support the full set of standard GNU libraries, and this makes it difficult to
port existing Linux applications or libraries to Android. Certain features that Google contributed
back to the Linux kernel, notably a power management feature called wake locks, were rejected
by mainline kernel developers, partly because kernel maintainers felt that Google did not show
any intent to maintain their own code. Even though Google announced in April 2010 that they
would hire two employees to work with the Linux kernel community, Greg Kroah-Hartman, the
current Linux kernel maintainer for the -stable branch, said in December 2010 that he was
concerned that Google was no longer trying to get their code changes included in mainstream
Linux. Some Google Android developers hinted that "the Android team was getting fed up with
the process", because they were a small team and had more urgent work to do on Android.
However, in September 2010, Linux kernel developer Rafael J. Wysocki added a patch that
improved the mainline Linux wakeup events framework. He said that Android device drivers that
use wake locks can now be easily merged into mainline Linux, but that Android's opportunistic
Suspend features should not be included in the mainline kernel. In August 2011, Linus Torvalds
said that "eventually Android and Linux would come back to a common kernel, but it will
probably not be for four to five years". In December 2011, Greg Kroah-Hartman announced the
start of the Android Mainlining Project, which aims to put some Android drivers, patches and
features back into the Linux kernel, starting in Linux 3.3.further integration being expected for
Linux Kernel 3.4. [12]

15

2.5 Architecture of Android

The following diagram shows the components of the Android operating system:

2.6 Application

Android will ship with a set of core applications including an email client, SMS program,
calendar, maps, browser, contacts, and others. All applications are written using the Java
programming language.

Application Framework:

By providing an open development platform, Android offers developers the ability to build
extremely rich and innovative applications. Developers are free to take advantage of the device
hardware, access location information, run background services, set alarms, add notifications to
the status bar, and much, much more.

16

Developers have full access to the same framework APIs used by the core applications. The
application architecture is designed to simplify the reuse of components; any application can
publish its capabilities and any other application may then make use of those capabilities (subject
to security constraints enforced by the framework). This same mechanism allows components to
be replaced by the user.

Underlying all applications is a set of services and systems, including:

1. A rich and extensible set of Views that can be used to build an application, including lists,
grids, text boxes, buttons, and even an embeddable web browser.

2. Content Providers that enable applications to access data from other applications (such as
Contacts), or to share their own data.

3. A Resource Manager, providing access to non-code resources such as localized strings,
graphics, and layout files.

4. A Notification Manager that enables all applications to display custom alerts in the status bar.

5. An Activity Manager that manages the lifecycle of applications and provides a common
navigation back stack.

2.7. Libraries

Android includes a set of C/C++ libraries used by various components of the Android system.
These capabilities are exposed to developers through the Android application framework. Some
of the core libraries are listed below:

System C library - a BSD-derived implementation of the standard C system library (libc), tuned
for embedded Linux-based devices.

Media Libraries - based on Packet Video’s Open CORE; the libraries support playback and
recording of many popular audio and video formats, as well as static image files, including
MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG.

Surface Manager - manages access to the display subsystem and seamlessly composites 2D and
3D graphic layers from multiple applications.

Lib Web Core - a modern web browser engine which powers both the Android browser and an
embeddable web view.

SGL - the underlying 2D graphics engine.

17

3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either
hardware 3D acceleration (where available) or the included, highly optimized 3D software
pasteurizer.

FreeType - bitmap and vector font rendering.

SQLite - a powerful and lightweight relational database engine available to all applications.

2.8. Android Runtime

Android includes a set of core libraries that provides most of the functionality available in the
core libraries of the Java programming language. Every Android application runs in its own
process, with its own instance of the Dalvik virtual machine. Dalvik has been written so that a
device can run multiple VMs efficiently.

 The Dalvik VM executes files in the Dalvik Executable (.dex) format which is optimized for
minimal memory footprint. The VM is register-based, and runs classes compiled by a Java
language compiler that have been transformed into the .dex format by the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading and
low-level memory management.

2.9. Linux Kernel

Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also acts as an
abstraction layer between the hardware and the rest of the software stack. [12]

2.10 Features of Android

Features and current specifications of android are as follow:

18

 Handset layouts

The platform is adaptable to larger, VGA, 2D graphics library, 3D graphics library based on
OpenGL ES 2.0 specifications, and traditional Smartphone layouts.

 Storage

SQLite, a lightweight relational database, is used for data storage purposes.

 Connectivity

Android supports connectivity technologies including GSM/EDGE, IDEN, CDMA, EV-DO,
UMTS, Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

 Messaging

SMS and MMS are available forms of messaging, including threaded text messaging and now
Android Cloud to Device Messaging Framework (C2DM) is also a part of Android Push
Messaging service.

 Multiple language support

Android supports multiple human languages. The number of languages more than doubled for
the platform 2.3 Gingerbread, 4.0.x Ice Cream Sandwich, 4.1.x Jelly Bean and 4.2.x Jelly Bean

 Web browser

The web browser available in Android is based on the open-source WebKit layout engine,
coupled with Chrome's V8 JavaScript engine. The browser scores a 95/100 on the Acid3 Test.

 Java support

While most Android applications are written in Java, there is no Java Virtual Machine in the
platform and Java byte code is not executed. Java classes are compiled into Dalvik executables
and run on Dalvik, a specialized virtual machine designed specifically for Android and optimized
for battery-powered mobile devices with limited memory and CPU. J2ME support can be
provided via third-party applications.

19

 Media support

Android supports the following audio/video/still media formats: WebM, H.263, H.264 (in 3GP or
MP4 container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or
3GP container), MP3, MIDI, OggVorbis, FLAC, WAV, JPEG, PNG, GIF, BMP.

 Streaming media support

RTP/RTSP streaming (3GPP PSS, ISMA), HTML progressive download (HTML5 <video> tag).
Adobe Flash Streaming (RTMP) and HTTP Dynamic streaming are supported by the Flash plug-
in. Apple HTTP Live Streaming is supported by RealPlayer for Mobile, and by the operating
system in Android 3.0 (Honeycomb).

 Additional hardware support

Android can use video/still cameras, touch screens, GPS, accelerometers, gyroscopes,
magnetometers, dedicated gaming controls, proximity and pressure sensors, thermometers,
accelerated 2D bit blitz (with hardware orientation, scaling, pixel format conversion) and
accelerated 3D graphics.

 Multi-touch

Android has native support for multi-touch which was initially made available in handsets such
as the HTC One X. The feature was originally disabled at the kernel level (possibly to avoid
infringing Apple's patents on touch-screen technology at the time). Google has since released an
update for the Nexus One and the Motorola Droid which enables multi-touch natively.

 Bluetooth

Supports A2DP, AVRCP, sending files (OPP), accessing the phone book (PBAP), voice dialing
and sending contacts between phones. Keyboard, mouse and joystick (HID) support is available
in Android 3.1+, and in earlier versions through manufacturer customizations and third-party
applications.

20

 Video calling

Android does not support native video calling, but some handsets have a customized version of
the operating system that supports it, either via the UMTS network (like the Samsung Galaxy S)
or over IP. Video calling through Google Talk is available in Android 2.3.4 and later.
Gingerbread allows Nexus S to place Internet calls with a SIP account. This allows for enhanced
VoIP dialing to other SIP accounts and even phone numbers. Skype 2.1 offers video calling in
Android 2.3, 4.0.x, 4.1.x, 4.2.x, including front camera support.

 Multitasking

Multitasking of applications is available.

 Voice based features

Google search through voice has been available since initial release. Voice actions for calling,
texting, navigation, etc. are supported on Android 2.2 onwards.

 Tethering

Android supports tethering, which allows a phone to be used as a wireless/wired Wi-Fi hotspot.
Before Android 2.2 this was supported by third-party applications or manufacturer
customizations.

 Screen capture

Android does not support screenshot capture as of 2011. This is supported by manufacturer and
third-party customizations. Screen Capture is available in 4.0.x+ and through a PC connection
using the DDMS developer's tool. [10]

21

2.11 Applications

Applications are usually developed in the Java language using the Android Software
Development Kit, but other development tools are available, including a Native Development Kit
for applications or extensions in C or C++, Google App Inventor, a visual environment for
novice programmers and various cross platform mobile web applications frameworks.
Applications can be acquired by end-users either through a store such as Google Play or the
Amazon App store, or by downloading and installing the application's APK files from a third-
party site.

2.12. Google Play

Google Play is an online software store developed by Google for Android devices. An
application program ("app") called "Play Store" is preinstalled on most Android devices and
allows users to browse and download apps published by third-party developers, hosted on
Google Play. As of February 2013, there were more than 800,000 apps available for Android, and
the estimated number of applications downloaded from the Play Store exceeded 20 billion. The
operating system itself is installed on 500 million total devices.

Only devices that comply with Google's compatibility requirements are allowed to preinstall and
access the Play Store. The app filters the list of available applications to those that are compatible
with the user's device, and developers may restrict their applications to particular carriers or
countries for business reasons.

Google offers many free applications in the Play Store including Google Voice, Google Goggles,
Gesture Search, Google Translate, Google Shopper, Listen and My Tracks. In August 2010,
Google launched "Voice Actions for Android", which allows users to search, write messages, and
initiate calls by voice.

2.13 Security of Application

Android applications run in a sandbox, an isolated area of the operating system that does not
have access to the rest of the system's resources, unless access permissions are granted by the
user when the application is installed. Before installing an application, the Play Store displays all
required permissions. A game may need to enable vibration, for example, but should not need to
read messages or access the phonebook. After reviewing these permissions, the user can decide
whether to install the application. The sandboxing and permissions system weakens the impact of
vulnerabilities and bugs in applications, but developer confusion and limited documentation has
resulted in applications routinely requesting unnecessary permissions, reducing its effectiveness.

22

The complexity of inter-application communication implies Android may have opportunities to
run unauthorized code. Several security firms have released antivirus software for Android
devices, in particular, Lookout Mobile Security, AVG Technologies, Avast!, F-Secure, Kaspersky,
McAfee and Symantec. This software is ineffective as sandboxing also applies to such
applications, limiting their ability to scan the deeper system for threats. A useful type of security
applications program and service, often described as "Find My Phone", is available for Android,
as well as for Microsoft Windows Phone and for Apple iPhone, whereby a registered user can
find the approximate location of the phone, if switched on, over the Internet. This helps to locate
lost or stolen phones. At least one of these can be installed on a phone after it has gone missing.

2.14 Privacy

Android smart phones have the ability to report the location of Wi-Fi access points, encountered
as phone users move around, to build databases containing the physical locations of hundreds of
millions of such access points. These databases form electronic maps to locate smart phones,
allowing them to run apps like Foursquare, Latitude, Places, and to deliver location-based ads.
Third party monitoring software such as TaintDroid, an academic research-funded project, can,
in some cases, detect when personal information is being sent from applications to remote
servers. In March 2012 it was revealed that Android Apps can copy photos without explicit user
permission, Google responded they "originally designed the Android photos file system similar
to those of other computing platforms like Windows and Mac OS. They're taking another look at
this and considering adding permission for apps to access images. They've always had policies in
place to remove any apps [on Google Play] that improperly access your data." [11]

2.15. Software Development Tools

In this portion I will describe about android app development tools and the way to development
procedure.

2.15.1 Android SDK

The Android software development kit (SDK) includes a comprehensive set of development
tools. These include a debugger, libraries, a handset emulator based on QEMU, documentation,
sample code, and tutorials. Currently supported development platforms include computers
running Linux (any modern desktop Linux distribution), Mac OS X 10.5.8 or later, Windows XP
or later. The officially supported integrated development environment (IDE) is Eclipse using the
Android Development Tools (ADT) Plug-in, though developers may use any text editor to edit

23

Java and XML files then use command line tools (Java Development Kit and Apache Ant are
required) to create, build and debug Android applications as well as control attached Android
devices (e.g., triggering a reboot, installing software package(s) remotely). Enhancements to
Android's SDK go hand in hand with the overall Android platform development. The SDK also
supports older versions of the Android platform in case developers wish to target their
applications at older devices. Development tools are downloadable components, so after one has
downloaded the latest version and platform, older platforms and tools can also be downloaded
for compatibility testing.

2.15.2 Native Development Kit

Libraries written in C and other languages can be compiled to ARM or x86 native code and
installed using the Android Native Development Kit. Native classes can be called from Java code
running under the Dalvik VM using the System. LoadLibrary call, which is part of the standard
Android Java classes. Complete applications can be compiled and installed using traditional
development tools. The ADB debugger gives a root shell under the Android Emulator which
allows native ARM code or x 86 codes to be uploaded and executed. ARM or x 86 codes can be
compiled using GCC on a standard PC. Running native code is complicated by the fact that
Android uses a non-standard C library (libc, known as Bionic). The underlying graphics device is
available as a frame buffer at /dev/graphics/fb0. The graphics library that Android uses to
arbitrate and control access to this device is called the Skia Graphics Library (SGL), and it has
been released under an open source license. Skia has backend for both win32 and UNIX,
allowing the development of cross-platform applications, and it is the graphics engine underlying
the Google Chrome web browser. Unlike Java App development based on the Eclipse IDE, the
NDK is based on command-line tools and requires invoking them manually to build, deploy and
debug the apps. Several third-party tools allow integrating the NDK into Eclipse and Visual
Studio.

2.15.3 Android Open Accessory Development Kit

The Android 3.1 platform (also back ported to Android 2.3.4) introduces Android Open
Accessory support, which allows external USB hardware (an Android USB accessory) to interact
with an Android-powered device in a special "accessory" mode.

When an Android-powered device is in accessory mode, the connected accessory acts as the
USB host (powers the bus and enumerates devices) and the Android-powered device acts as the
USB device. Android USB accessories.

2.15.4 App Inventor for Android

24

On 12 July 2010, Google announced the availability of App Inventor for Android, a Web-based
visual development environment for novice programmers, based on MIT's Open Blocks Java
library and providing access to Android devices' GPS, accelerometer and orientation data, phone
functions, text messaging, speech-to-text conversion, contact data, persistent storage, and Web
services, initially including Amazon and Twitter. "We could only have done this because
Android's architecture is so open," said the project director, MIT's Hal Abelson. Under
development for over a year, the block-editing tool has been taught to non-majors in computer
science at Harvard, MIT, Wellesley, Trinity College (Hartford,) and the University of San
Francisco, where Professor David Wolber developed an introductory computer science course
and tutorial book for non-computer science students based on App Inventor for Android.

2.15.5 Hyper Next Android Creator

Hyper Next Android Creator (HAC) is a software development system aimed at beginner
programmers that can help them create their own Android apps without knowing Java and the
Android SDK. It is based on HyperCard that treated software as a stack of cards with only one
card being visible at any one time and so is well suited to mobile phone applications that have
only one window visible at a time. Hyper Next Android Creator's main programming language is
simply called Hyper Next and is loosely based on HyperCard's Hyper Talk language. Hypertext
is an interpreted English-like language and has many features that allow creation of Android
applications. It supports a growing subset of the Android SDK including its own versions of the
GUI control types and automatically runs its own background service so apps can continue to run
and process information while in the background.

2.16 The Simple Project

The goal of Simple is to bring an easy-to-learn-and-use language to the Android platform.
Simple is a BASIC dialect for developing Android applications. It targets professional and non-
professional programmers alike in that it allows programmers to quickly write Android
applications that use the Android runtime components.

Similar to Microsoft Visual Basic 6, Simple programs are form definitions (which contain
components) and code (which contains the program logic). The interaction between the
components and the program logic happens through events triggered by the components. The
program logic consists of event handlers which contain code reacting to the events. The Simple
project is not very active, the last source code update being in August 2009. [13]

2.17. App Components

25

Like other application android application has its own components, below I will describe these
components.

2.18. Application Fundamentals

Android applications are written in the Java programming language. The Android SDK tools
compile the code-along with any data and resource files-into an Android package, an archive file
with an .apk suffix.

All the code in a single .apk file is considered to be one application and is the file that Android-
powered devices use to install the application. Once installed on a device, each Android
application lives in its own security sandbox:

The Android operating system is a multi-user Linux system in which each application is a
different user.

By default, the system assigns each application a unique Linux user ID (the ID is used only by
the system and is unknown to the application). The system sets permissions for all the files in an
application so that only the user ID assigned to that application can access them.

Each process has its own virtual machine (VM), so an application's code runs in isolation from
other applications.

By default, every application runs in its own Linux process. Android starts the process when any
of the application's components need to be executed, then shuts down the process when it's no
longer needed or when the system must recover memory for other applications.

In this way, the Android system implements the principle of least privilege. That is, each
application, by default, has access only to the components that it requires to do its work and no
more. This creates a very secure environment in which an application cannot access parts of the
system for which it is not given permission. However, there are ways for an application to share
data with other applications and for an application to access system services:

It's possible to arrange for two applications to share the same Linux user ID, in which case they
are able to access each other's files. To conserve system resources, applications with the same
user ID can also arrange to run in the same Linux process and share the same VM (the
applications must also be signed with the same certificate). An application can request
permission to access device data such as the user's contacts, SMS messages, the mountable

26

storage (SD card), camera, Bluetooth, and more. All application permissions must be granted by
the user at install time.

That covers the basics regarding how an Android application exists within the system. The rest of
this document introduces you to:

The core framework components that define your application.

The manifest file in which you declare components and required device features for your
application.

Resources that are separate from the application code and allow your application to gracefully
optimize its behavior for a variety of device configurations. [11]

2.19. Application Components

Application components are the essential building blocks of an Android application. Each
component is a different point through which the system can enter your application. Not all
components are actual entry points for the user and some depend on each other, but each one
exists as its own entity and plays a specific role-each one is a unique building block that helps
define your application's overall behavior.

There are four different types of application components. Each type serves a distinct purpose and
has a distinct lifecycle that defines how the component is created and destroyed.

Here are the four types of application components:

 Activities

An activity represents a single screen with a user interface. For example, an email application
might have one activity that shows a list of new emails, another activity to compose an email,
and another activity for reading emails. Although the activities work together to form a cohesive
user experience in the email application, each one is independent of the others. As such, a
different application can start any one of these activities (if the email application allows it). For
example, a camera application can start the activity in the email application that composes new
mail, in order for the user to share a picture. An activity is implemented as a subclass of Activity
and you can learn more about it in the Activities developer guide.

27

 Services

A service is a component that runs in the background to perform long-running operations or to
perform work for remote processes. A service does not provide a user interface. For example, a
service might play music in the background while the user is in a different application, or it
might fetch data over the network without blocking user interaction with an activity. Another
component, such as an activity, can start the service and let it run or bind to it in order to interact
with it. A service is implemented as a subclass of Service and you can learn more about it in the
Services developer guide.

 Content providers

A content provider manages a shared set of application data. You can store the data in the file
system, a SQLite database, on the web, or any other persistent storage location your application
can access. Through the content provider, other applications can query or even modify the data
(if the content provider allows it). For example, the Android system provides a content provider
that manages the user's contact information.

As such, any application with the proper permissions can query part of the content provider (such
as ContactsContract.Data) to read and write information about a particular person. Content
providers are also useful for reading and writing data that is private to your application and not
shared. For example, the Note Pad sample application uses a content provider to save notes. A
content provider is implemented as a subclass of Content Provider and must implement a
standard set of APIs that enable other applications to perform transactions. For more information,
see the Content Providers developer guide.

 Broadcast receivers

A broadcast receiver is a component that responds to system-wide broadcast announcements.
Many broadcasts originate from the system-for example, a broadcast announcing that the screen
has turned off, the battery is low, or a picture was captured. Applications can also initiate
broadcasts-for example, to let other applications know that some data has been downloaded to
the device and is available for them to use. Although broadcast receivers don't display a user
interface, they may create a status bar notification to alert the user when a broadcast event
occurs. More commonly, though, a broadcast receiver is just a "gateway" to other components
and is intended to do a very minimal amount of work. For instance, it might initiate a service to
perform some work based on the event. A broadcast receiver is implemented as a subclass of

28

Broadcast Receiver and each broadcast is delivered as an Intent object. For more information,
see the Broadcast Receiver class.

A unique aspect of the Android system design is that any application can start another
application's component. For example, if you want the user to capture a photo with the device
camera, there's probably another application that does that and your application can use it,
instead of developing an activity to capture a photo yourself.

You don't need to incorporate or even link to the code from the camera application. Instead, you
can simply start the activity in the camera application that captures a photo. When complete, the
photo is even returned to your application so you can use it. To the user, it seems as if the camera
is actually a part of your application. When the system starts a component, it starts the process
for that application (if it's not already running) and instantiates the classes needed for the
component. For example, if your application starts the activity in the camera application that
captures a photo, that activity runs in the process that belongs to the camera application, not in
your application's process.

Therefore, unlike applications on most other systems, Android applications don't have a single
entry point (there's no main() function, for example).

Because the system runs each application in a separate process with file permissions that restrict
access to other applications, your application cannot directly activate a component from another
application. The Android system, however, can. So, to activate a component in another
application, you must deliver a message to the system that specifies your intent to start a
particular component. The system then activates the component for you.

2.20. Activating Components

Three of the four component types-activities, services, and broadcast receivers-are activated by
an asynchronous message called an intent. Intents bind individual components to each other at
runtime (you can think of them as the messengers that request an action from other components),
whether the component belongs to your application or another.

Intent is created with an Intent object, which defines a message to activate either a specific
component or a specific type of component-an intent can be either explicit or implicit,
respectively.

For activities and services, intent defines the action to perform (for example, to "view" or "send"
something) and may specify the URI of the data to act on (among other things that the
component being started might need to know). For example, intent might convey a request for an
activity to show an image or to open a web page. In some cases, you can start an activity to
receive a result, in which case, the activity also returns the result in an Intent (for example, you

29

can issue an intent to let the user pick a personal contact and have it returned to you-the return
intent includes a URI pointing to the chosen contact).

For broadcast receivers, the intent simply defines the announcement being broadcast (for
example, a broadcast to indicate the device battery is low includes only a known action string
that indicates "battery is low").

The other component type, content provider, is not activated by intents. Rather, it is activated
when targeted by a request from a Content Resolver. The content resolver handles all direct
transactions with the content provider so that the component that's performing transactions with
the provider doesn't need to and instead calls methods on the Content Resolver object. This
leaves a layer of abstraction between the content provider and the component requesting
information (for security).

There are separate methods for activating each type of component:

You can start an activity (or give it something new to do) by passing an Intent to
startActivity()or startActivityForResult() (when you want the activity to return a result).

You can start a service (or give new instructions to an ongoing service) by passing an Intent to
startService(). Or you can bind to the service by passing an Intent to bindService().

You can initiate a broadcast by passing an Intent to methods like sendBroadcast(),
sendOrderedBroadcast(), or sendStickyBroadcast().

You can perform a query to a content provider by calling query() on a Content Resolver.

For more information about using intents, see the Intents and Intent Filters document. More
information about activating specific components is also provided in the following documents:
Activities, Services, Broadcast Receiver and Content Providers.

2.21. The Manifest File

Before the Android system can start an application component, the system must know that the
component exists by reading the application's AndroidManifest.xml file (the "manifest" file).
Your application must declare all its components in this file, which must be at the root of the
application project directory.

The manifest does a number of things in addition to declaring the application's components, such
as:

Identify any user permissions the application requires, such as Internet access or read-access to
the user's contacts.

30

Declare the minimum API Level required by the application, based on which APIs the
application uses.

Declare hardware and software features used or required by the application, such as a camera,
Bluetooth services, or a multi touch screen.

API libraries the application needs to be linked against (other than the Android framework APIs),
such as the Google Maps library.

2.22. Declaring components

The primary task of the manifest is to inform the system about the application's components. For
example, a manifest file can declare an activity as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest ... >

<applicationandroid:icon="@drawable/app_icon.png" ... >

<activityandroid:name="com.example.project.ExampleActivity"

android:label="@string/example_label" ... >

</activity>

...

</application>

</manifest>

In the <application> element, the android: icon attribute points to resources for an icon that
identifies the application.

In the <activity> element, the android: name attribute specifies the fully qualified class name of
the Activity subclass and the android: label attributes specifies a string to use as the user-visible
label for the activity.

You must declare all application components this way:

<activity> elements for activities

31

<service> elements for services

<receiver> elements for broadcast receivers

<provider> elements for content providers

Activities, services, and content providers that you include in your source but do not declare in
the manifest are not visible to the system and, consequently, can never run. However, broadcast
receivers can be either declared in the manifest or created dynamically in code (as
BroadcastReceiver objects) and registered with the system by calling registerReceiver().

2.23. Declaring components capabilities

As discussed above, in Activating Components, you can use an Intent to start activities, services,
and broadcast receivers. You can do so by explicitly naming the target component (using the
component class name) in the intent. However, the real power of intents lies in the concept of
intent actions. With intent actions, you simply describe the type of action you want to perform
(and optionally, the data upon which you’d like to perform the action) and allow the system to
find a component on the device that can perform the action and start it. If there are multiple
components that can perform the action described by the intent, then the user selects which one
to use. The way the system identifies the components that can respond to an intent is by
comparing the intent received to the intent filters provided in the manifest file of other
applications on the device.

When you declare a component in your application's manifest, you can optionally include intent
filters that declare the capabilities of the component so it can respond to intents from other
applications. You can declare an intent filter for your component by adding an <intent-filter>
element as a child of the component's declaration element.

For example, an email application with an activity for composing a new email might declare an
intent filter in its manifest entry to respond to "send" intents (in order to send email). An activity
in your application can then create an intent with the ―send action (ACTION_SEND), which‖
the system matches to the email application’s ―send activity and launches it when you invoke‖
the intent with startActivity().

2.24 Declaring application requirements

There are a variety of devices powered by Android and not all of them provide the same features
and capabilities. In order to prevent your application from being installed on devices that lack

32

features needed by your application, it's important that you clearly define a profile for the types
of devices your application supports by declaring device and software requirements in your
manifest file. Most of these declarations are informational only and the system does not read
them, but external services such as Google Play do read them in order to provide filtering for
users when they search for applications from their device.

For example, if your application requires a camera and uses APIs introduced in Android 2.1 (API
Level 7), you should declare these as requirements in your manifest file. That way, devices that
do not have a camera and have an Android version lower than 2.1 cannot install your application
from Google Play.

However, you can also declare that your application uses the camera, but does not require it. In
that case, your application must perform a check at runtime to determine if the device has a
camera and disable any features that use the camera if one is not available.

Here are some of the important device characteristics that you should consider as you design and
develop your application:

 Screen size and density

In order to categorize devices by their screen type, Android defines two characteristics for each
device: screen size (the physical dimensions of the screen) and screen density (the physical
density of the pixels on the screen, or dpi—dots per inch). To simplify all the different types of
screen configurations, the Android system generalizes them into select groups that make them
easier to target. The screen sizes are: small, normal, large, and extra-large. The screen densities
are: low density, medium density, high density, and extra high density. By default, your
application is compatible with all screen sizes and densities, because the Android system makes
the appropriate adjustments to your UI layout and image resources. However, you should create
specialized layouts for certain screen sizes and provide specialized images for certain densities,
using alternative layout resources, and by declaring in your manifest exactly which screen sizes
your application supports with the <supports-screens> element. For more information, see the
Supporting Multiple Screens document.

 Input configurations

Many devices provide a different type of user input mechanism, such as a hardware keyboard, a
trackball, or a five-way navigation pad. If your application requires a particular kind of input
hardware, then you should declare it in your manifest with the <uses-configuration> element.
However, it is rare that an application should require a certain input configuration.

33

 Device features

There are many hardware and software features that may or may not exist on a given Android-
powered device, such as a camera, a light sensor, Bluetooth, a certain version of OpenGL, or the
fidelity of the touch screen. You should never assume that a certain feature is available on all
Android-powered devices (other than the availability of the standard Android library), so you
should declare any features used by your application with the <uses-feature> element.

 Platform Version

Different Android-powered devices often run different versions of the Android platform, such as
Android 1.6 or Android 2.3. Each successive version often includes additional APIs not available
in the previous version. In order to indicate which set of APIs are available, each platform
version specifies an API Level (for example, Android 1.0 is API Level 1 and Android 2.3 is API
Level 9). If you use any APIs that were added to the platform after version 1.0, you should
declare the minimum API Level in which those APIs were introduced using the <uses-sdk>
element. It’s important that you declare all such requirements for your application, because,
when you distribute your application on Google Play, the store uses these declarations to filter
which applications are available on each device. As such, your application should be available
only to devices that meet all your application requirements.

2.25. Application Resources

An Android application is composed of more than just code—it requires resources that are
separate from the source code, such as images, audio files, and anything relating to the visual
presentation of the application. For example, you should define animations, menus, styles,
colors, and the layout of activity user interfaces with XML files. Using application resources
makes it easy to update various characteristics of your application without modifying code and—
by providing sets of alternative resources—enables you to optimize your application for a variety
of device configurations (such as different languages and screen sizes). For every resource that
you include in your Android project, the SDK build tools define a unique integer ID, which you
can use to reference the resource from your application code or from other resources defined in
XML. For example, if your application contains an image file named logo.png (saved in the
res/drawable/ directory), the SDK tools generate a resource ID named R.drawable.logo, which
you can use to reference the image and insert it in your user interface. [10]

One of the most important aspects of providing resources separate from your source code is the
ability for you to provide alternative resources for different device configurations. For example,
by defining UI strings in XML, you can translate the strings into other languages and save those

34

strings in separate files. Then, based on a language qualifier that you append to the resource
directory's name (such as res/values-fr/ for French string values) and the user's language setting,
the Android system applies the appropriate language strings to your UI.

Android supports many different qualifiers for your alternative resources. The qualifier is a short
string that you include in the name of your resource directories in order to define the device
configuration for which those resources should be used. As another example, you should often
create different layouts for your activities, depending on the device's screen orientation and size.
For example, when the device screen is in portrait orientation (tall), you might want a layout with
buttons to be vertical, but when the screen is in landscape orientation (wide), the buttons should
be aligned horizontally. To change the layout depending on the orientation, you can define two
different layouts and apply the appropriate qualifier to each layout's directory name. Then, the
system automatically applies the appropriate layout depending on the current device orientation.
[10]

2.26 Tesseract

Tesseract is an open-source OCR engine that was developed at HP between 1984 and 1994. Like
a supernova, it appeared from nowhere for the 1995 UNLV Annual Test of OCR Accuracy [1],
shone brightly with its results, and then vanished back under the same cloak of secrecy under
which it had been developed. Now for the first time, details of the architecture and algorithms
can be revealed. Tesseract began as a PhD research project [2] in HP Labs, Bristol, and gained
momentum as a possible software and/or hardware add-on for HP’s line of flatbed scanners.
Motivation was provided by the fact that the commercial OCR engines of the day were in their
infancy, and failed miserably on anything but the best quality print. After a joint project between
HP Labs Bristol, and HP’s scanner division in Colorado, Tesseract had a significant lead in
accuracy over the commercial engines, but did not become a product. The next stage of its
development was back in HP Labs Bristol as an investigation of OCR for compression. Work
concentrated more on improving rejection efficiency than on base-level accuracy. At the end of
this project, at the end of 1994, development ceased entirely. The engine was sent to UNLV for
the 1995 Annual Test of OCR Accuracy [3], where it proved its worth against the comer engines
of the time. In late 2005, HP released Tesseract for open source. It is now available at
http://code.google.com/p/tesseract-ocr. Tesseract is a free software optical character recognition
engine for various operating systems. Tesseract is considered one of the most accurate free
software OCR engines currently available. [4] Tesseract has been selected because it more
adaptable than Ocrad engine, as seen in the paper [5] and in the application in [6]. The version
used is 3.02.

2.27 Optical Character Recognition

35

http://code.google.com/p/tesseract-ocr

 Optical character recognition, usually abbreviated to OCR, is the mechanical or electronic
conversion of scanned images of handwritten, typewritten or printed text into machine-encoded
text. It is widely used as a form of data entry from some sort of original paper data source,
whether documents, sales receipts, mail, or any number of printed records. It is a common
method of digitizing printed texts so that they can be electronically searched, stored more
compactly, displayed on-line, and used in machine processes such as machine translation, text-
to-speech and text mining. OCR is a field of research in pattern recognition, artificial intelligence
and computer vision. [7]

 Chapter 3

36

Main interface

Input From Camera Go to Database

Select Particular portion
Focus Properly

Get Data

N

Show information

Get Number

Search in DB

Y

Segment Image Pass through OCR engine

Y

N

 Proposed Models

3.1 Design

My application is android utility application based software. My project contains...

 Main Activity Interface

 Take input through Camera button

 Updating and Show Vehicles from database button

 Option for select language and camera type and OCR engine setting menu

 Share image with different software and database option

 Search and save information with recognizing text button

 showing all information of database button

 Select image from gallery and detect text button

3.1.1 Flow Chart for the Project

37

Figure: Flow chart for Nameplate Text Detector using Android Application.

3.2 Implementation Procedure

38

Creating a fair environment for android development:

Here are some simple pre-requisites one must have to develop an android app.

Developer Requirement:

 Advanced knowledge of java

 Basic knowledge of XML

Hardware Requirement:

Development PC must be a fast one. I used a quad core machine clocked at @ 3.2 GHz with
4GB ram clocked @3.07Ghz. A big monitor or two is also helpful. During debugging it really
eases the pain.

3.2.1 Android Development Environment

For developing application I had to create android development environment. Google basically
supports the "Eclipse Classic" version. But there are also other IDEs. I have used Eclipse for my
development. There are other IDEs like Intelligent Idea. But I choose Eclipse because I wanted
such IDE in which I could write java code and at the same time using the same IDE I could work
on GUI for android. Eclipse provides both of these features. I work in eclipse for a long time and
also use to with eclipse. So I used Eclipse for my project development.

3.2.2 Project Setup:

For setup an android project I have to go to “file” then “new” then “android project” After
completing these requirement you can get “hello word” simple android application. Now if you
want to run the project then you need to click “run” button then you get window to setup adb
emulator. Then you have to select your project as target, after completing these work your project
application will be run.

3.2.3 Library Insertion:

39

 For completing my project I need to add two library with my project. Tess-two and eye-two are
the library. I get the library from https://github.com/rmtheis/tess-two website. After downloading
the project, I need to import these into my eclipse project library. For this you should go File->
import->Android-> Existing Android Code into Workspace ->next-> Browse-> next. Then you
should import downloaded project. After successfully import you must use these project as you
project library. For this click right button of mouse on your project then Properties-> Android->
add. Now import library is done.

3.3 Main Activity:

Main Activity is connected with all others class so that easily I can access all the fetchers. Here
you see three buttons one image view. By clicking them you can access gallery, input image from
camera and also can handle database.

3.3.1 Image View:

 This is a view of an image where I can set image. I use this image view for set image of logo
from gallery. It is increasing my application fairness.

3.3.2 Select Gallery logo image:

40

https://github.com/rmtheis/tess-two

I set the logo image from gallery. As result you can chose an image of a logo and crop a certain
portion. Here I use my University logo.

3.3.3 Button for select Camera input image:

Actually this project helps you to take an instant picture through android camera and analysis
this picture and recognize text. When you press the button it open a camera surface and you will
able to take short.

3.3.4 Button for work with database:

This button takes you to the database handler interface. Where you have option or button to save
and show information of vehicles.

3.3.5 Number Plate Recognition Activity:

This class plays an important role for my project. Recognize text is my main contribute from
nameplate. I use Google tesseract OCR technology for extracting text from the image.

3.3.6 Select View:

41

Select View is that option by using this you can select the nameplates text portion using rectangle
dragging. When you drag touching rectangle edge, it changes its size automatically so that you
can adjust you text portion of nameplate and distance.

3.3.7 Capture Button:

This button is special button, when you click on it, it takes image and if fail then reset object
focused.

3.3.8 Select option:

To do these work done, you can chose some option. These option are describe in below.

3.3.9.1 Continuous Preview:

42

Continuous Preview will show you instant streaming nameplate image text. Means when you
point any nameplate text then it automatically extract text from the image before capture an
image, so that before capture image you ensure about number of nameplate. It increases accuracy
by resizing distance and rectangle size and autofocus.

3.3.9.2 Recognize Language:

You can recognize text from Bangla or English nameplate in my project. Here you can get two
option Bangla or English. If you select Bangla then you can recognize Bangla text otherwise
English text.

3.3.9.3 OCR Engine:

I use Google tesseract OCR technology for my project to recognize text. It is actually take an
input image then analyses it and give text as output.

3.3.9.4 Auto and Standard Focus Mode:

When you select autofocus mode then it focus automatically when you taking image from
camera. Otherwise you need to focus manually by clicking on shutter button.

3.3.9.5 Character Whitelist and Blacklist:

This option is for select which type of letter you don’t want to recognize. If you specify any
character into blacklist then it will ignore these character and recognize remaining. In my project
default blacklist is empty.

3.3.9.6 Light:

If you select this option then when you taking an image it on the flash light. Otherwise it
remaining off.

3.3.9.7 Page Segmentation:

43

This is very important for my project. Because you will find many type of segmentation mode
for example: Auto, Auto (no OSD)[Orientation and Script Detection], Single block, Single
character, Single column, Single line, Single word, Vertical block, sparse text. When you select
auto then it segment as input image. But when you select mode then it will recognize as you
select. It is also from Google tesseract OCR technology.

3.3.9.8 Reverse Camera Image:

For selecting this option your camera will take image but it reverse its data when previewing and
store. Otherwise it remaining normal camera.

3.3.10 Option to share copy and send data:

After find the number from nameplate you will able to share copy to clipboard or send data to
database class for search or save vehicle information by long clicking on recognize text.

3.3.11 Database Activity:

44

Actually my target is to access government database where all vehicle dada are stored. But for
experiment I use my own database which is created by using SQLite Database.

3.3.12 Insert Vehicle information:

This work is done by save button. There are some customize view including vehicle number,
owner name, phone number, email number and address.

45

3.3.13 Show all information:

Above information can be shown using show button. For watching all information of full
database you can use it.

3.3.14 Show Particular Vehicle information:

Show particular button will show information of a particular vehicle. You can search information
about any vehicle using vehicle number.

Chapter 4

Conclusion and Future Work

46

4.1 Conclusion

Android was my choice because it is the most popular, user-friendly mobile operating system of
the world. It is also most selling smart phone in the world .I think the application will be able to
give the outcome that I wanted from the very beginning of my development process. In the
process of developing the application I learned many things about the android operating system
and the development related tricks.

I also adopted easier and fresh ways, tricks and techniques that would definitely help in future
development. On the other hand it will help other android developers to develop it and modify it
according to their way to make this application more fruitful and global. I will not say that I was
perfect to make the application. I have also made a lot of mistakes. But I think this will help a lot
to develop android application. Nameplate Text Detector using Android Application Very soon
takes a place in the android market. And for sure some modification will come to make it useable
globally. It is really very hard task to fulfill all the requirements with an application of smart
phone. And I also try to contract a traffic polish agency or troll collector for taking my apps. So
there are a lot of chances of further development of the application in future. I have made my
application keeping some space for further development.

4.2 Future Work:

I will improve my project work in future where you will able to check information through
gallery image of nameplate.

 Button for Detecting Text from Gallery input image:

In current time I develop the button for accessing gallery image. You can select an image and
crop its particular text portion and set as an image view.

 Future Project Work:

 On the other hand using this project I want to detect National ID card and after accessing all the
information it will also help to detect vote center for particular persons ID number. It will help all
over the people and will make easy our life.

References:

47

[1] S.V. Rice, F.R. Jenkins, T.A. Nartker, The Fourth Annual
Test of OCR Accuracy, Technical Report 95-03, Information
Science Research Institute, University of Nevada, Las Vegas,
July 1995.
[2] R.W. Smith, The Extraction and Recognition of Text
from Multimedia Document Images, PhD Thesis, University
of Bristol, November 1987.
[3] R. Smith, “A Simple and Efficient Skew Detection
Algorithm via Text Row Accumulation”, Proc. of the 3rd Int.
Conf. on Document Analysis and Recognition (Vol. 2), IEEE
1995, pp. 1145-1148.
[4] Wikipedia. Tesseract.
http://en.wikipedia.org/wiki/Tesseract_(software)[15-4-2015].
[5] A. B. Cambra, A. C. Murillo: Towards robust and efficient text sign
reading from a mobile phone. IEEE International Conference on Computer
Vision Workshops, ICCV 2011 Workshops, Barcelona, Spain, November 6-
13,2011, pp.64-71, ISBN 978-1-4673-0062-9
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6130223 [4-5-2015]
[6] Gautam Gupta . Making a Simple OCR Android App using Tesseract.
http://gaut.am/making-an-ocr-android-app-using-tesseract/ [10-2-15]
[7] Wikipedia. Optical Character Recognition.
http://en.wikipedia.org/wiki/Optical_character_recognition [24-4-2015]
[8].Liaqat, Ahmad Gull. "Mobile Real-Time License Plate Recognition." (2011).
[9]http://venturebeat.com/2013/01/28/android-captured-almost-70-global-
smartphone-market-share-in-2012-apple-just-under-20/ [08-04-2015]
[10]http://en.wikipedia.org/wiki/Google_Play [21-04-2015]
[11] http://en.wikipedia.org/wiki/Android_(operating_system) [5-05-2015]
[12] http://forum.xda-developers.com/showthread.php?t=1595487 [723-05-2015]
[13] http://developer.android.com/guide/components/fundamentals.html [03-05-
2015]

48

file:///srv/www/vhosts/releases/8/save/queued/5/b/e/5be09e945fa360885fc19f2b23349226/%20http:%2F%2Fdeveloper.android.com%2Fguide%2Fcomponents%2Ffundamentals.html
http://forum.xda-developers.com/showthread.php?t=1595487%20
file:///srv/www/vhosts/releases/8/save/queued/5/b/e/5be09e945fa360885fc19f2b23349226/%20http:%2F%2Fen.wikipedia.org%2Fwiki%2FAndroid_(operating_system)
http://en.wikipedia.org/wiki/Google_Play%20
http://venturebeat.com/2013/01/28/android-captured-almost-70-global-smartphone-market-share-in-2012-apple-just-under-20/
http://venturebeat.com/2013/01/28/android-captured-almost-70-global-smartphone-market-share-in-2012-apple-just-under-20/
http://en.wikipedia.org/wiki/Optical_character_recognition
http://gaut.am/making-an-ocr-android-app-using-tesseract/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6130223
http://en.wikipedia.org/wiki/Tesseract_(software)

