
Evaluation of an Algorithm that Minimizes the Maximum Congestion Ratio of a

Network in OSPF Routing

Submitted by

Shoieb Rahman

2011-1-60-014

Dept. Of Computer Science and Engineering

East West University

Supervised By

K. M. Imtiaz-Ud-Din

Senior Lecturer

Dept. Of Computer Science and Engineering

East West University

1

Declaration by Candidate

I hereby declare that the work presented in this project is, to the best of our knowledge and

belief, original, except as acknowledged in the text and that the material has not been

submitted, either in whole or in part, for a degree at this or any other university.

Shoieb Rahman

2

Letter of Acceptance

I hereby declare that this thesis is from the student’s own work and effort, and all other

sources of information used have been acknowledged. This thesis has been submitted with

my approval.

SUPERVISOR: K. M. Imtiaz-Ud-Din

SIGNATURE: ______________________________

DATE: ______________________________________

CHAIRPERSON: Dr Shamim H Ripon

SIGNATURE: ______________________________

DATE: ______________________________________

3

ACKNOWLEDGEMENT

This project work would not have been possible without the guidance and the help of

several individuals who in one way or another contributed and extended their valuable

assistance in the preparation and completion of this study.

First and foremost, we would like to express our sincere gratitude to K. M. Imtiaz-Ud-Din Sir,

my supervisor and mentor for this project work, for his valuable time helpingme to

overcome all the obstacles.

Besides my supervisor, I would like to thank the rest of our thesis committee and all the

members of Computer Science and Engineering Department for enormous support they

have given me for four years.

4

Table of Contents

Abstract..

Chapter-1: INTRODUCTION..

1.1 Introduction...

1.2 Problem statement...

1.3 Objectives...

Chapter-2: LITERATURE REVIEW..

2.1 Traffic Engineering..

2.2 Routing Protocols...

2.3 Overview of OSPF...

2.4 Tabu Search..

2.5 Related Work..

Chapter-3: METHODOLOGY...

3.1 Definitions..

3.2 Algorithm..

3.3 Procedure of evaluation...

Chapter-4: RESULTS..

4.1 Network topology 1...

4.2 Network topology 2...

4.3 Network topology 3...

5

4.4 Discussion...

Chapter-5: Conclusion and Future work..

5.1 Conclusion..

5.2 Future work..

Reference:..

Appendix A...

List of Table

Table 1: Maximum Congestion ratio of network topology 1 ……………………........................... 18

Table 2: Maximum Congestion ratio of network topology 2 ……………………........................... 19

Table 3: Maximum Congestion ratio of network topology 3 ……………………........................... 20

Table 4: Minimized Congestion ratio of three network topology ……………………………………… 21

List of Figure

Figure 1: Network topology 1 ………………………………………………………………………………………….. 16

Figure 2: Network topology 2 ………………………………………………………………………………………….. 16

Figure 3: Network topology 3 ………………………………………………………………………………………….. 16

6

Abstract

In Open Shortest Path First (OSPF) routing protocol, all the packets are transmitted over the

shortest path. And these path is determined by the weight associated with each link in the

network. According to OSPF the link with minimum weight will transmit most of the packet.

For this, at a moment the link exceeds its maximum capacity, thus congestion occurs. This

problem can be avoided by applying an optimal set of link weight. To solve this OSPF weight

setting problem several iterative methods have been used.In this paper, we have evaluated

an algorithm proposed by Kamrul and Oki [1] to solve this problem. And we found that the

computational result leads us to minimize the maximum network congestion.

7

Chapter-1: INTRODUCTION

1.1 Introduction

Internet traffic is rapidly growing for the massive expansion of network [2]. The number of

web user is increasing day by day due the huge number of web based application. People

are becoming more dependent to the web service and if this keep going on, it is certain to

get the network collapsed.

Here comes the management factor of the network. And managing the flows of the traffic

can increase the service of the network. Between the various networking devices Router is

the most commonly used device. It basically forwards the data from the source to

destination. Different ways exist between a given source and end of the line pair, because of

excess network between nodes. The basic activities of a router is to find the best path from

the source to destination which is shortest path among them. And for this they maintain a

table named routing table which is get updated after some certain time again and again

which stores the shortest path by which the packet should be forwarded from source to

destination.

The complexity of internet is increasing day by day, and the only reason for this is growing

enormously. So it is separated into Autonomous Systems (AS) to reduce the complexity for

this huge size of internet. An AS is nothing but a set of networks under the control of one

single entity or organization with a common routing policy. For managing the routing inside

of an AS there are Interior Gateway Protocols (IGP) and Exterior gateway Protocols (EGP) for

managing routing in-between Ass [3]. Among the different Interior Gateway Protocol (IGP)

OSPF is one of them, which uses the Dikjstra algorithm to find the shortest path. And the

8

performance measure parameter for this algorithm for fining the shortest path is the link

weight. Where the sum of the OSPF weights on the links in the path gives the cost of that

path. The path with the least cost is the shortest path. So, determination of link which is

optimized means the determination of optimal routing based on shortest-path routing [1].

1.2 Problem statement

Congestion, in the context of networks, refers to a network state where a node or link carries

so much data that it may decrease network service quality, resulting in queuing delay, frame

or data packet loss and the blocking of new connections. In a congested network, response

time slows with reduced network throughput.

This problem can be avoided in OSPF routing by setting an optimal link weight. Determining

the optimal link weight means determining the optimal routing based on shortest path

routing. This problem is found to be a part of NP-hard [4]. To solve this OSPF weight setting

problem Tabu Search (TS) [5] algorithm is used by Kamrul and Oki [1]. Previously TS has been

used by Fortz and Thorup [4] and they have used it to determine the cost and the maximum

utilization by the cost function proposed by them.

1.3 Objectives

Our objective is toevaluate the proposed algorithm of Kamrul and Oki [1] to minimize the

maximum congestion ratio of a network. And to determine whether the computational

results indicated that the proposed algorithm could lead to avoid network congestion or not.

9

Chapter-2: LITERATURE REVIEW

2.1 Traffic Engineering

In order to optimize the resource utilization and increase the network performance traffic

engineering sets the map for the traffic flows through the existing network topology. It helps

to reduce the network congestion from the problem due to insufficient of resource

allocation. In early 1990’s, internet service providers mapped Internet traffic flows onto the

physical network topology in an ad-hoc manner. The traffic routs followed the shortest path.

Using the shortest paths attempts to conserve network resources, however since the

transfer speed accessibility and movement attributes are not considered, this methodology

regularly prompts over utilization.

2.2 Routing Protocols

A routing protocol indicates out how a packet is routed in a network from source to its

destination. Its information is as per the following: here a directed graph is given, G = (V,E, c),

which describes the system topology. In G, V represents all the nodes of the network, E is

the situated of connections between the nodes, and c is a limit capacity matrix bends to

whole numbers.

A few numerical amounts are connected with each one circular edge, nodes, capacity, load,

utilization. The capacity, given as info, is a physical property of the edges. The load speaks to

real Ptraffic over a connection and is reliant on the routing protocol utilized and the activity

request. Their dimensionless ratio is the utilization of the edge. The neighborhood cost at

each one edge is a metric of optimality. It is a capacity of edge utilization and, perhaps,

changes from edge to edge.

10

We expect that packets take after IP packets and have a time-to-live field (TTL) which details

the remaining number of edges a parcel can cross before it is dropped. Every switch

decrements the TTL field after sending it to a neighbor. In the event that the TTL lapses, the

switch just drops the bundle.

The conventions we consider have the accompanying three-section structure.

i. Weights are assigned to arcs and changed infrequently (e.g., in response to long-

term trends in network traffic and topology).
ii. Next, the routers periodically broadcast to each other the network’s link state

(which links are currently up) or when a link goes down. From the link state and

the known weights, each router R computes and stores a local routing table that

specifies, for each destination router t, to which neighbor(s) of R packets bound

for t should be forwarded.
iii. Finally, when a packet arrives at R bound for t, R consults its routing table and the

packet’s TTL field and sends the packet to one of the active neighbors or drops

the packet.

All protocols that we consider assume that positive weights have been assigned to the links

of the network in some fashion. To avoid confusion we will use the terms hop count and

depth and speak of shallow and deep paths when we talk about the unweighted graph. We

use the terms weight and (less frequently) length to refer to the weighted graph, thus the

lightest or shortest paths refer to paths of least total weight.

2.3 Overview of OSPF

In OSPF the routers have edge weights. Periodically the routers agree on the link state of the

network via broadcast. Each router locally performs Dijkstra’s shortest path algorithm; for

11

each destination, the router determines which of its neighbors lie along the lightest path to

destination. This next-hop by destination information is stored in routing tables. Upon

receiving a packet bound for destination, the router forwards the packet to the neighbor

along the lightest path to destination. In case there is more than one neighbor with this

property, the router splits the traffic bound for destination evenly among these next hops.

This last property of OSPF is crucial—by this mechanism, OSPF can spread traffic along many

edges to avoid congestion—and several heuristic weight-setting procedures try to exploit it.

As specified, OSPF guarantees that packets reach their destinations with optimum latency. It

does not show how to set weights or suggest an objective function to optimize. Fortz and

Thorup have shown how to set up link costs and approximate a solution close to optimal for

minimizing maximum link utilization; nevertheless, approximating the optimum weight

setting within a constant factor, given the network topology, capacities, is an NP-hard

problem [6].

2.4Tabu Search

Tabu search is an iterative procedure designed to solve optimization problems. It is based on

selected concepts that untie the fields of artificial intelligence and optimization. It has been

the applied to a large number of problems such as job scheduling, graph coloring, and

networking planning. There are several studies that used Tabu search to find an optimal

OSPF link weight set [3] [10] [11].

Tabu search is the guided investigation of the space of permissible solutions, and keeps a

record for all arrangement assessed along the way. The investigation begins from a starting

solution. At the point when a stop basis is fulfilled, the calculation gives back where it’s due

gone by solution. To move starting with one solution then onto the next, Tabu search

12

investigates the area of the last solution went to. It produces a neighbor solution by applying

a change, which is known as a move, on the current solution. The set of all permissible move

particularly characterizes the area of the current solution. At every emphasis of the Tabu

search calculation, all solution in the area are assessed and the best chosen as the new

present solution.

2.5 Related Work

The attention of even traffic part in OSPF weight setting was first done by Fortz and Thorup

[4]. They additionally settled that this issue is NP-hard. They at first proposed a nearby

inquiry heuristic furthermore connected Tabu Search iterative heuristic [3] [6] to enhance

the aftereffects of neighborhood pursuit. They tried their heuristics on At&t spine system

and on engineered systems.

Ericsson et al. [7] proposed a Genetic Algorithm (GA) and utilized the set of test issues

considered in [4]. A half and half GA was additionally proposed by them [9] which makes

utilization of the element most limited way calculation to re-compute briefest ways after the

modification of connection weights.

Sridharan et al. [8] created an alternate heuristic for a somewhat distinctive variant of the

issue, in which the flow is part among a subset of the friendly connections on the most

limited ways to the goal IP.

13

Chapter-3: METHODOLOGY

3.1 Definitions

G(V,E) represents the graph of the network where V is the set of links and E is the set of link.

V ∈ V , where v = 1, 2,………., N, which represents an individual node and e, where e = 1, 2,

………., L, which represents bidirectional individual link. Here L represents the number of the

link and N represents the number of nodes. Ce is the capacity of e ∈ E. The traffic T = {dpq} is

the traffic matrix and d is the demand of traffic from the source p to destination q. The

ration of congestion of the network r is indicates the maximum utilization ratios of all the

network link. And r is defined by,

r=max
e∈E

ue
ce ………………………………. (1)

Here, 0 <r< 1. The maximum value of the traffic
1−r
r dpq which is added to the existing dpq,

regarding any source and destination pair p, q. So that any the value of the traffic passing

through any e doesn’t cross Ce. The total traffic becomes
1
r dpq after adding

1−r
r dpq to

the dpq. For that the updated congestion has become the upper limit R* = 1. And now the

maximization of the extra value of traffic
1−r
r dpq is similar to minimizing [12].

W = {we} is the link weight matrix of the network G, where we is the weight of link e. Wcand is

the set of candidate W for which we are calculating the worst case congestion. r(w) is the

function to which returns the congestion ration defined in Eq. (1) for G according to OSPF

14

based shortest path routing using the link weight in W. R(w) refers to the worst-case

congestion ratio in W. R(W) is defined by,

R(w)= max
W∈W cand

r (w)
 ………………………………. (2)

Now our target is to find the most appropriate set of link weight W* for network G that

minimizes R(W) defined in Eq. (2). W* is defined by

W∗¿argminR(w)
W∈W cand

❑
 ………………………………. (3)

Where Wcand all possible link weight set candidates. The network congestion ratio is achieved

by using W* is R(W) that represents the upper bound of congestion in a network.

3.2 Algorithm

Step 1: A weight matrix (W) and Traffic matrix (T) is set by randomly generating value of each

link in the network. At this stage this is our initial best solution (WM*).

Step 2: The maximum congestion is evaluated by the Eq. (1).

Step 3: If the maximum congestion ratio is less than the previous congestion ratio then we

set this W as our best solution W*. Otherwise we go to our next step.

Step 4: Then we find out the maximum congested link in the network topology.

Step 5: Change the weight of the link by increasing 1. At least one route passing through this

link is changed then which decreases the congestion of that link.

Step 6: Then again we go to step 2 until the stopping criterion is satisfied. And here our

stopping criterion is a pre-determined iteration number Imax.

15

3.3Procedure of evaluation

At first we have taken 3 different network topologies as shown in Figure 1, Figure 2, and

Figure3 having 6 nodes 10 bidirectional links, 6 nodes 11 bidirectional links and 12 nodes 18

bidirectional links respectively. We have used these network topologies to measure the

performance of the algorithm. And here our performance measure is the congestion ratio.

Initially the Wcand and T is a matrix generated by random value in the range of (1, 10). Link

capacity C for each link in this given networks is a constant integer value set to 100 and the

stopping criterion, maximum iteration number Imax is set to 10.

Figure 1: Network topology 1

Figure 2: Network topology 2

16

Figure 3: Network topology 3

We started our initial iteration with the randomly generated Wcand and T. And this is our initial

best solution W*and the congestion ratio R is the upper limit of R*. Then we calculated the

congestion ratio r using Eq. (1) for each link in the network. Using Eq. (2) we find out the

maximum congestion ratioR and mark the link. Then using Eq. (3) we find out the W*. After

that increased the max congested link weight by adding 1. The pseudo code for this

procedure is given below,

1: Begin

2: randomly generated Wcand and T

3: while not reached the stopping criterion

4: do

5: calculate r

6: if upper R>rthen

7: replace W* with W

17

8: end if

9: update W by increasing max r link weight by adding 1

10: end while

11: end

Chapter-4: RESULTS

4.1 Network topology 1

For network topology 1 the congestion ratio of each link is given in Table 1,

Iteration Congestion ratio

1 0.55

2 0.41

3 0.41

4 0.41

5 0.41

6 0.37

7 0.38

8 0.41

9 0.31

10 0.38

18

Table 1: Maximum Congestion ratio of network topology 1

4.2 Network topology 2

For network topology 2 the congestion ratio of each link is given in Table 2,

Iteration Congestion ratio

1 0.53

2 0.49

3 0.49

4 0.49

5 0.34

6 0.30

7 0.31

8 0.31

9 0.31

10 0.30

Table 2: Maximum Congestion ratio of network topology 2

19

4.3 Network topology 3

For network topology 3 the congestion ratio of each link is given in Table 3,

Iteration Congestion ratio

1 0.80

2 0.70

3 0.70

4 0.50

5 0.69

6 0.50

7 0.69

8 0.50

9 0.69

10 0.51

Table 3: Maximum Congestion ratio of network topology 3

20

4.4 Discussion

From the three example network topology the minimized maximum congestion ratios are

shown in Table 4,

Network topology Max Utilization
1 0.31
2 0.30
3 0.50

Table 4: Minimized Congestion ratio of three network topology

Chapter-5: Conclusion and Future work

5.1 Conclusion

In this paper we evaluated the proposed method of Kamrul and Oki [1] which has been used

to solve the Open Shortest Path First(OSPF) weight settings problem, getting a set of link

weight which gives minimum congestion for worst case. We used three example network

topology. In which we applied the method. Firstly we calculated the network congestion

ratio r using Eq. (1), then calculated the maximum congestion ratio R(w) using Eq. (2). Finally

obtained the optimal link weight using Eq. (3). And from the computational result we found

that it leads us to minimize minimum network congestion.

5.2 Future work

In future we can try different methods to solve this problem. Compare the results to see the

effectiveness of this method among the other, determine that whether it works well than

21

other methods or not. And also we want to evaluate it in real life network using real data for

example the network topology of different Internet Service Provider (ISP).

Reference:

[1] I. M. Kamrul and E. Oki, "Optimization of OSPF link weight to minimize worst-case

network congestion against single-link failure," June 2011, IEEE International Conference on

Communications, Page: 1-5.

[2] K.G. Coffman and A.M. Odlyzko. Internet growth: Is there a moore’s law for data traffic?

Handbook of Massive Data Sets, pages 47–93, 2001

[3] Bernard Fortz, J. Rexford, and MikkelThorup. Traffic engineering with traditional ip

routing protocols. IEEE Communicatoins Magazine, pages 118–124, 2002.

[4] Bernard Fortz and MikkelThorup. Increasing internet capacity using local search.

Technical Report IS-MG, 2000.

[5] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms and their Application to

Engineering. IEEE Computer Society Press, December 1999.

[6] Bernard Fortz and MikkelThorup. Internet traffic engineering by optimizing ospf weights.

IEEE INFOCOM, 2000.

[7] M Resende Ericsson and P Pardalos. A genetic algorithm for the weight setting problem in

ospf routing. Combinatorial Optimisation conference, 2002.

[8] A. Sridharan, R. Gurin, and C. Diot. Achieving near-optimal traffic engineering solutions

for current ospf/is-is networks. Sprint ATL Technical Report TR02-ATL-022037, Sprint Labs.

22

[9] L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetic algorithm for

the weight setting problem in ospf/is-is routing. AT&T Labs Research Technical Report, TD-

5NTN5G, 2005.

[10] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing world. IEEE Journal

on Selected Areas in Com- munications, 20(4):756–767, 2002.

[11] A. Nucci, N. Taft, “IGP Link Weight Assignment for Optimal Tire-1 Backbones,” IEEE/ACM

Transaction on Networking, vol. 15. No. 4, pp.789-802, Aug. 2007.

[12] E. Oki and A. Iwaki, "F-TPR: Fine two-phase IP routing scheme over shortest paths for

hose model," IEEE Commun. Letters, vol. 13, no. 4, pp. 277-279, Apr. 2009.

23

Appendix A

The Source code.

Program.cs

using System;

usingSystem.Collections.Generic;

usingSystem.Linq;

usingSystem.Text;

usingSystem.Threading.Tasks;

usingMicrosoft.Office.Interop.Excel;

usingSystem.Diagnostics;

namespace ProjectV2

{

class Program

 {

static void Main(string[] args)

 {

maxUtilization _maxUtilization = new maxUtilization();

double R;

 R = _maxUtilization.max_utilization();

Process.Start(@"C:\Users\Shoieb\Desktop\Project\ProjectV2\ProjectV2\bin\Debug\t
est.txt);

 }

 }

}

weightDetermination.cs

using System;

usingSystem.Collections.Generic;

usingSystem.Linq;

usingSystem.Text;

24

usingSystem.Threading.Tasks;

namespace ProjectV2

{

classweightDetermination

 {

static Random rand = new Random();

publicint[,] adjMatrix = new int[100, 100];

publicint[,] traficMatrix = new int[100, 100];

public double[,] loadMatrix = new double[100, 100];

publicint[] predecessor = new int[150];

publicint[] distance = new int[150];

publicbool[] mark = new bool[150];

publicint source;

publicintnumOfVertices;

publicintcurrentNode;

publicint[,] tempAdjArr = new int[100, 100];

publicint[,] tempWeightMatrix = new int[100, 100];

public double[,] tempLoadMatrix = new double[100, 100];

public double[] Load = new double[100];

public double capacity = 100;

public double[] temp = new double[100];

public double r=0;

publicint[] nodeTrace = new int[100];

public void read()

 {

Console.WriteLine("Enter the number of vertices of the graph(should be > 0)\n");

numOfVertices = Convert.ToInt32(Console.ReadLine());

while (numOfVertices<= 0)

 {

Console.WriteLine("Enter the number of vertices of the graph(should be > 0)");

25

numOfVertices = Convert.ToInt32(Console.ReadLine());

 }

Console.WriteLine("Enter the adjacency matrix for the graph");

Console.WriteLine("To enter infinity enter:9999");

for (inti = 0; i<numOfVertices; i++)

 {

Console.WriteLine("Enter the (+ve)weights for the row " + i);

for (int j = 0; j <numOfVertices; j++)

 {

adjMatrix[i, j] = Convert.ToInt32(Console.ReadLine());

while (adjMatrix[i, j] < 0)

 {

Console.WriteLine("Weights should be +ve. Enter the weight again");

adjMatrix[i, j] = Convert.ToInt32(Console.ReadLine());

 }

 }

 }

 }

publicweightDetermination()

 {

for (int a = 0; a <numOfVertices; a++)

 {

for (int b = 0; b <numOfVertices; b++)

 {

if (a == b)

 {

traficMatrix[a, b] = 0;

 }

else

 {

traficMatrix[a, b] = rand.Next(1, 10);

26

 }

 }

 }

 }

public void resetValue()

 {

loadMatrix = new double[100, 100];

predecessor = new int[150];

distance = new int[150];

mark = new bool[150];

source = 0;

currentNode = 0;

 Load = new double[100];

capacity = 100;

temp = new double[100];

 r = 0;

 }

public void initialize()

 {

for (inti = 0; i<numOfVertices; i++)

 {

mark[i] = false;

predecessor[i] = -1;

distance[i] = 9999;

 }

distance[source] = 0;

 }

publicintgetClosestUnmarkedNode()

 {

intminDistance = 9999;

intclosestUnmarkedNode = 0;

27

for (inti = 0; i<numOfVertices; i++)

 {

if ((!mark[i]) && (minDistance>= distance[i]))

 {

minDistance = distance[i];

closestUnmarkedNode = i;

 }

 }

returnclosestUnmarkedNode;

 }

public void calculateDistance(int source, int[,] Arr)

 {

initialize();

intclosestUnmarkedNode;

int count = 0;

while (count <numOfVertices)

 {

closestUnmarkedNode = getClosestUnmarkedNode();

mark[closestUnmarkedNode] = true;

for (inti = 0; i<numOfVertices; i++)

 {

if ((!mark[i]) && (Arr[closestUnmarkedNode, i] > 0))

 {

if (distance[i] > distance[closestUnmarkedNode] + Arr[closestUnmarkedNode,i])

 {

distance[i] = distance[closestUnmarkedNode] + Arr[closestUnmarkedNode,i];

predecessor[i] = closestUnmarkedNode;

 }

 }

 }

count++;

28

 }

 }

public void output()

 {

for (inti = 0; i<numOfVertices; i++)

 {

currentNode = i;

if (i == source)

 {

loadMatrix[source, i] += traficMatrix[source, i];

Console.Write((source) + "->" + source);

 }

else

 {

printPath(i);

 }

Console.Write("=" + distance[i]);

Console.WriteLine();

 }

Console.WriteLine();

 }

public void printPath(int node)

 {

if (node == source)

Console.Write(node + "->");

else if (predecessor[node] == -1)

Console.Write("No path from" + source + "to " + node);

else

 {

printPath(predecessor[node]);

loadMatrix[predecessor[node], node] += traficMatrix[source, currentNode];

29

Console.Write(node + "->");

 }

 }

public void Dijkstra (intsrc , int[,] w_mat)

 {

calculateDistance(src, w_mat);

output();

 }

public double LoadCalculation(int[,] mat)

 {

for (int a = 0; a <numOfVertices; a++)

 {

for (int b = 0; b <numOfVertices; b++)

 {

tempAdjArr[a, b] = adjMatrix[a, b];

tempWeightMatrix[a, b] = mat[a, b];

 }

 }

for (int a = 0; a <numOfVertices; a++)

 {

for (int b = 0; b <numOfVertices; b++)

 {

if (tempAdjArr[a, b] == 1)

 {

tempLoadMatrix[a, b] = tempLoadMatrix[b, a] = (loadMatrix[a, b] +
loadMatrix[b,a])/capacity;

tempAdjArr[a, b] = tempAdjArr[b, a] = 0;

 }

 }

 }

for (inti = 0; i<numOfVertices; i++)

30

 {

for (int j =0;j<numOfVertices;j++)

 {

if (tempLoadMatrix[i,j]>r)

 {

 r=tempLoadMatrix[i,j];

 }

 }

 }

for (inti = 0; i<numOfVertices; i++)

 {

for (int j = 0; j <numOfVertices; j++)

 {

if (tempLoadMatrix[i, j] == r)

 {

tempWeightMatrix[i, j] += 1;

 }

 }

 }

return r;

 }

 }

}

maxUtilization.cs

using System;

usingSystem.Collections.Generic;

usingSystem.Linq;

usingSystem.Text;

usingSystem.Threading.Tasks;

using System.IO;

namespace ProjectV2

31

{

classmaxUtilization

 {

static Random _r = new Random();

weightDetermination _wD = new weightDetermination();

public double bigR = 1;

public double temp_bigR;

public double u;

publicint test = 0;

publicint[,] randomWeight = new int[100, 100];

publicint[,] ini_randomWeight = new int[100, 100];

publicint[,] array = new int[100, 100];

publicint[,] adj_temp = new int[100, 100];

publicinti = 1;

public double[,] tempLoad = new double[100, 100];

public double[,] tempUtilization = new double[100, 100];

public double max_utilization()

 {

adjArray_copy();

while(test < 10)

 {

if (test == 0)

 {

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

if (a != b &&adj_temp[a,b] == 1)

 {

32

ini_randomWeight[a, b] = ini_randomWeight[b, a] = _r.Next(1, 10);

adj_temp[a, b] = adj_temp [b, a] = 0;

 }

 }

 }

for (int n = 0; n < _wD.numOfVertices; n++)

 {

 _wD.source = n;

 _wD.Dijkstra(_wD.source, ini_randomWeight);

 }

 u = _wD.LoadCalculation(ini_randomWeight);

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

randomWeight[a, b] = _wD.tempWeightMatrix[a, b];

 }

 }

if (bigR> u && u != 0.0)

 {

bigR = u;

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

tempLoad[a, b] = _wD.loadMatrix[a, b];

array[a, b] = randomWeight[a, b];

tempUtilization[a, b] = _wD.tempLoadMatrix[a, b];

 }

 }

 }

33

WriteFile(_wD.traficMatrix);

WriteFile(ini_randomWeight, _wD.loadMatrix, _wD.tempLoadMatrix, u, test);

 }

else

 {

 _wD.resetValue();

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

randomWeight[a, b] = _wD.tempWeightMatrix[a, b];

 }

 }

for (int n = 0; n < _wD.numOfVertices; n++)

 {

 _wD.source = n;

 _wD.Dijkstra(_wD.source, randomWeight);

 }

 u = _wD.LoadCalculation(randomWeight);

if (bigR> u && u != 0.0)

 {

bigR = u;

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

tempLoad[a, b] = _wD.loadMatrix[a, b];

array[a, b] = randomWeight[a, b];

tempUtilization[a,b] = _wD.tempLoadMatrix[a,b];

 }

 }

34

 }

WriteFile(randomWeight, _wD.loadMatrix, _wD.tempLoadMatrix, u, test);

 }

test++;

 }

WriteFile(array, tempLoad, tempUtilization, bigR);

temp_bigR = bigR;

bigR = 1;

returntemp_bigR;

 }

public void WriteFile (int[,] val)

 {

using (StreamWriter writer = new StreamWriter(@"test.txt", true))

 {

writer.WriteLine("Trafic Matrix:");

for (inti = 0; i< _wD.numOfVertices; i++)

 {

for (int j = 0; j < _wD.numOfVertices; j++)

 {

writer.Write(val[i, j] + " ");

 }

writer.WriteLine();

 }

writer.Close();

 }

 }

public void WriteFile(int[,] val,double[,] load_val,double[,] u_val,doubleut, int it)

 {

using (StreamWriter writer = new StreamWriter(@"test.txt", true))

 {

writer.WriteLine("Iteration: " + it);

35

writer.WriteLine("Weight Matrix:");

for (inti=0;i<_wD.numOfVertices;i++)

 {

for (int j=0;j<_wD.numOfVertices;j++)

 {

writer.Write(val[i,j]+" ");

 }

writer.WriteLine();

 }

adjArray_copy();

for (int n = 0; n < _wD.numOfVertices; n++)

 {

for (int m = 0; m < _wD.numOfVertices; m++)

 {

if (adj_temp[n, m] == 1)

 {

writer.WriteLine("Utilization " + n + "-" + m + ": " + u_val[n, m]);

u_val[m, n] = 0.0;

adj_temp[n, m] = adj_temp[m, n] = 0;

 }

 }

 }

writer.WriteLine("Congestion ratio: " + ut);

writer.WriteLine();

writer.Close();

 }

 }

public void WriteFile(int[,] val, double[,] load_val, double[,] u_val,doubleut)

 {

using (StreamWriter writer = new StreamWriter(@"test.txt", true))

 {

36

writer.WriteLine("Minimized Condition: ");

writer.WriteLine("Weight Matrix:");

for (inti = 0; i< 6; i++)

 {

for (int j = 0; j < 6; j++)

 {

writer.Write(val[i, j] + " ");

 }

writer.WriteLine();

 }

adjArray_copy();

for (int n = 0; n < 6; n++)

 {

for (int m = 0; m < 6; m++)

 {

if (adj_temp[n, m] == 1)

 {

writer.WriteLine("Utilization " + n + "-" + m + ": " + u_val[n, m]);

u_val[m, n] = 0.0;

adj_temp[n, m] = adj_temp[m, n] = 0;

 }

 }

 }

writer.WriteLine("Congestion ratio: " + ut);

writer.WriteLine();

writer.Close();

 }

 }

public void adjArray_copy ()

 {

37

for (int a = 0; a < _wD.numOfVertices; a++)

 {

for (int b = 0; b < _wD.numOfVertices; b++)

 {

adj_temp[a, b] = _wD.adjMatrix[a, b];

 }

 }

 }

 }

}

38

	Abstract
	Chapter-1: INTRODUCTION
	1.1 Introduction
	1.2 Problem statement
	1.3 Objectives

	Chapter-2: LITERATURE REVIEW
	2.1 Traffic Engineering
	2.2 Routing Protocols
	2.3 Overview of OSPF
	2.4Tabu Search
	2.5 Related Work

	Chapter-3: METHODOLOGY
	3.1 Definitions
	3.2 Algorithm
	3.3Procedure of evaluation

	Chapter-4: RESULTS
	4.1 Network topology 1
	4.2 Network topology 2
	4.3 Network topology 3
	4.4 Discussion

	Chapter-5: Conclusion and Future work
	5.1 Conclusion
	5.2 Future work

	Reference:
	Appendix A

