

 CORBA Based Distributed Framework for GPGPU processing

By

Yassser Khan

ID: 2011-2-60-035

&

Monirul Islam

ID: 2011-3-60-028

Supervised By

Dr. Md. Shamim Akhter

Assistant Professor

Department of Computer Science and Engineering

East West University

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelors

of Science in Computer Science and Engineering

to the

Department of Computer Science and Engineering

East West University

Dhaka, Bangladesh

i

Declaration

We hereby declare that, this report was done under CSE497 and has not been submitted

elsewhere for requirement of any degree or diploma or for any purpose except for publication

Yasser Khan

ID: 2011-2-60-035

Department of Computer Science and Engineering

East West University

Monirul Islam

ID: 2012-3-60-028

Department of Computer Science and Engineering

East West University

ii

Letter of Acceptance

I hereby declare that this thesis is from the student’s own work and best effort of mine, and all

other sources of information used have been acknowledged. This thesis has been submitted with

our approval.

Dr. Md. Shamim Akhter Supervisor

Assistant Professor

Department of Computer Science and Engineering

East West University

Dr. Mozammel Huq Azad Khan Chairperson

Chairperson and Professor

Department of Computer Science and Engineering

East West University

http://www.ewubd.edu/mhakhan-page/

iii

Acknowledgement

We would like to thank and pay our sincere gratitude to our mentor and thesis Supervisor Dr.

Md. Shamim Akhter for supporting us throughout our endeavor with his extensive knowledge of

the related grounds, his tremendous efforts and robustness that compelled us succeeding endure

the ordeals and his extraordinary visions that enthralled us to refine our work to the finest point.

We also would like to thank our fellow acquaintance Tawsif F. Rahman for providing us with a

much clearer idea of the requirements that we are expected to achieve.

We thank our beloved family and friends, for supporting us throughout the time of our

experiments that allowed us to be able to come up with what we really have today.

iv

Abstract

We present a CORBA based distributed system that implemented to execute CUDA program

from a remote GPU enable machine. CPU is unable to execute that program. So, we introduced

CORBA based distributed system to provide the services so that CPU users can get the facilities

of GPU based system. Where CPU users will act as client and GPU based system will act as

server. Clients can request to the server to use its’ GPU based system which is costly setup for

users.

v

Table of Content

Contents

Declaration i

Letter of Acceptance ii

Acknowledgement iii

Abstract iv

Table of Content v

List of Figure vii

Chapter 1 1

Introduction 2

1.1 Overview 2

1.2 Scope and limitation 2

1.3 Objective: 2

1.4 Contribution Outlining 2

Chapter 2 3

Distributed System 4

2.1 Overview 4

2.2 What is distributed system? 4

2.3 Middleware 5

2.3.1 Examples of Middleware 6

Chapter 3 7

CORBA 8

3.1 What is CORBA? 8

3.2 How CORBA architecture works 8

3.3 Security 9

Chapter 4 10

Basic Introduction to CPU and GPU 11

4.1 GPU based system architecture 11

4.1.1 Streaming Multiprocessor (SM) 11

4.1.2 Streaming Processor / CUDA core 12

4.2 CPU VERSUS GPU 12

vi

Chapter 5 14

Implementation 15

Chapter 6 21

Conclusion 22

6.1 Conclusion 22

6.2 Future Plan 22

Appendix 23

Code for Client-Server CORBA Architecture 23

vii

List of Figure

FIGURE 1 DISTRIBUTED SYSTEM ARCHITECTURE 5

FIGURE 2 MIDDLEWARE(DISTRIBUTED SYSTEM SERVICES) 6

FIGURE 3 IDL AND ORB 8

FIGURE 4 CORBA BASED DISTRIBUTED ARCHITECTURE 9

FIGURE 5 THE DIFFERNCE BETWEEN CPU AND GPU 13

1

Chapter 1

INTRODUCTION

2

Introduction

1.1 Overview

GPU enabled machines are more costly compared to CPU enabled machines. . A simple way to

understand the difference between a CPU and GPU is to compare how they process tasks. GPU

can implement a lot of task at a single time where CPU is unable to do that. So, we have

introduced CORBA based distributed system which is language and platform independent. CPU

users can invoke to GPU enabled machines so that CPU users can use GPGPU processing.

1.2 Scope and limitation

Scope:

 Faster calculation of enormous size of data rather than serial implementations,

 lesser memory consumptions,

 Rendition of previously introduced algorithms which lacks in the fields of requirements

to be accepted as new standard.

1.3 Objective:

 To introduce CORBA architecture with GPGPU

 Providing GPU services to clients

 Saving consumptions of time

 Drawing a standard design so that the oversized data might not result in retaliate in long

run by adding overhead to the total execution time

1.4 Contribution Outlining

In next chapter there are described a concept of Distributed system and Middleware. Chapter 3

contains CORBA architecture and Chapter 4 has GPGPU based architecture. At last we have

some Security in Chapter 5 and Chapter 6 contains Implementations of our project.

3

Chapter 2

Distributed System

4

Distributed System

2.1 Overview

Now-a-days, computer networks are almost in everywhere. All of these networks such as factory

networks, mobile phone networks, home networks, campus networks, corporate networks etc. are

connected through the internet. Two computer devices may communicate with each other which

can be situated in a same room or two other continents. So, computer networks can be separated

by any distance. The best-known computer network is the Internet.

2.2 What is distributed system?

We define distributed system as one in which software or hardware located at networked

computers communicates or coordinate their actions by passing messages. [1] A distributed

architecture is an architecture supporting the development of applications and services that can

exploit a physical architecture consisting of multiple, autonomous processing elements. Those

elements do not share primary memory but cooperate by sending messages over the network. A

distributed system is a collection of networks that appears to the users of the system as a single

coherent system.

https://en.wikipedia.org/wiki/Internet

5

Figure 1 Distributed System Architecture

2.3 Middleware

A distributed system organized as middleware. A middleware layer runs on all machines, and

offers a uniform interface to the system. Middleware is a general term for software that serves to

"glue together" separate, often complex and already existing, programs. Some software

components that are frequently connected with middleware include enterprise applications and

Web services.[3]

6

 Figure 2 Middleware (Distributed system services)

2.3.1 Examples of Middleware

Different time different Middleware layers are introduced. Some of the Middleware layers :

 RPC (Request Procedure Call)

 RMI (Remote Method Invocation)

 CORBA (Common Object Request Broker)

 DCOM (Distributed Common Object Model)

7

Chapter 3

CORBA

8

CORBA

3.1 What is CORBA?

CORBA is a software standard that is defined and maintained by the Object Management Group

(OMG). Common Object Request Broker Architecture (CORBA) is an architecture and specification for

creating, distributing, and managing distributed program objects in a network. It allows programs at

different locations and developed by different vendors to communicate in a network through an “interface

broker”.

Figure 3 IDL and ORB

3.2 How CORBA architecture works

CORBA automates many common network programming tasks such as object registration,

location, and activation; request demultiplexing; framing and error-handling; parameter

marshalling and unmarshalling; and operation dispatching. The most essential concept of this

architecture is Object Request Broker (ORB). ORB support in a network of clients and server on

different computers that means a client program can request services from a server program or object

without having to understand where the server is in a distributed network or what the interface to

the server program looks like. To make requests or return replies between the ORBs, programs

use the General Inter-ORB Protocol (GIOP) and, for the Internet, it’s Internet Inter-ORB

Protocol (IIOP). IIOP maps GIOP requests and replies to the Internet's Transmission Control

Protocol (TCP) layer in each computer. CORBA is a software standard that is defined and

maintained by the Object Management Group (OMG).

http://searchcio-midmarket.techtarget.com/definition/distributed
http://searchsoa.techtarget.com/definition/object
http://searchcio-midmarket.techtarget.com/definition/IIOP
http://searchnetworking.techtarget.com/definition/TCP

9

Figure 4 CORBA based Distributed Architecture

3.3 Security

 Provides a high-level security framework

 Supports authentication of remote users and services, access control for key objects and

services, auditing functions, ability to establish secure communications channels between

clients and object services

 Encryption functions are not included in the framework

10

Chapter 4

Basic introduction to GPU and CPU

11

Basic Introduction to CPU and GPU

Using GPU to compute general computational work is known as GPGPU (General purpose

GPU). GPU has hundreds of cores that can execute multiple numbers of instructions in parallel

and it is far greater than modern CPUs with 4 or 8 cores. GPU Processing Capacity limited to

independent fragments. But these fragments can process in those cores in parallel. So, a

programmer should choose those parts of a program that can be fragmented and those fragments

are independent from each other. So, it can be said that, GPU can process a multiple times of a

same operation on many records in a stream in parallel. A set of records needs similar

computation is the Stream. We can say that, the parallelism is provided by Streams.

4.1 GPU based system architecture

The GPU multiprocessors are worked as co-processors for CPU. It more likes an acceleration

device for CPU. When CPU invokes a kernel to GPU that kernel executes in parallel number of

times in GPUs cores. So, how many tasks a GPU can complete at a time depends on its number

of SM and cores per SM. Simple adding more SM can make a device completed more task.

Total no. of SM and SP per SM depends on different architecture and model of device.

The GPU architecture can be described using 3 key words [1]

 Memory(register, shared global)

 Multiprocessors (SM)

 Stream processors (SP) or cores

4.1.1 Streaming Multiprocessor (SM)

Streaming Multiprocessors(SM) are accumulation of multiple independent operators known as

core/streaming processor. Upon receiving an execution command from CPU, the GPU SMs are

awaken and distributed with equalized workload of “responsibilities” which are so referred as

“kernel”.

Having two SMs on the delineated GPU , it is capable of executing both SMs at the same time

that is where the parallelism kicks in ; meaning each workload of two different SMs ends at the

same given moment ensued by very same initiating moment .

As each kernel is primarily composed of BLOCKS and THREADS, SMs are designed to execute

the BLOCKS. Given (i.e.) out of two executable blocks each BLOCKs were accommodated by

12

each SM starts execution at time=0; they are bound to terminate the both operations at the same

latter time of time=3.

Though the bigger picture can be convenient enough considering SMs to be responsible for

parallelism in GPU it would not be possible without the contribution of streaming processors.

4.1.2 Streaming Processor / CUDA core

Throughout the course of development of NVIDIA GPUs capacity enhancement marketing

policy took a subtle turn of coining a term “core” , that has previously been always implied only

to specify CPU configuration .

A CUDA core is actually a rendition of streaming processor, which aside from assisting the

parallelism it actually fuels the core mechanism of the desired process (requirement to execute

Kernel). Each SM is allotted with equal number of streaming processors (SPs). The role of SPs

can sometimes be undermined by exploiting nature of SMs but it is the SPs that and only that

enables the SMs to be exploited with such a high scale.

SPs are capable of handling threads only. If a kernel is thrown into SMs, the SMs would

distribute all the instructions residing in the kernel to all available SPs. As the GPU is designated

to execute the same kernel depending on the number of iterations that must be executed to

suffice the requirement demanded by user , SMs would follow the same rule of distribution ,

meaning that same kernel would be distributed as threads recurrently to all available SPs (lesser

if requirement is set to a lower level)

Considering the kernel would require the SMs to execute the same operations residing kernel for

20 times and the SMs are sufficed with 192 SPs, each set of operations (THREADS) would be

distributed to each available SPs.

In short it could be expounded as each SP must execute at least one and more threads in parallel.

4.2 CPU VERSUS GPU

A simple way to understand the difference between a CPU and GPU is to compare how they

process tasks. A CPU consists of a few cores optimized for sequential serial processing while a

GPU has a massively parallel architecture consisting of thousands of smaller, more efficient

cores designed for handling multiple tasks simultaneously [5].

GPUs have thousands of cores to process parallel workloads efficiently

13

Figure 5 the difference between CPU and GPU

14

Chapter 5

Implementation

15

Implementation

The complete execution process can be divided into two parts: first one is client side request and

other one is client side acceptance.

Client side:

 “cd C:\thesis” command entering into ‘thesis’ folder that containing the client code.

“idlj -fall CalcyInterface.idl” to create a java binding from a given idl file

16

“javac CalcServer.java CalcApp/*.java” the ‘javac’ tool using on the command read class and

interface definitions, written in the java programming language and compiles them into bytecode

class files.

If the connection established successfully the blank window will appear of an exe file named

ORBD (Object request broker daemon) used to enable clients to transparently locate and invoke

persistent objects on servers in the CORBA environment.

17

The port no. and IP address in the command are using to establish a connection from client to

server.

The client will be will be shown options as showing above. The code will perform several

operations like ADD, SUB, and Merging.

Server side:

Open directory that contains the server codes.

 “idlj -fall CalcyInterface.idl” to create a java binding from a given idl file

18

“javac CalcServer.java CalcApp/*.java” the ‘javac’ tool using on the command read class and

interface definitions, written in the java programming language and compiles them into bytecode

class files.

Start ORBD application and accept the connection request from server and completed the

connection.

19

Both of the system is now ready for the operations.

20

Outputs:

Output of a complete CUDA program that adds 2 arrays of 4096 integer each on server side and

the operation has been done using GPU cores and take a screenshot of the outputs and save in on

server computer.

!II C:\W,J>dow>\syslem321.cmd ,exe - java Ca lcServer -ORBln,halPort 1050

21

Chapter 6

Conclusion

22

Conclusion

6.1 Conclusion

In this project we have developed a server-client program that can send request to the sever end

for GPGPU processing. Whether the client is using CPU enabled machine, the user can get the

GPU computational result from server end. CORBA is platform and language independent

architecture. This program is developed through CORBA based architecture.

6.2 Future Plan

Our future plan is to establish a GPU enabled server machine and provide service

to the client. 3D video rendering need a highly computational GPU which might

have a costly setup for most of the people. Future games also needed highly

computational GPU. So, we want to provide the GPU services through GPU this

GPU enabled machine server.

23

Appendix

Code for Client-Server CORBA Architecture
Client Code:

import CalcApp.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

import org.omg.PortableServer.POA;

import java.util.Properties;

import java.awt.Desktop;

import java.io.File;

import java.io.IOException;

import java.io.PrintWriter;

import java.io.FileWriter;

import java.io.DataInputStream;

import java.io.BufferedReader;

import java.io.BufferedInputStream;

import java.io.BufferedWriter;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.io.Reader;

import java.io.*;

import java.io.InputStream;

import java.awt.AWTException;

24

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.Toolkit;

import java.awt.image.BufferedImage;

import javax.imageio.ImageIO;

import java.net.*;

import java.io.*;

class CalcImpl extends CalcPOA

{

 private ORB orb;

 public void setORB(ORB orb_val)

 {

 orb = orb_val;

 }

 public float add(float val1, float val2)

 {

 float res = val1 + val2;

 return res;

 }

 public float sub(float val1, float val2)

 {

 float res = val1 - val2;

 return res;

25

 }

 public float multi(float val1, float val2)

 {

 float res = val1 * val2;

 return res;

 }

 public float div(float val1, float val2)

 {

 float res = val1 / val2;

 return res;

 }

 public void shutdown()

 {

 orb.shutdown(false);

 }

 public void runMyOwnExe(){

 Desktop desktop = Desktop.getDesktop();

 try

 {

 desktop.open(new

File("c:\\thesis\\a.exe"));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

26

 public void snapshot() {

 try {

 Robot robot = new Robot();

 String format = "jpg";

 String fileName = "FullScreenshot." + format;

 Rectangle screenRect = new Rectangle(Toolkit.getDefaultToolkit().getScreenSize());

 BufferedImage screenFullImage = robot.createScreenCapture(screenRect);

 ImageIO.write(screenFullImage, format, new File(fileName));

 System.out.println("A full screenshot saved!");

 } catch (AWTException | IOException ex) {

 System.err.println(ex);

 }

 }

}

public class CalcServer

{

 public static void main(String args[])

 {

 try

 {

27

 ORB orb = ORB.init(args, null);

 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 rootpoa.the_POAManager().activate();

 CalcImpl calcImpl = new CalcImpl();

 calcImpl.setORB(orb);

 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(calcImpl);

 Calc href = CalcHelper.narrow(ref);

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 String name = "Calc";

 NameComponent path[] = ncRef.to_name(name);

 ncRef.rebind(path, href);

 System.out.println("CalculatorServer ready and waiting ...");

 orb.run();

 }

 catch (Exception e)

 {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

28

 System.out.println("CalculatorServer Exiting ...");

 }

}

Client Code :

import CalcApp.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import java.io.*;

import java.awt.Desktop;

import java.io.File;

import java.io.IOException;

import java.net.*;

import java.io.*;

public class CalcClient

{

 public void showMenu()

 {

 System.out.println("----------------------------------");

 System.out.println("0.Exit");

 System.out.println("1.Addition");

29

 System.out.println("2.Subtraction");

 System.out.println("3.Multiplicatin");

 System.out.println("4.Division");

 System.out.println("5.Run Exe");

 System.out.println("6.Take snap");

 System.out.println("----------------------------------");

 System.out.print("Enter your choice : ");

 }

 public float getValue() throws IOException

 {

 float val=0;

 try

 {

 System.out.print("Enter the value : ");

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 String s = br.readLine();

 val = Float.parseFloat(s);

 }

 catch (IOException e)

 {

 System.out.println(e);

 }

 return val;

 }

 public int getChoice() throws IOException

30

 {

 int val=0;

 try

 {

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 val = Integer.parseInt(br.readLine());

 System.out.println("----------------------------------");

 }

 catch (IOException e)

 {

 System.out.println(e);

 }

 return val;

 }

 public static void main(String args[])

 {

 Calc calcImpl = null;

 CalcClient cc = new CalcClient();

 try

 {

31

 ORB orb = ORB.init(args, null);

 org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 String name = "Calc";

 calcImpl = CalcHelper.narrow(ncRef.resolve_str(name));

 float val1 = 0;

 float val2 = 0;

 float res = 0;

 int ch = 1;

 while (ch != 0)

 {

 cc.showMenu();

 ch = cc.getChoice();

 switch (ch)

 {

 case 1:

 val1 = cc.getValue();

 val2 = cc.getValue();

 res = calcImpl.add(val1, val2);

 break;

32

 case 2:

 val1 = cc.getValue();

 val2 = cc.getValue();

 res = calcImpl.sub(val1, val2);

 break;

 case 3:

 val1 = cc.getValue();

 val2 = cc.getValue();

 res = calcImpl.multi(val1, val2);

 break;

 case 4:

 val1 = cc.getValue();

 val2 = cc.getValue();

 res = calcImpl.div(val1, val2);

 break;

 case 5:

 try{

 calcImpl.runMyOwnExe();

 }

 catch(Exception e){

 e.printStackTrace();

 }

 break;

 case 6:

 try{

 calcImpl.snapshot();

33

 }

 catch(Exception e){

 e.printStackTrace();

 }

 break;

 }

 System.out.println("----------------------------------");

 System.out.println("Result : "+res);

 System.out.println("----------------------------------");

 }

 calcImpl.shutdown();

 }

 catch (Exception e)

 {

 System.out.println("ERROR : " + e) ;

 e.printStackTrace(System.out);

 }

 }

}

34

Server Code:

import CalcApp.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

import org.omg.PortableServer.POA;

import java.util.Properties;

import java.awt.Desktop;

import java.io.File;

import java.io.IOException;

import java.io.PrintWriter;

import java.io.FileWriter;

import java.io.DataInputStream;

import java.io.BufferedReader;

import java.io.BufferedInputStream;

import java.io.BufferedWriter;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.io.Reader;

import java.io.*;

import java.io.InputStream;

import java.awt.AWTException;

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.Toolkit;

35

import java.awt.image.BufferedImage;

import javax.imageio.ImageIO;

import java.net.*;

import java.io.*;

class CalcImpl extends CalcPOA

{

 private ORB orb;

 public void setORB(ORB orb_val)

 {

 orb = orb_val;

 }

 public float add(float val1, float val2)

 {

 float res = val1 + val2;

 return res;

 }

 public float sub(float val1, float val2)

 {

 float res = val1 - val2;

 return res;

 }

 public float multi(float val1, float val2)

 {

36

 float res = val1 * val2;

 return res;

 }

 public float div(float val1, float val2)

 {

 float res = val1 / val2;

 return res;

 }

 public void shutdown()

 {

 orb.shutdown(false);

 }

 public void runMyOwnExe(){

 //Runtime.getRuntime().exec("C:\\thesis\\a.exe", null, new File("c:\\thesis"));

 Desktop desktop = Desktop.getDesktop();

 try

 {

 desktop.open(new

File("c:\\thesis\\a.exe"));

 //BufferedReader in = new

BufferedReader(new InputStreamReader(System.in));

 //PrintWriter out = new PrintWriter(new

FileWriter("output.txt"));

 //String m = in.readLine();

 // out.println(m);

 //out.close();

 } catch (IOException e) {

37

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 public void snapshot() {

 try {

 Robot robot = new Robot();

 String format = "jpg";

 String fileName = "FullScreenshot." + format;

 Rectangle screenRect = new Rectangle(Toolkit.getDefaultToolkit().getScreenSize());

 BufferedImage screenFullImage = robot.createScreenCapture(screenRect);

 ImageIO.write(screenFullImage, format, new File(fileName));

 System.out.println("A full screenshot saved!");

 } catch (AWTException | IOException ex) {

 System.err.println(ex);

 }

 }

}

public class CalcServer

{

 public static void main(String args[])

38

 {

 try

 {

 ORB orb = ORB.init(args, null);

 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 rootpoa.the_POAManager().activate();

 CalcImpl calcImpl = new CalcImpl();

 calcImpl.setORB(orb);

 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(calcImpl);

 Calc href = CalcHelper.narrow(ref);

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

 String name = "Calc";

 NameComponent path[] = ncRef.to_name(name);

 ncRef.rebind(path, href);

 System.out.println("CalculatorServer ready and waiting ...");

 ///TODO

39

 //while(true)

 /*{

 ServerSocket serverSocket = new ServerSocket(25);

 Socket socket = serverSocket.accept();

 System.out.println("Server Connected.");

 System.out.println("Accepted connection : " + socket);

 File transferFile = new File

("C:\\thesis\\FullScreenshot.jpg");

 byte [] bytearray = new byte [(int)transferFile.length()];

 FileInputStream fin = new FileInputStream(transferFile);

 BufferedInputStream bin = new

BufferedInputStream(fin);

 bin.read(bytearray,0,bytearray.length);

 OutputStream os = socket.getOutputStream();

 System.out.println("Sending Files...");

 os.write(bytearray,0,bytearray.length);

 os.flush();

 socket.close();

 System.out.println("File transfer complete");

 } */

 //

40

 orb.run();

 }

 catch (Exception e)

 {

 System.err.println("ERROR: " + e);

 e.printStackTrace(System.out);

 }

 System.out.println("CalculatorServer Exiting ...");

 }

}

Interface Code :

module CalcApp

{

 interface Calc

 {

 float add(in float value1,in float value2);

 float sub(in float value1,in float value2);

 float multi(in float value1,in float value2);

 float div(in float value1,in float value2);

41

 oneway void runMyOwnExe();

 oneway void snapshot();

 oneway void shutdown();

 };

};

42

Reference

[1] Distributed System Concepts and Design by George Coulouris, Jean Dollimore,

Tim Kindberg

[2] http://books.cs.luc.edu/distributedsystems/issues.html

[3] http://searchsoa.techtarget.com/definition/middleware

[4] CUDA C PROGRAMMING GUIDE By Nvidia corporation

[5] https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-

and-a-gpu/

http://dl.acm.org/author_page.cfm?id=81100460579&CFID=822910074&CFTOKEN=36525069
http://dl.acm.org/author_page.cfm?id=81100650307&CFID=822910074&CFTOKEN=36525069
http://books.cs.luc.edu/distributedsystems/issues.html
http://searchsoa.techtarget.com/definition/middleware

