

Department of Electronics and Communication Engineering

INTERNSHIP REPORT ON

Microsemi Synchronization of FONS BD Ltd.

Prepared By:

Sarder Johir Islam

ID: 2011-2-55-002

Dept. Of ECE

East West University

Supervised By: Md. Asif Hossain

April 2016

Letter of Transmittal

21 April 2016

To Md. Asif Hossain Senior Lecturer Department of Electronics and Communication Engineering East West University

Subject: Submission of Project Report as Internship (ETE-498)

Dear Sir,

I am pleased to let you know that I have completed my Internship program at FONS BD Ltd, New Beily Road, and Dhaka. The attaché contain of the internship report that has prepared for your evaluation and consideration. The internship has given me a great opportunity to work with the networking system closely and also gave me the opportunity to apply the theoretical knowledge in real life situation which I have acquired since last four years from you and the other faculty of EWU, which would be a great help for me in future.

I am very grateful to you for your guidance throughout the internship period, which helped me a lot to acquire practical knowledge.

Thanking You.

Yours Sincerely

Sarder Johir Islam

ID# 2011-2-55-002 Dept. Of ECE

East West University

Declaration

This is certified that the internship report is done by me under the course "Research/Internship (ETE-498)". It has not been submitted elsewhere for the requirement of any degree or any other purpose except for publication.

Sarder Johir Islam

ID: 2011-2-55-002

Dept. Of ECE

Acceptance

This internship report is submitted to the **Department of Electronics and Communication Engineering, East West University** is submitted in partial fulfillment of the requirements for the degree of **B.Sc** in **ECE** under complete supervision of the undersigned.

Md. Asif Hossain Senior Lecturer Dept. Of ECE

Jahirul Islam Shishir Manager FONS BD Ltd.

Acknowledgement

At first I wish to convey my cordial thanks and gratitude to Almighty Allah for everything. I would like to thank my parents and everyone else who has supported me all the way through to complete the Internship program successfully and also to those who rendered their cooperation in making this report.

I would like to thank **Md. Asif Hossain (Senior Lecturer, Dept. Of ECE, EWU)** for guided me with lots of effort and time to perform the internship program.

I want to convey my gratefulness to Jahirul Islam Shishir (Manager, FONS BD Ltd.) who helped me greatly by providing valuable suggestion whenever required my internship report "Microsemi Synchronization of Robi Axiata Ltd." They also gave the opportunity to hold that flagship of the topic.

I would also like give to acknowledgments everyone of the IT Management Department of **FONS BD Ltd**. For providing suggestion on how to work and what is the procedure to work in a practical manner and also how to make the internship report in a better way. They helped me in many ways by allowing whatever assistance I needed. Otherwise it was not possible for me to complete my report.

ABSTRACT

This report focuses on the synchronization system of an Telecom Company. This synchronization system build with a synchronizer called microsemi. A GPS system connects it with a power cable and earthing cable. This Synchronizer system connected to BSC and MSC and it confirm that the whole time system in worldwide may connect with our country time. It also confirm and remain same our local time from on BTS to other. If this system does not work properly then we cannot connect on local distance and also worldwide connection through mobile. So this important thing for our telecom company and also very interesting for me because I intern on this project from the first of the beginning.

Table of Contents

Title	pages
Title Page	1
Letter of Transmittal	2
Declaration	3
Acceptance	4
Acknowledgement	5
Abstract	б

Chapter 1.]	Introduction	
About FONS BD	Ltd		08-09
Background of st	udy		10
Chapter 2.		Devices	
PTP			12-13
NTP			14-15
Cable Tester			16-17
Patch Cable			18-19
Chapter 3.	Synchronizati	on Designing	
TimePictra			20-21
Web Base Graphi	cal User Interference	:e	21-22
Dashboard			22
Network Operation	ns Integration		23

Chapter 4. Synchronization Manager

Fault Manager		23
Configuration Manager		24
Account Manager		24
Performance Manager		25
Performance Manager (P	TP Client Visibility)	26
Chapter 5.	Power Supply Unit	
Supply Unit (Carrier Grad	le)	27
High Capacity		28
Industry Standard Compli	ance	29
Chapter 6.	Synchronization Card	
Intelligent Card		29
GNSS Card		29
Input Card		29-30
Intelligent Clock Card		30
E1 Output Card		31
T1 Output Cards and Cap	ability	31
Composite Clock Output	Card	32
RS-422 Output Card		32
NTP Server Card		32-33

Chapter 7. Synchronization Manager

Synchronization Status	-33
Communication Management	-33-34
Time Craft	34
TimePictra	34
Microsemi Global Service	34-35
Connectivity	35
Synchronous Ethernet	35-36
Conclusion	37

Chapter-1 Introduction

ABOUT FONS BD LTD

FONS BD (Fiber Optic Network Solution Ltd) is the only manufacturer in Bangladesh to Export Fiber Optic Product for last 18 years. It's a Joint Venture with USA & Danish Fiber Company. It is located at 143/1 New Baily Road, Dhaka- 1000 Bangladesh.

FONSBD Specializes with the Following Network Products and Components:

- Fiber Optic Patch Cords and Pigtails
- All Type Fiber Optic Connectors and Adapters
- Fiber Optic Cables
- ISP, NTTN, FTTX, FTTB Products
- Cable Management Products
- CATV Product
- Wireless & Wi-Il Products
- All Types of Switches & Routers
- OPGW Cable for Power sector
- Fiber Optic Signaling Products for Rail road
- After Sales Service
- Service & Installation
- LAN &WAN Products

Test Equipments and tools (Splice machine, OTDR. Analyzers'. Monitoring Systems, etc)

• Energy Storage

FONSBD emphasizes to PDCA (Plan, Do, Correct & Act) System to ensure all customers get the products with optimum cost efficiency and on time solutions of the highest quality of international standard by achieving zero defect in quality. It is an ISO9001:2004 certified company for Quality and Environmental Management.

FONSBD is exporting products to Australia, Denmark. France, Germany, Ireland, the Netherland, USA and other Countries.

Manufacturing capacity

- FC/LC/MTRJ/SC/ST/E2000/ Lx, 5 Termination/year 850 000 pcs
 Connector (ST/SC) Assembly/ year 2,184 000 pcs
 Adapter (ST) Assembly/year 1248 000 pcs

- Adapter (ST) Assembly/year 168 480 pcs Light Guide/year 40000 pcs •
- •

In the broadest terms, people like to view the Internet as a cloud, you put your data in one place, it comes out the place you want it to on the other side. In reality the internet is tens of thousands kilometers of fiber optic cable, hundreds of thousands to millions of kilometers of copper wire, and hardware and software connecting them all together in a redundant, fast, and self-sufficient network. But not to worry, it's not that bad: you only have to worry about a very small portion of the network, you can let someone else worry about the rest, and you even get someone to yell at when things go wrong.

I had an opportunity to work with most leading IT and Optic Solution service provider that is FONS BD Limited. I consider myself timely to get a chance to take a deep look to their development methods, working models, deals and industrial behavior. And I was intending to look into the Networking Industry and how it looks like practically, how they interact with their clients, how they design a system and what are their rules in their environmental work.

I got the chance to work in ROBI Microsemi project through FONS BD Limited. We know mobile networking is the principal part of our modern life. I decided to know about mobile networking and how does it work, how to set a synchronizer and backbone network, what are the important keys to design a beneficial network, how can I design cost effective network and how to mitigate downtime of a network.

Chapter-2

PTP

In Telecommunications, a point-to-point connection refers to a communications connection between two nodes or endpoints. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other.

This is contrasted with a point-to-multipoint or broadcast communication topology, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines, microwave relay links, and two way radio. Examples of point-to-multipoint communications systems are radio and television broadcasting.

Figure 1:-PTP

The term is also used in computer networking and computer architecture to refer to a wire or other connection that links only two computers or circuits, as opposed to other network topologies such as buses or crossbar switches which can connect many communications devices. Point-to-point is sometimes abbreviated as P2P, Pt2Pt. This usage of P2P is distinct from P2P referring to peer-to-peer file sharing networks.

In (2003), the term point-to-point telecommunications relates to fixed wireless data communications for Internet or voice over IP via radiofrequencies in the multi-gigahertz range. It also includes technologies such as laser for telecommunications but in all cases expects that the transmission medium is line of sight and capable of being fairly tightly beamed from transmitter to receiver. The Telecommunications Industry Association's engineering committees develop U.S. standards for point-to-point communications and related cellular tower structures. Online tools help users find if they have such line of sight.

Protocol Dependencies

UDP: Typically, PTP uses UDP as its transport protocol (although other transport protocols are possible). The well known UDP ports for PTP traffic are 319 (Event Message) and 320 (General Message).

Ethernet: Starting with IEEE1588 Version2, a native Layer2 Ethernet implementation was designed. PTP can use Ethernet as its transport protocol. The well known Ethernet type for PTP traffic is 0x88F7

NTP

Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer systems over packet-switched, variable-latency data networks. In operation since before 1985, **NTP** is one of the oldest Internet protocols in current use.

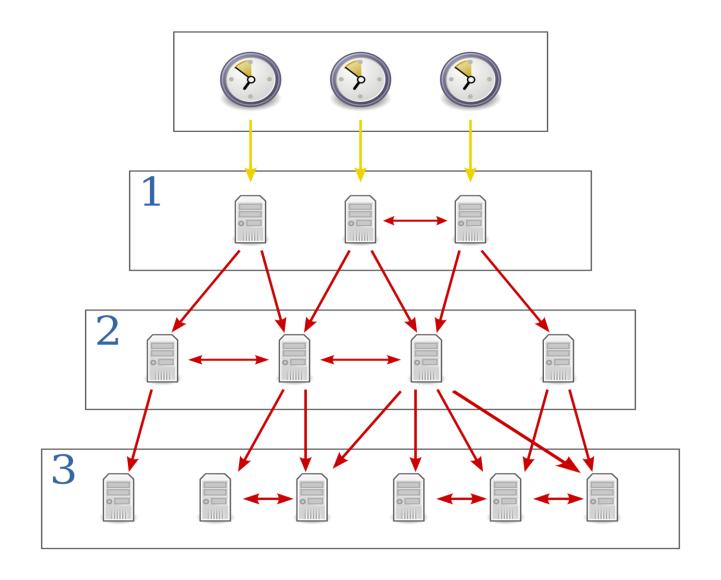


Figure 2:-Network Time Protocol Model

In computer networking, **NTP** is a system to synchronize time of day computer clocks across the Internet. The NTP system is based on Internet *time servers*, computers with access to atomic clocks such as those operated by the U.S. government. These NTP servers run a software service that provides the clock's time of day to client computers over UDP port 123. NTP supports a hierarchy of multiple server levels to handle a large load of client requests.

In 1979, network time synchronization technology was used in what was possibly the first public demonstration of Internet services running over a trans-Atlantic satellite network, at the National Computer Conference in New York. The technology was later described in the 1981 Internet Engineering Note (IEN) 173 and a public protocol was developed from it that was documented in RFC 778. The technology was first deployed in a local network as part of the Hello routing protocol and implemented in the Fuzzball, an experimental operating system used in network prototyping, where it ran for many years.

available Other related network tools were both then and now. They include the Daytime and Time protocols for recording the time of events, as well as the ICMP Timestamp and IP Timestamp option (RFC 781). More complete synchronization systems, although lacking NTP's data analysis and clock disciplining algorithms, include the Unix daemon *timed*, which uses an election algorithm to appoint a server for all the clients; and the Digital Time Synchronization Service (DTSS), which uses a hierarchy of servers similar to the NTP stratum model.

In 1985, NTPv0 was implemented in both Fuzzball and Unix, and the NTP packet header and round-trip delay and offset calculations, which have persisted into NTPv4, were documented in RFC 958. Despite the relatively slow computers and networks available at the time, accuracy of better than 100 milliseconds was usually obtained on Atlantic spanning links, with accuracy of 10s of milliseconds on Ethernet networks.

In 1988, a much more complete specification of the NTPv1 protocol, with associated algorithms, was published in RFC 1059. It drew on the experimental results and clock filter algorithm documented in RFC 956 and was the first version to describe the client-server and peer modes. In 1991, the NTPv1 architecture, protocol and algorithms were brought to the attention of a wider engineering audience with the publication of an article by David L. Mills in the IEEE Transactions on Communications.

Cable Tester

A **cable tester** is an electronic device used to verify the electrical connections in a cable or other wired assembly. Generally a cable tester consists of:

A source of electric current,

A volt meter,

A switching matrix used to connect the current source and the voltmeter to all of the contact points in a cable.

In addition to these parts a cable tester may also have a microcontroller and a display to automate the testing process and show the testing results.

A cable tester is used to verify that all of the intended connections exist and that there are no unintended connections in the cable being tested. When an intended connection is missing it is said to be "open". When an unintended connection exists it is said to be a "short" (assorts). If a connection "goes to the wrong place" it is said to be "miswired" (the connection has two faults: it is open to the correct contact and shorted to an incorrect contact).

Figure 3: LAN Cable Tester

Generally, the testing is done in two phases. The first phase, called the "opens test" makes sure each of the intended connections is good. The second phase, called the "shorts test" makes sure there are no unintended connections.

There are two common ways to test a connection:

A continuity test. Current is passed down the connection. If there is current the connection is assumed to be good. This type of test can be done with a series combination of a battery (to provide the current) and a light bulb (that lights when there is a current).

A resistance test. A known current is passed down the connection and the voltage that develops is measured. From the voltage and current the resistance of the connection can be calculated and compared to the expected value.

There are two common ways to test for a short:

A low voltage test. A low power, low voltage source is connected between two conductors that should not be connected and the amount of current is measured. If there is no current the conductors are assumed to be well isolated.

A high voltage test. Again a voltage source is connected but this time the voltage is of several hundred volts. The increased voltage will make the test more likely to find connections that are nearly shorted since the higher voltage will cause the insulation of nearly shorted wires to break down.

Patch Cable

A **patch cable** or **patch cord** or **patch lead** is an electrical or optical cable used to connect ("patch-in") one electronic or optical device to another for signal routing. Devices of different types (e.g., a switch connected to a computer, or a switch to a router) are connected with patch cords. Patch cords are usually produced in many different colors so as to be easily distinguishable, and are relatively short, perhaps no longer than two meters. Types of patch cords include microphone cables, headphone extension cables, XLR connector, Tiny Telephone (TT) connector, RCA connector and ¹/₄" TRS phone connector cables (as well as modular Ethernet cables), and thicker, hose-like cords (snake cable) used to carry video or amplified signals. However, patch cords typically refer only to short cords used with patch panels.

Figure 4: Patch Cable

Patch cord cable differs from standard structured cabling cable in that Patch cable is stranded for flexibility, whereas standard cable is solid copper. Because the patch cord is stranded copper construction the attenuation (signal loss) is higher on patch cords than solid cable so short lengths should be adhered to

Patch cords can be as short as 3 inches (ca. 8 cm), to connect stacked components or route signals through a patch bay, or as long as twenty feet (ca. 6 m) or more in length for snake cables. As length increases, the cables are usually thicker and/or made with more shielding, to prevent signal loss (attenuation) and the introduction of unwanted radio frequencies and hum (electromagnetic interference).

Patch cords are often made of coaxial cables, with the signal carried through a shielded core, and the electrical ground or earthed return connection carried through a wire mesh surrounding the core. Each end of the cable is attached to a connector so that the cord may be plugged in. Connector types may vary widely, particularly with adapting cables.

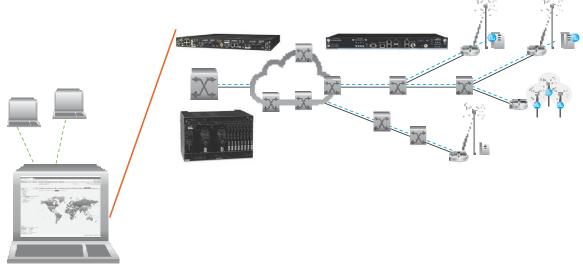
Patch cords may be:

Single-conductor wires using, for example, banana connectors (or pin plugs)

Coaxial cables using, for example, BNC connectors

Shielded or unshielded Cat5, Cat5e, Cat6 or Cat6A cables using 8P8C (RJ-45) modular connectors with straightthrough T568A orT568B wiring. Modular cables wired to T568A at one end and T568B on the other are more commonly referred to as crossover cables.

A patch cord is always fitted with connectors at both ends. A **pigtail** is similar to a patch cord and is the informal name given to a cable fitted with a connector at one end and bare wires (or bare fiber) at the other. In the context of copper cabling, these cables are sometimes referred to as **blunt patch cords** and the nonconnectorized end ("the pigtail") is intended to be permanently attached to a component or terminal.


Optical fiber pigtails, in contrast to copper pigtails, can be more accurately described as a connector than a cable or cord. A fiber pigtail is a single, short, usually tight-buffered, optical fiber that has an optical connector pre-installed on one end and a length of exposed fiber at the other end. The end of the fiber pigtail is stripped and fusion spliced to a single fiber of a multi-fiber trunk. Splicing of pigtails to each fiber in the trunk "breaks out" the multi-fiber cable into its component fibers for connection to the end equipment.

Chapter-3

TimePictra

The TimePictra is a web-based management system for time, frequency and synchronization network elements. It features a modular architecture that will scale and evolve with operational requirements. As timing and synchronization grow in importance in critical infrastructure networks, centralized visibility and control of this vital function has become essential to network operations. With a multi-tier architecture—server, client, and database—TimePictra can provide scalability and performance to meet growing network services and business needs.

The secure web browser client provides easy access and eliminates the complexity of client installation and VPN access. The application server, in conjunction with the database, provides comprehensive business logic to support management of network functions.TimePictra is server platform and database independent—allowing cost-effective deployment of the management system using any server or database platform meeting the specified requirements.

As an element management system, TimePictra provides comprehensive FCAPS functions for managing your network include;Fault Management, Configuration Management, Accounting (Inventory) Management, Performance Management, and Security Management.TimePictra is comprised of basic software and software options. The basic software includes the standard FCAPS functions as well as geographical topology map, navigation tree with domain hierarchy, dashboard reporting of alarms, inventory, user login, and license installation information. Software options include advanced FCAPS functions. Each option is enabled by a software license key with no additional installation required.

Web–Based Graphical User Interface

Authorized users can have secure access to TimePictra, and manage their sync network from anywhere at any time. It enables connectivity to the mission-critical sync network from remote locations. The low bandwidth requirements of a thin client web- based GUI implies no special client-side installation. The thin clients can be invoked over a dial-up connection or a Virtual Private Network.

← → C □ 192.168.5.148:8080/EMS		- Of Values Mail 💭 Invested From IF			🚥 ☆ 👒
	Root>TPk5 >012 >tp5k-73		Welcome sec	L	.ogout 08:18:36 @
ietwork Devices Add Manage	DashBoard Topology	Fault Configuration Inventory	Performance	Security PTP	Client Logs
a 🗖 Root B 🗖 Real-Clients	PTP Clients Global Settings	Groups Performance Clock ID Prefix Filter			
(g) ■ SSU2k ■ Suresh ■ ■ TPK5 ■ ■ 012 ● tp5k-73	PTP Client Groups C Default_Group C Real-Clients C Third-Party-Clients	IP Clock ID GM 3.148 0X0060AEFFFE011AD6 ssu-84-184 5.242 0X0080AEFFFE01E05A ssu-35-151 3.141 00:80:AEFFFEFFFE01222:8C tp5k-83-103	Log Time 2012-08-11 06:49:40.0 2012-08-11 06:43:23.0 2012-08-13 06:10:51.0		GM1 Flow State
		3.131 00:00:00EFFFF101220E Que00105 3.132 00:000004FFFE011B1F ssu-84-184 4.127 00:000004FFFE1122AA ssu-84-184 3.158 00:00:0AE:FF:FF101:22;9E tp5k-83-126 3.144 00:00:0AE:FF:FE:01:31:E0 tp5k-83-126	2012-08-11 06:49:40.0 2012-08-11 06:49:55.0 2012-08-11 07:25:42.0 2012-08-11 07:25:42.0	SymmClient	Ring for GPI to respond to sign
		3.142 00:80:AE;FF:FE:01:A5:32 tp5k-83-126	2012-08-12 20:09:22.0	SymmClient	Normal Normal Displaying 1 - 8 of 8
			From:	То:	Plot
		Histogram Chart No Data Available for chart to render.			
Duranaged Managed					
Unavailable 🛑 Critical Major 🌍 Minor					
Manage Failed Monage in Progress					

Figure 6: TimePictra Performance Manager, PTP Sync Flow Monitoring

With increased reliance on accurate timing and synchronization in critical Ethernet networks such as in the communications, power utility and financial services industries, the IEEE .1588-2008 Precision Time Protocol (PTP) has emerged as the protocol of choice. TimePictra provides end-to-end PTP management including device auto discovery, navigation tree display with hierarchy domain, sync flow monitoring, and key performance index monitoring. This end-to-end management enables network operators to have full visibility of PTP timing.

TimePictra monitors and trends IEEE 1588-2008 (PTP) remote clients and boundary clocks, located throughout the network—including clients not supplied by Microsemi.TimePictra will automatically add new PTP clients and ensure they maintain connection to a Grandmaster and with the possibility to collect PDV and performance statistics from every client in the Network, TimePictra provides to only end to end monitoring solution for PTP clients.

Dashboard

A user dashboard simplifies the display of network health, including alarm counts with severity, network element inventory, logged in users and license information. With the Group Pack option, the dashboard can be customized with user preferences.

→ C 🗋 192.168.5.148:8080/EMS/										@ 🖒	1. 22.2
uggested Sites 🗋 eBay 🗋 Free Hotmail 🗋	Web Slice Gallery 🧯	Yahoo! Bo	okmarks 🛛 😗 Yah	noo! Mail 📋	Imported From	IE				C Othe	er book
郄 Microsemi.	Root						Welcome si	ec	Logout	08:20:08	
work Devices Add Manage	DashBoard	Тор	ology	Fault	Configuratio	Invento	Performance	Security	PTP Client	Logs	
Root	Alarms					3	1				
a 🛄 Real-Clients a 🛄 SSU2k	Last 7 Days			130							
Suresh	Last 30 Days			162			98	10	101		
 □ TPk5 □ 012 ○ tp5k-73 ● tp5k-83-103 00:A0:AE:FF:FE:01:22:96 	Total			241			Count				
H 🛄 020	NE Inventory	Details				3		42			
Third-Party-Clients	Туре			Total Cour	at						
I TimeProvider	TimeProvider 5	000		5						1.00	
	TimeProvider			5						0	_
	SSU 2000			5			Critical	Major	Minor	Others	
								Se	verity		
	Logged-In Use	er Details				3	CPU Utilization				
	4 User ID		Logged In tir	ne	Client Addre	255	98 -		1 ~.		
	sec		2012-08-13 06	:51:23.0	192.168.3.58		94 AT	Ly I	LANHA		<.
	sec		2012-08-13 07	:22:16.0	192.168.8.22	1	500 CPU Usage	1	V	1	
									Time		
	Alarm Viewer										-
	Severity	ID	Source	Aid	Condition	Service Effec	NE Time	De	scription	Ack	
end		452	tp5k-83-126	ioc2	42_0	NSA	2012-08-07 07:52:34.0	PTP server exceed	led 90 percent of clie	ent N	^
Unmanaged 🔵 Managed	9	5873	tp5k-83-194	ioc2	63_0	NSA	2012-08-13 09:36:30.0	Time inp	out not tracking	N	
Unavailable 🛛 🔴 Critical	9	5872	tp5k-83-194	loc2	34_0	NSA	2012-08-13 09:36:30.0		qualified as system r	efe N	
Major 🥥 Minor	0	5871	tp5k-83-194	ioc2	29_0	NSA	2012-08-13 09:51:31.0		holdover mode	N	
Manage Failed 💌 Manage in Progress	0	1477	tp5k-73	ioc2	7_1	NSA	2012-05-16 15:42:57.0	ETH2	port link down	N	

Figure 7: TimePictra Dashboard

Network Operations Integration

Many network operators integrate element management with their operating systems for overall management of multi- vendor, diverse equipment environments. TimePictra enables integration of its northbound interface using SNMP for alarm integration and ASCII northbound for alarm and topology integration. TimePictra High Availability option supports two geographically diverse servers to replicate the database and synchronization management functions; removing any single point of failure. The convergence of formerly distinct network technology platforms – take telephony systems and LANs, for example – is precipitating a major networking operations transition, including alterations in IT organizational structure. Gartner recommends network managers adopt an ITIL approach, creating an organization centered around processes that deliver IT services. To enhance end-to-end IT service delivery, consider greater integration of the Network Operations Center (NOC) with IT infrastructure operations. This trend is driving complex IT organization changes, subordinating technology to processes, with the ultimate goal of seamless service delivery across all of IT.

Chapter-4

Fault Manager

The fault manager provides access to the entire network element. Events and alarms are displayed using a colorcoded format complaint with ITU-T standards notifications are easily intelligible. Whether in the office or field network personnel have the ability to readily access the entire suit of information about any of the synchronization Network Elements.

Ackn	owle			Major : 19, Min I:12.0 - 2012-0		.0				
			Sort	tor Hide	Ack Alarms					
Ack		ID	Severity	Source	AID	Condition	Service Effect	NE Time	Server Time	
	0	40805	Minor	tp-190	INP1	INPFRQ	NSA	2010-02-21 13:15:04.0	2012-02-26 19:09:13.0	FREQUENC
		40191	Critical	TP101	IOC1	CURHOLD	SA	2012-03-02 01:48:10.0	2012-02-25 18:25:01.0	CLOCK EN
2		39757	Critical	TP101	GPS	INPOISQ	NSA	2012-03-01 01:33:08.0	2012-02-24 18:09:59.0	INPUT DISQUALI
		39755	Critical	TP101	GPS	GPSTRK	NSA	2012-03-01 01:33:01.0	2012-02-24 18:09:52.0	GPS NOT TR
1		39712	Critical	TP101	IOC2	BTBCKUP	NSA	2012-02-29 23:08:53.0	2012-02-24 15:45:44.0	BESTIME BACKU
E		39710	Critical	TP101	IOC1	BTBOKUP	NSA	2012-02-29 23:08:53.0	2012-02-24 15:45:44.0	BESTIME BACKU
0		39708	Critical	TP101	RTMC-1	S1LOS	NSA	2012-02-29 23:08:47.0	2012-02-24 15:45:38.0	SI
E		39706	Critical	TP101	PRS	INPLOS	NSA	2012-02-29 23:08:47.0	2012-02-24 15:45:38.0	
2		39466	Critical	TP101	GPS	FFOFF	NSA	2012-02-29 09:42:59.0	2012-02-24 02:19:50.0	FFOFF T
		38467	Critical	TP101	IOC2	CLIGHOLD	SA	2012-02-29 01:48:10.0	2012-02-23 18:25:01.0	CLOCK EN
0		38400	Critical	TP101	GP5	GPSPOS	NSA	2012-02-28 23:24:49.0	2012-02-23 16:01:40.0	GPS ANTEN
		38387	Critical	TP101	SYS	PWRB	NSA	2012-02-28 23:08:49.0	2012-02-23 15:45:41.0	P
8		38383	Critical	TP101	INP1	INPLOS	NSA	2012-02-28 23:08:47.0	2012-02-23 15:45:38.0	
		38379	Critical	TP101	PRS	INPOISQ	NSA	2012-02-28 23:08:45.0	2012-02-23 15:45:36.0	INPUT DISQUALI
5	0	37503	Minor	tp-102	GPS	ANTCOMM	NSA	2012-02-23 14:33:16.0	2012-02-22 18:15:55.0	GPS AN

Figure 8: TimePictra Fault Manager

Configuration Manager

The Configuration Manager allows network personnel to access NE data and update their configurations from within this single application. Information is provided graphically at system, port and card levels. The optional Group Management Pack increases efficiency by defining groups with common users, resources and policies for such things as configurations and alarm mapping.

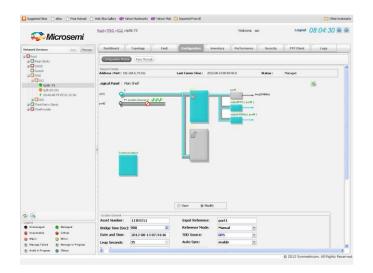


Figure 9: TimePictra Configuration Manager

Accounting (Inventory) Manager

This manager provides inventory information on any of the managed elements in the synchronization network. Information is provided down to the lowest level of granularity, including such information as location, serial number, part number, type of equipment, software and hardware revision levels.

Suggested Sites 📋 eBay	CLUME SCOPER []		y of va	ou providits Of	ranxirlal 🛄	and a construction of				Ci Other Booking
🍀 Micro	osemi	Root>TPK5					Welcome	140	Logout	08:05:13 @
etwork Devices	Add Internet	Dartific	ed (Tepology	Fault	Configuration Breaklory	Performance	e Security	PTP Clarel	Loge
Root Root Clerks g Stack		Selection	Rame:			😢 All NEs				
danut 🛄		SIT	1.5Th							
3 1H45		Sev	Aid	Source	Serial No	Model No.	CLEF	Firmware Rev	H/W Rev	Equipment Type
0 tyck-72			D4C	tp6k-73	S69566	090-90001-01	NA	1.2.3	н	INC Card
tp5k-83-103			1001	109(-73	P39588	090-90321-01	100	1.2.3	CH.	10C1 Card
# 00.40.4E.FT P	0.01.02.94	•	LOCE	1059-73	P37420	090-50321-01	NA	1.2.3	H	10C2 Card
u 🖸 833			1/0	tp58-03-194	164	000-60312-01	NA	NA	14	I/O Card
Third-Party-Clerks			090	469-83-191	T94228	190-50531/02	NR	2.6.4	1	HCCell.
a Constantin		0	IOCZ	bp58-83-194	5899433	090-50322-01	NA	2.0.4	- 3	10CZ Card
			1090	b/5k-249	U24267	090-10902-090	894	2.0.4		ED\$0
		•	E3P1	1059-240	1/24281	090-50401-01	Faith .	2.0.2		EDP1
			EXP2	tpt51-249	127049	090-00401-02	NA	2.0.4		8392
			£392	tpt9-249	027044	00-10402-020	105	2.0.2		EAD3
			6/0	1250-249	NA	090-50011-01	105	845	hall.	I/O Card
			1945	tp6k-249	194230	090-60331-02	NA	2.0,3	3	INC Card
			foct.	1269-249	845362	090-50321-01	NA	2.0.4	54	JOC1 Card
			EXPO.	1066-83-126		090-50401-01	NA	2.1.3		0443
			EXP5 1/0	105k-83-126 105k-83-126		090-50401-02	NA NA	2.1.3 No	2	1/0 Card
			100	1058-43-125		010-50311-02	NA NA	2.0.4	3	MC Card
			LOCZ.	109-03-120		090-50321-01	NA	2.0.4	-	10C2 Cerd
			INC	1056-03-120		090-50231-01	T16090	1.2.12	38	PAC Card
			LOCI.	199-43-103		090-50321-01	No	123	14	10C1 Cert
		100								
5 100			Page 1	of 1 9	H [2]					Exploying 1 - 20 of 2
Major ()	lanaga f Skoal Enat Lanaga in Program	Report 1	tle:							

Figure 10: TimePictra Accounting Manager

Performance Manager

The Performance Manager graphically displays a variety of standard performance data such as MTIE, TDEV and phase, in order to proactively identify and correct problems in the synchronization network. TimePictra enables users to compare current readings to stored industry standard masks and previously stored data. With the Performance Pack option TimePictra will also display PTP performance metrics and PTP sync flow monitoring.

Figure 11: TimePictra Performance Manager

Performance Manager, PTP client visibility

TimePictra end-to-end PTP management includes visibility of slave clocks distributed throughout the network. When the slave is a Microsemi product, TimePictra will provide PTP performance metrics delivering an advanced end-to-end value. Slaves from other vendors will also be monitored. If their sync flow disappears, an alarm will notify network administrators. These unique and valuable tools are included in the Performance Pack option

Roopested Sites 🗋 eBay 🗋 Free Hotmol 🗋 V	1002-20128->00-83-213				Welcome sec		Logout	08:16:41	
🐝 Microsemi							-		
work Devices And Manager	Destilloard Topology	Feilt	Configuration	Inventory	Performance	Security	PTP Chard	Loga	_
Root Classic Clastes Classics	(FTP Cleves) (Gold Settings) (Gr	nes) (referes	Godi 12 Prefix	FRee)					
stor 185		10 0 Page 1 of 1 > 20							-
🖶 mi-05-151 😂 www.433-213		KPI Type:	Cutput TOEV Exte	mate in From:	08/13/2012	To:	00/15/2012	14 254	
© source+184 © mar04-178		Histogram Ch						The success	
€ Do And AF PERSUZZING Weight State Windowskie Direct Party-Careta Direct Par		g							(4)
Liba Internanged Managerd Urawarater Contact Majaja Manar									

Figure 12: Performance Manager PTP client visibility

Security Manager

TimePictra offers several modes of security for managing synchronization networks. Multi-level, role-based access enforced by passwords and login requirements guarantees only authorized users can access the system. Securely administered permissions control access to domains and functionality. These management domains add both a level of security and organizational structure. SSL and data encryption communications ensures secure access over the Internet. Transaction logs ensure all activities by users are documented and logged.

← → C □ 192.168.5.148:8080/EMS,							•	
🚺 Suggested Sites 📄 eBay 📋 Free Hotmail 📄	Web Slice Gallery Of Yahoo1 Bo	okmarks Of Yahool Mail	imported From IE				Ci 08	her bookmar
🜄 Microsemi	<u>Root>591/2k</u> >ssu-83-213			Wełco	me sec	Logo	nut 08:09:59	9 0 0
Network Devices Add Manage	DashBoard Top	ology Fault	Configuration	Inventory Perform	ince Security	PTP Clier	nt Loga	
H Real-Clerks	User Administration (16	User Administration) (Con	figuration Policy					
ssu-105	Timepictra User							
ssu-35-151 ssu-35-213	00000							
SSU-04-184	Name	User Group	Created By	User Name	Created Date	Status	Last Logon Date	
ssu-84-178	suresh sec	POWER	Sec	Suresh	2012-08-11 07:20:46.0	OPEN		
■ □ 012 ● tpSiv73 ● tpSiv83-103								
	User Group Name POVER USER	Description Security User Admin User Non-Admin User		Resource Groug	Apply Configuration Descrip			
	Azmin	Security User Admin User Non-Admin User	α	Name	Apply Configuration Descrip	tion		

Chapter-5

Synchronization Supply Unit (SSU) for Carrier-Grade Networks

The Microsemi SSU 2000 and SSU 2000e are fully manageable synchronization systems used by communications network operators to generate and distribute superior synchronization signals for their networks. The SSU 2000 conforms to ANSI standards and is NEBS certified, while the SSU 2000e is ETSI certified. Both systems use the same plug-in cards.

In addition to traditional frequency network timing capabilities for SDH/SONET networks, the SSU 2000/SSU 2000e supports packet network synchronization with carrier-grade Network Time Protocol (NTP) server and IEEE 1588 Precision Time Protocol (PTP) Grandmaster capabilities. The platform supports the seamless introduction of SyncE output capabilities elements into your network through the optical Ethernet port on the PTP grandmaster card. The SSU 2000 and SSU 2000e use the latest hardware and software integration technologies to provide a complete synchronization system for current and future network needs.

The SSU 2000/SSU 2000e is a key element in the Microsemi synchronization distribution architecture (SDA) for LTE networks, synchronizing frequency for backhaul networks with SyncE, supplying PTP sync for the 4G/LTE mobile stations, and providing NTP sync for residential small cells.

SSU 2000e

SSU 2000

High Capacity, High Availability Architecture

The SSU 2000/SSU 2000e architecture is designed to integrate intelligent, functional cards into a flexible, fully redundant system to satisfy current capacity and synchronization technology requirements and allow incremental capacity growth and deployment of new capabilities with additional plug-in cards as they are needed. The SDU 2000/SDU 2000e Synchronization Distribution Unit (SDU) expansion shelves connect to a corresponding SSU 2000/ SSU 2000e main shelf to provide additional output signals. The expansion shelves use the framing and synchronization features of the main shelf to drive an array of output cards. Any combination of T1, E1/2048 kHz, Composite Clock and RS-422 output cards, as well as NTP and PTP server cards may be installed.

T1 and E1 output cards may be configured in redundant pairs providing 20 1+1 fully protected outputs per pair. A fully configured SSU 2000 system provides T1/E1 output total capacity of up to 1280 unprotected ports or 640 protected ports. A fully configured SSU 2000e system supports up to 460 protected or unprotected ports. Both shelf systems support high capacity NTP and PTP cards in single server or 1:1 protected configurations. Additional server cards grow total system client capacity.SyncE is available as an option on the PTP cards. Frequency input signals are passed through in case of multiple internal failures, including clock failures. The shelves accept dual DC power and provide independent power conversion on each card. All cards are individually fused to protect the system in case of a short circuit on any one card.

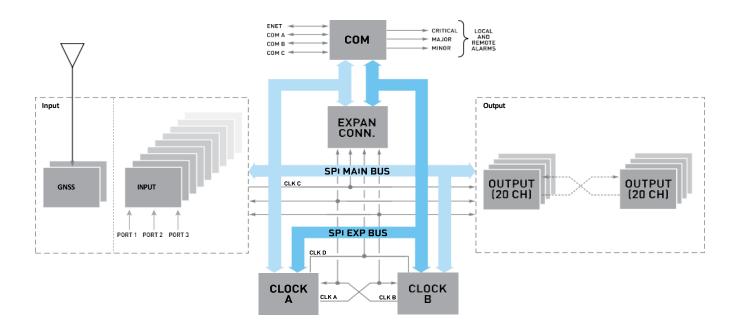


Figure 13: SSU 2000/2000e block Diagram

Industry Standards Compliance, NEBS Level 3 Certification

The SSU 2000 and SSU 2000e are designed to meet the latest and evolving industry standards, including ANSI, Telcordia, ITU-T G.811, G812, G.823, G.703, G.704, ETSI, IEEE 1588 and CE.The SSU 2000 is fully Network Equipment Building System (NEBS) Level 3 certified. NEBS (Network Equipment-Building System) describe the environment of a typical United States RBOC Central Office. NEBS are the most common set of safety, spatial and environmental design guidelines applied to telecommunications equipment in the United States. It is an industry requirement, but not a legal requirement.

NEBS were developed by Bell Labs in the 1970s to standardize equipment that would be installed in a central office. The objective was to make it easier for a vendor to design equipment compatible with a typical Regional Bell Operating Company (RBOC) central office (CO). This would result in lower development costs and ease the equipment's introduction into the network. Telcordia now manages the NEBS specifications. The four then-largest US Telecommunications companies (AT&T, Verizon, BellSouth, and Century Link) created the Telecommunications Carrier Group (TCG), a group formed to synchronize NEBS standards across the industry in the US. The TCG checklist specifies the individual NEBS requirements of each of its members in a matrix, making it simple to compare them.

Chapter-6

Intelligent Cards

Each card has an integrated CPU with software for superior reliability, flexibility and functionality. Cards can be hot-swapped while the unit is operating without any degradation of the output signals. Each intelligent card supports the management of critical, major and minor alarms. Powerful management can be performed to and within each card through the communication card, including in-service upgrades of software and programmable logic devices. Auto-reconfiguration: If a card is removed and a like card installed in the same slot, the new card will be automatically configured to the same settings as the previous card.

GNSS Cards

The SSU 2000/SSU 2000e integrates single or dual satellite system receiver cards to meet primary reference clock requirements. Integrated capability delivers these key benefits:

Flattens the number of levels in the synchronization distribution hierarchy

Improves the overall performance of the network

Lowers the overall OAM&P costs (Opera- tion, Administration, Maintenance, and Provisioning).

Single unit PRS

UTC traceable time source for integrated PTP grandmaster clocks and NTP servers

Two cards are available: The GNSS card supports GPS and GLONASS signals and can be locked to either one or both simultaneously. Also available is a dedicated GPS-only card.

Input Cards

The SSU 2000 accepts up to nine input cards; the SSU 2000e accepts up to three input cards. The platform supports the following input signals:

T1 (framed)

E1 (framed)

SSM quality

JSW and JCC (Japan)

1 MHz (sine or square)

1.544 MHz (sine or square)

2.048 MHz (sine or square)

 $5 \,\mathrm{MHz}$ (sine or square)

10 MHz (sine or square)

In the SSU 2000e each input slot supports connections for termination, bridging, monitoring and traffic pass-thru. These connectors provide performance monitoring, impedance termination and traffic pass through to network elements and input references. Various input impedance panels are available for the SSU 2000 to support the following balanced or unbalanced signal impedances:

50 ohms (sine)

- 75 ohms (T1/E1)
- 100 ohms (T1)

• 120 ohms (E1)

133 ohms(CC)

High impedance for timing extraction only

(Bridging mode)

Panel/adapter connection interfaces:

Wire wrap

BNC

Siemens

DE-9

Intelligent Clock Cards, Superior Holdover

Performance

The SSU 2000/SSU 2000e accepts single or dual clocks. Three clock cards are available to meet different international standards and specific holdover requirements: ITU-T Type 1 (ETSI Slave Clock, enhanced quartz oscillator), Type II (Stratum 2E, enhanced rubidium oscillator), and Type III (Stratum 3E, enhanced quartz oscillator). Redundant configurations may use a mix of technologies. In case of loss of GNSS and input references, the SSU 2000/SSU 2000e use intelligent software to provide enhanced output performance beyond the required holdover stability. Its superior holdover capability retains stratum G.812 performance for three weeks during holdover conditions with Microsemi rubidium technology.

E1/2.048 MHz Output Card

The E1/2.048 MHz output card has 20 ports that are software-selectable for either E1 or

2.048 MHz output signals. The E1 signal has a multiframe format, with selectable Channel Associated Signaling (CAS) or Common Channel Signaling (CCS).

T1 (DS1) Output Cards and Capabilities

The T1 output card has 20 ports. The T1 output card generates phase-locked output signals of 1.544 MHz

E1 and T1 Line Retiming Units (LRU)

The SSU 2000 supports both E1 and T1 line retiming units (LRU). The LRU is comprised of a Line Re-timing Module (LRM) and a Cut-Through Assembly (CTA). The LRU is a four-port (quad) card. The LRU inserts E1 or T1 signals on both sides of a cross connect panel in a central office. Side 1 of there-timer provides "3R" (Re-shape, Re-amplify, and Re-time) for the signal to a client network element. When the LRU receives a data stream, it re-times the data with the transmit clock signal. The clock signal is inserted into the line route between two path-terminating elements.Side 1 is the direction in which timing is applied, and contains the line performance reporting and AIS generator. Side 2 provides "2R", which Re-shapes and Re-amplifies (regenerates) the signal from the client network element.

NTP Performance	Enterprise Class	SSU 2000
Time Stamping Precision	Software (10µs)	Hardware (10ns)
Scalability	Fixed	Card based
Holdover	\checkmark	\checkmark
Redundancy		\checkmark
TL1 Management		\checkmark
· NEBS		\checkmark

Figure 14: SSU 2000/SSU 2000e carrier-grade NTP meets high Quos requirements for NGN telecommunications network.

Composite Clock Output Card

The Composite Clock output card generates 20 signal pairs (TIP and RING signal pairs). Each output is a transformer- coupled symmetrical pair. Each output pair can be turned off independently of other channels. Relays on each output allow for disconnecting the driver output from the output pins.

RS-422 Output Card

The RS-422 output card generates 10 balanced square-wave outputs (TIP and RING signal pairs on ports 1-10) and 10 single-ended (RING) TTL square wave outputs on ports 11-20. Each output can be turned off independently of other ports. Relays on each output disconnect the driver output from the output pins.

NTP Server Card

NTP requirements in telecommunication networks have rapidly evolved from a "best effort" utility to mission critical. With high performance NTP server cards the SSU 2000/SSU 2000e platform delivers carrier-grade NTP to meet demanding next generation network requirements. The NTP server cards provide the performance, scale, availability and security that assure high Quos delivery of advanced services such as IPTV, multimedia content delivery and residential small cells, as well as distributed BSS/OSS operations. The NTP server cards are fully integrated into the SSU 2000/SSU 2000e platform. NTP cards can be installed as single servers or redundant pairs in any available master or expansion shelf output slot. NTP capacity scales up at a rate of up to 1000 fully authenticated transactions per second (TPS) or up to 1500 unauthenticated TPS for each added card. Front-access NTP traffic ports utilize Small Form-factor Pluggable (SFP) modules for flexibility to support 100/1000BaseT electrical or 1000Base-X optical interfaces.

NTP server cards can support both independent public and private network domains, providing added security and flexibility. All configuration and management is consolidated through SSU 2000 system management ports to maintain security and isolation from NTP traffic ports.NTP cards for SSU 2000/SSU 2000e provide superior stability and protection through direct connection to the system backplane. NTP Stratum level 1 UTC (Universal Coordinated Time) traceability is established through the GNSS or GPS input card. NTP Cards for SSU 2000 can also operate at NTP Stratum level 2 with UTC time traceability back to a NTP Stratum 1 card located in another office.

Figure 15: NTP cards

Chapter-7

Synchronization Status Messages (SSM)

The input card reads and processes SSM in accordance with ITU-T and ANSI standards to determine the traceability of inputs. This traceability information is then used by the clock cards in selecting a reference signal, and is embedded into the system's outputs. An embedded, editable table allows upgrades as standards evolve.

Communications, Management and Security

The SSU 2000/SSU 2000e operates with a single communications card, available with basic features or with an enhanced security and SNMP option. The communications card supports TL1 and the Interactive Command Set (ICS), ASCII management interfaces. Coupled with Microsemi's advanced management software solutions, the communication module provides powerful fault, configuration, accounting/ inventory, performance, security, and other optional management functions. Network administrators can schedule automatic firmware upgrades.

System firmware in the master and expansion shelves can be scheduled for automatic updates without further human intervention. Using a secure FTP (SFTP) connection, the communications card can automatically download firmware from a remote server to upgrade the SSU 2000/ SSU 2000e system (NTP and PTP cards must be individually updated using their management Ethernet port). Two system images can be stored on the card, giving the user the ability to update or revert to a standby image with a simple command.

Time Craft

Available to support the SSU 2000/SSU 2000e, Time Craft is an easy-to-use Graphical User Interface (GUI) management tool that reduces the complexity of using TL1 or CLI commands. Its intuitive GUI allows the operator to supervise and control a network element either remotely or locally through icons and simple point and click operations. Time Craft capabilities include support for remote firmware upgrades and provisioning to the port level, event- driven fault management, physical and logical configuration management, and performance and security management.

TimePictra

The SSU 2000/SSU 2000e is fully supported by Microsemi's TimePictra advanced Synchronization Management System. TimePictra provides full FCAPS capabilities (fault, configuration, accounting/inventory, performance and security) as well as an array of advanced management features, including the ability to monitor PTP clients. With a multi-tier architecture (server, client, and database) TimePictra provides scalability and performance to meet growing network services and business needs. The secure web browser client provides easy access and eliminates the complexity of client installation and VPN access.

Microsemi Global Services

Microsemi provides synchronization services that assist customers with the planning, deployment and maintenance of synchronization infrastructure. Services are designed to help lower costs, streamline processes, ensure quality, and deliver the highest level of performance from your synchronization network. The Platform Maintenance service bundles together Microsemi's industry leading technical support along with all software maintenance. As part of Platform Maintenance, customer will receive all updates as well as all upgrades including all patches, point releases, maintenance releases and related documentation for your purchased version of software during the contract period.

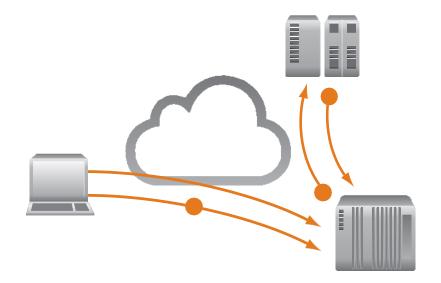


Figure 16: SSU 2000 with Radius Capable Communication Card

Connectivity

For the SSU 2000, there are a variety of input and output panels available with several types of connectors. These include DE9, wire-wrap, BNC, and Siemens type connectors. Also available are high density wire wrap panels in both 80 and 100 output versions. For the SSU2000e, DE9 connectors are included in the shelf design.

Synchronous Ethernet

The IEEE 1588 PTP card offers an option for SyncE physical layer frequency synchronization through the 1000Base-X optical Ethernet output port. Ethernet Synchronization Message Channel (ESMC) per the OSSP protocol is supported. Fully standards compliant SyncE with PTP makes the SSU 2000/SSU 2000e platform an excellent solution for next generation 4G/ LTE and mobile backhaul networks. The Microsemi PTP cards are fully integrated into the SSU 2000/SSU 2000e system. They can be installed as single servers or redundant pairs in any available master or expansion shelf output slot. PTP capacity scales from 125 full-rate clients to higher capacities per card upon request. Front-access PTP traffic ports utilize Small Form-factor Pluggable (SFP) modules for flexibility to support 100/1000Base-T electrical or 1000Base-X optical interfaces. All configuration and management is consolidated through SSU 2000/SSU 2000e system management ports to maintain security and isolation from PTP ports. The PTP cards provide superior stability and protection through direct connection to the SSU 2000/SSU 2000e system backplane. PTP cards operate either in arbitrary (ARB) timescale mode or in International Atomic Time (TAI) timescale with full UTC traceability through the SSU 2000/SSU 2000e integrated GNSS or GPS input card.

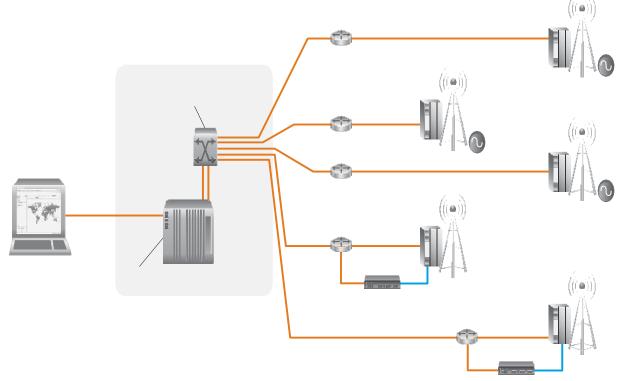


Figure 17: IEEE 1588 (PTP) Grandmaster Server Cards provide synchronization traceability over Ethernet to PTP client clocks in remote base station.

CONCLUSION

Internship is an opportunity to acquire a real life experience of what I learned in my academic life. Working as an intern in the Networking Solution of FONS BD Ltd. I have learnt to be dedicated to the job. Dedicative mindset is the most important thing to work in such a sophisticated environment. It is beyond mere official matter. For working in FONS BD Ltd microsemi project I learnt about working process of multinational company and their rules and regulation. I also experience about the office working in 24x7 monitoring network taught me about how to handle extreme pressure. Everyday makes a new challenge to us this speech now I believe because I experience about this on intern this project. My confident level now getting high day by day now I think that I could make better in my life. I have learned so many significant procedures from my supervisors and colleagues and conducted some tasks on a regular basis throughout my entire Internship period and ultimately earned the confidence to deal with Assignment myself. It is a great opportunity to use the knowledge and skills that I had acquired. I also learned how to handle critical faults and got the new ideas. Doing this kind of work is really helpful for my career and I like to do this kind of work again.