
I 
 

One-Stop Shop: An E-Commerce Based Web Application 
 

 

 

 

 

 

Submitted By 

Md. Tanzilur Rahman Rakib 

ID: 2012-2-60-017 

 

Md. Atikur Rahman Talukdar 

ID: 2012-2-60-018 

 

 

 

Supervised By 

Md. Shamsujjoha 

Senior Lecturer 

Dept. of CSE, EWU 

 

 

 
 

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of  

Bachelor of Science in Computer Science and Engineering 

 

 

 
 

 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

EAST WEST UNIVERSITY 

 

December 2016 



II 
 

 

 

 

Abstract 
 

 
 

This project presents a full functional web application for a medium sized business 

enterprise. It will provide convenient support for the parties relating to the business e.g., 

customers, staff, owners etc. This application will also help the business personnel 

manage and distribute the product effectively.  In addition, related information of 

product, customer support, and online transaction features are available here. The key 

intent of this project is to maintain a professional standard to compete in the current 

market of online business. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

 

 

 

Letter for Acceptance 

 

This Project entitled “One-Stop Shop: An E-Commerce Based Web Application” submitted by 

Md. Tanzilur Rahman Rakib(ID:2012-2-60-017) and Md. Atikur Rahman Talukdar (ID: 2012-2-

60-018), to the Department of Computer Science and Engineering, East West University, Dhaka, 

Bangladesh is accepted by the department in partial fulfillment of requirements for the Award of 

the Degree of Bachelor of Science in Computer Science and Engineering on December, 2016. 

 

Chairperson 

 

 

_______________________________ 

Dr. Md. Mozammel Huq Azad Khan 

Professor and Chairperson, 

Department of Computer Science and 

Engineering, 

East West University, Dhaka, Bangladesh 

 

Supervisor 

 

 

_______________________________ 

Md. Shamsujjoha 

Senior Lecturer 

Department of Computer Science and 

Engineering, 

East West University, Dhaka, Bangladesh 

 

 

 

 

 

 

 

 

 
 
 



IV 
 

 
 
 
 

 

Acknowledgements 

 

First, we are thankful and expressing our gratefulness to Almighty who offers us divine 

blessings, patience, mental and psychical strength to complete this project. The progression of 

this project could not possibly be carried out without the help of several people who, directly or 

indirectly, are responsible for the completion of this work. We are deeply indebted to our project 

supervisor Mr. Md. Shamsujjoha. His scholarly guidance, especially for his tolerance with our 

persistent bothers and unfailing support. He gives us the freedom to pursue aspects of reversible 

fault tolerant computing which we found interesting and compelling. This helped our project to 

achieve its desired goals.  

 

We wish to thank the great people of Department CSE at East West University. A special thank 

goes to all faculties for their well-disposed instructions and Encouragements.  

 

Finally, we would like to thank our friends and family. Their continued tolerance with our moods 

and tendency to disappear for weeks at a time gave us a much needed break from the world 

computing. 

 

 

 

 

 

 

 

 

 

 
 



V 
 

 
 

 

 

 

Table of Contents 

 

Abstract II 

Letter of Acceptance III 

Acknowledgements IV 

Chapter 1: Introduction  

1.1. Motivation 1 

1.2. Key Features 2-3 

1.3. Scope 3-4 

1.4. Outline 4-5 

1.5. Summary 5 

Chapter 2: Requirement Analysis  

2.1.Functional Requirements 6 

2.2.Non-functional Requirements 7 

2.3.Class Diagrams 8 

2.3.1 Application Class Diagram 8 

2.3.2 Class Diagram for Admin 9 

2.4.Use Case 10 

2.5.Activity Diagram 11 

2.6. Software Requirements 12 

2.7. Plugin Requirements 12 



VI 
 

2.8. Summary 

 

 

 

12 

Chapter 3: Application Functionalities  

3.1. User Registration and Verification 13-14 

3.2. Throttled Login 14 

3.3. Product Searching 14-15 

3.4. Cart Functionalities 15-16 

3.5. User Profile 16-17 

3.6. Checkout 17 

3.7. Receipt 17-18 

3.8. User Feedbacks 18 

3.9. Product Details 18 

3.10. Related Products 19 

3.10.1 Algorithm 19 

3.11. Customer Support 19 

3.12. Sale Management 20 

3.13. Product Management 20 

3.14. User Management 20 

3.15. Summary 20 

Chapter 4: Implementation Plan  

  4.1. A Quick Glance at Laravel Framework 21 

4.1.1 Key Terms 22 

  4.2. Project Coordination 23 

4.2.1 Version Controlling 23 

4.2.2 Merging 23 

  4.3 Summary 23 

Chapter 5: Technical Procedures  



VII 
 

  5.1 Ease of Use 24 

5.1.1 Auto Suggestion 25 

5.1.2 Search Result Sorting 25 

5.1.3 Automatic Sale Deletion 25-26 

  5.2 Server-side validation 26 

5.2.1 During Registration 27 

5.2.2 In Cart Functionalities 27 

5.2.2(a) Problematic Scenarios 27-28 

5.2.2(b) Prevention 28 

5.2.3 In Checkout 28-29 

  5.3 Redundancy Free Database 29 

5.3.1 In Product Management 29 

5.3.2 In Advanced Info for Users 30 

5.3.3 In Receipts and Orders 30-31 

  5.4 Summary 31 

Chapter 6: View Optimization  

  6.1 Using Service Providers 32 

  6.2 View Stock Availability 33 

  6.3 Search Bar 34 

  6.4 Summary 34 

Chapter 7: Conclusion  

  7.1 Learnings 35 

  7.2 Conclusion 35 

  7.3 Future Works 36 

 
 
 
 
 
 
 
 
 
 
 
 
 



VIII 
 

 
 
 
 

List of Figures 

 

Figure 2.1: Class diagram of the application. 
 

8 

Figure 2.2: Class diagram for the Admin 9 

Figure 2.3: Use Case Diagram 10 

Figure 2.4: Activity diagram for users purchasing products 11 

Figure 3.1: Auto complete suggestion 14 

Figure 3.2: Cart Functionalities 16 

Figure 3.3: View of a User’s Profile 17 

Figure 3.4: A Purchase Receipt 18 

Figure 5.1: Deleting sales on ending date 26 

Figure 5.2: Task scheduling for custom command  26 

Figure 6.1: Categories (a) and Brands (b) on navigation bar fetched from database. 33 

Figure 6.2: Stock availability indicator 33 

 



1 
 

 

 

 

Chapter 1 

 

 

Introduction 

 

One-Stop Shop is an e-commerce based web application that makes the trade for buyers and 

sellers in few clicks. This application helps the business personnel (e.g., administrators, 

managers) to easily manage users and products, apply or remove sales, keep track of orders etc. 

In addition, subscribers can search and buy products through secure transactions online and see 

their transactional histories later. The scenario seems pretty basic, and the idea is to keep it that 

way through backend complex fail-safe design. 

 

 
1.1 Motivation 

 

 

For this project we considered building a full functional web application because of two key 

factors:  

 

i. In recent years, e-commerce has been dominating the world of trades and 

business. Due to the ease-of accessibility of the internet and microcomputer 

devices along with the simple manner of usability, it has been a sector where 

more and more people are merging every day. We wanted to get a little insight of 

the practical events and issues related to this sector. 

 

ii. Our goal was to build a professional standard project, which would help us to get 

an idea about how things work in real world (i.e., software development firms). 

Working with Laravel has enabled us to become a little familiar to such kind of a 

workflow. 

 



2 
 

In short, mixing and exploring two of the largest sectors that not only keeps growing fast in 

different parts the globe but also shows a great deal of promise in Bangladesh’s near future as 

well- was the actual motivation behind our project. 

 

 
1.2 Key Features 

 

 

 E-mail verification for user registration 

o Advanced User Info can be added / updated later 

 

 Proper user redirection after different tasks 

 

 Fail safe manner for user inputs 

o Front end warnings and restrictions 

o Strict Server-side validation 

 

 Free from data redundancy 

o Thoroughly used Laravel’s ORM (Object Relational Mapping) 

o Framework’s OOP concept gives extra benefit in keeping the data safe and the 

security intact 

 

 Autocomplete suggestions for search queries 

 

 Find products by Categories, Brands etc. 

 

 Search products conveniently 

o Sort by attributes 

 

 Shows Recently viewed products 

 

 User Feedbacks on products can be added and deleted by users (the same user) 

 

 Administrators and Managers can add Products, Categories, Brands 

 

 Add Sale on products 

o Easily add/remove product from sale 

o Sale ends on schedule automatically (Scheduled Task) 

 



3 
 

 

 Product Checkout is done safely and securely using stripe. 

o Account authentication is validated 

 

 Stock availability is validated throughout multiple step of order 

o During Adding to Cart 

o During final checkout 

 

 Order status can be monitored by managers/admins afterwards 

o Staff can change 

 

 A  Printable Receipt is given to the user after the checkout is completed 

o Includes unique receipt number, transaction date etc. 

 

 Users’ Cart info is saved in Order table inside database 

o Order includes payment_id, user_id etc. 

 

 User support 

o Contact staff though messaging to get info 

o Create tokens for refund. 

o Get help from staff through messages 

 

 Related Products 

o Suggest related products 

 

 

 

1.3 Scope 

 

 

Guests: 

(Unsubscribed users) 

 Search products 

 View product details 

 Add to cart (Cart access will result in a prompt to login/register) 

 

Subscribers: 

 Search products 

 View product details 

 Add reviews on products 



4 
 

 Add to cart 

o Increment, decrement products by 1 

o Discard a product from cart 

 Delete cart 

 Checkout 

 Check previous transactions 

 Change/Reset password 

 Store/Change users’ advanced info 

o View self-profile 

 Contact staff 

 

 

Managers: 

 Create/update products 

 Create/update categories, brands 

 Order status checking 

 Update product stock 

 Create Sales (Sales are set to be deleted automatically at ending date) 

o Delete sales manually 

 Assign Sales on products 

 Give supports and solution to users 

 

Administrator: 

 All of the tasks that a manager can carry out 

 Complete power over users (including managers) 

o Add/delete users 

o Change activation status 

o Change user roles etc. 

 

 

1.4 Outline 

The next chapter (Chap.2) discusses the requirement analysis of the project. Diagrams from 

different perspectives and software requirements are also shown in the chapter. 

Chap.3 discusses the application’s functionalities i.e. discussion of special and usability 

features in detail. 



5 
 

Chap. 4 discusses the implementation plan of the project, i.e. the approaches taken for 

completion and maintenance of individual and cooperative tasks. 

Chap.5 shows the technical procedures for modules of the application. Some potential risk and 

problematic scenarios and their solutions, preventions and validation processes are discussed in 

the chapter. 

Chap 6 discusses the view optimization in brief. 

Chap. 7 finally discussed about Conclusions and Future work. 

 

1.5 Summary 

This chapter demonstrates motivations, features and scopes of this project. A brief elementary 

instructional text of remaining chapters of this project have also been described in outline. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

Chapter 2 

 

 

Requirement Analysis 

 

 
Requirement Analysis, also termed as SRS (Software Requirements Specification) is the process 

of finding the requirements for developing a software, i.e., data-dependencies, software-

dependencies, time-constraints, feasible features to be applied etc. Usually this includes 

interviewing personnel from client or buyer side, who provides with the primary expectations of 

what the application might or should do. As we do not have any clients, we brainstormed to find 

out some functional requirements of the web application. 

 

 

2.1 Functional Requirements 

 

 Users must be able to search for products 

 Users must be able to view product details 

 On registration, users should have to verify their e-mails 

 Users must be able to add or delete products to cart 

 Subscribers should be able to add feedback on products 

 Subscribers should be able to view and edit their profile info 

 Subscribers must be able to change/reset password 

 Subscribers should be able to view transaction histories later 

 Products should be able to be set on sale by office staff (i.e., managers, administrator) 

 Managers must be able to add, update and delete products 

 Managers must be able to add, update and delete brands, categories etc. 



7 
 

 An interactive communication system should be set between managers and subscribers 

for user support. 

 Managers should be able to see and change orders’ current statuses 

 Admin must be able to carry out all the tasks a manager can do, additionally should have 

complete power over all the users. 

 

 

 

2.2 Non-functional Requirements 
 

 E-mail verification 

 Server-side validation 

 Proper routing 

 Ease-of-use 

 Stock validation 

 Payment validation 

 Redundancy free 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



8 
 

2.3 Class Diagrams 

 

 

 

 

2.3.1Application Class diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2.1: Class diagram of the application. 

 

 

 

 

 

 

 

 

 

 



9 
 

 

 

 
 

 
2.3.2 Class Diagram for the Admin 

 

 

 

 

 

Fig. 2.2: Class diagram for the Admin. 

 

 

 

 

 

 

 

 

 



10 
 

 

 
 

2.4 Use Case Diagram 

 

 
 

 

Fig. 2.3: Use Case Diagram 

 

 

 

 

 

 

 

 



11 
 

 

 
2.5 Activity Diagram 
 

 

The activity diagram below shows the process of product purchasing using the 

application. 

 
 

Fig. 2.4: Activity diagram for users purchasing products 

 

 

 

 

 

 



12 
 

 
2.6 Software requirements 

 
For establishing the system we need these following software packages: 

 

 
Web Server : Apache (Included in WAMP/XAMPP/LAMP) 
   

DBMS : MySQL (Included in WAMP/XAMPP/LAMP) 

   

Server-side Language : PHP (Included in WAMP/XAMPP/LAMP) 
   

PHP Dependency Manager : Composer (https://www.getcomposer.org) 

   

Version Control Software : github 
   

IDE : Any text editor/IDE can be used as per user preference 

 
    

  

 

2.7 Plugin Requirements 
 

Stripe                          : API for payment (debit/credit card authenticity) validation. 
   

Laravel Throttle : for limiting too many login attempts at once. (by Graham Campbell) 

   

Ticketit : for user-staff communication (customer support).(by Ahmed M. Kordy) 

 

 

 

 

2.8 Summary 
 

This chapter discusses the basic structural and supplemental requirements for the application 

using software requirement analysis, sets the plot for a better understanding of the following 

chapters. 

 

 

 

 



13 
 

 

 

Chapter 3 

 

 

Application Functionalities 
 

 

 

 

The application offers diversified tasks for the users, different user groups carry out different 

tasks. From searching to purchasing products, from adding sales to removing products- a 

moderately wide range of tasks are performed by subscribers and office staff. In this section we 

try to mention the primary functionalities of the web application. 

 

 

3.1 User Registration and Verification 
 

The web application “One-Stop Shop” will let “guests” browse and search through the product 

details and add the products they want to purchase to the cart, but to access the cart and advance 

through the process, they have to login, if not- register on the website by verifying their e-mails. 

 

The registration page will take users’ First Name, Last Name, a unique E-Mail id, and confirmed 

password initially. 

 

A confirmation e-mail is sent to the user-given e-mail address with a randomly generated 40 

character unique confirmation code. The uniqueness is maintained by encrypting the current 

UNIX time using SHA1 hash function. 

 

User is kept inactive (is_active = 0), hence unable to carry out subscriber tasks until the e-mail 

verification is confirmed. 

 

After the registration is completed, the user can access the cart, edit their profiles, contact the 

customer support and advance through the purchase options. 

 

 



14 
 

3.2 Throttled Login 

 
 
Limiting too many login attempts at once and hence negating the chance of getting hacked by 

any kind of brute-force attacks is a primary security feature an application should have. To 

provide this security feature we used Laravel Throttle plugin to make sure the application can 

record the false-requesting IP and block it from making farther requests for a given amount of 

time to prevent potential attacks.  

 

 

3.3 Product Searching 
 

Users can search for products in a more convenient way through features like- 

 

 Auto-Suggestion 

 

Our application’s search bar provide the users with auto-suggestions by matching the keywords 

to any product related info and shows it below the search bar. This piece of AJAX functionality 

is managed completely with plain and Javascript code. No jQuery or any other library was used 

for this part of the functionality to maintain simplicity.  

 

Fig. 3.1: Autocomplete suggestion 

  

  

 

 

 



15 
 

 

 Sort Search Result 

 
Users can sort the search result to their likings, sorting can be done considering products’- 

 Name (Ascending/Descending) 

 Price (High to Low/ Low to High) 

 Categories 

 Brand Names  

 

 

 

 

 

3.4 Cart Functionalities 
 
One-Stop Shop’s cart system provides convenient features for users to help product purchasing 

more interactive. 

 

 Add to Cart 

 
Users add their to-be purchased products to the cart, either from the partial views (e.g., 

related products, recently viewed) or from the product details view. They can select their 

desired quantity to be added to the cart but not more than the stock permits. This stock 

limit validation is done through multiple stages, which is discussed later in the 

“Application Implementation” part of this paper. 

 

 Addition, Deduction& Removal On-The-Go 
 

After a user adds a certain number of products to a cart, he/she might come to a decision 

to add another piece of the product to the cart, or deduct the product by one, or the choice 

might even be to remove the product from the cart. This fine-tuning feature is 

implemented on the cart to increase customer satisfaction. 

 

 

 

 Product Count and Total Price 
 



16 
 

Throughout the whole browsing session of a user the total number of products added to 

the cart and accumulated price is shown beside the cart’s button. This feature can be 

useful for users to get a better estimation of their purchase status. 

 

 

 

 

 Delete Cart 
 

Cart deletion can be performed to discard a cart full of products and continue with a new 

one. 

 

 

 

 

 

 

 

 

 

3.5 User Profile 

 
Before a user can advance through to the checkout stage, the user’s profile containing related 

advanced info(e.g., address, phone number, date of birth, etc.) must be submitted. The idea is to 

make sure of the availability of shipping address, phone number and such user contact-info 

beforehand, so the purchased products does not go to a wrong address. The profile info can later 

be viewed and edited from going to the “User Info” tab(/usersinfo url) on the dropdown menu. 

 

 

 

Decrease 1 Add 1 Discard Product 

Product Detail Delete Cart 

Fig. 3.2: Cart Functionalities 



17 
 

 

 

 

 

 

 

Fig. 3.3: View of a User’s Profile 

 

 

 

 

3.6 Checkout 
 

Users can checkout only using valid payment cards. The validity and authentication is managed 

by Stripe- a well renowned, accredited API for handling payment procedures globally, and 

supporting user with by providing convenience. 

 

 

 

 

3.7 Receipt 
 

A printable receipt is given to the user after a purchase is successfully completed. These receipts 

can the viewed later by the user. The receipt id is kept unique by combining three different parts,  

 First three digits are from user’s id 

 Next four digits come from the order’s unique id 

 The last ten digits are the current Unix time 

 



18 
 

 

 

Fig. 3.4: A Purchase Receipt 

 

 

Maintaining this format, an ‘O-’ prefix is set to identify this as a One-Stop Shop receipt id (e.g., 

O-00300251480371133). 

 
 

3.8 User Feedback 
 
Users can give their feedback on products, which can be removed later by the users at will. 

 

 

3.9 Product Details 
 
Product detail page shows a products detailed information about stock, price, brand, category etc. 

Stock interactively reduces/increases on the screen as the users add products to the cart or deletes 

them from the same. Product details page accommodates a number of features in a packed space. 

 

 Recently viewed products 

 
This portion makes good use of cookies to keep and show the recently viewed products 

by a user. 

 

 

 

 



19 
 

3.10 Related Products 

 

 
This part shows the related products to the current one in a sense that the users could potentially 

be interested to purchase them. (i.e., same category or frequently bought together (10)) These 

products suggestions are derived and fetched from accessing the cart data and finding the 

products those were sold together more frequently than the other products. 

 

3.10.1 Algorithm 

Foreach cart in carts 

 If current_product_id exists in cart store the other ids in an array 

End foreach 

Foreach cart in carts 

 If current_product_id exists in cart 

  Foreach related_id 

   If related_id exist in cart 

    Store related_ids in array 

   End if 

  End foreach 

 End if 

End foreach 

Count number of related_id occurrences  

Sort from high to low 

 

 

3.11 Customer Support 
 

User support is managed by using an effective plug-in named “ticketIt”. This communicative 

feature lets customers enquire or complain about products, discuss refund issues or give 



20 
 

feedbacks about the service. Pictures can be added by the users for better explanation of their 

problems. 

 Users create ticket about their enquiry 

 Staff respond to the open tickets and marks as completed 

 
 

 

3.12 Sales Management 
 

Sales can be set on products by One-Stop Shop staff (admin, managers). Products are added in 

simple click & pick manner negating any kind of difficulty. Product removal from sales is also 

managed in the same way. The most useful features about sales is that sales are ended (i.e., 

deleted) at the exact ending date automatically. We shall discuss about this functionality in the 

later part of our paper. 

  

 

 

3.13 Product Management 
 

 Products can be added, deleted and edited by admins and managers 

 Categories and Brands are to be created by the staff 

 An useful feature is addition of new brands on-the-go (non-redundant approach) 

 

 

 

3.14 User Management 

 
Admins can add, edit and activate users manually, and assign or change roles of existing 

users. User data manipulation is not accessible to the managers. 

 

3.15 Summary 

An overview of mentionable key functionalities of the application has been shown in the chapter. 

For better understanding, figures and algorithms have been shown in the chapter also. Following 

chapters discuss the implementation and technical procedures of these functionalities. 



21 
 

 

 

Chapter 4 

 

 

Implementation Plan 

 
 

 
Before we move on to the next section where the technical implementations of our project is 

discussed, we would like to discuss some of the mandatory to know key-terms first. 

 

Both Laravel, and PHP are products of open-source projects. Hundreds of skillful contributors 

are constantly working on both of them to make them more competent, more secure. In that 

sense, these two make the perfect, powerful duo to be used to make powerful, robust web 

applications. 

 

We used this open-source duo to build our project along with HTML, CSS & Javascript. We 

used bootstrap 3, a web-styling framework for front-end designing. 

 

Apache serves as the local-host, MySQL is the DB Management System. PHP is the server-

side language. A package manager Node.js is used to manage gulp elixir.  

 

 
4.1 A Quick Glance at Laravel Framework 
 
Laravel is an open-source new generation web framework that uses a vast number of advanced 

features to make web application development secure, and time-saving for developers. 

Implementation of MVC pattern gives the developers a level ground to start their app 

development in a guided sense. 

 

 

 

 

 

 

 



22 
 

4.1.1 Key Terms: 

 

 MVC: MVC is abbreviation for Model-View-Controller pattern in software 

development. Laravel framework uses this highly efficient pattern in the process of 

web development. 

 

 ORM: ORM is short form of Object Relational Mapping. ORM Helps make an 

entity with unsupported data-type into an “Object”, which can be later manipulated 

using OOP (Object Oriented Programming) concept. 

 

 Eloquent: Laravel’s eloquent simplifies the task of information retrieval by using 

“Models” to access the respective data relations. Hence simple functions can be 

implemented on the 

 

 Migrations: Migrations are used for creating, deleting, and modifying databases and 

relations. The key convenience of migrations is that, the databases can be rolled back 

and forth of its state (e.g., remove a column that has just been inserted, rename a 

column back to its previous name) during development process at ease. Large chunks 

of data can be “seeded” into the database with significantly less effort. 

 

 Middleware: Middlewares work as passages through which view requests go through 

to the controller to be manipulated. In a sense a “Middleware” controls the view-

controller communication. 

 

 Service Provider: Service providers are the start-up entities those register event 

listeners, middleware, routes and other variable at boot level. 

 

 .blade: Naming convention of Laravel views follows adding a “.blade.php” extension 

(e.g., index.blade.php) at the end of the view filename. 

 

 Route: All the existing routes in the web application must be declared in the 

“web.php” file inside the “Route” folder. 

 

 

 

 

 

 

 

 



23 
 

 

4.2 Project Coordination 
 
We managed the coordination of the tasks for our project by constantly keeping each-other 

updated about the current events. We kept logs about the to-do tasks regularly and separated the 

task of implementing different modules between us. The coordination was mostly done using 

online chat sessions and/or screen-sharing applications. 

 

 
4.2.1Version controlling 

 
We used github for our application’s version controlling. Whenever a permanent change 

was done the files were pushed to the main respiratory of github where all our files were 

kept for better coordination. 

 

4.2.2 Merging 
 

Minor mergers were done by sharing particular files or through updating github 

respiratory. Major mergers were done however face-to-face under careful watch of our 

team. 

  
 

4.3 Summary 
 

Planning the implementation procedures and maintaining cooperation is a key task to be sorted 

out before going into project development. Proper cooperativeness leads to smooth mergers and 

easier issue-solving for a project. 

 

 

 

 

 

 

 

 

 

 
 



24 
 

 

 

Chapter 5 

 

 

Technical Procedures 
 

 

 

For the technical part of this project the issues we considered with utmost priority were-  

 

i. Ease of use 

 

ii. Secured server-side validation 

 

iii. Redundancy free database 

 

 

 
5.1 Ease of Use 

 
Maintaining usability of an application may seem negligible if not much thought is given 

into the matter, but if we try to look at it carefully, it becomes pretty clear that, this is one 

of the, if not, the only significant quality an application should have. It is because of the 

fact that, applications are built for the users particularly. If they do not feel comfortable 

using the application, then the sole purpose of building one fails. We took careful notes, 

and tried to build the application as much easy to use as we could within our extent. 

 

Few features those were included to support our goal- 

 Auto-suggestion in search 

 Search result sorting 

 Consistent fail-safe pop-ups 

 Effective redirection to proper routes 



25 
 

 User-staff communication (Customer Support) 

 Automatic Sale Deletion (Scheduled Task) 

 

 

Fail-safe manner of the interactions makes sure that the users navigate through their 

browsing sessions inherently. 

 

5.1.1 Auto-suggestions 

 

Suggestions appear below the search bar as users start typing to search for a product. 

AJAX functionality manages to send the request to the controller instantly as the letters 

are being typed, the controller searches for products with the matching keyword and 

returns the data to the view to be received by the AJAX code. This listening process 

activates as soon as a user selects the search bar. 

 

 

5.1.2 Search Result Sorting 

 

Search results are primarily shown to the user in an alphabetical order. But those can be 

sorted later according to the users’ needs. Sorting by Price both high-to-low and low-to-

high are two useful options. Sorting by ascending/descending alphabetical order and 

category, brand names are other options those are included for convenience. 

 
 

5.1.3 Automatic Sale Deletion 
 

This feature is very useful for the office staff and certainly saves their time from doing 

another relatively less-important task. With the passing of the ending date-time of a sale, 

the sale is deleted automatically and the products are restored back to their original price. 

If there are multiple sales that are to be ended on exactly the same date-time, all of them 

would perfectly get deleted in time. Deleting sales manually is also an option that has 

been provided for the staff. 



26 
 

 

 

 

 

 

 
Server side cron-jobs are used for running the custom command on a scheduled time. 

Usually “Greenwich Mean Time” is used on servers for date-time of a scheduled task. 

 

 

 

 

 

 
 

Fig. 5.2: Task scheduling for custom command 

 

 

5.2 Server-side Validations 
 

Proper server side validations are performed before fetching any data from the database 

or storing into it. The significance of server side validation is that even if someone 

manages to inject HTML codes through to the server, the server-side validation will 

check if the request is a legal/ non-violating one before the request actually reaches the 

database. This way any kind of harm to the database can be prevented effectively. 

 

 

5.2.1 During Registration 
 

 During the registration process users are prompted to use unique e-mail addresses. The 

process of checking the uniqueness of the user given e-mail is performed through server-

 

Fig. 5.1: Deleting sales on ending date 

GMT 



27 
 

side validation. Inside the file “RegisterController.php”- the controller that manages the 

user registration process, checks the validity of the uniqueness of the given e-mail.(3) To 

make the request posting safe, a CSRF token is sent with the form request to the server. 

 

 Password format and the correctness of the password in checked and confirmed in the 

controller.(3) 

 

 Registering users are instantly assigned the “Subscriber” role to their account. (4) 

 

 The confirmation code is generated by encrypting the current UNIX time and re-shuffling 

it before sending to the user’s e-mail address. (4) 

 

 

 

5.2.2In Cart Functionality 
 

Users can conveniently add products to the cart and deduct or remove them at will. This 

process of addition and subtraction may seem very simple but in reality, even a tiny little 

loophole can break the database during this process. 

 

 

5.2.2(a) Problematic Scenarios 

 

If proper server-side validation were non-existent in a project, it does not take a genius to tell 

that the system would break any moment after it launches, even if it manages not to fail to 

launch in the first place. But for the sake of example, let us assume that, the server-side 

validation were not thought very thoroughly and were weak in implementation in the project. 

In that scenario, any tech-savvy user having intermediate knowledge about web can inject 

unreal and/or breakpoint values to manipulate the database and hence harming the 

transactions. I.e., 

 

 Create multiple cart images and send the requests altogether. 

 Inject 0 to multiply with the total price and checking out with a huge 

amount of products 



28 
 

 Insert a garbage value to the cart quantity so that, on checkout it breaks the 

product stock in database 

 

 

5.2.2(b) Prevention 

 

 

To prevent these kind of failing scenarios firstly, we save our cart in the appointed 

session only. Users cannot use any other session to function as a cart. That is because the 

PHP sessions are cross-matched with a given id from the server, stored in the cookies, 

which is a hashed string and too hard to break; even it were to be broken, the session will 

fail to cross-match with the server and become invalid instantly. This process prevents 

the first problem from arising ever. 

 

To prevent users from adding any invalid number of product that can dismantle the 

database, primarily the maximum number of products is set in the view file according to 

the product’s available stock. The minimum number is set to 1 if the product is in stock. 

Both are set to 0 if the product in out of stock. 

 

As we discussed before only this setup alone is not sufficient for preventing the damage 

from happening. So the server-side controller takes out the cart data and checks if any 

invalid amount of quantity has been requested. Attempts to insert 0 as product quantity is 

checked and restricted, attempts to add negative values are also discarded.(5) 

 

One particular feature to be pointed here is that, though we are letting users add, remove 

products to/from the cart and also restricting them from inserting invalid values, the 

actual database is nearly untouched. That is, the actual stock of products does not get 

affected until the user checks-out the cart.  

 

 

 

5.2.3 In Checkout 
  

As the user proceeds forward to checkout, the controllers will look for users 

advanced information. If the info are not available, the user cannot go forward, the 

user must fill out the information form to continue the purchase session. If 

advance info pre-existed, the user can choose to either proceed instantly or edit the 

appropriate info to continue. This process is also validated server-side. After the 

order is placed, the current stock is checked accessing the database before 



29 
 

forwarding, if the product has been reduced meanwhile, the user is redirected back 

or else the checkout process forwards and updates the database accordingly.(6) 

 

 

There are quiet a few more places here and there inside the controllers to ensure 

the data validation, such as the ‘FeedbackController.php’ checks if the feedbacks 

shown on a product are of the current user, if they are not, they cannot be deleted 

by the current user. Another mentionable one is inside the 

‘AddProductsController.php’, where the staff can choose to add a new brand for 

the product on the go and it checks server-side if the requested brand exists or not 

(discussed later in ‘Redundancy Free Database’).Concisely, we considered any 

visible/potential loopholes as threats to the system and put efforts within our 

extent to remove them.  

 

 

 

5.3 Redundancy Free Database 
 

 

Throughout the whole project we carefully tried to maintain the non-redundant approach 

for our database system. From storing users’ advanced info to not updating the product 

stock until the checkout is completed, less-to-no redundancy was one of our top 

priorities. 

 

 

5.3.1 In Product Management 
 

 

During addition of new products to the database (by office staff) there might come a 

scenario where a product of the same name and same brand exists but the staff failed to 

notice that beforehand. In such case, adding a product having same name results in data 

redundancy. 

 

To prevent this kind of potential record duplication, the application checks if a product 

having the same name and the same brand pre-exists in the database. If a matching 

product is pre-existent, the stock number for the product is increased adding new stock 

quantity to the previous one and price for the product keeps the lower amount as the 

updated price.  

 

Another quite similar a scenario arises during addition of a new product, when a new 

brand name for the product has to be entered but the database does not contain the brand 



30 
 

name. In such case the staff can simply insert the name of the brand instead of an existing 

one. Now, the controller receives the request, checks for a match if the brand pre-exists. 

If it does, the existing brand_id is assigned to the product. If the brand is a new one, the 

controllers inserts it into the database giving it a new id and saves it after assigning it to 

the product.(7) This way any potential redundancy arising from duplicate data existence is 

avoided. 

 

 

Note that, product’s ‘Categories’ and ‘Brands’ are kept in different tables for the 

convenience of managing them in advanced fashion (e.g., use in navigation bars, sub-

categorize), or manipulating later in time by the staff. This keeps the option of adding 

extra attributes to categories/brands open for future use. 

 

 

 

5.3.2In Advanced Info for Users 

 

 

For the advanced user info, we reduced redundancy by keeping the table corresponding to 

advanced user info (‘advanceds’) separated from the main users table. This way the users 

do not necessarily have to insert their advanced info until they try to purchase something; 

so the database and the table is more likely kept relatively smaller. This approach also 

helps to minimize the database access cost when a user performs regular tasks like adding 

feedbacks, contacting customer support, watching histories etc., where the only entity the 

user needs is the ID to get access to those task initially. Had the other data been in the 

same table, more cost would have caused due to fetching bigger data chunks. On deletion 

of any user the advanced info also gets deleted. 

 

 

 

5.3.3In Receipts and Orders 

 

 

This is another section where we maintained less redundancy according to the scenario of 

the two entities. An ‘Order’ will keep the ordering user’s id (user_id), the items bought 

(cart), the payment confirmation id (payment_id) and the status of the order (i.e., 

pending, delivered, returned) to keep track of the actual order. 

The ‘Receipt’ will keep the user’s id (user_id), the order’s id (order_id), shipping address 

and phone number of the user. This way the products related to the receipt will be fetched 

from the order to show on view. One important point to notice here is the inclusion of 

shipping address and phone number in the ‘receipts’ table. Primarily it may seem that 



31 
 

these two columns are used here redundantly, when it can simply fetch data from the 

user’s advanced info relation. But if a user moves from the place he/she ordered from to 

another place and updates the current address in the ‘advanced’ table, the actual address 

where the shipping was made gets lost. Same happens for the phone number too. That is 

the reason why these two columns were kept with receipts intentionally. Any other 

visible redundancy were avoided. 

 
 

Redundancy free database is a highly desirable characteristic for an application. We tried 

to keep our database as less redundant as possible for a better system. 

 

 

 

5.4 Summary 
 

Key background features and their implementation procedures have been discussed in the 

chapter. Ease-of-use, proper validation and the process of non-redundancy go hand in 

hand in an interactive project. Implementing them and making sure they all work together 

is a delicate task. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



32 
 

 

 

Chapter 6 

 

 

View Optimization 

 

 
 

The UI (user interfaces), or ‘View’ as termed in MVC pattern is a significantly vital part of an 

application. That is because the users would likely have no interest in knowing what kind of 

features are used in the application, how fail-safe the application is or how less redundant the 

application’s database is. If the users do not like the view or if they feel uncomfortable using the 

app they would most likely lose their interest on the application. In this section we briefly 

mention a few of the procedures we undertook to optimize the application’s views. 

 

 

 

6.1 Using Service Providers 
 
Service providers helps load variables, routes, event listeners and such entities during the start-

up, before any views or controllers are loaded. We passed our frequently used models such as 

categories, brands to our main layout view using the ‘AppServiceProvide.php’ at the 

application’s booting time. The categories and brands are fetched from the database and sent to 

the main layout (app.blade.php) page during program initiation.  This way, we maintain non-

redundancy in our views too.   

 

    

 

 
 

 

 



33 
 

 

 

6.2 View Stock Availability 

 

We managed to show the users the stock availability in a virtual manner. Initially the stock is 

shown to the users according to the actual product stock that is derived from the database. If the 

product has stock, a green colored ‘In Stock’ text is shown(a) beside the product’s available 

quantity; if not, a red texted ‘No Stock’ is shown (b) in the same place. 

 

 

 

   

(a) (b) (c) 

 

Fig. 6.2: Stock availability indicator 

 

 

Now, if a user starts adding the product to the cart, the product’s available quantity keeps 

reducing and shown accordingly to the user, and as long as the available quantity does not reach 

0 the ‘In Stock’ text is kept shown. If the user adds all the available stock to the cart the text then 

shows ‘Limit Reached’ in red colored text(c).  All of these mentioned functionalities are carried 

out without affecting the database right away(9)- as we discussed in the earlier section, which 

adds a sense of virtuality to the view manipulation. 

 

 

 

 

  

(a) (b) 
 

Fig. 6.1:Categories (a) and Brands (b) on navigation bar fetched from database. 



34 
 

6.3 Search Bar 
 
The search bar is built as a partial layout with its full functionality for the web-app. This enables 

the search-bar to be extended anywhere in any page as an external module.  

To add the search bar to view using a single line is (e.g., @extends(‘layouts.search’)) enough. 

This way, we avoided using the search bar on places where it is not necessary (e.g., register, 

profile, receipt, checkout etc. views). 

 

 

6.4 Summary 
 

Laravel provides developers with a subtle view management system to avoid any unnecessary 

work procedure. Idea of extending a main layout, and/or partial layouts in views is an effective 

feature for reducing overhead; hence increasing the throughput quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 

 

Chapter 7 

 

 

Conclusion 
 

 

 

 

 

7.1 Learnings 
 
There are a few learnings worth mentioning those we learned working on the project. These 

realizations would surely help if kept in mind for future projects. 

 

• Building a web application is a continuous process 

• Need for new modules will always persist 

• Bug-free modules are products of countless re-testing 

• Careful time-management is very crucial 

• Regular team meeting during development is a must 

• Maintaining good coding practices is necessary for bigger projects 

 

 

 

7.2 Conclusion 
 
In the project we explored and demonstrated a few advanced, user-friendly features to carry out 

the regular tasks. Working on this project, we came to a better understanding of how e-

commerce and engineering techniques can work hand in hand to bring more advancement in the 

sector. We hope people interested in this sector would get a clear view on the workflow of these 

kind of businesses and take that extra step to explore the sector for the purpose of improvement. 

 

 

 

 

 

 

 



36 
 

 

 

7.3 Future Work 

 
• A better looking UI 

• Product rating feature 

• Sub-categorize products 

• Home delivery & tracking system 

• Monolog 

• SMS verification system (in progress) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

 



37 
 

 

 

 
 

Code Snippets: 

 
 

1. 

function show(str) { 

    var dataList = document.getElementById('json-datalist'); 

    var input = document.getElementById('tbx'); 

    if (str.length == 0) {            

        input.placeholder="Search for products.."; 

        return; 

        } else { 

        var xmlhttp = new XMLHttpRequest(); 

        xmlhttp.onreadystatechange = function() { 

            if (this.readyState == 4 && 

this.status == 200) { 

            //remove datalist element 

            if (dataList.hasChildNodes()) {          

            // It has at least one 

                dataList.parentNode.removeChild(option); 

                // window.alert('del'); 

            } 

                var found = this.responseText; 

                //JSON.parse 

                var parsed = JSON.parse(found); 

            var cnt = dataList.childElementCount; 

 

            parsed.forEach(function(item) {    

            // Create a new <option> element. 

var option = document.createElement('option'); 

            // Set the value using the item in the JSON array. 

            // window.alert('ok'); 

            option.value = item; 

            // Add the <option> element to the <datalist>. 

            if (cnt<=6){ 

            dataList.appendChild(option); 

            } 

            }); 

            } 

        } 

        xmlhttp.open("GET", "/getq?q=" + str, true); 

        xmlhttp.send(); 



2 
 

    } 

} 

 

2. 

public function handle() 

  {  

        $today= Carbon::today()->toDateString(); 

        $sales = Sale::whereDate('ending_date', '=', $today)->get(); 

        // $sales = Sale::where('id', '=', 1)->get(); 

        foreach ($sales as $sale) { 

 

            $products = $sale->products;         

 

                foreach ($products as $onsale) { 

                        $onsale['sale_id'] = NULL ; 

$onsale->save();} 

$sale->delete(); } 

 

3. 

protected function validator(array $data) 

    { 

        return Validator::make($data, [ 

            'first_name' => 'required|max:255', 

            'last_name' => 'required|max:255', 

            'email' => 'required|email|max:255|unique:users', 

            'password' => 'required|min:6|confirmed', 

        ]); 

    } 

 

 

 

4. 
protected function create(array $data) 

    { 

        return User::create([ 

            'role_id' => '3', 

            'first_name' => $data['first_name'], 

            'last_name' => $data['last_name'], 

            'email' => $data['email'], 

            'conf_code' => str_shuffle(sha1(time())), 

            'password' => bcrypt($data['password']), 

 

        ]); 

    } 

 

 



32 
 

 

 

 

5. 
// Cart Input validation 

        //no old cart 

        if($request['qty'] && !$request['qty']<=0){ 

                if($product->stock - $request['qty']<0){ 

                            return redirect()->back();         

                } 

        } 

//old cart exists 

        if($oldcart){ 

        foreach($oldcart['items'] as $old){ 

           if($old['item'] ['id']==$id){  

 

            if($request['qty']  && !$request['qty']<=0){ 

                if($product->stock - $old['qty'] - $request['qty']<0){ 

               return redirect()->back();                          

                    } 

                } 

                 else if($product->stock - $old['qty']<=0){ 

                    return redirect()->back();         

                    } 

                } 

            } 

        } 

        //Input Fail-Safe 

 

6.  

if($product->stock - $bought['qty'] >=0 ){ 

            $product->stock -= $bought['qty']; 

            $product->save();  

            // dd($product); 

            }else{ 

return 

redirect()->route('product.detail',$product->id); 

            } 

 

7.  

$exist = Brand::where('brand',$brand)->first(); 

            if($exist){         

                $input['brand_id'] = $exist->id; 

            }else{ 

                $brand = Brand::create(['brand'=>$brand]); 

                $input['brand_id'] = $brand->id; 



32 
 

} 

…………//more codes//……… 

   Product::create($input); 

 

8. 
public function boot() 

    { 

        view()->composer('layouts.app',function($view){ 

                    $view->with('cat',Category::all()->sortBy('name'))->with('bnd',Brand::all()-

>sortBy('brand')); 

        }); 

        view()->composer('layouts.authapp',function($view){ 

            $view->with('cat',Category::all()->sortBy('name'))->with('bnd',Brand::all()-

>sortBy('brand')); 

        }); 

    } 

 

9. 
if(Session::has('cart')){ 

            $cart = Session::get('cart'); 

       foreach ($cart['items'] as $item) { 

                if($item['item']->id == $id){ 

                    $exists['max'] = $product->stock - $item['qty'];  

                    $exists['qty'] = $item['qty']; 

return view('products.detail',compact(['product', 'exists'])); 

                } 

            } 

        } 

 

10. 
$count = array_count_values($timesTogether); 

arsort($count,SORT_NUMERIC);

 

 

 

Short Forms& Acronyms 
 

 

MVC  :  Model-View-Controller 

 



33 
 

ORM  :  Object Relational Mapping 

 

API  :  Application Programming Interface 

 

OOP  :  Object Oriented Programming 

 

SRS  :  System Requirements Specification 

 

UI  :  User Interface 

 

DBMS  :  Database Management Systems 

 

IDE  :  Integrated Development Environment 

 

SHA1  :  Secure Hash Algorithm 1 

 

 

 

 

 

 

 

 

 

 
  



33 
 

References: 
 
[01] https://www.w3schools.com 

[02] https://en.wikipedia.org/wiki/Laravel/ 

[03]https://laracasts.com/  

[04] http://stackoverflow.com/ 

[05] http://www.laravel.io/ 

[06] http://www.tutorialspoint.com/laravel/  

[07] http://www.youtube.com/ 

[08] http://bootsnipp.com/ 

[09] https://en.wikipedia.org/wiki/Design_specification/ 

[10] http://www.getbootstrap.com/ 

[11] https://github.com/thekordy/ticketit/ 

[12] https://github.com/GrahamCampbell/Laravel-Throttle 

[13] https://stripe.com/ 

 

 

 

 

 

 

 

 
 


