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Abstract 

 

Formal verification of variant requirements has gained much interest in the software 

product line (SPL) community. Feature diagrams are widely used to model product line 

variants. However, there is a lack of precisely defined formal notation for representing 

and verifying such models. This report presents an approach to analyzing SPL variant 

feature diagrams using first-order logic. The logical representation provides a precise and 

rigorous formal interpretation of the feature diagrams. Logical expressions can be built 

by modeling variants and their dependencies by using propositional connectives. These 

expressions can then be validated by any suitable verification tool such as Alloy. A case 

study of a Computer Aided Dispatch (CAD) system variant feature model is presented to 

illustrate the analysis and verification process. 
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CHAPTER 1 
Introduction 

1.1 Introduction 

Designing, developing and maintaining a good software system is a challenge still in 

this 21st century. The approach of reusing existing good solutions for developing any 

new application is now one of the central focuses of software engineers. Building 

software systems from previously developed components saves cost and time of 

redundant work and improves the system and its maintainability. A new software 

development paradigm, software product line[1], is emerging to produce multiple 

systems by reusing the common assets across the systems in the product line. 

However, the idea of product line is not new. In 1976 Parnas[16] proposed 

modularization criteria and information hiding for handling product line. 

 

The increase competitiveness in the software development sector with immense 

economic considerations such as cost, time to market, etc. motivates the transition 

from single product development to product-line development approach.  

 

A software product line is a set of software-intensive systems sharing a common, 

managed set of features that satisfy the specific needs of a particular market segment 

or mission and that are developed from a common set of core assets in a prescribed 

way [1]. Core assets are the basis for software product line. The core assets often 

include the architecture, reusable software components, domain models, requirements 

statements, documentation and specifications, performance model, etc. different 

product line members may differ in functional and non-functional requirements, 

design decisions, run-time architecture and interoperability (component structure, 

component invocation, synchronization, and data communication), platform, etc. The 

product line approach integrates two basic processes: the abstraction of the 

commonalities and variability’s of the products considered (development for reuse) 

and the derivation of product variants from these abstractions (development with 

reuse) [10]. 

 

The main idea of software product line is to explicitly identify all the requirements 

that are common to all members of the family as well as those that vary among 

products in the family. This implies a huge model that helps the stakeholders to be 

able to trace any design choices and variability decision. A particular product is then 

derived by selecting the required variants and configuring them according to the 

product requirements. 

 

Common requirements among all family members are easy to handle and can be 

integrated into the family architecture and are part of every family member. But 
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problem arises from the variant requirements among family members. Variants are 

usually modeled using feature diagram, inheritance, templates and other techniques. In 

comparison to analysis of a single system, modeling variants adds an extra level of 

complexity to the domain analysis. Different variants might have dependencies on 

each other. Tracing multiple occurrences of any variant and understanding their 

mutual dependencies are major challenges during domain modeling. While each step 

in modeling variants may be simple but problem arises when the volume of 

information grows. As a result, the impact of variant becomes ineffective on domain 

model. Therefore, product customization from the product line model becomes unclear 

and it undermines the very purpose of domain model. 

 

1.2 Motivation 
 
Both industry and academia have shown much interest in handling product line in 

application domains such as business systems, avionics, command and control 

systems etc. Today most of the effort in product line development are relating to 

architecture [6], detail design and code. 

 

Common requirements among all family members are easy to handle as they simply 

can be integrated into the family architecture and are part of every family member. 

But problem arises from the variant requirements among family members. In a 

product line, currently variants are modeled using feature diagram, inheritance, 

templates and other techniques. In comparison to analysis of a single system, 

modeling variants adds an extra level of complexity to the domain analysis. In any 

product line model, the same variant has occurrences in different domain model 

views. Different variants have dependencies on each other. Tracing multiple 

occurrences in different model views of any variant and understanding the mutual 

dependencies among variants are major challenges during domain modeling. While 

each step in modeling variant may be simple but problem arises when the volume of 

information grows. When the volume of information grows the domain models 

become difficult to understand. The main problems are the possible explosion of 

variant combinations, complex dependencies among variants and difficulty in tracing 

variants from the domain model down to the specification of a particular product. As 

a result, the impact of variant becomes ineffective on domain model. Therefore, 

product customization from the product line model becomes unclear and it 

undermines the very purpose of domain model. 

 

1.3 Objectives 
 

In developing product line, the variants are to be managed in domain engineering 

phase, which scopes the product line and develops the means to rapidly produce the 

members of the family. It serves two distinct but related purposes, firstly, it can record 

decisions about the product as a whole including identifying the variants for each 
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member and secondly, it can support application engineering by providing proper 

information and mechanism for the required variants during product generation. 

 

- Our objectives are to logically representation of feature model facilitating the 

development of decision table in a formally sound way. 

 

- A set of analysis operation has to be carried to out to check the consistency of 

the feature model. Our plan is to perform this verification by using our logical 

representation. 

 

- It is often leveled that manual verification leads to numerous error for large 

models and often misses the minute details in the verification. It is our plan is 

to use a light-weight model checker to check the logical verification of the 

feature models. 

 

In order to conduct out experiment we use a case study of Computer Aided Dispatch 

(CAD) system product line by analyzing and modeling the variants as well as the 

variants dependencies. 

 

1.4 Contribution 

 

The particular emphasis of this thesis is to model the variant of the product line in a 

manageable way so that product generation step can be conveniently handled. To 

achieve this goal in this thesis we have made the following contributions, 

 

- We define six types of logical notation to represent all the parts in a feature 

model. First-order logic has been used for this purpose. These notations can 

be used to define all possible scenarios of a feature model. 

 

- We then analyze the feature model using the logical definitions. After 

analyzing the feature model considering various scenarios, we define a set of 

rules which can be used to verify the feature model. 

 

- The logical verifications are carried out by hand which is laborious task and 

error prone. To overcome this problem of our logical definitions we use the 

model checker Alloy[11]. Alloy use first order logic. We encode our logical 

definitions into Alloy and check the validity of the logical verification that we 

perform hand.  
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1.5  Outline 
 

The thesis is organized as follows, 

 

- Chapter  2 gives a brief overview of preliminary notations of propositional and 

first order logic is also presented in this chapter. We then give a brief review 

of the model checker Alloy with an example model. 

 

- Chapter  3 gives an overview of the CAD domain. We briefly describe an 

example of a Police CAD domain. Then we present the logical representation 

of feature tree and analysis operation of feature tree. Also represent Alloy 

representation of the logical notations. 

 

- Chapter 4 illustrates the steps how the logical representations are encoded into 

Alloy and how the verification has been performed. 

 

- Chapter 5 concludes the thesis by summarizing our work. Finally we outline 

our future plan. 
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CHAPTER 2 
Background 
  

2.1  Software Product Line 
 

A new software development paradigm, software product line [1], is emerging to 

produce multiple systems by reusing the common assets across the systems in the 

product line. However, the idea of product line is not new. In 1976 Parma’s [16] 

proposed modularization criteria and information hiding for handling product line. 

 

The increase competitiveness in the software development sector with immense 

economic considerations such as cost, time to market, etc. motivates the transition 

from single product development to product-line development approach. Software 

product line is a set of software intensive systems sharing a common, managed set of 

features that satisfy the specific needs of a particular market segment or missions and 

that are developed from a common set of core assets in a prescribed way [1]. 

 

A software product line is a set of software-intensive systems sharing a common, 

managed set of features that satisfy the specific needs of a particular market segment 

or mission and that are developed from a common set of core assets in a prescribed 

way [1]. Core assets are the basis for software product line. The core assets often 

include the architecture, reusable software components, domain models, requirements 

statements, documentation and specifications, performance model, etc. Different 

product line members may differ in functional and non-functional requirements, 

design decisions, run-time architecture and interoperability (component structure, 

component invocation, synchronization, and data communication), platform, etc. The 

product line approach integrates two basic processes: the abstraction of the 

commonalities and variability’s of the products considered (development for reuse) 

and the derivation of product variants from these abstractions (development with 

reuse)[10]. 

 

The main idea of software product line is to explicitly identify all the requirements 

that are common to all members of the family as well as those that varies among 

products in the family. This implies a huge model that helps the stakeholders to be 

able to trace any design choices and variability decision. A particular product is then 

derived by selecting the required variants and configuring them according to the 

product requirements. 
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2.2  Logical Representation 
 

Logic has been studied since the classical Greek period (600-300BC). The Greeks, 

most notably Thales, were the first to formally analyze the reasoning process. 

Aristotle (384-322BC), “the father of logic”, and many other Greeks searched for 

universal truths that were irrefutable. A second great period for logic came with the 

use of symbols to simplify complicated logical arguments. Gottfried Leibniz (1646-

1716) began this work at age 14, but failed to provide a workable foundation for 

symbolic logic. George Boole (1815-1864) is considered the “father of symbolic 

logic”. He developed logic as an abstract mathematical system consisting of defined 

terms (propositions), operations (conjunction, disjunction, and negation), and rules for 

using the operations. Boole’s basic idea was that if simple propositions could be 

represented by precise symbols, the relation between the propositions could be read as 

precisely as an algebraic equation. Boole developed an “algebra of logic” in which 

certain types of reasoning were reduced to manipulations of symbols. 

 

2.2.1  Logical Operators 
 

1.  Negation Operator: “not”, has symbol “¬”. Example: 
p: This book is interesting.  

Then P can be read as “This book is not interesting”.  

Truth Table: 

P ¬P 

T 

F 

F 

T 

 

The negation operator is a unary operator which, when applied to a proposition P, 

changes the truth value of P. That is, the negation of a proposition P, denoted 

by¬P, is the proposition that is false when p is true and true when p is false. 

 

2. Conjunction Operator: “and”, has symbol “∧”. Example 

p: This book is interesting.  

q: I am statying at home  

p ∧ q: This book is interesting if and only if I am staying at home 

Truth Table: 

P Q P ∧ Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

F 

 

The conjunction operator is the binary operator which, when applied to two 

propositions p and q, yields the proposition “p and q”, denoted 𝑝 ∧ q. The conjunction 
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𝑝 ∧ q is the proposition that is true when both p and q are true and false otherwise. 

 
3. Disjunction Operator: inclusive “or”, has symbol “∨”. Example: 

p: This book is interesting.  

q: I am statying at home  

p ∨ q: This book is interesting if and only if I am staying at home 

Truth Table: 

P Q P ∨ Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

T 

T 

F 

 

The disjunction operator is the binary operator which, when applied to two 

propositions p and q, yields the proposition “p or q”, denoted 𝑝 ∨ 𝑞. The disjunction 

p ∨ q of p and q is the proposition that is true when p is true, q is true, or both are true, 

and are false otherwise. 

 

4. Exclusive Or Operator: “xor”, has symbol⊕.Example: 

p: This book is interesting.  

q: I am statying at home  

p ⊕ q: This book is interesting if and only if I am staying at home 

Truth table: 

P Q P ⊕ Q 

T 

T 

F 

F 

T 

F 

T 

F 

F 

T 

T 

F 

 

The exclusive or is the binary operator which, when applied to two propositions p and 

q yields the proposition “p xor q”, denoted 𝑝 ⊕ 𝑞, which is true if exactly one of p or 

q is true, but not both. It is false if both are true or if both are false. 

 

5. Implication Operator: “if...then...” has symbol “⟹” Example: 

p: This book is interesting.  

q: I am statying at home  

p ⟹ q: This book is interesting if and only if I am staying at home 

Truth Table: 

P Q P ⟹ Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

F 
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The implicationp ⟹ q is the proposition that is often read as “if p then q”. 

If “p then q” is false precisely when p is true but q is false 

 

6. Biconditional Operator: “if and only if”, has symbol “⟺” Example: 

p: This book is interesting.  

q: I am statying at home  

p ⟺ q: This book is interesting if and only if I am staying at home. 

Truth table:    

P Q P ⟺ Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

T 

 

The bi-conditional statement is equivalent to(p ⟹ q) ∧ (q ⟹ p).In other words: For 

p ⟺ q to be true we must have both p and q true. 

  

2.3 Alloy 
 

The Alloy Analyzer is a software tool which can be used to analyze specifications 

written in the Alloy specification language. The Analyzer can generate instances of 

model invariants; simulate the execution of operations defined as part of the model, 

and check user-specified properties of a model. The Alloy Analyzer supports the 

analysis of partial models. As a result, it can perform incremental analysis of models 

as they are constructed, and provide immediate feedback to users. The simulations 

performed by the Alloy Analyzer tool are sound and complete up to a given scope. If 

there is some instance that contradicts an assertion up to a given scope, the tool shows 

a counterexample. However, if the tool does not find any counterexample, we only 

know that the property holds on that scope. 

 

Alloy and Alloy Analyzer were developed by Daniel Jackson’s group at MIT 

 

• Alloy is an object oriented modeling language. 

• Alloy has formal syntax and semantics. 

• Alloy specifications can be written in ASCII. 

• Alloy also has a visual language similar to UML class diagrams. 

• Alloy has a constraint analyzer which can be used to automatically analyze 

properties of Alloy models. 

 
 
 
 



9 
 

2.3.1   Syntax and Semantics 

 

To explain the semantics here an object model for alloy tree is given in Fig. 2.1. 

 

Each box denotes a set of objects. In Alloy these are called signatures. In Alloy sets of 

atoms such as Man, Woman, Married, Person are called signatures. Textual 

representation starts with sig declarations defining the signatures. Signatures 

correspond to object classes. A signature that is not subset of another signature is a 

top-level signature. Here Person and Name are top-level signatures. Extensions of a 

signature are also disjoint. Man andWoman are disjoint sets. An abstract signature has 

no elements except those belonging to its extensions. There is no Person who is not a 

Man or a Woman. 

 
 

Figure 2.1: Family Diagram 

 

Arrows with a small filled arrow head denote relations. For example, name is a 

relation that maps Person to Name. Multiplicity is used to define the number of 

objects required.it has some kinds like set (zero or more), one (exactly one), lone 

(zero or one), some (one or more), extends and in are used to denote which signature 

is subset of which other signature. For instance: 

sig A {} 

sig B {} 

sig B extends A {} 

sig B extends A {} 

sig C extends A {} 

abstract sig A {} 

sig B extends A {}  

sig C extends A {} 

one sig A {}  

lone sig B {}   

some sig C {} 

// Set of Atoms A 

//Set B is a subset of A 

// B and C are disjoint subsets of A: B in  

// A && C in A && no B & C 

 

// A partitioned by disjoint subsets B 

//and C: no B && C && A = (B+C) 

 

// A is singleton set 

// B is a singleton or empty 

// C is non empty set

 

The fields define relations among the signatures. Visual representation of a field is 

an arrow with a small filled arrow head ( ⟶). For example sig A {f: e}, where f is a 
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binary relation with domain A and range given by expression e and each element of 

A is associated with exactly one element from e. After the signatures and their 

fields, facts are used to express constraints that are assumed to always hold. Facts 

are not assertions; they are constraints that restrict the model. For example 

 

sig Host {} 

sig Link {from, to: Host} 

fact { 

all x: Link | x.from != x.to 

}// no links from a host to itself 

 

A function is a named expression with zero or more arguments. When it is used, the 

arguments are replaced with the instantiating expressions. Syntax of writing a 

function is fun f[x1: e1... xn: en]: e {E} 

 

A predicate is a named constraint with zero or more arguments. It is defining by 

using the keyword “pred”. 

 

In Alloy, assertions are used to specify properties about the specification. Assertions 

state the properties that we expect to hold. 

 

In order to perform an analysis we need to use run command based on a predicate. 

 

Now we are giving a simple example named “Checking Own Grandpa” using alloy. 

The alloy code is given below 

 

Module language/Family  

sig Name { } 

abstract sig Person { 

name: one Name,  

siblings: Person,  

father: lone Man,  

mother: lone Woman 

} 

sig Man extends Person { 

wife: lone Woman 

} 

sig Woman extends Person{  

husband: lone Man 

} 

sig Married extends Person { 

} 

fact { 

no p: Person | p in p.^(mother + father)  
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wife = ~husband 

} 

fun grandpas[p: Person] : set Person { 

set parent = mother + father +father.wife+mother.husband | 

p.parent.parent& Man 

} 

predownGrandpa[p: Person] {  

p in grandpas[p] 

} 

runownGrandpa for 4 Person 

 

The corresponding graph generated by Alloy is shown in Figure 2.2. 

 

 

 
 

Figure 2.2 checking own grandpa 



 
 

12 
 

CHAPTER 3 
Feature Model and Logical Representation 
 

Our case study is based on the Computer Aided Dispatch System (CAD) domain. We 

consider this domain as our case study because we have got supporting documents of 

this domain from the company who is working on this domain and also working in 

collaboration with our research team. Several research works have already been done 

on different aspects of this domain which help to gain better knowledge of this 

domain. An overview of the Computer Aided Dispatch System (CAD) and its basic 

domain model is presented in this chapter. 

 

3.1 Overview of CAD Domain 
 

A Computer Aided Dispatch system (CAD) is a mission-critical system that is used 

by police, fire and rescue, health service, port operation, taxi booking and others. 

However, the basic operational scenarios are similar in all the CAD systems. Figure 

3.1 depicts a basic operational scenario and roles in a CAD system. 

 

When an incident is happened in a place a Caller reports the incident to the command 

and control centre of the police unit. A Call Taker in the command and control center 

captures the details about the incident and the Caller, and creates a task for the 

incident. There is a Dispatcher in the system whose task is to dispatch resources to 

handle any incident. The system shows the Dispatcher a list of un-dispatched task. 

 

 
 

Figure 3.1 : Basic operational scenario in a CAD system for police  

 

The Dispatcher examines the situation, selects suitable Resources (e.g. police units) 

and dispatches them to execute the task. The Resources carry out the task instructions 

and report to the Task Manager. The Task Manager monitors the situation and at the 

end when the resources finished the task- closes the task. Different CAD members 

have different resources and tasks for their system. The key entities of CAD domain 

will interact with each other according to the system requirements. For example, some 
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resources are free of charge (e.g. police) whereas some are not (e.g. taxi). The basic 

key entities of CAD domain are listed in Table 3.1.  

 

Table 3.1: Key entities of CAD domain 

Key Definitions 

Task A task holds together the information regarding a particular incident 

(incident location, type, priority, urgency, status, caller’s detail 

etc).Two separate entities are included within it incident’s detail and 

caller detail. 

Resources A resource handles the task. In police CAD, the resource would be 

police car, in taxi CAD, the resource would be taxi. it is presumed that 

the resource are equipped with necessary hardware to communicate 

with CAD system 

Command Command instructs the resources to complete a task. The person who 

is responsible for dispatching task to resources sends the command. 

 

At the basic operational level, all CAD systems are similar; basically they support the 

dispatcher units to handle the incidents. However, there are differences across the 

CAD systems. The specific context of operation results in many variations on the 

basic operational theme. Here are some of the variants identified in CAD domain:  

then call taker informs the dispatcher of the newly created task but if merged then 

without informing to dispatcher he/she can dispatch resources directly to the 

incidents. 

 

Validation of caller and task information differs across CAD systems. In some CAD 

systems basic validation (i.e., checking the completeness of caller information and the 

task information) is sufficient while in other CAD systems validation includes 

duplicate task checking, etc. in yet other CAD systems no validation is required at all. 

 

Un-dispatched task selection rule in certain situation at any given time there might be 

more than one task to be dispatched, then there is a need to decide which task will 

dispatched next. A number of algorithms are available for this purpose and different 

CAD system use different algorithm. In Ambulance CAD system task may be 

selected based on task urgency or priority whereas in taxi system different algorithm 

will be applied. 

 

This simple description of CAD variants hints us about numerous variants and variant 

dependencies, which focus the importance of managing them properly. 
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3.2 CAD Domain Model using FODA 
 

Modeling variants is an important process during designing software product line. The 

feature oriented domain analysis (FODA) method was developed at the Software 

Engineering Institute (SEI) [13].FODA focuses on identifying features that 

characterize a domain. Features are user visible aspects or characteristics of a system 

and are organized into and/or graph in order to identify the commonalities and 

variants of the application domain. Feature modeling is an integral part of the FODA 

method and the Feature Oriented Domain Reuse Method (FORM) [14]. The 

commonalities and variants within features are exploited to create a set of models that 

is used to implement any member product of that family. 

 

Features are represented in graphical form as trees. The internal nodes of a tree 

represent the variants and their leaves represent values of corresponding variants. 

Graphical symbols are used to indicate the categories of features. The root node of a 

feature tree always represents the domain whose features are modeled. The remaining 

nodes represent features which are classified into three types: 
 

• Mandatory features are always part of the system.  

 

• Optional features may be selected as a part of the system if their parent feature 

is in the system. The decision whether an optional feature is part of the system 

or not can be made independently from the selection of other features. 

 

• Alternative features of a variant are related to each other as exclusive-or 

relationship, i.e. exactly one feature out of a set of features is to be selected.  

 

The feature diagram depicts the classification of mandatory features and variant 

features as well as their dependencies. Mandatory features are those which are present 

in all products in the respective domain. Variant features appear only some members 

of the domain which differentiate one product from others. There are more 

relationships between features. One is Or-feature by [8], which connects a set of 

optional features with a parent feature, either common or variant. The meaning is that 

whenever the parent feature is selected then at least one of the optional features will 

be selected. Feature diagram also depicts the interdependencies among the variants 

which describes the selection of one variant depends on the selection of the 

dependency connected variants. A partial CAD feature diagram is given in the Figure. 

In this feature diagram the root represents the functional features of CAD. Task 

Assignment Rule, Call Taker & Dispatcher Roles and Validation are linked to the root 

via mandatory link as these are mandatory features of CAD. However, Checking 

Duplicate Task is linked via optional link as this feature is optional. We use 

extensions described in [8]. 
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Figure 3.2 : Partial Feature Diagram of a CAD system 
 

3.3  Logical Representation 
 

3.3.1   Introduction 
 

Logic representation involves analysis of how to reason accurately, effectively 

represent a set of facts using a set of symbols within a knowledge domain. A symbol 

vocabulary and a system of logic are combined to enable inferences of a particular 

domain. Logic usually has a well-defined syntax, semantics and proof theory. 

 

• The syntax of logic defines the syntactically acceptable objects of the logic.  

 

• The semantics of logic associates each formula with a meaning.  

 

• The proof theory is concerned with manipulating formulae according to certain 

rules. 

 

Logic is used to supply formal semantics of how reasoning functions should be 

applied to the symbols in the System domain. Logic is also used to define how 

operators can process and reshape the knowledge. 

 

There are two types of logic that we can apply in our work in order verify 

CAD(Computer Aided Dispatch) System .They are Propositional logic and First 

Order Logic(FOL). But we decide to use FOL instead of Propositional logic be-cause 

of some reason. They are as below 

 

• It is possible to add lemmas to FOL provers, which can make future proof 

easier.  

 

• The translation of property languages into FOL is inherently more flexible and 
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modular. Propositional logic translation are more flexible but not as compact, 

due to the restrictiveness of this language.  

 

• In FOL methods it is possible to verify properties of the generic designs. 

Propositional logic methods can only verify specific instances.  

 

Propositional logic, also known as statement logic, is the branch of logic that studies 

ways of joining or modifying entire propositions, statements or sentences. 

 

Also used for representing logical relationships and properties those are derived from 

these methods of combining or altering statements. In propositional logic, the simplest 

statements are considered as indivisible units. The most thoroughly researched branch 

of propositional logic is classical truth-functional propositional logic, which studies 

logical operators and connectives that are used to produce complex statements whose 

truth-value depends entirely on the truth-values of the simpler statements making 

them up, and in which it is assumed that every statement is either true or false. It is 

concerned with propositions and their inter-relationships. A proposition is a possible 

condition of the world about which we want to say something. In Propositional Logic, 

there are two types of sentences – Simple sentences and compound sentences. Simple 

sentences express “atomic” propositions about the world. Compound sentences 

express logical relationships between the simpler sentences of which they are 

composed. propositional logic does not consider smaller parts of statements, and 

treats simple statements as in-divisible wholes, the language PL uses uppercase letters 

‘A’, ‘B’, ‘C’, etc., in place of complete statements. The logical signs ‘∧’, ‘∨’, ‘⟶’, 

‘⟷’, and ‘¬’ are used in place of the truth-functional operators, “and”, “or”, “if 

then”, “if and only if”, and ’not’, respectively. 

 

First-order logic is symbolized reasoning in which each sentence, or statement, is 

broken down into a subject and a predicate. In first-order logic, a predicate can only 

refer to a single subject. First-order logic is also known as first-order predicate 

calculus or first-order functional calculus. A sentence in first-order logic is written in 

the form P (x), where P is the predicate and x is the subject, represented as a variable. 

Syntax used in First Order Logic: Basic elements Constants 

 

• variables denoted by x, y, z, v, u, . . ., 

• constants denoted by a, b, c, d, . . ., 

• function symbols denoted by f, g, . . ., 

• relation symbols denoted by p, q, r, . . ., or P, Q, R, . . ., 

• propositional constants, which are true and false, 

• connectives, which are¬ (negation),⋁(disjunction),⋀(conjunction), 

⟹ (Implication) and ⇔ (equivalence) 

• quantifiers, which are ∃ (there exists) and ∀(for all). 
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Propositional logic assumes the world contains facts, first-order logic assumes the 

world contains 

 

• Objects: people, houses, numbers  

• Relations: bigger than, part of.  

• Functions: one more than.  

 
3.3.2   Logic Representation of Feature Model 
 

 
 

Figure 3.3: CAD feature diagram 

 

A Feature Model (FM) is a hierarchical arranged set of features. It represents all 

possible products of an SPL (Software Product Line) in a single model. Every Feature 

is an increment in product functionality. The complete feature tree of CAD domain is 

illustrated in Fig 3.3. It can be used in deferent stages of development. Though A FM 

is a tree like structure so it consists of relations between a parent feature and its child 

features, also cross-tree constrains that are typically inclusion or exclusion statements 

of the form “if a feature F is included, then features X must also be included”. The 

relation between a parent (variation point) features and its child features (variants) are 

categorized as follows: 

 

Mandatory: A child feature is said to be mandatory when it is required to 

appearwhen the parent feature appears. For instance, it is mandatory to have a special 

platform for Android mobile phone. 

 

Optional: A child feature is said to be optional when it can or not appear when 

theparent features appears. For instance, it is optional to have pdf reader software in 

the mobile phone. 

 

Alternative: A set of child features are said to be alternative when only one 

childfeature can be selected when the parent feature appears. For instance a Gamer 
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cannot select both Automatic and Manual for car control during car selection. 

 

Optional Alternative: One feature from a set of alternative features may or maynot 

be included if parent included. 

 

Or: A set of child features are said to have an Or-relation with their parent whenone 

or more sub features can be selected when the parent feature appears. For instance, the 

engine of a car can be electric, gasoline or both at the same time. 

 

Optional Or: one or more optional feature may be included if the parent is included. 

 

The logical notions of these features are defined in the following Figure 3.4 

 

A feature model can be considered as a graph consists of a set of sub graphs. Each sub 

graph is created separately by defining a relationship between the variation point 

(denoted as vi) and the variants (vi. j ) by using the expressions shown in Fig. 4. The 

complexity of a graph construction lies in the definition of dependencies among 

variants. When there is a relationship between cross-tree (or cross hierarchy) variants 

(or variation points) we denote it as a dependency. Typically dependencies are either 

inclusion or exclusion: if there is a dependency between p and q, then if p is included 

then q must be included (or excluded). Dependencies are drawn by dotted lines. 

 

 
 

Figure 3.4 : logical notation for feature tree 

 

3.4   Analysis Operations 
 

Our target performs some operation that tells us feature model works correctly or not. 

That means some time feature model contain inconsistency that give us wrong 

product. So we have to give certain opportunities to identify those problems and also 

keep user from selecting those wrong selections of feature. Our proposed method also 

supports some extra feature like inconsistency, dead feature, false optional etc. 
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3.4.1  Inconsistency 
 

Inconsistency in a feature model is a relationship between features that cannot be true 

at the same time. To explain more about it Fig, is given above which contain 

inconsistency. In figure, 𝑣, 𝑣1, 𝑣2 are three variation points. Where 𝑣1 contain two 

variants𝑣1.1 and 𝑣1.2. Both the variants are mandatory. That means whenever the 

variation point 𝑣1 is selected then both the variants 𝑣1.1 and 𝑣1will be automatically 

selected by the system. Variation point 𝑣2 contains two variants 𝑣2.1 and 𝑣2.2. 

 

 

 

Figure 3.5 : Inconsistency checking 

 

Also there exists a require relationship between variant 𝑣1.2 and variation point 𝑣2. 

That means whenever 𝑣1.2 is selected then variation point 𝑣2 must be selected by the 

system. But it can’t be possible because both the variation point 𝑣1 and 𝑣2  are 

connected with their variation point𝑣 with an alternative relationship. This means we 

cannot select both 𝑣1 and 𝑣2 at a time.That’s why system reports an error. We can 

define a rule for this situation 

 

∀𝑣1, 𝑣2, 𝑣1.2: 𝑡𝑦𝑝𝑒(𝑣1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛𝑝𝑜𝑖𝑛𝑡)⋀𝑡𝑦𝑝𝑒(𝑣2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛𝑝𝑜𝑖𝑛𝑡)  

⋀𝑡𝑦𝑝𝑒(𝑣1.2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) ∧ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑣, 𝑣1,2) ∧ 𝑒𝑥𝑐𝑙𝑢𝑑𝑒_𝑣𝑝_𝑣(𝑣1.2, 𝑣2) ∧
𝑠𝑒𝑙𝑒𝑐𝑡(𝑣1.2) ⟹ 𝑒𝑟𝑟𝑜𝑟  

 

3.4.2  False Optional 
 

False optional is situations where some feature are declared as optional which does 

not need to be declared. Because those features are automatically selected by the 

system when some other feature are selected by the user. This is actually waste of 

time. Figure, depicts how this type of situation occurs in a system. In Figure 3.6 

 𝑣, 𝑣1, 𝑣2 are three variation points. Where 𝑣1 is a mandatory feature of the variation 

point is 𝑣 𝑎𝑛𝑑 𝑣2 is an optional feature of the variation point𝑣. Also 𝑣1 contain two 

variants 𝑣1.1 and 𝑣1.2. Both the variants are mandatory. That means whenever the 

variation point 𝑣1  is selected then both the variants 𝑣1.1  and 𝑣1.2 will be 

automatically selected by the system. Variation point 𝑣2  contains two variants 

𝑣2.1 and 𝑣2.2.  Also there exists a require relationship between variant 𝑣1.2  and 

variation point 𝑣2. 
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Figure 3.6: False Optional checking 

 

That means selection of the feature 𝑣1.2 will require the selection of  𝑣2. On other 

way we can say that whenever we select either the variation point 𝑣1 or any variants 

of 𝑣1 then 𝑣2 will be automatically selected by the system. Actually 𝑣2 acted like a 

mandatory feature of𝑣. So we shouldn’t need to declare this variation point as an 

optional feature. The following rules are defined for such cases 

 

∀𝑣1, 𝑣2, 𝑣1.2: 𝑡𝑦𝑝𝑒(𝑣1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)⋀𝑡𝑦𝑝𝑒(𝑣2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)  

⋀𝑡𝑦𝑝𝑒(𝑣1.2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) ∧ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒_𝑣_𝑣𝑝(𝑣1.2, 𝑣2) ∧ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑣1.2) ⟹ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑣2)  
 

∀𝑣1, 𝑣2, 𝑣1.2: 𝑡𝑦𝑝𝑒(𝑣1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)⋀𝑡𝑦𝑝𝑒(𝑣2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)  
⋀𝑡𝑦𝑝𝑒(𝑣1.2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) ∧ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑣, 𝑣1.2) ∧ 𝑒𝑥𝑐𝑙𝑢𝑑𝑒_𝑣_𝑣𝑝(𝑣1.2, 𝑣2) ∧
𝑠𝑒𝑙𝑒𝑐𝑡(𝑣1.2) ⟹ 𝑛𝑜𝑡𝑠𝑒𝑙𝑒𝑐𝑡(𝑣2)  
 

3.4.3 Dead Feature Detection 
 

A dead feature is a feature that never appears in any legal product of feature model 

and sometime it causes error in feature model. To show how dead feature can occur in 

a feature model Fig 3.7 , is given below. In Fig 3.7,𝑣 , 𝑣1, 𝑣2 are three variation point. 

Where 𝑣1 is a mandatory feature of the variation point 𝑣 and 𝑣2 is also a mandatory 

feature of the variation point𝑣. Also 𝑣1 contain two variants 𝑣1.1 and  𝑣1.2 . Both the 

variants are mandatory .That means whenever the variation point 𝑣1 is selected then 

both the variants 𝑣1.1 and 𝑣1.2 will be automatically selected by the system. 

 

 

 

Figure 3.7: Dead Feature Detection 
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Variation point 𝑣2 contains two variants 𝑣2.1and  𝑣2.2, which are optional feature of 

𝑣2. Also there exists an exclude relationship between variant 𝑣2.1 and variation point 

𝑣1 . That means variation point 𝑣1  and variant 𝑣2.1  will never appear in same 

product. Whenever any feature of𝑣1  is selected then 𝑣1  is automatically selected 

which restrict a user from selecting the variant 𝑣1.2 .though 𝑣1 is a mandatory feature 

of the system that means 𝑣1 will appear in every product, so 𝑣2.1 will never appear in 

any product although variation point of the variant 𝑣2.1 is also mandatory feature of 

the system. We can only select the variant 𝑣2.2. so 𝑣2.1 will be a dead feature. 

 

∀𝑣1, 𝑣2, 𝑣2.1, 𝑣1.1: 𝑡𝑦𝑝𝑒(𝑣1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)⋀𝑡𝑦𝑝𝑒(𝑣2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡)  

⋀𝑡𝑦𝑝𝑒(𝑣1.1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) ∧ 𝑡𝑦𝑝𝑒(𝑣2.1, 𝑣𝑎𝑟𝑖𝑎𝑛𝑡) ∧ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑣1.1, 𝑣1) ∧
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑣2.1, 𝑣2) ∧ 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠_𝑣_𝑣𝑝(𝑣2.1, 𝑣1) ∧ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑣1.1) ⟹
𝑑𝑒𝑎𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑣2.1)  
 

3.5  Example 
 

Automatic analysis of variants is already identified as a critical task. Various 

operations of variant analysis are suggested in [7][8]. Our logical representation can 

define and validate a number of such analysis operations. The validation of a product 

line model is assisted by its logical representation. While constructing a single system 

from a product line model, we assign TRUE (T) value to selected variants and FALSE 

(F) to those not selected. After substituting these values to product line model, if 

TRUE value is evaluated, we call the model as valid otherwise the model is invalid. A 

product graph is considered to be valid if the mandatory sub-graphs are evaluated to 

TRUE. It’s very difficult to represent the whole feature tree so we take a partial 

feature tree for our analysis and it is shown In Fig 3.8. 

 

 

 

Figure 3.8: Partial CAD feature Tree 
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First we break the entire graph shown in figure into four small sub-graph and named 

those sub-graph as G1, G2, G3 and G4 respectively. In this sub-graph we used short 

notation instead of using feature names showed in the original CAD feature diagram. 

Description of all the sub-graph is given below. 

 

 
Figure 3.9: G1 Sub graph 

 

Fig 3.9 shows the diagram of G1 sub-graph. Here we use 𝑣1, 𝑣1.1 and 𝑣1.2 instead of 

“Call taker and dispatcher roles”, “Merged”, “Separated” respectively. Here in G1 

sub-graph 𝑣1  is denoted as a variation point and 𝑣1.1  and  𝑣1.2  are denoted as 

variants, which belong to the variation point 𝑣1. Both the variants 𝑣1.1 and  𝑣1.2 are 

mutually exclusive to each other that mean we cannot select both at the same time. 

 

 
Figure 3.10 G2 sub Graph 

 

In G2 sub graph figure 3.10 here we use 𝑣2, 𝑣2.1, 𝑣2.2, 𝑣2.3, 𝑣2.3.1, 𝑣2.3.2 and 𝑣4 

instead of “Un-dispatched task selection”, “Urgency”, “FCFS”, “Operator”, “Call 

Taker”, “Dispatcher”, and “Priority”. Here in G2 sub-graph 𝑣2  is denoted as a 

variation point and 𝑣2.1, 𝑣2.2, 𝑣2.3, 𝑣2.3.1, 𝑣2.3.2, 𝑣2.4 are denoted as variants, 

which belongs to the variation point 𝑣2. But later 𝑣2.3 is denoted a variation point, 

having the variants 𝑣2.3.1 and 𝑣2.3.2. Here in this sub-graph 𝑣2.1, 𝑣2.2, 𝑣2.3, 𝑣2.4 

are connected with its variation point with Or relationship, which means anyone can 

select one or more variants at a time. Also 𝑣2.3.1 and𝑣2.3.2 variants are connected 

with its variation point 𝑣2.3 with an alternative relationship. There exists two require 

relationship between the variants 𝑣2.3.1 and 𝑣2.1 and variants 𝑣2.4 and 𝑣3.2.Which 

indicates that you cannot select 𝑣2.3.1 unless you select 𝑣2.1 and you cannot select 

𝑣2.4 unless you select 𝑣3.2. 
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                                              Figure 3.11:G3 sub graph 

 

In Fig 3.11 shows the diagram of G3 sub-graph. Here we use 𝑣3, 𝑣3.1  and 

𝑣3.2 instead of “Task Priority”, “No”, “Yes”. In G3 sub-graph 𝑣3  is denoted as 

variation point and 𝑣3.1, 𝑣3.2 are denoted as variants, which belongs to the variation 

point 𝑣3. Both the variants 𝑣3.1 and 𝑣3.2 are mutually exclusive to each other. That 

means we cannot select both at a time. 

 
 

                                           Figure 3.12: G4 Sub graph 

 

In G4 sub Graph figure 3.12 Here we use 𝑣4, 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4, 𝑣4.4.1,

𝑣4.4.2, and 𝑣4.5  instead of “Task manager assignment”, “Defined”, “Task Type”, 

“Location”, “Operator”, “Dispatcher”, “Call Taker”, “Priority”. Here in G4 sub-graph 

𝑣4 is denoted as a variation point and 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4, 𝑣4.4.1, 𝑣4.4.2, 𝑣4.5 

are denoted as variants, which belongs to the variation point  𝑣4. But later 𝑣4.4is 

denoted as a variation point, having the variants 𝑣4.4  and  𝑣4.4.2. Here in this sub-

graph 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4, 𝑣4.5  are connected with its variation point with Or 

relationship, which means anyone can select one or more variants at a time. Also 

𝑣4.4.1 and  𝑣4.4.2  variants are connected with its variation point 𝑣4.4  with an 

alternative relationship. There exists two require relationship between the variants 

𝑣4.4.2 and 𝑣1.1 and variants 𝑣4.5 and  𝑣3.2.Which indicates that you cannot select 

𝑣4.4.2 unless you select 𝑣1.1 and you cannot select 𝑣4.5 unless you select  𝑣3.2.  
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3.5.1 Example 1 
 

Suppose the selected variants are 𝑣1, 𝑣1.2, 𝑣2, 𝑣2.3, 𝑣2.3.1, 𝑣2.4, 𝑣3, 𝑣3.2, 𝑣4,

𝑣4.1, 𝑣4.4, 𝑣4.4.2  and 𝑣4.5. Now our work is to check this input combination can 

build a valid product. To do this First we have to check whether each individual sub-

graph is valid or not, then the dependency associate with them and at last we have to 

check whether the whole graph can build a valid product. Here we check the validity 

of the sub-graph G1, G2, G3 and G4 by substituting the truth values of the variants of 

the sub-graphs 

 

G1: 

(𝑣1.1⨁𝑣1.2) 

= (𝑇⨁𝐹) ⟺ 𝑇 

= 𝑇 ⟺ 𝑇 

= 𝑇 

Here 𝑣1.1 and 𝑣1.2 are mutually exclusive to each other so we use an XOR (⊕) 

notation between them and also only that time G1 is True when both 𝑣1 and any one 

from 𝑣1.1 and 𝑣1.2  is true. Here we have seen that 𝑣1 and 𝑣1.1  is selected. 

Mathematical analysis given above tells us that G1 is valid for this input combination. 

 

G2:  

(𝑣2.1 ∨ 𝑣2.2 ∨ 𝑣2.3 ∨ 𝑣2.4) ⟺ 𝑣2  

= (𝑣2.1 ∨ 𝑣2.2 ∨ ((𝑣2.3.1 ⊕ 𝑣2.3.2) ⟺ 𝑣2.3) ∨ 𝑣2.4) ⟺ 𝑣2  

= (𝑇 ∨ 𝐹 ∨ ((𝑇 ⊕ 𝐹) ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ∨ 𝐹 ∨ (𝑇 ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ⟺ 𝑇)  

= 𝑇  
 

Here variant 𝑣2.1, 𝑣2.2, 𝑣2.3, 𝑣2.4 are connected with their variation point 𝑣2 with 

Or (∨) relationship, that means we can select one or more feature. In this scenario G2 

will valid when at least one of the variant from 𝑣2.1, 𝑣2.2, 𝑣2.3 and 𝑣2.4 will be true. 

Also variation point 𝑣2.3 contains two variants 𝑣2.3.1 and 𝑣2.3.2. Here a required 

dependency exists between 𝑣2.3.1 and variants 𝑣1.1 that means anyone cannot select 

𝑣2.3.1 unless 𝑣1.1 is selected. Another requires dependency also exist between the 

variant 𝑣2.4 and 𝑣3.2. Here also anyone cannot select 𝑣2.4 unless he selects 𝑣3.2. 

Mathematical analysis described above tells us that G2 is valid for this input. 

 

G3:  

(𝑣3.1⨁𝑣3.2) ⟺ 𝑣3  
= (𝐹⨁𝑇) ⟺ 𝑇  
 = 𝑇 ⟺ 𝑇              
= 𝑇                    
 
Here𝑣3.1 and 𝑣3.2 are mutually exclusive to each other so we use an XOR (⊕) 

notation between them and also only that time G3 is True when both 𝑣3 and any one 
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from 𝑣3.1 and  𝑣3.2  is true. Here we have seen that 𝑣3 and 𝑣3.2  is selected. 

Mathematical analysis given above tells us that G3 is valid for this input combination. 

 

G4: 

(𝑣4.1 ∨ 𝑣4.2 ∨ 𝑣4.3 ∨ 𝑣4.4 ∨ 𝑉4.5) ⟺ 𝑣4  

= (𝑣4.1 ∨ 𝑣4.2 ∨ 𝑣4.3 ∨ ((𝑣4.4.1 ⊕ 𝑣4.4.2) ⟺ 𝑣4.4) ∨ 𝑣4.5) ⟺ 𝑣4  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ ((𝐹 ⊕ 𝑇) ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ (𝑇 ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ 𝑇 ∨ 𝑇) ⟺ 𝑇  

= 𝑇 ⟺ 𝑇  

= 𝑇  

 

Here variant 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4, 𝑣4.5 are connected with their variation point 

𝑉4 with Or (∨) relationship, which means we can select one or more feature. In this 

scenario G4 will valid when at least one of the variant from 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4,

𝑣4.5  will be true. Also variation point 𝑣4.4 contains two variants 𝑣4.4.1, 𝑣4.4.2. Here 

a required dependency exists between 𝑣4.4.1 and variants𝑣1.1  that means anyone 

cannot select 𝑣4.4.1 unless 𝑣1.1 is selected. Another requires dependency also exist 

between the variant 𝑣4.5 and 𝑣3.2. Here also anyone cannot select 𝑣4.5  unless he 

selects 𝑣3.2. Mathematical analysis described above tells us that G4 is valid for this 

input combination. 

 

As the sub-graph G1, G2, G3 and G4 are evaluate to TRUE, the product model is 

valid. However, variant dependencies are not considered in this case. Dependencies 

among variants are defined as additional constraints which must be checked 

separately apart from checking the validity of the sub-graphs. Evaluating the 

dependencies of the selected variants, we get, 

 

Dependency: 

 

(𝑣2.3.1 ⟹ 𝑣11) ∧ (𝑣2.4 ⟹ 𝑣3.1) ∧ (𝑣4.4.2 ⟹ 𝑣1.1) ∧ (𝑣4.5 ⟹ 𝑣3.1)  

= 𝑇 ∧ 𝑇 ∧ 𝑇 ∧ 𝑇  

= 𝐹  

 

Though all the sub-graphs are valid and also dependency among the variant are valid 

so it concludes that the selected features from the feature model create a valid 

product. 

 

3.5.2 Example 2 
 

Suppose the selected variants are 𝑣1, 𝑣1.2, 𝑣2, 𝑣2.3, 𝑣2.3.1, 𝑣2.4, 𝑣3, 𝑣3.2, 𝑣4,

𝑣4.1, 𝑣4.4, 𝑣4.4.2 and  𝑣4.5 . Now our work is to check this input combination can 

build a valid product. To do this First we have to check whether each individual sub-

graph is valid or not, then the dependency associate with them and at last we have to 
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check whether the whole graph can build a valid product. Here we check the validity 

of the sub-graph G1, G2, G3 and G4 by substituting the truth values of the variants of 

the sub-graphs. 

G1: 

(𝑣1.1⨁𝑣1.2) 

= (𝐹⨁𝑇) ⟺ 𝑇 

= 𝑇 ⟺ 𝑇 

= 𝑇 

 

Here 𝑣1.1 and 𝑣1.2 are mutually exclusive to each other so we use an XOR (⊕) 

notation between them and also only that time G1 is True when both 𝑣1 and any one 

from 𝑣1.1 and  𝑣1.2  is true. Here we have seen that 𝑣1 and  𝑣1.1  is selected. 

Mathematical analysis given above tells us that G1 is valid for this input combination. 

 

G2:  

(𝑣2.1 ∨ 𝑣2.2 ∨ 𝑣2.3 ∨ 𝑣2.4) ⟺ 𝑣2  

= (𝑣2.1 ∨ 𝑣2.2 ∨ ((𝑣2.3.1 ⊕ 𝑣2.3.2) ⟺ 𝑣2.3) ∨ 𝑣2.4) ⟺ 𝑣2  

= (𝐹 ∨ 𝑇 ∨ ((𝐹 ⊕ 𝑇) ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝐹 ∨ 𝑇 ∨ (𝑇 ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ⟺ 𝑇)  

= 𝑇  

 

Here variant 𝑣2.1, 𝑣2.2, 𝑣2.3, 𝑣2.4 are connected with their variation point 𝑣2 with 

Or (∨) relationship, that means we can select one or more feature. In this scenario G2 

will valid when at least one of the variant from 𝑣2.1, 𝑣2.2, 𝑣2.3 and  𝑣2.4 will be 

true. Also variation point 𝑣2.3 contains two variants 𝑣2.3.1and𝑣2.3.2. Here a required 

dependency exists between 𝑣2.3.1 and variants 𝑣1.1 that means anyone cannot select 

𝑣2.3.1 unless 𝑣1.1 is selected. Another requires dependency also exist between the 

variant 𝑣2.4 and  𝑣3.2. Here also anyone cannot select 𝑣2.4 unless he selects 𝑣3.2. 

Mathematical analysis described above tells us that G2 is valid for this input 

combination. 

 

G3:  

(𝑣3.1⨁𝑣3.2) ⟺ 𝑣3  

= (𝑇⨁𝐹) ⟺ 𝑇  

 = 𝑇 ⟺ 𝑇              

= 𝑇                    
 
Here𝑣3.1 and 𝑣3.2 are mutually exclusive to each other so we use an XOR (⊕) 

notation between them and also only that time G3 is True when both 𝑣3 and any one 

from 𝑣3.1  and 𝑣3.2  is true. Here we have seen that 𝑣3 and  𝑣3.2  is selected. 

Mathematical analysis given above tells us that G3 is valid for this input combination. 
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G4: 

(𝑣4.1 ∨ 𝑣4.2 ∨ 𝑣4.3 ∨ 𝑣4.4 ∨ 𝑉4.5) ⟺ 𝑣4  

= (𝑣4.1 ∨ 𝑣4.2 ∨ 𝑣4.3 ∨ ((𝑣4.4.1 ⊕ 𝑣4.4.2) ⟺ 𝑣4.4) ∨ 𝑣4.5) ⟺ 𝑣4  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ ((𝑇 ⊕ 𝐹) ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ (𝑇 ⟺ 𝑇) ∨ 𝑇) ⟺ 𝑇  

= (𝑇 ∨ 𝐹 ∨ 𝐹 ∨ 𝑇 ∨ 𝑇) ⟺ 𝑇  

= 𝑇 ⟺ 𝑇  

= 𝑇  

 

Here variant 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4, 𝑣4.5 are connected with their variation point 

𝑉4  with Or (∨) relationship, which means we can select one or more feature. In this 

scenario G4 will valid when at least one of the variant from 𝑣4.1, 𝑣4.2, 𝑣4.3, 𝑣4.4,

𝑣4.5 will be true. Also variation point 𝑣4.4 contains two variants 𝑣4.4.1 and 𝑣4.4.2. 

Here a required dependency exists between 𝑣4.4.1  and variants 𝑣1.1  that means 

anyone cannot select 𝑣4.4.1 unless 𝑣1.1 is selected. Another requires dependency also 

exist between the variant 𝑣4.5 and 𝑣3.2. Here also anyone cannot select 𝑣4.5 unless 

he selects 𝑣3.2. Mathematical analysis described above tells us that G4 is valid for 

this input combination. 

 

As the sub-graph G1, G2, G3 and G4 are evaluate to TRUE, the product model is 

valid. However, variant dependencies are not considered in this case. Dependencies 

among variants are defined as additional constraints which must be checked 

separately apart from checking the validity of the sub-graphs. Evaluating the 

dependencies of the selected variants, we get, 

 

Dependency:    

 

(𝑣2.3.1 ⟹ 𝑣11) ∧ (𝑣2.4 ⟹ 𝑣3.1) ∧ (𝑣4.4.2 ⟹ 𝑣1.1) ∧ (𝑣4.5 ⟹ 𝑣3.1)  

= 𝑇 ∧ 𝐹 ∧ 𝑇 ∧ 𝐹  

= 𝐹  

 

Here we have seen that for the current input combination all the sub-graph gives valid 

result but we do not get a valid result for dependency. When we define dependency 

we have seen that 𝑣2.4 require the selection of variant 𝑣3.2 but here  𝑣3.1 is selected 

so (𝑣2.4 => 𝑣3.1) gives false result. Also (𝑣4.5 => 𝑣3.1) gives false result. Though 

all the dependencies between variants are connected through AND (∧) operator. So 

we get false value while analyzing dependency. So it is impossible to construct a valid 

Product. 
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CHAPTER 4 
Alloy Verification 
 

4.1  Representing our feature model using Alloy 
 

Though the feature models that we analysis here is so vast so it would be very 

difficult to represent the whole feature model in Alloy. So we break the whole feature 

diagram into pieces. Then we try to encode each small pieces using alloy syntax. We 

assume that this small piece give the correct result then after integrating all small 

pieces we can get the result about whether the feature model will work correctly or 

not. To do this first we take a small part of the CAD system. We can represent this 

part as below. 

 
 

Figure 4.1: Small part of CAD system 

 

In Alloy, one signature can extend another, establishing that the extended signature 

(sub signature) is a subset of the parent signature. Firstly, we declare its elements; a 

singleton (one) sub signature, which has exactly one object, for each FM element.  

 

 
 

Figure 4.2: Partial CAD system feature tree 

 

The FM in Figure 4.1 is represented by CAD, which extends FM, and presents two 

features. A singleton signature is declared for each feature name. Finally we state 

CAD’s features in a fact (fact), which packages formulas that always hold, such as 
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invariants about the elements. 

 

one sig CAD extends 

FM{} one sig v1 

extends FM1{} 

one sig v1.1,v1.2 extends Name{} 

factCADFeatures { 

CAD.features1=v1 

v1.features=v1.1+v1.2 

} 

 

The + operator denotes the set union operator. Our main goal is to reason whether a 

transformation preserves or increases FM configurations. For that, FM semantics must 

be specified in Alloy. One approach is to declare an Alloy function yielding a set of 

valid configurations for a FM. By our concern in improving analysis performance, we 

cannot declare a semantics function for all FMs, which could be very inefficient. We 

then specified a semantics predicate for each FM. Part of this predicate is fixed for all 

FMs. The other part depends on its relationships and formulas. This encoding is 

systematic, straightforward for being included into tool support. Next, we explain the 

encoding through an example, later generalizing our approach. For each FM, a 

predicate is defined, containing all FM formulas directly translated to their semantics 

function. Using this approach, there is no predicate checking whether a configuration 

satisfies a formula. The immutable part of the semantics predicate introduce the 

following constraints: every configuration includes a subset of FMs names, and the 

root must always be included, as declared next. We call them implicit constraints 

 

pred semanticsV1[conf:set Name] { 

conf  in v1.features                  

alternative[v1.1,v1.2,conf] 

} 

Then all relationships of the FM are declared in terms of the predicates alternative 

[v1.1, v1.2, conf], In order to systematically specify a FM into Alloy using our 

encoding, the following steps must be taken: 

 

• create a singleton sub signature for each feature extending from Name  

 

• Specify the semantics predicate containing the relationships (reusing the en-

coding predicates) and formulas (using Alloy operators) in the FM.  

 

Based on the previous encoding, we can perform automatic analysis on FMs using the 

Alloy Analyzer. Figure 4.1 has exactly one FM and some feature names. Since it is 

known the exact number of objects for all signatures (FM and Name) in our encoding, 

we can perform a complete analysis using the Alloy Analyzer in the FM of Figure 4.1. 
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run semanticsV1 

 

The run analysis command must specify a scope for all signatures declared. Our 

encoding contains 2 signatures. The previous fragment declares the run command for 

one FM (we are analyzing only one FM) and for 2 names (the FM encoded contains 4 

features).  

 

4.2  Alloy Encoding 
 

4.2.1  Checking Valid Configuration 
 
sig FM{ 

features: set Name 

} 

sig Name {} 

sigconf{} 

pred optional[A:Name,B:setName,conf:set Name] { 

B in conf =>A in conf 

} 

pred mandatory[A:Name,B:setName,conf:set Name] { 

A in conf<=> B in conf 

} 

pred alter[A:Name,B:setName,conf:set Name]{ 

A in conf! B in conf 

} 

pred root[A:Name,conf:set Name] { 

A in conf 

} 

pred parent[A:Name,B:setName,conf: set Name]{ 

 

! (A in B) 

} 

predorFeature[A:Name, children:setName,conf: set Name]{ 

A in conf<=> some c: children | c in conf 

#children >1 

} 

pred alternative[A:Name,children:setName,conf:set Name]{ 

orFeature[A,children,conf] 

# (children &conf) <=1 

} 

pred include[A:Name,B:Name,conf: set Name]{ 

A in conf => B in conf 

} 

one sig M extends FM{} 
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one sig CAD,v1,v2,v3,v4,v11,v12,v21,v22,v23,v24,v231,v43, 

v232, v31, v41, v42, v44, v45, v441, v442 extends Name {} 

factMFeatures{ 

M.features=CAD+v1+v2+v3+v4+v11+v12+v21+v22+v23+v24+v231+ 

v232+v31+v32+v41+v42+v43+v44+v45+v441+v442 

} 

predsemanticsM[conf : set Name] 

{ 

conf in M.features 

root [CAD , conf] 

parent[CAD,{v1+v2+v3+v4},conf] 

parent[v1,{v11+v12},conf] 

parent[v2,{v21+v22+v23+v24},conf] 

parent[v23,{v231+v232},conf] 

parent[v3,{v31+v32},conf] 

parent[v4,{v41+v42+v43+v44+v45},conf] 

parent[v44,{v441+v442},conf] 

optional[CAD,v3,conf] 

mandotary[CAD,{v1+v2+v3},conf] 

alternative[v1,{v11+v12},conf] 

orFeature[v2,{v21+v22+v23+v24},conf] 

alternative[v23,{v231+v232},conf] 

alternative[v3,{v31+v32},conf] 

orFeature[v4,{v41+v42+v43+v44+v45},conf] 

alternative[v44,{v441+v442},conf] 

include[v441,v11,conf] 

include[v231,v11,conf] 

include[v24,v32,conf] 

include[v45,v32,conf] 

} 

predvalidConfig { 

semanticsM[CAD+v1+v11+v2+v21+v23+v231+v3+v31+v4+v44+v441] 

} 

runvalidConfig 

 

Output Meta Model 
 

While checking for valid configuration we create a predicate validConfig. We selects 

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣11, 𝑣21, 𝑣22, 𝑣23, 𝑣231, 𝑣232, 𝑣24, 𝑣31, 𝑣32, 𝑣41, 𝑣42, 𝑣43,

𝑣44, 𝑣45, 𝑣441, 𝑣442 Instead of using our feature of feature tree.  Instead of using 

our feature of feature tree. We have this option to select. So we need to select some of 

the features in order to get our desired product. Here our target is to check whether 

alloy gives us a valid result for our selection of features.in predValidConfig we select 

𝐶𝐴𝐷, 𝑣1, 𝑣11, 𝑣2, 𝑣21, 𝑣23 , 𝑣231, 𝑣3, 𝑣31, 𝑣4, 𝑣44, 𝑣441 .we have already 
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seen in the logic part that this combination gives us a valid result. So when we run this 

predicate we get a valid result, which is indicated by the alloy result display screen, 

where it shows that an instance is found. Which is shown in Figure 4.3.Also when we 

click on the ”instance” text then we get a meta model which actually display the graph 

of  our feature model and it is shown in Figure 4.4. 

 
 

 
 

Figure 4.3: Check for Validity 

 

 

 
 

Figure 4.4: Meta model of valid configurations 

 

 
4.2.2   Checking Invalid Configuration 
 

sig FM{ 

features: set Name 

} 

sig Name {} 

sigconf{} 
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pred optional[A:Name,B:setName,conf: set Name] { 

B in conf =>A in conf 

} 

pred mandatory[A:Name,B:setName,conf:set Name] { 

A in conf<=> B in conf 

} 

pred alter[A:Name,B:setName,conf:set Name]{ 

A in conf! B in conf 

} 

pred root[A:Name,conf:set Name] { 

A in conf 

} 

pred parent[A:Name,B:setName,conf:set Name]{ 

 

!(A in B) 

} 

predorFeature[A:Name,children:setName,conf: set Name]{ 

A in conf<=> some c: children | c in conf 

#children >1 

} 

pred alternative[A:Name,children:setName,conf:set Name]{ 

orFeature[A,children,conf] 

#(children &conf) <=1 

} 

pred include[A:Name,B:Name,conf: set Name]{ 

A in conf => B in conf 

} 

one sig M extends FM{} 

one sig CAD,v1,v2,v3,v4,v11,v12,v21,v22,v23,v24,v231,v43, 

v232, v31, v32, v41, v42, v44, v45, v441, v442 extends 

Name {} 

factMFeatures{ 

M.features=CAD+v1+v2+v3+v4+v11+v12+v21+v22+v23+v24+v231+ 

v232+v31+v32+v41+v42+v43+v44+v45+v441+v442 

} 

predsemanticsM[conf :set Name] 

{ 

conf in M.features 

root [CAD,conf] 

parent[CAD,{v1+v2+v3+v4},conf] 

parent[v1,{v11+v12},conf] 

parent[v2,{v21+v22+v23+v24},conf] 

parent[v23,{v231+v232},conf] 

parent[v3,{v31+v32},conf] 
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parent[v4,{v41+v42+v43+v44+v45},conf] 

parent[v44,{v441+v442},conf] 

optional[CAD,v3,conf] 

mandotary[CAD,{v1+v2+v3},conf] 

alternative[v1,{v11+v12},conf] 

orFeature[v2,{v21+v22+v23+v24},conf] 

alternative[v23,{v231+v232},conf] 

alternative[v3,{v31+v32},conf] 

orFeature[v4,{v41+v42+v43+v44+v45},conf] 

alternative[v44,{v441+v442},conf] 

include[v441,v11,conf] 

include[v231,v11,conf] 

include[v24,v32,conf] 

include[v45,v32,conf] 

} 

predNotvalidConfig { 

semanticsM[CAD+v1+v11+v12+v2+v21+v23+v231+v232+v3+v31+v4+

v44+v441] 

} 

runNotvalidConfig 

 

While checking for valid configuration we create a predicate validConfig. We selects 

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣11, 𝑣12, 𝑣21, 𝑣22, 𝑣23, 𝑣231, 𝑣232, 𝑣24, 𝑣31, 𝑣32, 𝑣41, 𝑣42,

𝑣43, 𝑣44, 𝑣45, 𝑣441, 𝑣442 Instead of using our feature of feature tree. We have 

these option to select. So we need to select some of these features in order to get our 

desired product. Here our target is to check whether alloy gives us a valid result for 

our selection of features. In pred NotvalidConfig we select𝐶𝐴𝐷, 𝑣1, 𝑣11, 𝑣12, 𝑣2,

𝑣21, 𝑣23, 𝑣231, 𝑣3, 𝑣31, 𝑣4, 𝑣44, 𝑣441. we has already seen in the logic part 

that this combination gives us a not valid result. So when we run this predicate we get 

a not valid result, which is indicated in the alloy result display screen, where it shows 

that an instance is not found. This is shown in Figure 4.5. Here though we reach to our 

destination, but still we have lots of things to do. Our future work using alloy will be 

the calculation of the number of valid product that can be constructed also though 

alloy is completely text based so if we can build a graphical interface and also 

connected with the alloy analyzer, then it will be easier for people to check any 

feature model created by them. 
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Figure 4.5: Check for error 
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CHAPTER 5 
Conclusion 
 

5.1 Summary 
 

Successful development of software product line requires appropriate organization 

and management of products requirements. A significant characteristic of developing 

product line is the management of the variants which is a crucial success factor of 

product line. 

 

We presented an approach to verifying SPL feature models to be able to create a 

decision table to generate customized product by using formal reasoning techniques. 

We provided formal semantics of the feature models by using first-order logic and 

specified the definitions of six types of variant relationships. We also defined cross-

tree variant dependencies. Examples are provided describing various analysis 

operations, such as validity, inconsistency, dead feature detection etc. We have 

addresses most of the analysis questions mentioned in [3, 4]. Finally, we encoded our 

logical notations into Alloy to be able to automatically verify any analysis related 

queries. A knowledge-based approach to specify and verify feature models is 

presented in [9]. Comparing to that presentation, our definition relies on first-order 

logic which can be directly applied in many verification tools as in [19]. In contrast to 

other approaches [2, 5, 7,12, 15, 21], our proposed method defines across-graph 

variant dependencies as well as dependencies between variation point and variants. 

 

5.2 Future Work 
 

Our particular interest is developing a tool to automatically generate customized 

product based on user requirement. In contrast to other automated analysis of feature 

model tools, e.g. [20], at this stage, our tool is domain specific where these automated 

tools can be used as a supporting tool and can be used to automatically verify the 

derived product specification. We are also planning to model the UML class diagrams 

of the domain added with variants.  
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