

East West University
 Department of Electronics & communication engineering

 Internship report

On
 Oracle E-government project

As a partial fulfillment of Bachelor of Science in Electronics and

Telecommunication Engineering at East West University.

Prepared By:

Md. Jakirul Islam ID: 2011-1-55-001

Md. Sakibul Islam ID: 2012-2-55-042

 Supervised By:

Mohammad Arif Iftekhar

Lecturer
Department of ECE

East West University

Mustafa M. Hussain
Assistant professor
Department of ECE

East West University

 Date of submission: 21 August 2016

East West University

 Department of Electronics & communication engineering

 Internship report

On
 Oracle E-government project

As a partial fulfillment of Bachelor of Science in Electronics and
Telecommunication Engineering at East West University.

Prepared By:

Md. Jakirul Islam ID: 2011-1-55-001
Md. Sakibul Islam ID: 2012-2-55-042

Company Supervisor:

Mohammed Hossain Doula
CEO of ROVERS TELECOM
Rovers Telecom

Academic Supervisor:

Mohammad Arif Iftekhar
Lecturer

Department of ECE
East West University

Mustafa M. Hussain

 Assistant professor
Department of ECE

East West University

 2

Disclaimer

This is to declare that this internship is based on the Database

(Oracle) Management Systems working under
E-Government projects. It has not been submitted elsewhere

as an Internship or a project purpose.

Signature of Supervisor

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Mohammad Arif Iftekhar

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 Mustafa M. Hussain

 East West University

Signature of Author

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Md. Jakirul Islam
ID: 2011-1-55-001

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Md. Sakibul Islam
ID: 2012-2-55-042

 3

Acceptance of Report

This internship report has been presented to the department of
Electronics and Communication Engineering, East West

University and submitted for partial fulfillment of the course
ETE 498 (Industrial Training) as well as for the Bachelor of

Science Degree in Electronics and Telecommunications
Engineering (ETE), under complete supervision of the

undersigned.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 Mohammad Arif Iftekhar

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 Mustafa M. Hussain

 East West University

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Mohammed Hossain Doula

 4

TABLE OF CONTENTS

1 ACKNOWLEDGEMENTS 6

2 INTRODUCTION 7

2.1 ORACLE and e-Governance – Background Information 7

2.2 Introduction 7

2.3 Need for E-governance 7

2.4 Issues in implementing e-governance 8

2.5 Solution Approach 8

2.6 Direction of Research at IRL 8

2.7 Project Overview 9
2.7.1 Part-I: Content Manager 9
2.7.2 Part-II: Audit Trail on Distributed Database 9

3 PROJECT - I: CONTENT MANAGER 10

3.1 Project Background and Scope 10

3.2 Project's Rationale and Goals 10

3.3 Technical Details and Applicable Issues 10
3.3.1 Installing the Product 10
3.3.2 Understanding Content Manager 11
3.3.3 Overview of the Architecture of Content Manager 11
3.3.4 Features of Content Manager – Brief Summary 13
3.3.5 The Beginners Guide to Content Manager 13
3.3.6 The New Content Manager API 13
3.3.7 The Inner Line Permit Application 15
3.3.8 Future Work 18
3.3.9 Summary 19

4 PROJECT – II: AUDIT TRAIL ON DISTRIBUTE DATABASES 20

4.1 Project Background and Scope 20
4.1.1 eGovernment from audit trail’s perspective 20
4.1.2 What is audit trail ? 20

4.2 Project's Rationale and Goals 21

 5

4.3 Technical Details and Applicable Issues 22
4.3.1 Architectural choices 22

4.4 Requirements for Audit Trail 23

4.5 Solution 24
4.5.1 Reference Architecture of ATA 26

4.6 Future Work 27

4.7 Summary 27

5 LEARNING FROM THE INTERNSHIP PROGRAM 27

6 APPLYING MY UNIVERSITY SKILLS 28

7 APPENDICES 29

7.1 Appendix A : Requirements for eGov data management 29

7.2 Appendix B : Some questions regarding Content Manager 33

7.3 Appendix C : Security using Smart Cards 34

7.4 Appendix D : Reference Guide for the new API 36

 6

1 Acknowledgements

During my summer internship , the staff at RoversTelecom and persons guiding me were

were very helpful and extended their valuable guidance and help whenever required for

the projects which I worked on.

I am very thankful to my guide Sir er naam for his invaluable guidance and advice during

my Summer Internship.

I am thankful to Hossain Doula for his guidance and friendly support during my stay at

RoversTelecom.

I am also very greatful to Shajedul Islam (for great cooperation and help esp. in the 2nd

project and my final presentation), Rajibul Islam (for helping in my final presentation, in

developing the application and the API and documenting the APIs) and Tasnim Israk (

who was always ready to extend any technical support at a short notice).

I also thank Sir er naam who helped us in the 2nd project on Audit Trails by sharing his vast

experience and giving valuable direction to the project.

Overall , the above team made my stay at RoversTelecom an enjoyable one and I am

greatful to them for making it so.

 7

2 Introduction

2.1 ORACLE and e-Governance – Background Information

Governments are central players in the new economy. They set the climate for wealth

creation. They can act as a deadening hand on change or be the catalyst for creativity.

They can cause economic stagnation...or they can set a climate for growth."

 The Digital Economy

2.2 Introduction

Performance of government affects quality of life, economic growth and voter behavior. To
that extent, it is essential to streamline the business of governance.
Technology has been a widely used tool to increase productivity and to remove
inefficiencies in various industries in the late 20th century. However, the business of
governance has been late in adopting technology solutions to increase its efficiency.
The primary reason for this anomaly is that there are numerous technology issues that
need to be resolved before a true eGovernance solution can be adopted.

2.3 Need for E-governance

E-governance is a tool to provide efficient and effective governance. It increases the
efficiency of governance by providing transparency and accountability and reducing the
cost of governance.

Government Government Transactions

Citizens

e-Gov solution

 8

2.4 Issues in implementing e-governance

Various governments, involved in the task of building a e-governance solution, are facing

a three pronged problem. The first is how to select and entrust a solution provider to

deliver any part of e-governance. While there are numerous solution providers in the

market, it appears unlikely that any single vendor can offer the entire system/solution.

The second is to ensure that after each solution provider has created a solution, the

various solutions should be integrable and should talk to each other. Since each solution

provider may use its own technologies, data schemas and standards, integration will be a

challenge.

The third problem is to encourage the development of portable/ replicable solution that can
be reused in applications for other government agencies, States etc. The reasoning
behind this is that, just as in businesses, around 85% of the processes are same across
firms, within the same industry, it is expected that 85% of the processes should be similar
across different governments. Thus, it should be possible to use the solutions developed
for one government, in another government. Reusing the e-governance asset across
different governments can substantially bring down the cost of governance.

2.5 Solution Approach

One possible option for addressing the above stated challenges is to adopt a model in

which the solutions to be developed and deployed can adopt to any network topology,

make use of a reusable middleware (which can impose some standardization). Such a

middleware itself may make use of standard software components from the industry.

Finally the applications themselves will be built by Total Solution Providers on top of the

middleware.

2.6 Direction of Research at IRL

IRL is working on the design and prototype of the e-governance middleware, which will
make it possible for governments to quickly deploy applications with the help of this
middleware. These applications themselves may be to facilitate interdepartmental
activities within the government, Citizen and employee interactions with the Government,
or to to conduct the business of governance with businesses and enterprises.

 9

2.7 Project Overview

2.7.1 Part-I: Content Manager

This part of the project involved gaining a good understanding of an ORACLE product
called Content Manager. My task was to study its capabilities from the point of view of a
data management solution in the e-Gov system. My task was to

 Understand the product,
 How to develop applications using Content Manager,
 Create a prototype eGov Application on top of it.

One of the important achievements of this project was the development of a new
Programming API over the Content Manger Programming API, which provides many
features and supports the eGov concept of “Middleware”. The major benefits of this API
are:

 It greatly simplifies the task of developing applications on top of Content Manager.
 It provides additional functionality in Content Manager, which would be a

requirement for eGov project.
 It supports a layered architecture by which new capabilities can be added to the

Content Manager by implementing them as layers above the API.

2.7.2 Part-II: Audit Trail on Distributed Database

An electronic audit trail is a form of evidence that can be used to trace transactions to

verify their validity and accuracy. It gathers data about activity in the system and analyzes

for the purpose of auditing the events by the application on the data. The current project

focuses on the various issues involved in having an audit trail mechanishm for a

distributed architecture like that of eGovernment as discussed above. It will discuss the

placement of audit trail logic once the eGov architecture is in place and then other issues

like its storage and security issues.

 10

3 Project - I: Content Manager

3.1 Project Background and Scope

eGov is massive project in which data management plays a vital role. Since the number of
applications running on the system will be large in number, data storage, retrieval and
management will be an important issue. For this, a data management solution is required
which will suit eGov requirements. An ORACLE product called Content Manager offers
one possible solution.

Since the information generated by most of the eGov departments may not possess a

structured format and thus there is an obvious need of some tool, which can mange this

unstructured information in a efficient manner. Content Manager, an ORACLE trademark,

offers a scalable solution for the same as it can manage all unstructured information in an

efficient fashion.

3.2 Project's Rationale and Goals

My goals regarding Content Manager were the following:

1. To Install the Content Manager Product

2. To understand the Content Manager product and its proper configuration and settings

3. To understand its programming Interfaces and how to develop an application on top of

it.

4. To develop an API on top of the Content Manager API which adds functionality to

Content Manager as per the requirements of eGov.

5. To undertake an eGov application and develop it on top of Content Manager

3.3 Technical Details and Applicable Issues

3.3.1 Installing the Product

Content Manager uses ORACLE10g Universal Database as an adjunct to do its work.

ORACLE10G Universal Database is an ORACLE product to take care of the enterprise

database needs.

Prior to installing Content Manager, one needs to install Microsoft Visual C++ and

ORACLE10G Universal Database and configure it properly. We faced some problems in

Installing Content Manager and tried some times before giving up. We found it to be

incompatible with 10G version 7.1 so we tried 10G Version 6.1. After that some additional

configuration is required in the Windows NT regarding some system privileges. Content
Manager uses the Services features of Windows NT and starts its modules as Services.

Once you install Content Manager, you need to start these services to make Content

Manager functional on the machine for that particular session.

 11

3.3.2 Understanding Content Manager

3.3.2.1 What is Content Manager?

Simply put, Content Manager is a document management application, providing many
sophisticated features and easily adaptable to a network solution for data access.

It can help you maximize the value of your information and multimedia assets. Regardless
of the type of data (text documents, scanned images, audio, video, forms any binary
object), it lets you store data on distributed servers and access it through a single point
without knowing about the whereabouts of the data on the network.
This is ideal, where large amounts of data of heterogeneous nature is required to be
accessed through a single client application where the data could actually be located
across various servers.

For example a library with various branches across the country may place its books in
popular formats e.g. pdf format and other media such as images, videos etc. across
various servers which can be accessed through a central server using the Content
Manager solution. Any user can then have a single view of the entire library using a web-
front end.

3.3.3 Overview of the Architecture of Content Manager

Library

Server

Multiple Object Servers

Client

 12

The content manager consists of a client, library server and multiple object servers. The
above figure shows the architecture for a typical Content Manager implementation. It
consists of:

3.3.3.1 Client

This is the end user who will be accessing the data stored in the Content Manager
implementation using Library Servers and Object Servers. Note that the client
communicates with both Library Server as well as the Object Servers.
The connection between the client and the object servers has high bandwidth as
compared to the connection between the client and the Library Server. This will become
clear in the following sections.

3.3.3.2 Library Server

Library server, manages the Content Manager catalog information, locates stored objects
using a variety of search technologies, provides secure access to the objects in the
collection, and communicates with the object servers. A Content Manager system requires
one library server, which can run on Windows NT(R), Windows 2000, AIX, or OS/390(R).

The library server uses a relational database to manage digital objects and provide data

integrity by maintaining index information and controlling access to objects that are stored

on the object servers. This relational database can be ORACLE10G Universal

Database(TM) (10G UDB) or Oracle.

Currently, there is one Library Server per implementation. By an implementation, we mean

an independent implementation of a Content Manager solution.

3.3.3.3 Object server

The object server is the repository for objects that are stored in the Content Manager
system. Users store and retrieve objects from the object server, through requests that are
routed by the library server. . There can be multiple Object Servers in an implementation.
The object server efficiently and automatically manages storage resources, based on the
storage management entities (such as volumes) that are defined using the Content
Manager system administration program A Content Manager system can have many
object servers distributed across networks to provide convenient user access. Object
servers run on AIX, Windows NT, Windows 2000, or OS/390.
A database on the object server contains data about the exact location of each object. The
database can be either 10G(R) UDB or Oracle.

3.3.3.4 Advantages of the above Architecture

The above architecture provides the following advantages:

 Support for multiple, distributed object servers allows you to store digital objects close to
the users who need to access them frequently. This support is especially important for
delivery of large multimedia objects.

 Support for heterogeneous servers allows you to use the system for all kinds of data
(including streamed data), while optimizing the processing of individual data types.

 Client communication through the library server ensures the integrity of data objects. A
client can access objects only by requesting them through the library server. The library
server database contains information such as object types, indexes of all stored objects,
authorized users of the system, and access control lists for each object.

 13

 Separation of client applications, indexes, and data makes applications independent of the
data's location on the servers.

 The open architecture allows the intermixing of additional object servers on the same or
different operating systems and supports scaling from one operating environment to
another, as growth requires after implementation.

3.3.4 Features of Content Manager – Brief Summary

 Lets you store content regardless of format.
(Unstructured data)E.g. text documents, scanned images, audio, video, forms any binary object

 Stores data on distributed servers and provides single point access.

 Provides many sophisticated features like

 Access control

 Storage management – Archiving , Purging , Migration

 User management

 Automated Workflow

 Enterprise wide search from Internet or intranet clients.

 Streaming audio and video.

3.3.5 The Beginners Guide to Content Manager

After going through the various manuals of Content Manager and filtering out the essential
points, I wrote a document called Beginners Guide to Content Manager which covers

the essential concepts of Content Manager including application development and

includes appendices with useful reference information regarding Content Manager. This

guide serves as a useful introduction to any person striving to understand Content

Manager.

3.3.6 The New Content Manager API

As the major outcome of the first project, an API was developed over the existing APIs of

Content manager, keeping in mind the following benefits:

The API

 Makes it very easy to perform operations on the CM Database
The Content Manager API is difficult to learn and use to make actual applications and
hundreds of lines may be required for simple operations such as insert , delete and
search etc. The new API makes it very easy to write new applications on top of CM
and one can do insert , delete etc. in just one line.

 Encapsulates the complexity of CM API
The complexity of CM remains hidden from the user. Many parameters which take
default values for normal data access scenarios are handled by our API and the
developer doesn’t need to delve into the details of the Content Manager programming
interface.

 Object Oriented Approach allows easy integration into new apps
The new API has been implemented following an Object Oriented Approach , thus
allowing easy integration into new applications. One simply needs to declare a new
object for each session with Content Manger, log in and start performing the data
access.
e.g.

 14

CSimpleCMAPI newsession; // declare a new object

Newsession.login(login_id,login_password); // login

… start performing operations …

 Speeds up Application Development Time
Since, the new API requires much less time to learn and coding , new applications
can be developed very quickly.
E.g. The first application including writing the API took us 4-5 days to finish.After
writing the API , we developed another application of similar nature in just 4-5 hrs
which is a significant improvement.

 Extensibility: Acts like a new layer on top of CM
Since the new API is written on the top of Content Manager API, additional
functionality can be easily added to the API to provide new features.

 New layers like Custom Access Control, Audit Layer can be added
Some requirements of applications like those in eGov may not be completely or
partially fulfilled by Content Manager. To take care of these requirements, one can
simply implement the functionality required in a new layer on top of our API resulting
in additional functionality. (See the figure below)
E.g. In our prototype application to be discussed in the next section , we implemented
new layers for audit trail and additional security requirements , demonstrating the
above concept and how to go about implementing new functionality on top of the new
API.

Content Manager API

Folder Manager API

Library Client API

SimpleCMAPI

Application

Security Layer

Audit Layer

 15

The above figure shows the role of the new API in developing applications. The

application talks directly our API and all its transcations pass through various layers like

audit trail layer and security layer which can demand or implement the required

functionality for the application.

3.3.7 The Inner Line Permit Application

An application was developed using the APIs described above. In order to develop an

application a real life scenario of “inner line permit “ was taken and a prototype solution

application was developed over content manager.

Description of inner line permit

All non-resident visitors wanting to visit Arunachal Pradesh need an Inner Line Permit to

cross the border as a security requirement, which can be obtained from the Resident

Commissioner and Liaison Officers, Govt. of Arunachal Pradesh. However, the citizens of

Arunachal Pradesh don’t need an Inner Line Permit to enter the state. This poses a

problem at the entry checkpoints, as it may be difficult to make a distinction between a

citizen of Arunachal Pradesh from a non-resident visitor.

 Inner line permit request is made to authorized office of the state government

 The request is entered in the system alongwith the scans of required documents

 Inner line permit is issued by authorized offices against the required documents

 At the entry check points the security personnel verifies whether a person entering the

state is a resident or a non-resident using the information system

 For non-residents, validity of the inner-line permit is checked using the system

 The person entering the state (both resident and non-resident) are identified using

identification marks entered in the system as well as the photographs entered in the

system during the issuance of inner-line permit/ residentship.

Thus, a convenient system, which permits the state government to access the

residentship database of the state with identification information would greatly assist in

managing the flow of people into the sensitive state.

Dhaka er map

RESIDENTSHIP

OR

Dhaka

Layered Architecture for application development

 16

Explanation of the Solution provided by the application:

The application consists of 2 databases, which are:

 citizen databse and

 inner line permit database.

The application, as shown in the screen shots, provides the necessary funcitonality as requested by the

situation. An efficient usage of the above mentioned APIs has also been shown by providing extra

security and auditing facilities in the application.

Inner Line Permit for VISITOR

Requirements for entering Dhaka

 17

Some screen shots of the inner line permit application

The opening screen of the Inner Line Permit Database application

Demonstration of the security layer above besides the Content
Manager security

 18

3.3.8 Future Work

Content Manager fulfills some of the requirements of eGoverment. However, it is not the

complete solution for eGov Data Management needs but in can serve as the part of the

solution. More extensive database applications need to be explored which can talk with

databases of multiple type (federated databases). There are some other options being

explored namely:

Data Joiner

A product from ORACLE, it provides a single point access/view to various databases

(heteregenous). This can be considered as one of the solution for data management in

eGOV.

EIP : Enterprise Information Portal

The ORACLE Enterprise Information Portal (EIP) is a comprehensive portal environment
that can bring all the enterprise resources to a workstation desktop. EIP can help
maximize the value of information and multimedia assets by connecting disparate
content servers through a single client. The EIP client provides search capabilities
that enable users to quickly and concurrently access all connected servers. EIP also
allows one to customize applications specifically tailored for the enterprise. With the
EIP toolkit, application programmers can quickly deploy custom-made desktop and
Web-based applications.

EIP supports the concept of data connectors by which it can connect to databases
from various sources including 10G, Oracle, and Content Manager and is capable of
performing a federated search over the various databases.

It also provides ease of developing Web based thin clients for information retrieval in
eGov. This can also be considered a solution for eGov and since it can also integrate with
Content Manager , both can participate in the final Data Management solution.

Demonstration of Workflow capabilities in the application

 19

3.3.9 Summary

Content Manager is a good solution for managing unstructred data arising from various

applications running in eGov. It has a distributed architecture and provides many features

conducive to an eGov implementation.

In the above project, a new API was developed over the Content Manager API to provide

simplicity and extensibility catering to some eGov requirements which are absent in

Content Manager. Using the above API, an application was also developed called Inner

Line Permit which provided a prototype solution for a real life problem.

 20

4 Project – II: Audit Trail on Distribute Databases

4.1 Project Background and Scope

As the requirements for having online access to enterprise data are escalating, so are the

related security and privacy issues. Moreover, all operations performed on such information may

need to be tracked and documented in the system for future reference and security reasons. E-

government is one such application, which would require security and audit trails.

4.1.1 eGovernment from audit trail’s perspective

Generally, current e-government system designs aim to provide one of four service levels:

 Displaying information about agencies or aspect of the government.

 Second-level services provide simple two-way communication capabilities, usually for
uncomplicated types of data collection such as registering comments.

 Third-level services facilitate complex transactions that may involve intra-
governmental work-flows and legally binding procedures. Examples of such services
include voter and motor vehicle registration.

 Fourth-level services seek to integrate a wide range of services across a whole
government administration, as characterized by the many emerging government
portals. The eCitizen portal, developed by the government of Singapore, offers a
prime example of this system type.

In order to provide the above-mentioned service levels, governments are facing a three pronged
problem: 1) out of many competitors in the market, whom to entrust for providing a complete
solution; none of them have an experience. 2) Interoperability of various solutions for
interchange of information and data. 3) Containment of cost by developing a portable/replicable
solution. One of the feasible options for all the above problems is to provide a middleware and
let the total solution providers build applications on top of it, which would cater to the needs of
the specific departments of government. One of the important requirements, of this kind of
solution, will be a robust audit trail mechanism, which will audit different events depending on the
policy decided by the government or some other policy maker.

4.1.2 What is audit trail ?

An electronic audit trail is a form of evidence that can be used to trace transactions to verify their
validity and accuracy. It gathers data about activity in the system and analyzes for the purpose
of auditing the events by the application on the data. Hence audit trail can be defined as a series
of records of the computer events relating to the operating system, application or to user. It can
be used for any of the following purposes:
Individual Accountability: Users actions are recorded allowing users to be accountable to their
actions.
Reconstruction Events: Audit trails can be used to reconstruct the events in case the need
arises.
Problem Monitoring: Audit trails can be used to monitor and correct the problems, at the OS,
system, or application level, as and when they are encountered.
Intrusion Detection: Important security issues like breaking into the system, unauthorized
access, and/or any other security violation can be detected by maintaining proper audit logs of
the processes which need to be monitored.

 21

Any auditing system constitutes of two parts 1) Audit Data Collector and 2) Audit Data
Analyzer. The operations of Audit Data Collector can be classified into any of the following
three classes, as shown in the figure above, namely 1) storage of audit trail 2) audit of data
access and changes 3) audit of system, application, or user events.

In this rough draft we will be addressing the issues involved in Audit Data Collection, which is
composed of three above-mentioned sub-issues.

4.2 Project's Rationale and Goals

A small block diagramatic view of the eGov meiddleware is as shown below.

Database Database

Application
Data

Audit Trail Location

Data Virtualizer

Transaction

Commands

Query processor and

optimizer

Database Database

M

I

D
D

L

E

W
A

R

E

Application

 22

Data virtualizer is an important element in the eGov middleware. I does the task of

abstracting the physical location of data and provides a single logical view of the backend

databases.

Since security and auditing is a mandatory feature of any government operation and thus

while providing a solution to government one has to give serious consideration to both

auditing and security. In this part of my project I’ve concentrated on the auditing system

which could possibly be a part of the eGov middleware. The auditing system which was

studied during this summer training keeps in mind the distributed nature of the eGov

solution.

In the current work we have studied the problem of auditing the entire eGov solution

distributed across the network and to maintaing, efficiently and effectively, a complete

audit of all the operations carried out by the middleware and providing role based access

control features to the audit database as well.

4.3 Technical Details and Applicable Issues

Problem Description

Where should we place the Audit Trail Component in the e-government architecture (as
shown above) is an important question because audit trail will be an important
requirement in e-government and will be used for various services including security
services etc.

4.3.1 Architectural choices

Possible options are

1. Application
One can place the audit trail component in the application itself. This means the
application developer will be responsible for figuring out the audit trail logic as per the
requirements and implementing it in their applications. Or he may use Audit Trail modules
to implement the Audit Trail functionality in his application.

2. In the Middleware, above Data Abstraction Unit (DAU)

In this scenario, the audit trail component will intercept all the transactions taking place
between the applications and the DAU. It will then take care of the audit trail requirements
independently of the application and store them according to the

3. In the Component Databases
We can also place the audit trail components in each of the databases in the system. Thus
each local database will be responsible for keeping the audit trails of all the operations
performed on the data. This is a popular practice and can be implemented using database
triggers.

Before designing the above mentioned e-government system, one needs to know how the
audit trail architecture will look like to take care of required issues in the middleware.
Hence we need to evaluate these options with reference to above-mentioned distributed
system and choose the best possible architecture.

 23

Let us look at the issues, which help us to evaluate these options.

4.4 Requirements for Audit Trail

In a massive project as e-government, the requirements of Audit Trails are important to be
laid out. The final audit trail implementation must follow these requirements.

Some important issues are:

 Security Issues
o Risking security at the hands of applications
In the first option, if we place the audit trail component in the application itself, then audit
trail becomes application dependent. This involves risk to the e-government system, as
the application developers may not adhere to the requirements of audit trail.
o Tamper proofing of Audit Trail
Audit Trail represents sensitive data, and the auditor must be ensured that the audit trail
data has not been tampered.
o Access Control to Audit Trail
We may need to provide access to audit trail in hierarchical manner.

 Implementation Issues
o Application Complexity
With regards to implementation of Audit Trail component, we also want simplicity in
application development.
o Database design Complexity
In a distributed database environment, simplicity in database design will be preferred.

 Audit Trail Transparency to the application developers.
It is preferred that the audit trail mechanism is kept transparent for the application developers,
as it will greatly simplify the task of application development.

 Consistency of Audit Trail across the entire system
This is a very important requirement, as the e-government system will be monolithic in nature,
hence audit trails must be stored in a uniform fashion in terms of format, architecture, access
etc.

 Ease of Audit Policy Management.
Concept of Audit Policy management is novel in e-government and will provide lot of simplicity
in managing the Audit Trail functionality of e-government. With the help of Audit Policy
Manager, non-technical staff will be able to edit the settings of the audit trail component and
hence modify its functionality according to the requirements.

 Modularity of Audit Trail Component
This is desirable because it permits us to easily change and manage audit trail mechanism in the
system. If a change is required in the Audit Trail mechanism at a later stage, one simply has to
modify the Audit Trail Module w/o changing other components in the system.

The following table evaluates the issue of placement of audit trail.

Issues ATC in Application ATC above DAU ATC in databases

Security issues

Risking security at the hands of
applications

The application provider
may not fulfill the
requirements of Audit
Trail as required by the e-
government system.

Such a problem will not
be encountered
because it is
centralized.

Such a problem will
not exist, however,
there can be risk of
implementation of the
audit trail at the

 24

database level for
this again is
decentralized.

Tamper proofing of Audit Trail If left at the hands of
application developer
then again the situation is
similar because the
nature of generation of
audit data and its
maintenance is
decentralized.

Because this is
centralized, hence the
generation and
maintenance of the
audit data is not an
issue as these are the
bodies, which maintain
all the policies.

Tamper proofing is
risked at the hands of
the database
designers and
maintainers.

Access Control to Audit Trail Since this is left at the
hands application
developers this is also at
the risk of not getting
implementing to the level
of expected
requirements.

No such issue is there,
as this will be
implemented n shipped
by a responsible
organization.

Similar to that in the
case of application
developer.

Application Complexity Increases and thus not
preferable.

Is decreased, as they
are relieved of it.

Is decreased, as they
are relieved of it.

Database design complexity Unaffected Database design is
simplified, as the
designer is relieved of
the responsibility of it.

Is increased as they
have to take care of
the necessity of
meeting the
requirements laid
down by the
government.

Audit Trail Transparency to the
application developers

Not present Present Present

Consistency of Audit Trail across the
entire system

Difficult to maintain and
thus not preferable

One of the simple
features of the
middleware design.

Difficult to maintain
and thus not
preferable

Ease of Audit Policy Management Difficult Easy Difficult

4.5 Solution

In the previous subsection, we discussed the various pros and cons of different options of
keeping the audit trail component. From the discussion, we can conclude that placing the
audit trail component in the Middleware, as shown in the figure below, is the best option.

As shown, the audit trail agent (ATA) has been placed in the middleware above the DAU.
The idea is to operate the ATA at the middleware level and more independent of the other
components of the architecture namely the applications and the databases.

This approach offers many new perspectives of looking at the design of Audit Trail.
It makes sense to pull out the audit trail component and convert it into an independent
module called the Audit Trail Agent, which will be responsible for the Audit Trail
Mechanism in the e-government system. In the architecture shown below, Audit Trail
Agent lies between the applications and the DAU and intercepts all the transactions and
other communications, which the application is issuing to the Middleware. Thus Audit Trail
agent is actually interested in observing the “actions” of the application and records them
for later analysis. It is important to note here that in the above architecture, the audit trail
mechanism is not bound to the data storage/retrieval mechanism but exists independent
from it. This is important, as the Audit Trail is a separate application with not much reason
to bind it to the databases.

 25

In the next section we will discuss the architecture of ATA and the communication of

its components with the other components of Middleware.

Data Abstractor

Query processor

and optimizer

Database Database Database Database

Audit

Policy

Database

M
I
D
D
L
E
W
A
R

E

Transaction

Commands

Audit Trail Agent

Application

S

E

C

U

R

I

T

Y

 26

4.5.1 Reference Architecture of ATA

Type of
data

request

Data Abstraction Unit (DAU)

Query Processing Unit

Event Identifier

Security and Access control

Agent

Audit

Policy

Database

Audit Trail Central Logical

Unit

Messaging

System

Local Database

Costing and metering unit

User

Middleware I/O Unit

Applications

Operation Type Analyzer

Audit Policy Database

Interpreter

Audit

Storage/Retrieval

Agent (Tamper-

proofing)

Audit policy
change
/update
operation

 27

4.6 Future Work

We plan to implement the complete ATA in a working, distributed system, which could be

EIP or Content Manager and sort out further technical issues involved with it which

include:

 Storage of Audit Trails

 Security Mechanisms

4.7 Summary

A detailed review of the existing state of art has been carried out for audit trail systems in

various enterprise and non-enterprise solutions. A intutive architecture and logical

placement of the ATA has been proposed which optimizes across maximum number of

enchmark issues.

5 Learning From the Internship Program

The Internship program was quite beneficial for me. It helped me in improving my various
technical skills and enhanced my knowledge in new areas.

 I gained new knowledge in the area of Databases and Distributed Databases, the
various issues involved and mechanisms in these systems etc.

 By studying Content Manager, I also learnt that how database products function and
what are the various issues one need to be aware of while looking for Data
Management solutions.

 E-Gov is an emerging field and I got some insight into a how a new field looks like
when in the initial stage and what are the various things which need to be done initially
like requirement analysis, survey of existing solutions etc.

 I was working on a research topic for the first time and I got introduced to this
important area of research and methods employed in conducting research.

 I brushed up my knowledge of Visual C++ and MFC (Microsoft Foundation Classes),
as it was required to develop applications on top of Content Manager

Work Experience
My internship was quite satisfactory in terms of work environment. The team I worked with
was very friendly and helped me a lot in all my problems. New experiences include

 Teamwork
In these projects 4-5 people worked together thus providing enough opportunity for proper
teamwork and coordination. This was a good experience for me as the team was very
cooperative and understanding.

 Responsibility and keeping commitments
The importance of honoring commitments and time of others was an important thing,
which I learnt as a summer Intern. Especially, while working as a team it is very important
to keep these points in mind.

 28

6 Applying My University Skills

My education at ETE was very helpful in my Internship. The programming skills which I

developed in ETE105 were very helpful in developing the C++ programing. The course

ETE465 (Data base) is especially helpful in this regard.

ETE450(networking) proved to be very helpful in my final presentation and the various

documents which I had to write during my Internship. I applied the principles learnt in the

course in my final presentation which was well appreciated by colleagues.

 29

7 Appendices

7.1 Appendix A : Requirements for eGov data management

Sr No. Requirement Content Manager Solution

1. Audit Trail: Audit trail requirements should be
parameterizable by application. This should include
list of columns for which audit trails needs to be
maintained
Time of change
Who made the change
Reason of change
Short description of change
number of modifications that need to be tracked
duration for which the audit trail needs to be
maintained
track changes by employee
track details of records viewed by user
Audit trail should be maintained for both Object Server
and the metadata stored in the library server

CM does provide a feature called history.
Checking in progress.

2. Access control by application
Access to all data owned by an application needs to
be limited to the owner application itself and to any
other application to which the administrator of the
owner application has given the permission. This
control is to be given at a table level, column level and
row level.
Even application developers should not be able to
access data of tables for which t does not have
explicit rights

CM has well defined security mechanisms.
Access can be restricted for each item. Users
can also be restricted to do only certain
operations on the data.

3. Security :
Authentication & Access control including protection
against external attacks on the system
Non-repudiation
Integration with certification authorities
Integration payment gateways

4. Scalability : Large amounts of data needs to be
handled for storage
Query support
Response time as size of database increases
Support for distributed storage servers will be required
Distributed Indexing servers for query needs may also
be needed

CM allows for one Library Server in one
implementation, which catalogs all the data
available on multiple object servers. This may
be a big limitation.
See below.
(Needs to be clarified from CM developers)

5. Record Management features : CM has well defined mechanisms for migration

 30

Purging
Backup/Archiving
Protection against data corruption – keeping multiple
version

and backup on other storage systems.

6. Providing a Web based front-end to the citizens. This
will act as an interface between the citizens and the
government and will provide government services
over the web.

EIP can be used along with Content Manager
product to provide web clients.

7. Record management policy setting by class of records
where each class is owned by a single application and
may span over multiple distributed databases

8. Data privacy support – dynamic access rights by
column and tuples

9. Legacy system support? Integration of existing data

10. Integrated Workflow solution

A Major Issue : Indexing and storing data

A major issue regarding e-Gov applications is the way the huge amount of data will be

stored and available for query.

The way Content Manager implements it is through a Library Server and multiple Object

Servers.

The documents (or items) are stored in the Object servers and their searchable attributes

(key field values) are stored on the Library Server which acts as a catalog to all the

items which are stored no various object servers connected to it. Hence what it means is

that all the fields on which search may need to be carried out need to be stored on the

Library Server so that it can be searched upon.

 31

Essentialy, the item acts as an anchor for the attributes which may be a photograph ,

scanned image , or and other object. A major concern which springs up from this is that if

an application requires all or most its fields to be searchable then all that data will be

stored on the Library Server itself. Since we have a central Library Server , the data may

become very large and unmanageable for a single library server. And in that case nothing

or very little will be stored on the Object Server which is meant for storing the actual

data. This issue holds independent of implementation of the middleware and it needs to

be decided what kind of data model we need to pursue to accomplish our data query

needs in a heavy application as e-Gov.

We may need to look into other applications, which face similar problems for example,

Google Search Engine and the EIP which connects to various repositories of data and

gathers query results from them.

Google also needs to index a vast amount of information and provides quick results.

It may have a distributed library server solution in which the query is sent to multiple

search servers, which all search in parallel and report to the query server whatever they

find.

Item consisting of multiple

objects

Searchable Attributes stored on Library Server

Item stored on the Object Server

 32

Multiple Library (Search) servers

Query Server

 33

7.2 Appendix B : Some questions regarding Content Manager

Sr No. Questions Resolutions

1. What is maximum number of rows allowed in aContent Manager table for
an index class?

2. Can a Library Server be replicated? Distributed Library Servers?
Defined 2 library servers L1 and L2, 2 Object servers O1 & O2. O1 & O2 was
linked to both L1 & L2. The client could not log to L2 – error was thrown
Can 2 library servers share an Object server

CM supports multiple LS
but a single client cannot
access multiple LS BUT
does it support
distributed LS in a single
implementation?

3. How can we span similar class of data across multiple object servers (the
owner application, access control, policies and security of the class of data is
same)
(Using the concept of Collections)
Ref: LDV example in Sys Admin manual

4. Can we restrict the view of index classes depending upon the user /
application?

This can be done using
the concept of access
lists.

5. Can we have queries over joins on metadata (Library server data)

6. Why do we need to write a custom application for say a license application? In
other words, why won’t the client provided with CM serve the purpose?

7. To what detail is the audit trail maintained (history) – can the audit trail be
automatically archived/purged on the basis of policies

8. Data privacy support – dynamic access rights by column and tuples

9. Record management support – archiving, purging support etc.

10. Digital certificate management and authentication

11. Legacy system support? Integration of existing data

12. How are record management properties setup ?

13. How well is MQ Workflow integrated with CM

 34

7.3 Appendix C : Security using Smart Cards

Smart Card Technology

Similar to a credit card, a smart card stores information on an integrated microprocessor chip
located within it.

Smart cards are secure, compact and intelligent data carriers.
Though they lack screens and keyboards, smart cards should
be regarded as specialized computers capable of processing,
storing and safeguarding thousands of bytes of data. Similar in
size and shape to plastic credit cards, smart cards with
electrical contacts have a thin metallic plate just above center
line on one side of the card. Beneath this dime-sized plate is
an integrated circuit (IC) chip containing a central processing
unit (CPU), random access memory (RAM) and non-volatile
data storage. Data stored in the smart card's microchip can
be accessed only through the chip operating system
(COS), providing a high level of data security. This security
takes the form of passwords that allow a user to access parts

of the IC chip's memory or encryption/decryption measures, which translate the bytes stored in
memory into information.

There are two basic kinds of smart cards. An "intelligent" smart card contains a central

processing unit -- a CPU-- that actually has the ability to store and secure information, and "make
decisions," as required by the card issuer’s specific applications needs. Because intelligent cards
offer a "read/write" capability, new information can be added and processed. For example,
monetary value can be added and decremented as a particular application might require.

The second type of card is often called a memory card. Memory cards are primarily
information storage cards that contain stored value, which the user can "spend" in a pay phone,
retail, and vending or related transaction.

The intelligence of the integrated circuit chip in both types of cards allows them to protect the
information being stored from damage or theft. For this reason, smart cards are much more
secure than magnetic stripe cards, which carry information on the outside of the card and can be
easily copied. Smart cards are an effective way of ensuring secure access to open
interactive systems, such as encryption key mobility, secure single sign-ons and
electronic digital signatures.

The network computing and cellular telephone industries use smart cards to authenticate

users in new systems that demand the utmost in security.

How is a chip card different from the magnetic stripe card that I carry in my wallet?
Existing magnetic stripe cards have limited capacities to carry information. A smart card carries
more information than can be accommodated on a magnetic stripe card. It can make a decision,
as it has relatively powerful processing capabilities that allow it to do more than a magnetic stripe
card (e.g., data encryption).

What is the cost of an average chip card?
Trying to respond to this question is like asking the cost of a car without defining whether it is a
used VW or a news Rolls Royce. Chip cards range from $.80 to $15 depending upon their
capacity and quantities.

 35

How secure and confidential are smart cards?
Smart cards actually offer more security and confidentiality than other financial information or
transaction storage vehicles. A smart card is a safe place to store valuable information such as
private keys, account numbers, passwords, or valuable personal information. It’s also a secure
place to perform processes that one doesn’t want exposed to the world, for example,
performing a public key or private key encryption.

Chip cards have computational power to provide greater security, allowing verification of the

cardholder. Entering a PIN is one method of verification. The benefit of the smart card is that you
can verify the PIN securely, off-line.

A possible application for smart cards

Suppose your driver license were carried on a smart card. The front and back would look as they
do now—photo and demographic information on one side, notations and codes in excruciatingly
tiny print on the other. Outwardly, no difference. Inside? Another matter entirely.

The microchip inside your smart card would carry name, address and physical description; it
could hold your photographic likeness—compressed and digitized—and, perhaps, a fingerprint or
other biometric measurement that is uniquely yours. Moreover, an encryption algorithm and
secret key built into the microchip would protect all that data.

But don't stop there. Think of the paper-laden process of selling the family car or the complex
documentation commercial vehicles require. Now, imagine all that paper transformed into

electronic bytes stored in a vehicle smart card.

Some questions

1. Is it possible to store a photograph of the person inside the smart card, which may be required
in the Inner Line Permit Application?

Links

 http://home.hkstar.com/~alanchan/papers/smartCardSecurity/

A good article regarding security issues in SmartCard technology. Also looks at
asymmetric cryptographic algorithms for personal authentication by government authorities.

 http://ntrg.cs.tcd.ie/mepeirce/Project/Chaum/cardcom.html

Looks at various types of cards and their comparisons.

http://home.hkstar.com/~alanchan/papers/smartCardSecurity/
http://ntrg.cs.tcd.ie/mepeirce/Project/Chaum/cardcom.html

 36

7.4 Appendix D : Reference Guide for the new API

InsertItem (Insert)

Format

InsertItem (IndexClass, NoOfAttrib, AttribList,AttribValueList, NoOfParts, PartList, ItemID)

Purpose

The InsertItem API creates an item in the index class you specify. You must specify any
required attributes for that index class. You must also specify the parts(objects) of the
item, which you want to create.

Parameters

IndexClass

 char* - input
 Indexclass name in which you want to create an item.

NoOfAttrib

 int – input
 The number of attributes in the AttribList.

AttribList

 char** – input

The name of the attributes of the indexclass. When you create an item you must specify
the attributes of indexclass in AttribList.

AttribValueList

 char** - input

The value of the attributes. When you create an item you must specify the value of the
attributes in AttribValueList.

NoOfParts

int – input
 The number of parts in the PartList.

 PartList

char** - input
This list contains the various parts of the items. Each entry in the PartList is a filename.

ReturnValues

On successful completion, this function returns zero and value of created item id is
returned in ItemID.

 37

SearchItems (Search)

Format

SearchItems (IndexClass, NoOfAttrib, AttribList, AttribValueList, ItemIDList, NoOfHits)

Purpose

Use the SearchItem API to locate an item in the index class you specify. You must
specify the attributes and their values to define the search criteria.

Parameters

 IndexClass

 char* - input
 Indexclass name in which you want to locate an item.

 NoOfAttrib

 int – input
 The number of attributes in the AttribList.

AttribList

 char** – input

When you search for an item you must specify the name of the attributes in AttribList on which
you want to make a search.

AttribValueList

 char** - input

The value of the attributes. When you search for an item you must specify the value of the
attributes in AttribValueList.

 ItemIDList

 PITEMID& - output

The pointer to the item ID list. This list contains the documents item IDs that matches

the search criteria.

NoOfHits

 int& – output
Contains the number of items that match the criteria.

ReturnValues

On successful completion, this function returns zero. The NoOfHits contains the

number of items and ItemIDList contains the list of item IDs.

 38

GetItem (Get the information of an item)

Format

GetItem(ItemID, NoOfAttrib, AttribList, AttribValueList, NoOfParts, PartList,
PartHandleList, readwrite)

Purpose

Use the GetItem API to get the attributes and parts information of an item.

Parameters

 ItemID

 ITEMID - input

The identifier of an item for which you want to get the information. This identifier is the
item ID.

NoOfAttrib

 int& – output
 The number of attributes associated with the specified item.

AttribList

 char**& – output

 This list contains the name of the attributes associated with specified item.

 AttribValueList

 char** & - output
This list contains the value of the attributes.

NoOfParts

int& – output
 The number of parts in the PartList.

 PartList

 char**& - output

This list contains the various parts(objects) of the specified item. Each entry in the
PartList is a filename.

PartHandleList

 39

 HOBJACC*& - output

This list contains the handles of various parts (objects) of the specified item. When the
parts information for an item is returned the various objects are opened to get the
information.After using the parts(objects) information they need to be closed so
PartHandleList contains the handles for those parts.

readwrite

 BOOL – input

This variable specifies whether the item to be opened in share read mode or read write
mode.

ReturnValues

On successful completion, this function returns zero.The NoOfAttrib
contains number of attributes, AttribList contains name of the attributes,
AttribValueList contains value associated with the attributes, NoOfParts contains
number of parts in the item, PartList contains list of parts and PartHandleList contains
the list of handles of parts of the item.

GetItemsInfo (Get the description of a list of items)

Format

GetItemsInfo(NoOfItems, ItemIDList, ItemDescription)

Purpose

Use the GetItemsInfo API to get the description of a list of items.

Parameters

 NoOfItems

 int - input
 The number of items in the ItemIDList.

 ItemIDList

 PITEMID – output
 This is the list of item IDs.

ItemDescription

 char** & - output

This contains the description of list of items. Desription means the information like

whether item is a document, folder, workbasket or workflow and associated attributes of the
item.

 40

ReturnValues

On successful completion, this function returns zero. The ItemDescription contains
description of list of items.

DeleteItem (Delete)

Format

DeleteItem(ItemID)

Purpose

Use the DeleteItem API to delete a folder or document.

Parameters

 ItemID

 ITEMID - input
 The identifier of an item you want to delete. This identifier is the item ID.

ReturnValues

On successful completion, this function returns zero.

CloseObject(close)

Format

CloseObject(ObjectAccHandle)

Purpose

Use the CloseObject API to close an object.

Parameters

 ObjectAccHandle

 HOBJACC - input
 The object access handle.

ReturnValues

On successful completion, this function returns zero.

 41

ReplaceObject(Replace)

Format

ReplaceObject(ObjectAccHandle)

Purpose

Use the ReplaceObject API to replace an object. The object is stored into the server by
replacing the existing object.

Parameters

 ObjecAcctHandlet

 HOBJACC - input
The object access handle. The object is stored into the server by replacing the existing object.

ReturnValues

On successful completion, this function returns zero.

UpdateItem (Update)

Format

UpdateItem (IndexClass ,ItemID, NoOfAttrib, AttribList,AttribValueList, NoOfParts,
PartList)

Purpose

The UpdateItem API update an item in the index class you specify. You must specify the
attributes, of the item, which you want to change. You must also specify the parts(objects)
of the item, which you want to change.

Parameters

 IndexClass

 char* - input
 Indexclass name in which the specified item belongs.

ItemID

ITEMID&– input/output

When an item is updated, the new item ID is issued for the updated item. The value of
new item ID is returned in ItemID.

NoOfAttrib

 int – input

 42

 The number of attributes in the AttribList.

AttribList

 char** – input

The name of the attributes which need to be updated.

AttribValueList

 char** - input

The changed value of the attributes. The name of the attributes are in the AttribList.

NoOfParts

int – input
 The number of parts in the PartList.

 PartList

 char** - input

This list contains the various parts of the items. Each entry in the PartList is a filename.

Return Values

On successful completion, this function returns zero and value of new item id is returned in
ItemID.

Logon(Log on)

Format

Logon(LoginName, Password)

Purpose

Use the Logon API to do the login.

Parameters

 LoginName

 const char* - input

The name of the user who want to do login.

Password

 const char* - input

The password of the user who want to do login.

ReturnValues

On successful completion, this function returns zero.

 43

Logoff(Log off)

Format

Logoff(void)

Purpose

Use the Logoff API to do log off from the system.

Parameters

None

ReturnValues

On successful completion, this function returns zero.

FreeMemory(Free the memory)

Format

FreeMemory(void)

Purpose

Use the FreeMemory API to free the memory.

Parameters

None.

ReturnValues

None.

StartWorkFlow(starts the workflow)

Format

StartWorkFlow(WorkFlowName, ItemID)

Purpose

 44

Use the StartWorkFlow API to start the workflow means put the given item in the first
workbasket of the workflow.

Parameters

WorkFlowName

 char* - input
The name of the workflow which you want to start.

 ItemID

 ITEMID& - input
The identifier of an item which you want to put in the workflow. This identifier is the
item ID.

ReturnValues

On successful completion, this function returns zero.

RouteWipItem(Route the item)

Format

RouteWipItem(ItemID, NextWBID)

Purpose

Use the RouteWipItem API to move an item from the workbasket where
it currently resides to the workbasket you specify. You can move the item to any
other workbasket in the routing list for its assigned workflow, or to a workbasket
that is not in the workflow. You can also use this function to move an item that is
not in a workflow, and can move that item to any workbasket.

Parameters

ItemID

 ITEMID& - input
The identifier of an item you want move. This identifier is the item ID.
.

 NextWBID

 ITEMID& - output
The identifier of an workbasket in which you want to move the item. This identifier is
the item ID.

Return Values

On successful completion, this function returns zero.

 45

FindWBForItem(Find Out which Workbasket an Item Is in)

Format

FindWBForItem(ItemID, WorkBasketName)

Purpose

Use the FindWBForItem API to return information about the workbasket an item is in.

Parameters

ItemID

 ITEMID - input
The identifier of an item of which you want to get the information. This identifier is the
item ID.
.

 WorkBasketName

 char* & - output
The name of the workbasket in which the give item resides.

Return Values

On successful completion, this function returns zero.The workbasket name is returned

in WorkBasketName.

GetWBName(Get the workbakset name)

Format

GetWBName(WorkBaksetID, WorkBasketName)

Purpose

Use the GetWBName API to get the name of the workbasket.

Parameters

WorkBaksetID

 ITEMID - input
The identifier of workbasket of which you want to get the workbakset name. This
identifier is the workbasket ID.
.

 WorkBasketName

 46

 char* & - output
The name of the workbasket.

ReturnValues

On successful completion, this function returns zero.The workbasket name is returned

in WorkBasketName.

GetNextWBForItem (Get the next workbakset in workflow)

Format

GetNextWBForItem (ItemID, WorkBasketID)

Purpose

Use the GetNextWBForItem API to get the ID of the next workbasket in workflow for a
given item.

Parameters

ItemID

 ITEMID - input
The identifier of item for which you want to get the ID of the next workbakset . This
identifier is the item ID.
.

 WorkBasketID

 ITEMID& - output
The identifier of the workbasket.

Return Values

On successful completion, this function returns zero.The ID of the next workbasket

name is returned in WorkBasketID.

GetWorkFlowID (Get the workflow ID)

Format

GetWorkFlowID(WorkFlowName, WorkFlowID)

Purpose

Use the GetWorkFlowID API to get the ID of the workflow.

Parameters

 47

WorkFlowName

 char* - input
The name of the workflow of which you want to get the WorkFlowID..

 WorkFlowID

 ITEMID& - output
The identifier of workflow. This identifier is the workflow ID.
 .

Return Values

On successful completion, this function returns zero.The workflow ID is returned in

WorkFlowID.

GetWorkBasketID (Get the workbasket ID)

Format

GetWorkBasketID(WorkBasketName, WorkBasketID)

Purpose

Use the GetWorkBasketID API to get the ID of the workbasket.

Parameters

WorkBasketName

 char* - input
The name of the workbasket of which you want to get the WorkBasketID..

 WorkBasketID

 ITEMID& - output
The identifier of workbasket. This identifier is the workbasket ID.
 .

Return Values

On successful completion, this function returns zero.The workBasket ID is returned in

WorkBasketID.

 48

