
EAST WEST UNIVERSITY

Developing a User-friendly Tool for Executing Queries

over Hadoop Framework

Submitted by:

Tahira Bishwas Anny

ID: 2012-1-60-006

MD. Minhazur Rahman

ID: 2012-1-60-017

Supervised by:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of Computer Science and Engineering

East West University

A project submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering to

the Department of Computer Science and Engineering

August 2016

EAST
WEST
- "-------->I

i

Abstract

In Relational Database Management System, we always use query for retrieving any information

or storing information. But now-a-days, as the data volumes are increasing in every second, it’s
difficult to keep regular update of this data as a form of relational database. So we present a tool

which can deal with huge volume of unstructured data. There is no need to write any traditional

query for this tool. It works over any numbers of flat files for executing queries. It does not

directly ask for query from the user, rather it gives the user different menu base options and

conditions. Any user can access the tool very easily. It does not require any previous knowledge

about RDBMS or any other programming knowledge. The main goal of our project is to develop

that user friendly tool using which without having any knowledge of the used framework of the

developed tool, a particular user can have the benefit of executing queries.

ii

Declaration

We hereby declare that, this project was done under CSE497 and has not been

submitted elsewhere for requirement of any degree or for any reason except for

publication.

Tahira Bishwas Anny

ID: - 2012-1-60-006

Department of Computer Science and Engineering

East West University

MD. Minhazur Rahman

ID: - 2012-1-60-017

Department of Computer Science and Engineering

East West University

iii

Letter of Acceptance

This thesis is submitted by Tahira Bishwas Anny, Id: 2012-1-60-006 &MD.

Minhazur Rahman, Id: 2012-1-60-017 to the Department of Computer Science and

Engineering, East West University, Dhaka Bangladesh is accepted as satisfactory

for the partial fulfillment of the requirement for the degree of Bachelor of Science

in Computer Science and Engineering on August10
th
, 2016.

1. __________________

Dr. Mohammad Rezwanul Huq

Assistant Professor (Supervisor)

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

2. ______________________

Dr. Md. Mozammel Huq Azad Khan

Professor & Chairperson

Department of Computer Science and Engineering

 East West University, Dhaka, Bangladesh

iv

Acknowledgement

First of all, we would like to thank Almighty Allah for giving us the strength and patience.

We would not have been able to successfully complete this thesis without the support of

supervisor during past four months. My sincere thanks to Dr. Mohammad Rezwanul Huq. He has

been a source of inspiration for our throughout the process of the research and writing. His

feedback and insights were always valuable, and never went unused.

Our deep gratefulness to all of our teachers, who have trained us at East West University. Their

wonderful teaching methods improved our knowledge of the individual subject and enabled us to

complete our studies in time.

In this acknowledgment would not complete without thanking our parents. They are supported us

throughout our university study, we can’t express our appreciation enough. We hope this
achievement will cheer them up during these demanding times.

v

Table of Contents

Abstract i

Declaration ii

Letter of Acceptance iii

Acknowledgement iv

Table of Contents v

Contents vi

List of Figures viii

vi

Contents

Chapter 1 Introduction

1.1 Introduction---1

1.2 Related Works--2

1.3 Objective---- --5

1.4 Related Issues---5

1.5 Outline---6

Chapter 2 Hadoop Overview

 2.1 Hadoop--7

 2.2 Hadoop Distributed File Systems---7

 2.3 Hadoop MapReduce--9

Chapter 3 Architecture of Proposed Solution

 3.1 Overview---11

 3.2 Input File Manager--12

 3.3 File Splitting Manager--12

 3.4 Querry Processing Manager---13

 3.5 File Handling Manager-- 14

 3.6 MapReduce--14

 3.7 Output Processor--15

Chapter 4 Development of Tool

 4.1 Background--16

 4.2 Component Wise Discussion ---16

vii

 4.2.1 Input File Manager---16

 4.2.2 File Splitting Manager---17

 4.2.3 Query Processing Manager---18

 4.2.4 File Handling Manager--19

 4.2.5 MapReduce--20

 4.2.6 Output Processor--21

 4.3 Working Procedure---21

Chapter 5 Conclusion & Future Work

 5.1 Conclusion---28

 5.2 Future Work---29

Reference 30

Appendix 32

viii

List of Figures

1.1 Simple SQL Architecture--3

1.2 Big Data Characteristics---5

2.1 HDFS Architecture---8

2.2 MapReduce Architecture--10

3.1 Tools Architecture ---11

3.2 Input File Manager Architecture---12

3.3 File Splitting Manager---13

3.4 Query Processing Manager---13

3.5 File Handling Manager--- 14

3.6 MapReduce Architecture--14

3.7 Output Processor--15

4.1 Flow chart for input file manager---17

4.2 Flow chart for file splitting manager---18

4.3 Flow chart for query processing manager---19

4.4 Flow chart for file handling manager--20

4.5 Flow chart for output processor---21

4.6 Input files used in our project---22

4.7 Structure of data---22

4.8 Welcome message--23

4.9 Asking for previous configuration--23

4.10 Enter new configuration name--23

4.11 Insert old configuration name---24

4.12 Insert number of attribute--24

ix

4.13 All splitting information---24

4.14 Checking for conditions--25

4.15 Number of condition---25

4.16 Condition for one---25

4.17 Condition for two---25

4.18 Relation between conditions--26

4.19 Select aggregate key---26

4.20 Select attribute--26

4.21 Select directory---27

4.22 Final output---27

1

Chapter 1

1.1 Introduction

We live in a world increasingly driven by data. From the very beginning of software

development, we have been using Relational Databases Management System, in form of SQL.

Now RDBMS is good for updating small portion of a big database. In RDBMS, data stores in a

specific or static structure, in other words data arranges in form of row and column.

Before starting with any explanation, we need to answer three question. The questions are-

1. What is the problem?

2. Why it’s a problem?

3. How to solve it?

By answering all these three question here, you will be able to understand the motive of our

work.

So, first what is the problem? Relational database is defined at the basic level by a series of table

entities which contain columns and rows, linked to other table entities by shared attributes. So,

for example, a small online business might have a SQL database behind website with a table

recording the name and email address of customers. Another table might record product names

and their prices. A third table might link the two, recording which customers bought which

products, with additional information such as the date of purchase and whether or not any

discount was applied.

So one can quickly see how this information could be useful, some analysis will give the average

spend per customer; a list of regular customers, and a list of inactive ones; a list of the most

popular products. From this simple data a small business holder can make good business

decisions. However, in the recent years with the tremendous rise in use of internet in every hour

of every day, the Databases grown into thousands and thousands of terabytes. And also large

data comes in a variety of forms. Organizations are facing more and more big data challenge.

They have to access a wealth of information, but they don’t know how to get value out of it
because it is sitting in its most raw form or in a semi-structured or unstructured format. When we

deal with these data, if we use traditional relational database concepts which requires to know in-

depth knowledge about Database system, programming knowledge such as- SQL query, relation

2

database, database design, database implementation, basic data structures, computer

organization, high level programming language such as- Java, C or Pascal etc.

Now, why it’s a problem? As an example, consider we need to work with huge amount of data of

past 40 years. With a typical RDBMS implementation, first we need to create a database, then

create some tables and then insert those data into the tables. Firstly, only an expert who has

programming as well as database knowledge can access and work with these data. While it’s
very difficult for a normal person to understand all these mechanisms without having any

previous knowledge. Secondly and most importantly, even if someone manages to gather

knowledge about all those things, thus the process of storing these huge amount of data, updating

them, is very time consuming.

How to solve it? For reducing all these difficulties, here we are representing our tool, which

works over any numbers of flat files for executing queries. The primary goal of our project is to

develop a user friendly tool, using which any user who have no knowledge about relational

database management system, structured query language, which can support any numbers of flat

files. We have developed a tool for them so that they could execute queries over the flat files and

we are executing our tool over the Hadoop framework, inside the program we have used

MapReduce programming paradigm. It does not directly ask for query from the user, rather it

gives different options, conditions to the user. Any user can access the tool very easily. It does

not require any previous knowledge about RDBMS or any other programming knowledge. The

only thing a user need, having flat files. It’s very easy to use and fulfill all the queries of a user

within a very short time.

1.2 Related Works

Structured Query Language:

Structured Query Language are commonly known as SQL. SQL is used to communicate with

database. According to ANSI (American National Standards Institute), it’s the standard language

for relational database management system. SQL statements are used for storing, manipulating

and retrieving data stored in a relational database. Some common relational database system that

use SQL are: Oracle, Sybase, Microsoft SQL server, Access etc. Although most database

systems use SQL, most of them have their own additional extensions that are only used on their

system. However, the standard SQL commands to interact with relation databases are CREATE,

INSERT, DELETE, UPDATE and DROP.

When Relational Database Management System gets a command for executing SQL, the system

determines the best way to full fill the request and SQL engines figures out how to interpret the

3

task. There are various components include in the process such as: Query Dispatcher,

Optimization Engine, Classic Query Engine and SQL Query Engine etc.

Following diagram is showing SQL architecture:

NoSQL:

NoSQL, originally referring to “non SQL” or “non-relational”, database provides a mechanism
for storing and retrieving data in relational databases (RDBMS). Generally, NoSQL databases

are structured in a key-value pain, graph database, document-oriented or column-oriented

structure.

Over decades and decades of software development, we have been using database in form of

SQL where our data store in a relational table. In NoSQL scenario, it’s schema less, it does not
follow any strict data structure. NoSQL database introduce for mainly dealing with huge and

huge amount of data.

Big Data:

Big Data is a collection of a large dataset that cannot be processed using traditional computing

techniques. Mainly three characteristics define Big Data: volume, variety and velocity.

Figure1.1: Simple SQL architecture

4

 Volume

Volume refers to the vast amount of data generated in every moment. Big data requires

processing high volume of low-density, unstructured Hadoop data-that is data of

unknown value, such as Twitter data feeds, click streams on web page and a mobile app,

network traffic and many more. The main task of Big Data is to convert those Hadoop

data into valuable information.

 Variety

Variety refers to the range of data types both structured and unstructured, domains and

sources. Usually we used to store data from sources like spreadsheets and database, but

nowadays, data generated by different web pages, web log files, search index, social

media forums, e-mail, documents, sensor data from active and passive systems and so on.

Traditional data was structured data, neatly fitted in columns and rows but those days are

over. These days, over 90% of data, generated by organizations, are unstructured. Data

today comes in many different formats: structured data, semi-structured data,

unstructured data and even complex structured data. These wide variety of data requires

different techniques to store them and as well as access them. Traditional analytical data

can’t handle variety. However, an organization’s success will rely on its ability to draw

insights from the various kinds of data available to it, which includes both traditional and

non-traditional data.

 Velocity

Velocity refers to, how fast the sheer volume and variety of data are generated, stored,

analyzed and visualized. In the past, when batch processing was common practice, it was

easy to receive an update from database in every night or even every week. Substantial

time was required for computers and servers to process the data and update the database.

In the big data era, data is created in real time or near real time.

The speed at which data is flowing is unimaginable. Every minute we upload 100 hours

of video on YouTube. In addition, every minute over 200 million e-mails are sent, around

20 million photos are viewed and 30,000 uploaded on Flicks, almost 300000 tweets are

sent and 2.5 million queries on google are performed.

Big data requires that these volume and variety of data should be analyzes while it is still

in motion, not just after it is at rest.

5

Hadoop:

Hadoop is an open-source framework, where we feel that Hadoop based platform is well suited

to deal with structured and unstructured data. It allows to store and process huge amount of data

in a distributed environment across cluster of computers using simple programming models. We

will discuss more detailed things of Hadoop framework in Chapter 2.

1.3 Objective

The main objective of the thesis is to develop a user configurable Query Processing tool, using

which without having any knowledge of the used framework of the developed tool a particular

user can have the benefit of executing queries. Its user configurable in the sense that using this

query tool user does not have to know anything about Hadoop, anything about relational queries.

Both expert and inexpert users can use this tool, the only thing the user need to have any

numbers of data files.

Figure1.2: Big Data characteristics

6

1.4 Related Issues

i. Which types of Quires the Tool can handle?

 SELECT column1, column2....columnN

FROM table_name;

 SELECT column1, column2....columnN

 FROM table_name

WHERE CONDITION;

 SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

ii. Which types of data files the Tool can handle?

 Unstructured and semi-structured data with ‘N’ number of attributes.
For example,

<attribute1><attribute2><attribute3>……………<attributeN>

iii. What types of framework and programming language is used?

 Framework Used

o Hadoop

o MapReduce

 Programming Language Used

o JAVA

1.5 Outline

 This report is organized as follows:

i. Chapter 2, which contains a brief overview on Hadoop’s architecture, Hadoop
Distributed File System and Hadoop MapReduce.

ii. The architecture of the tool, discussed in Chapter 3 and will give a clear view about the

tool architectural behavior to the user. In this chapter, we are using block diagram,

activity diagram and sequence diagram to make things easier to the user.

iii. Chapter 4 covers the brief description of each component related with the tool.

iv. Chapter 5 is all about conclusion and future work.

7

Chapter 2

Hadoop Overview

2.1 Hadoop

Hadoop provides a distributed file system and a framework for storing and processing huge

volume and variety of data sets using MapReduce paradigm. It’s mainly a Java based framework.

With data volumes and variety constantly increasing, a technology was needed that can handle

and process data in faster way. Hadoop has the ability to store and process huge amounts of any

kind data. It can work with numerous numbers of flat files. Hadoop’s distributed computing

model can process big data fast. The more nodes will be used, the more computing power it will

have. Data need not to process before storing it, any amount of data can be stored.

Hadoop framework includes following four models:

 Hadoop Common: Hadoop common is Java libraries and utilities, which are required by

other Hadoop modules. They provide filesystem and OS level abstractions and contains

the necessary Java files and scripts required to start Hadoop.

 Hadoop YARN: Hadoop YARN is a framework which is used for job scheduling and

cluster resource management.

 Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.

 Hadoop MapReduce: Hadoop MapReduce is a YARN-based system for parallel

processing of large data sets.

2.2 Hadoop Distributed File Systems

 HDFS is mainly file system component of Hadoop. Hadoop Distributed File System is

designed to run on large clusters of small machines in a reliable, fault-tolerant manner. HDFS

basically follow Google File System (GFS) and provides a distributed file system. HDFS

separately stores file system metadata and application data.

8

HDFS uses a master/slave architecture where master consists of a single NameNode which

manages the file system metadata and one or more slave DataNodes which store the

actual/application data.

HDFS namespace is a hierarchy of multiple files and directories, where files and directories are

represented on NameNode. Files are split into several large blocks and each block of the files are

independently replicated and stored in at multiple DataNodes. The NameNode determine the

mapping of blocks. The DataNodes takes care of read and write operation with the file system.

The DataNode represented by two files in the local host. First file contains the data itself and the

second file contains block’s metadata including checksum.

When a client wants to read a file, it first contact with the NameNode for the location of data file.

Then NameNode compares the data files and reads block contents from the DataNode closet to

the client. The NameNode does not directly call DataNodes. It uses heartbeats to send instruction

to the DataNodes. They also perform block creation, deletion and replication based on given

instruction by the NameNode.

Figure 2.1: HDFS Architecture

F S n~meSp'1Ce 'mel ;1 OpS

(Nnm e Node)}'---'}{~B~'~'~k~U~P~N~'~o~d~e~
I (N..ne_ b.cIw",. I

(Hunbun, baJaDciaC. nplinl ioll, ~u)

DilIa:"od~ Dala :"odll'-

9

2.3 Hadoop MapReduce

MapReduce is the original framework for writing applications that process large amounts of

structured and unstructured data, stored in the Hadoop Distributed File System (HDFS). Apache

Hadoop YARN opened Hadoop to other data processing engines that can now run alongside

existing MapReduce jobs to process data in many different ways at the same time.

MapReduce implementation is combined with several systems, including Google’s internal
implementation and the popular open implementation of Hadoop which can be obtained along

with the HDFS file system from Apache Foundation. MapReduce can manage large scale

computation, with the help of only two function: Map and Reduce.

A MapReduce job splits a large data set into independent chunks and organizes them into key,

value pairs for parallel processing. This parallel processing improves the speed and reliability of

the cluster, returning solutions more quickly and with greater reliability.

 The Map Task: Files consisting of elements, are input for Map task, which can be any

type, structured or unstructured. A chunk is a collection of elements and no elements is

stored across two chunks. The inputs of Map tasks and output from Reduce tasks are the

key-value-pair form.

The Map function takes an input element as its argument and produces zero or more key-

value pairs. The types of keys and values are arbitrary. A Map tasks can produce several

key-value pairs with the same key, even from the same element.

Such as: (k,v1), (k,v2),………., (k,vn). Where k denotes for keys and v denotes for
values.

 Grouping by Key: After the completion of successful Map task, the key-value pairs are

grouped by key and the values associated with each key are formed into a list of values.

Grouping is performed by the system. The user tells the MapReduce system that how

many Reduce task there will be and inform it to the master controller process. Then the

master controller picks a hash function that applies to keys and produces a bucket number

from 0 to (Reduce tasks - 1). Each key of Map task is hashed and it’s key-value pair is

put in one of r local files and each files is send for Reduce tasks.

The master controller merges the files before sending to the Reduce task and process as a

sequence of key-list-of-value pairs such as: (k,[v1,v2,……,vn]), where (k,v1), (k,v2),
……., (k,vn) are all the key-value pairs of Map tasks output.

 The Reduce Tasks: Reduce task receives one or more keys and their associated value

lists. Reduce task can execute one or more reducers. The output from all the Reduce tasks

are merged into a single file. Reducers may be partitioned among a smaller number of

10

Reduce tasks is by hashing the keys and associating each Reduce task with one of the

buckets of the hash function.

 Combiners: Reduce function is associative and commutative. That means the value can

be combined in any order with the same result. It does not matter how we group a list of

number, the sum will always be the same.

With the help of Hadoop, the user program forks a Master Controller process and some number

of Worker processes. Worker process can handle either Map tasks or Reduce tasks, but not both

at the same time. The Master has responsibilities to create some number of Map tasks and some

number of Reduce tasks, moreover, this tasks are selected by the user program. Master will

assign these tasks to the Worker processes.

Master keeps track of the status of each Map and Reduce tasks, Worker process reports to the

master. When it finishes a task, new task is scheduled for the Worker by the Master.

Each Map task is assigned one or more chunks of the input files and execute on it the code

written by the user. The Map task creates a file for each Reduce task on the local disk of the

worker that execute the Map task. The Master is informed of the location and sizes of each of

these files. The Reduce task executes code written by the user and writes the output to a file that

is part of the surrounding distributed file system.

 Figure 2.2: MapReduce Architecture

11

Chapter 3

Architecture of Proposed Solution

In this chapter we will discuss about our tool’s architecture. The brief discussion of all these

steps in at Chapter 4.

3.1 Overview

The steps involved in our tool appear in Figure 3.1. The basic steps are:

i. Input File Manager

ii. File Splitting Manager

iii. Query Processing Manager

iv. File Handling Manager

v. MapReduce

vi. Output Processor

Figure 3.1 Architecture of our Tool

Input Pl'G(w lnl Output

A A ,;, , 1

i! i i! ,
I J J J V ... ''''''' 'f. ! M n .r • • 1 • r

Output /

f • • r
i • " • • " "
"

12

For using this tool, a user must give all the information to the input part. By getting input,

MapReduce will start processing the job and then generate a desire output that a user wants to

see.

3.2 Input File Manager

Input file manager will ask the user about the previously configured input file. If the user has any

previous input file, user will give the configuration file name to the system otherwise user will

continue with new configuration, which will be handled by file splitting manager.

3.3 File Splitting Manager

File splitting manager, first will take the new configuration name from user and then will take

the split information. Then it will split each lines of the file according to user configuration.

Figure 3.2: Input File Manager Architecture

13

3.4 Query Processing Manager

Query processing manager will ask the user about different information that what type of queries

he/she wants to form and then the user information will be given to the file handling manager.

Figure 3.4: Query Processing Manager

Figure 3. 3: File Splitting Manager

14

3.5 File Handling Manager

File handling manager will ask the user that which input file the user would like to use and where

the output will be generated.

3.6 MapReduce

MapReduce will work just like traditional mapper and reducer but on top of that some extra

condition checking will be done by doth mapper and reducer on the basis of user information.

and will produce a result

Figure 3.6: MapReduce Architecture

Figure 3.5: File Handling Manager

15

3.7 Output Processor

The generated result after MapReduce task will be stored in a text file and output processor will

access the file and show output to the user.

Figure 3.7: Output Processor

16

Chapter 4

Development of Tool

4.1 Background

 Environment Used

 Hadoop. Because Hadoop has the ability to run application on systems with

thousands of nodes involving thousands of terabyte with faster computing

process.

 Hadoop Version

 Hadoop-1.2.1

 Operating System Used

 Linux (Ubuntu, Version 12.04)

4.2 Component Wise Discussion

For using this tool, a user must have some flat files. All the component of the files should be in

same length, if needed a user can do some adjustments, which is known as file pre-processing.

That mans every field length of each attribute must be equal.

4.2.1 Input File Manager

As the data are unstructured, so a user needs to configure the input data files. Input file manager

is responsible for this step. In this step, the system will check whether he/she is a previous user.

It means that whether the user has already given some input which has been executed on this

system.

17

If a new user starts the process, then input file manager will take the configuration name from the

user and give the rest of the responsibility to the file splitting manager. The configuration file

name will be saved in a text file for further use.

For a previous user, if he wants to continue with the old configuration, he/she can do so. In that

case the user must tell the existing configuration name to the input file manager.

4.2.2 File Splitting Manager

The file splitting manager starts working after the input file manager successfully complete its

work.

First file splitting manager will take the configuration file name from the user. Then the system

will save all the information given by the user related to the text file, so that if a user wants to use

the same configuration again and again, he/she can do so. In this case, a user should keep in

mind that the files name should be unique, user will not be able to use existing file to save the

configuration, he/she must create a new one.

Then the user will give input to the file splitting manager that in how many segment he/she

wants to split the text files, that means how many attributes will be there and the other

information like the name of the attribute, data type, range of the splitting of the index.

Figure 4. 1 Flow chart for Input File Manager

18

4.2.3 Query Processing Manager

Query processing manager is the most important part for our tool. The users will be able to know

all their query from here. But the most interesting part of the tool is, user doesn’t have to write
any traditional query here. For example, our traditional query structure is,

 SELECT column1, column2....columnN

 FROM table_name

WHERE CONDITION;

Nothing like this has to be written by the user. Now the question is, How will the processing tool

work? It’s simple. In this step the system will ask the user for the conditions which we use in the

traditional query as “WHERE". For now, the system is capable of handling up to two conditions.

Now if the user selects that he/she has one condition then the system will go to the next step and

will ask the user for aggregate function. But if the user selects that he/she has two conditions,

then the system will ask the user that in which way the conditions are related to each other.

Figure 4. 2 Flow chart for File Splitting Manager

19

For example-

 condition1 "&&" condition2

 or

 condition1 "||" condition2

Then the user will select the aggregation function. Here the system will ask the user that which

aggregation function of what attribute he/she wants to see and then user information will be

given to the file handling manager.

4.2.4 File Handling Manager

File handling manager deals with the input and output file. Input file is the one where user have

the all kinds of flat files. Our tool can work with any number of flat flies. The task we do by

using "FROM" clause in the traditional RDBMS, we do the same work here only by selecting the

Figure 4. 3 Flow chart for Query Processing Manager

20

input file. In traditional RDBMS we use table name in "FROM" because the data is structured

and designed as rows and columns. But here the data is not structured, so the users don't have to

input data in the database rather they can directly use the flat files as input the data through file

handling manager.

Output file is the place where MapReduce generates the output. In this case the user must be

careful about the fact that not any "existing folder” is used as output file. The user must give a

now folder name for generating output file. The users don't have to create the folder in the home

page rather he/she just need to insert the file name in the file handling manager.

4.2.5 MapReduce

System will take all the user information and after that the actual program will start working,

which will be executing under Hadoop framework, without any user intervention. Mapper and

Reducer will work as traditional Mapper and Reducer. But some extra feature will be added both

Mapper and Reducer task.

First Mapper will read all the text file where the user inputs are saved. It will read all the attribute

and put all the attributes to different hash map according to data type. If an integer type attribute

is found, then it will put in the integer type hash map. If it’s a string type data, then it will put in
the string type hash map and so on. Then mapper will check all the conditions and according to

the conditions it will generate key, value pairs and send them to the reducer.

Reducer will check what aggregate key operation the user wants to perform. According to that

choice reducer will perform its task and generate a result.

Figure 4. 4 Flow chart for File Handling Manager

21

4.2.6 Output Processor

The result that MapReduce will generate, will be kept in a text file which will be selected by the

user. Output processor will read the text file by using given file location and will display the final

result to the user.

4.3 Working Procedure

To work with this project, first we have learnt about Java, Hadoop, MapReduce, HDFS. As the

domain is new, so before start working a developer should have in-depth knowledge about all

these related frameworks.

Our main motivation was to develop a user-friendly tool, using which a user who has no

knowledge about SQL, Relational Database, Hadoop, MapReduce and all, can have the benefit

of executing queries using some menu based system over Hadoop framework. We chose Hadoop

framework because Hadoop is an open source framework, which can handle huge numbers of

data and it stores data much more cheaply.

Our used operation system, version and environment, all these things we are discussed at the

beginning of this chapter. Now we are directly discussing the whole working procedure below:

1. For our tool we are using some flat files as input, shown in Figure 4.6, which are the

weather data of Bangladesh from 2001 to 2014. There are 14 files for 14 years and each

files contains the same amount of data. These are the synthetically generated data.

Figure 4. 5 Flow chart for Output Processor

22

2. Figure 4.7 shows the structure of the data and all the files contain same structure. First we

have year, then city, month, date and finally temperature. We will split these data

according to this.

Figure 4.6 Input files used in our project

Figure 4. 7 Structure of Data

23

3. When the user will execute our tool, then a welcome message will be appeared just

like the figure 4.7 and the user will be continuing by pressing ok.

4. Then the system will ask the user if he/she has any previously configured input file or

not. It means that weather the user has already given some input which has been already

executed on this system. If the user has any, then he/she will press yes. If not, then user

will have to give new configuration.

5. If the user is new or user wants to continue with a new configuration, then user should

input configuration name first.

Figure 4. 8 Welcome Message

Figure 4. 9 Asking for previous configuration

Figure 4. 10 Enter new configuration name

24

6. if the user wants to continue with the old configuration and press no, a new window will

be appeared and will ask for previous configuration name. user should give the

configuration name in the input box.

7. After giving the configuration name, a new frame will be appeared. In this frame user has

to input the number of attribute he/she has and then will press add.

8. When the user will press “add”, a new field will be open in the same frame. It will

contain field number, attribute name, data type, start index and end index just like figure

4.12. User must fill all the field and press enter.

Figure 4. 11 Insert old configuration name

Figure 4. 12 Insert number of attribute

Figure 4. 13 All splitting information

25

9. After pressing enter button, the query processing manager’s work will start. First it will
ask the user if he/she has any conditions.

10. If the user press yes, then system will ask the user about the number of conditions and

continue with pressing ok.

11. If the number of condition is 1, then one window for condition will be appear.

12. If the number of condition is 2, then two windows will be appeared.

Figure 4. 14 Checking for conditions

Figure 4. 15 Number of condition

Figure 4. 16 Condition for one

Figure 4. 17 Conditions for two

26

13. If the number of conditions is 2, then the user will have to select the relation between two

conditions. Weather the conditions are connected with “&” operator or “||” operator.

14. When the condition part will be over or if the user select that he/she has no conditions,

then then system will ask the user for selecting aggregate key.

15. The user must select anyone form this box and then system will ask the user that on what

attribute he/she wants to perform aggregate operation. For example, if the user selects

minimum, then system will ask minimum of what attribute. Then the user must insert the

attribute name.

Figure 4. 18 Relation between conditions

Figure 4. 19 Select aggregate key

Figure 4. 20 Select attribute

27

16. After successfully completing all these steps, finally the system will ask the user about

his/her input and output file directory. User will have to select the folder that contains the

input files and write the name of the file where he/she wish the store the output.

17. Finally, MapReduce will start working and generate an output in the selected output

folder. Output processor will read the output and show it to the user.

And thus, the execution of our developed tool will be completed. A user can use any numbers of

flat files and can execute the tool as many times as he/she wants.

Figure 4. 21 Select directory

Figure 4. 22 Final Output

28

Chapter 5

Conclusion & Future Work

5.1 Conclusion

Data volume are increasing every second. For this increasing data, a tool is required which can

process user query without taking long time and any difficulties, as well as anyone can deal with

these data without having any knowledge about any types of accessing method.

For example, in organizations they do not hire people to do just a specific task or it’s not possible
to hire only experts. Also the amount of data an organization generate every day, is

unimaginable. Even if company hire experts, it will take huge time to manage all these data.

So our goal was to make a user configurable query tool that can manage huge amount of data

easily and handle user queries. A tool that anyone can access. To operate this tool, user need not

to do any hard work, need not to know about RDBMS, Hadoop, MapReduce, Java etc. So here is

our tool. This tool can work with numerous number of flat files and also Hadoop, MapReduce

framework works in background. We use Hadoop framework; inside it MapReduce

programming paradigm is working. We use Hadoop because Hadoop is open source framework

and it can work with huge amount of data files and MapReduce gives a privilege to work with

faster way.

In this tool, it takes only input from users about their input file path, output file path, how they

want to split their text file, how many attribute do they have, what are their types, what they want

to see as output etc. Then process data without any user intervention.

Throughout this paper, we have discussed about tool. In Chapter 1, tried to give some knowledge

to the reader that what was the problem, why it was a problem and to solve the problem what is

our solution. Then we tried to give some little overview about SQL, NoSQL, Big Data, Hadoop.

In chapter 2, we briefly discuss about Hadoop and different components of it such as- Hadoop

Distributed File System, Hadoop MapReduce. Chapter 3 was the architectural part of our

developed tool. In that chapter, we discuss about different parts of our tool with the help of

different diagram. Finally, Chapter 4 was the brief discussion part of the developed tool, used

environment and working procedure of our tool.

29

5.2 Future Work

i. We would like to see, whether we could extend this tool for multi-valued

database.

ii. We want to extend our tool for addressing other types of dataset.

iii. Till now our tool can only handle simple and WHERE clause related query. But

we would like to work with some other queries like- group by query, nested query

etc.

iv. In our tool, the conditions are limited. That a user can user only up to two

conditions. We would like to see, weather we could extend the tool for unlimited

number of conditions.

30

References

[1] Big Data: A Revolution That Will Transform How We Live, Work, and Think Hardcover

 Retrieved on February 27, 2016

[2] Running Hadoop on Ubuntu Linux

 http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-

 Retrieved on February 28, 2016

[3] Hadoop the Definitive Guide, 4th Edition by Tom Wbite. Retrieved on March 02, 2016

[4] MapReduce Design Patterns by Donald Miner & Adam Shook.

 Retrieved on March 05, 2016

[5] Hadoop http://hortonworks.com/wp-Tutorial_Hadoop_HDFS_MapReduce.pdf

 Retrieved on March 11, 2016

[6] http://www.snia.org/sites/default/education/tutorials/2013/fall/BigData/SergeBazhievsky

 Retrieved on March 25, 2016

[7] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

 Retrieved on April 08, 2016

[8] http://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm

 Retrieved on May 02, 2016

[9] Hadoop in Practice by Alex Holmes. Retrieved on May 28, 2016

[10] Professional Hadoop Solutions Kindle Edition. Retrieved on June 13, 2016

[11] MARP https://www.mapr.com/products/apache-hadoopRetrieved on June 25, 2016

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-
http://hortonworks.com/wp-
http://www.snia.org/sites/default/education/tutorials/2013/fall/BigData/SergeBazhievsky
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
http://www.amazon.com/dp/1617290238?tag=matratsblo-20
https://www.mapr.com/products/apache-hadoop

31

[12] JBM https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

 Retrieved on July 10, 2016

[13] Tutorials https://tutorials.techmytalk.com/category/big-data/ Retrieved on July 18, 2016

[14] Stack Overflow http://stackoverflow.com/questions/18629000/mapreduce-program-

 Retrieved on July 18, 2016

[15] Java Swing http://www.javatpoint.com/java-swing Retrieved on July 25, 2016

https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
https://tutorials.techmytalk.com/category/big-data/
http://stackoverflow.com/questions/18629000/mapreduce-program-
http://www.javatpoint.com/java-swing

32

Appendix

1. MaxTemperature

import javax.swing.JFrame;
import javax.swing.JOptionPane;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature
{

 public void exec(String args0, String args1) throws Exception
 {
 System.out.println(args0);
 System.out.println(args1);

 if (args0 == null && args1 == null)
 {
 System.err.println("Please Enter the
input and output parameters");
 System.exit(-1);
 }

 Configuration conf = new Configuration();

 Job job = new Job(conf, "min,max and average");

 job.setJarByClass(MaxTemperature.class);
 job.setJobName("Max temperature");

 FileInputFormat.addInputPath(job,new
Path(args0));
 FileOutputFormat.setOutputPath(job,new Path
(args1));

 job.setMapperClass(MaxTemperatureMapper.class);

job.setReducerClass(MaxTemperatureReducer.class);

33

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(DoubleWritable.class);

 job.waitForCompletion(true);
 finalOutput.main();
 JFrame frame = new JFrame();
 String message = "Do you want to continue !!!";
 int answer = JOptionPane.showConfirmDialog(frame, message);
 if (answer == JOptionPane.YES_OPTION) {
 main1.main();
 } else if (answer == JOptionPane.NO_OPTION) {
 JOptionPane.showMessageDialog(null, "Thank You");
 }
 else{
 JOptionPane.showMessageDialog(null, "Bye Bye");
 }

 }

}

2. MaxTemperatureMapper

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;

public class MaxTemperatureMapper extends Mapper <LongWritable, Text,
Text, DoubleWritable>
{

 public String variableName;
 public String datatype;
 public Integer startstring;
 public Integer endstring;

 public String why;
 public String variableName2;
 public String datatype1;

34

 public String varia;
 public String variable1;
 public String newv;
 public Integer icnt;
 public String valu;
 public String operator;
 public String conname;
 public String convalu;
 public String conoperator;
 public String relation;

 public int[] I = new int[50000];
 public String[] S = new String[5000];
 public double[] D = new double[5000];
 //int[] F = new int[5000];

 public int cntI=0;
 public int cntS=0;
 public int cntD=0;

 public HashMap<String, Integer> mapi = new HashMap<String,
Integer>();
 public HashMap<String, String> maps = new HashMap<String,
String>();

 public String counter;

 public int i=0;
 public int d= 0;
 public int j=0;
 public int e=0;
 public int f=0;

 public String[] Var = new String[50000];
 public String[] Type = new String[50000];
 public Integer[] Start = new Integer[50000];
 public Integer[] End = new Integer[50000];

 public String[] why1 = new String[500000];
 public String[] Type1 = new String[500000];
 public String[] Vr1 = new String[500000];
 public String[] Vr2 = new String[500000];
 public String[] Var2 = new String[500000];
 public String[] Varo = new String[500000];
 public Integer[] Varv = new Integer[500000];

35

public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException
{
 try
 {
 BufferedReader newrd = new BufferedReader(new
FileReader("config.txt"));
 String LineCur = null;
 String outputdir = null;
 while ((LineCur = newrd.readLine()) != null)
 {
 outputdir = LineCur.toString();
 System.out.println(outputdir);
 }
 newrd.close();

 BufferedReader br = null;
 String sCurrentLine;

 br = new BufferedReader(new
FileReader(outputdir+".txt"));

 int c=0; i=0;
 while ((sCurrentLine = br.readLine()) != null)
 {
 String line = sCurrentLine.toString();
 String[] arr=line.split(" ");
 variableName = arr[0];
 datatype = arr[1];
 startstring = Integer.parseInt(arr[2]);
 endstring = Integer.parseInt(arr[3]);

 Var[c] = variableName;
 Type[c] = datatype;
 Start[c] = startstring;
 End[c] = endstring;
 c++;
 }

 cntI = 0; cntS = 0;
 String line = value.toString();

 for(i=0; i<c; i++){
 if(Type[i].contains("int")){

36

 I[cntI] =
Integer.parseInt(line.substring(Start[i], End[i]));
 System.out.println("Value: " + I[cntI]);

 varia = Var[i];
 icnt = I[cntI];

 System.out.println("new value "+ icnt);

 mapi.put(Var[i], I[cntI]);
 System.out.println("keys one " + Var[i] + " "
+ " "+ I[cntI] + " " + mapi.get(Var[i]) + " " + mapi);

 cntI++;
 }
 else if(Type[i].contains("string")){
 S[cntS] = (line.substring(Start[i], End[i]));
 System.out.println("Value: " + S[cntS]);

 maps.put(Var[i], S[cntS]);
 System.out.println("keys three " + Var[i] + "
" + " "+ S[cntS] + " " + maps.get(Var[i]) + " " + maps);

 cntS++;
 }
 else{

 }
 }
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 BufferedReader br1 = new BufferedReader(new
FileReader("attribute.txt"));
 String sCurrentLine1;

 while ((sCurrentLine1 = br1.readLine()) != null)
 {
 String line1 = sCurrentLine1.toString();
 String[] arr=line1.split(" ");
 why = arr[0];
 System.out.println("why contains "+mapi.get(why));
 }
 br1.close();

 BufferedReader reader = new BufferedReader(new
FileReader("yes.txt"));
 String CurrentLine = reader.readLine();

37

 reader.close();

 if(CurrentLine.contains("yes")){

 BufferedReader bufr = new BufferedReader(new
FileReader("counter.txt"));
 counter = bufr.readLine();
 System.out.println("counter value "+counter);
 bufr.close();

 BufferedReader br2 = new BufferedReader(new
FileReader("where.txt"));
 String sCurrentLine2;
 while ((sCurrentLine2 = br2.readLine()) != null)
 {
 String line2 = sCurrentLine2.toString();
 String[] arr=line2.split(" ");
 variableName2 = arr[0];
 operator = arr[1];
 valu = arr[2];
 System.out.println("condition er variable
"+variableName2);
 }
 br2.close();

 System.out.println("valu contains "+valu);

 BufferedReader Read = new BufferedReader(new
FileReader("where1.txt"));
 String readLine;
 while((readLine = Read.readLine()) != null){
 String line3 = readLine.toString();
 String[] arr = line3.split(" ");

 conname = arr[0];
 conoperator= arr[1];
 convalu = arr[1];
 System.out.println(" 2nd condition er variable "+
conname);
 System.out.println("condition er operator
"+conoperator);
 System.out.println("condition er value
"+convalu);
 }
 Read.close();

 BufferedReader bufr1 = new BufferedReader(new
FileReader("relation.txt"));
 relation = bufr1.readLine();
 System.out.println("relation type "+relation);
 bufr1.close();

38

 if(counter.contains("1")){

 if(operator.contains("==") ||
operator.contains("=")){
 if(mapi.containsKey(variableName2) &&
mapi.containsValue(Integer.parseInt(valu))){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));

 }
 else if(maps.containsKey(variableName2) &&
maps.containsValue(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 else if(operator.contains(">")){
 if(mapi.containsKey(variableName2)){
 System.out.println("map er value
"+mapi.get(variableName2));
 System.out.println("map er value
"+Integer.parseInt(valu));

 if(mapi.get(variableName2) >
Integer.parseInt(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 }
 else if(operator.contains("<")){
 if(mapi.containsKey(variableName2)){
 System.out.println("map er value
"+mapi.get(variableName2));
 System.out.println("map er value
"+Integer.parseInt(valu));

 if(mapi.get(variableName2) <
Integer.parseInt(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 }
 else if(operator.contains(">=")){
 if(mapi.containsKey(variableName2)){
 System.out.println("map er value
"+mapi.get(variableName2));
 System.out.println("map er value
"+Integer.parseInt(valu));

39

 if(mapi.get(variableName2) >=
Integer.parseInt(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 }
 else if(operator.contains("<=")){
 if(mapi.containsKey(variableName2)){
 System.out.println("map er value
"+mapi.get(variableName2));
 System.out.println("map er value
"+Integer.parseInt(valu));

 if(mapi.get(variableName2) <=
Integer.parseInt(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 }
 else if(operator.contains("!=")){
 if(mapi.containsKey(variableName2)){
 System.out.println("map er value
"+mapi.get(variableName2));
 System.out.println("map er value
"+Integer.parseInt(valu));

 if(mapi.get(variableName2) !=
Integer.parseInt(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 else if(maps.get(variableName2) != valu){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 }
 }
 else if(counter.contains("2")){
 if(operator.contains("==") ||
operator.contains("=")){
 if(relation.contains("&&")){
 if((mapi.containsKey(variableName2) &&
mapi.containsValue(Integer.parseInt(valu))) &&
 (mapi.containsKey(conname) &&
mapi.containsValue(Integer.parseInt(convalu)))){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));

 }

40

 else if((maps.containsKey(variableName2)
&& maps.containsValue(valu)) &&
 maps.containsKey(conname) &&
maps.containsValue(valu)){
 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }
 }
 else if(relation.contains("||")){
 if(operator.contains("==") ||
operator.contains("=")){

 if((mapi.containsKey(variableName2) &&
mapi.containsValue(Integer.parseInt(valu))) ||
 (mapi.containsKey(conname) &&
mapi.containsValue(Integer.parseInt(convalu)))){
 context.write(new Text("result
is "), new DoubleWritable(mapi.get(why)));

 }
 else
if((maps.containsKey(variableName2) && maps.containsValue(valu)) ||
 maps.containsKey(conname)
&& maps.containsValue(valu)){
 context.write(new Text("result is "),
new DoubleWritable(mapi.get(why)));
 }
 }
 }
 }
 else if((operator.contains("==") ||
operator.contains("=")) && (conoperator.contains("!="))){
 if(relation.contains("&&")){
 if(mapi.containsKey(variableName2)
&& mapi.containsValue(Integer.parseInt(valu)) &&
 mapi.containsKey(conname)
!= mapi.containsValue(Integer.parseInt(convalu))){
 context.write(new Text("result
is "), new DoubleWritable(mapi.get(why)));

 }
 else
if((maps.containsKey(variableName2) && maps.containsValue(valu)) &&
 maps.containsKey(conname) !=
maps.containsValue(valu)){
 context.write(new Text("result
is "), new DoubleWritable(mapi.get(why)));

 }
 }
 else if(relation.contains("||")){

41

 if(mapi.containsKey(variableName2)
&& mapi.containsValue(Integer.parseInt(valu)) ||
 mapi.containsKey(conname)
!= mapi.containsValue(Integer.parseInt(convalu))){
 context.write(new Text("result
is "), new DoubleWritable(mapi.get(why)));

 }
 else
if((maps.containsKey(variableName2) && maps.containsValue(valu)) ||
 maps.containsKey(conname) !=
maps.containsValue(valu)){
 context.write(new Text("result
is "), new DoubleWritable(mapi.get(why)));

 }

 }

 }

 }
 }

 else if(CurrentLine.contains("no")){

 context.write(new Text("result is "), new
DoubleWritable(mapi.get(why)));
 }

 }
}

3. MaxTemperatureReducer

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class MaxTemperatureReducer extends Reducer <Text,
DoubleWritable, Text, DoubleWritable >{

 String variableName1;

42

 String[] Var1 = new String[500000];
 int d = 0;;

 public void reduce(Text key, Iterable<DoubleWritable> values,
Context context) throws IOException,InterruptedException
 {

 System.out.println("its reducer");

 /*Text maxCity = null;
 Text minCity = null;
 System.out.println(maxCity);

 for(LongWritable value : values){

 String compositeString = value.toString();
 System.out.println(compositeString);
 String[] compositeStringArray =
compositeString.split("_");
 System.out.println(compositeStringArray);

 Text tempCity = new Text(compositeStringArray[0]);
 System.out.println("Temperature of City "+tempCity);
 long tempValue = new
Long(compositeStringArray[1]).longValue();
 System.out.println("Temperature Value "+tempValue);

 if(tempValue > max){
 max = tempValue;
 System.out.println("max is"+max);
 maxCity = tempCity;
 System.out.println("maxcity: "+maxCity);
 }
 if(min > tempValue){
 min = tempValue;
 System.out.println("min is "+min);
 minCity = tempCity;
 System.out.println("mincity: "+minCity);
 }
 }

 System.out.println("max "+max);
 String keyText = new String("max" + "(" +
maxCity.toString() + "): " + max + " // " + "min" + "(" +
minCity.toString() + "):" + min);

 System.out.println("value is"+ keyText);*/

 //context.write(key,new Text(keyText));

43

 BufferedReader br = new BufferedReader(new
FileReader("check.txt"));
 String sCurrentLine;
 while ((sCurrentLine = br.readLine()) != null)
 {
 String line = sCurrentLine.toString();
 String[] arr=line.split(" ");
 variableName1 = arr[0];
 System.out.println("variable name of reducer
"+variableName1);
 Var1[d] = variableName1;

 System.out.println("reduce "+Var1[d]);

 if(Var1[d].contains("Maximum")){
 double maxValue = Integer.MIN_VALUE;
 for (DoubleWritable value : values) {
 maxValue = Math.max(maxValue,
value.get());
 //System.out.println("max value
"+maxValue);
 }
 context.write(key, new
DoubleWritable(maxValue));
 }
 else if(Var1[d].contains("Minimum")){
 double minValue = Integer.MAX_VALUE;
 for (DoubleWritable value : values) {
 minValue = Math.min(minValue,
value.get());
 //System.out.println("min value
"+minValue);
 }
 context.write(key, new
DoubleWritable(minValue));
 }
 else if(Var1[d].contains("Average")){
 double temp = 0;
 double count = 0;
 for (DoubleWritable value : values) {
 temp += value.get();
 System.out.println("each temp value "+temp);
 count ++;
 System.out.println("count value "+count);
 }
 double average = temp/count;
 System.out.println("value of average temperature
"+average);
 context.write(key, new DoubleWritable(average));
 }
 }
 }

44

}

4. FinalOutput

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import javax.swing.JOptionPane;

public class finalOutput
{
 private static String result;

 public static void main()
 {
 BufferedReader br = null;

 try
 {
 String sCurrentLine=null;
 String outputdir=null;

 br = new BufferedReader(new
FileReader("/home/tahira/Documents/Data/finalOutputDir.txt"));

 while ((sCurrentLine = br.readLine()) != null)
 {
 outputdir = sCurrentLine.toString();
 System.out.println(outputdir);
 }
 br.close();

 sCurrentLine=null;
 br = new BufferedReader(new
FileReader(outputdir+"/part-r-00000"));
 while ((sCurrentLine = br.readLine()) != null)
 {
 result = sCurrentLine;
 System.out.println(result);
 JOptionPane.showMessageDialog (null, "Your result
is " + result, "Results",JOptionPane.PLAIN_MESSAGE);

 }
 }

 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

	Declaration
	[1] Big Data: A Revolution That Will Transform How We Live, Work, and Think Hardcover
	[2] Running Hadoop on Ubuntu Linux
	http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-
	[3] Hadoop the Definitive Guide, 4th Edition by Tom Wbite. Retrieved on March 02, 2016
	[4] MapReduce Design Patterns by Donald Miner & Adam Shook.
	Retrieved on March 05, 2016

	[9] Hadoop in Practice by Alex Holmes. Retrieved on May 28, 2016
	[10] Professional Hadoop Solutions Kindle Edition. Retrieved on June 13, 2016
	[13] Tutorials https://tutorials.techmytalk.com/category/big-data/ Retrieved on July 18, 2016

