
1

GetInfo using Android Application

A project Submitted to the Computer Science and Engineering Department, East West
University In partial fulfillment of the requirements for the award of the degree of

Bachelor of Science in Engineering.

By

Md. Mehedi Hasan

2011-1-60-029

Mohammad imran

2011-1-60-032

Supervised By

Dr. Shaikh Muhammad Allayear

Assistant Professor

Department of Computer Science and Engineering, East West University

January 2016

2

ABSTRACT

GetInfo based on Android platform. It forethought and to make our life easy also
saved time. By using this application anyone can easilly notify about his/her university
activity like notice,result,calender etc. This report provides elaborate description on how
we created the application and also how we eased the process of android development
while creating the application.

3

Declaration
We hereby declare that this is submission is our own work and that to the best of our
knowledge and belief it contains neither materials nor fact previously published or
written by another person. Further, it does not contain material or fact which to a
substantial extent has been accepted for the award of any degree of a university or any
other institution of tertiary education except where an acknowledgment.

Signature of Candidate

………………………………

(Md. Mehedi Hasan)

………………………………

(Mohammad Imran)

4

Letter of Acceptance

The project entitled “GetInfo” submitted by Md.Mehedi Hasan, ID No. 2011-1-60-029
and Mohammad Imran, ID No. 2011-1-60-029, to the Department of Computer Science
and Engineering, East West University, Dhaka-1212, Bangladesh is accepted by the
Department for the partial fulfillment of requirements for the degree of Bachelor of
Science in Computer Science and Engineering on January 14, 2015.

Dr. Shaikh Muhammad Allayear

Signature: ____________________________________

Date: __

Assistant Professor, Department of Computer Science and Engineering,

 East West University, Dhaka-1212, Bangladesh

Dr. Shamim Hasnat Ripon

Signature: ____________________________________

Date: __

 Chairperson and Associate Professor, Department of Computer Science and Engineering,

 East West University Dhaka-1212, Bangladesh

5

Acknowledgements

The application "GetInfo" would never run successfully without the valuable
encouragement and guidance from our supervisor Dr. Shaikh Muhammad Allayear,
Assistant Professor, Department of Computer Science and Engineering, East West
University. He enlightened, encouraged, and provided us with the ingenuity to transform
our vision into reality. We particularly grateful to Dr. Shamim Hasnat Ripon,
Chairperson and Associate Professor, Department of Computer Science and Engineering,
East West University, for his encouragement. And also grateful to Siddhartha Sarkar for
his guidance and counseling. We also grateful to all of our teachers and many of our
friends who provided us with necessary software and suggestion to test the software as it
developed. We would like to thank Google for creating android platform and keeping it
free.

6

Table of Contents

Abstract 2
Declaration 3
Letter of Acceptance 4
Acknowledgement 5

__

Chapter 1: Introduction

1.1 Introduction 10
1.2 Motivations 10
1.3 Objectives 10
1.4 Contribution 11
1.5 Organization for the Project Report 11

__

Chapter 2: Literature Review and Survey of Existing Models

2.1 What is Android? 13
2.2 History of Android

13

 2.2.1 Foundation 13
 2.2.2 Acquisition by Google 13
 2.2.3 Post-acquisition by Google 14
 2.2.4 Open Handset Alliance 14
 2.2.5 Android Open Source Project 14
 2.2.6 Version history 15-16

2.3 Design and Architecture of Android 16
2.4 Architecture of Android 17
2.5 Application 17-18
2.6 Libraries 18
2.7 Android Runtime 19
2.8 Applications 19
2.9 Google Play 19-20
2.10 Security of Application 20
2.11 Software development tools

20

 2.11.1 Android SDK 21
 2.11.2 Native development kit 21
 2.11.3 Android Open Accessory Development Kit 22

7

 2.11.4 App Inventor for Android 22
 2.11.5 Hypertext Android Creator

22

2.12 The Simple Project 23
2.13 App Components 23
2.14 Application Fundamentals 23-24
2.15 Application Components 24-27
2.16 Activating Components 27-28
2.17 The Manifest File 28-29
2.18 Declaring Components 29-30
2.19 Declaring Components Capabilities 30
2.20 Declaring Application Requirements 30-31
2.21 Application Resources 32
2.3 Database management

33

 2.3.1 SQlite Database 33-34
 2.3.2 Website 34-35
 2.3.3 Website Design Feature 35-36

__

Chapter 3: Proposed Models

 3.1. Flow Chart for project 38
 3.2 Notification Page 38
 3.3 Admin Panel page 39

3.4 Implementation Procedure 39-40

 Hardware Requirement Tools

40

 3.4.1 Android Development Environment 40
 3.4.2 Project Setup 40
 3.4.3 Library Insertion 40

8

Chapter 4: Implementation (Design)

 4.1 Image View 42
 4.1.1 Student Information 42
 4.1.2 Delete Data 42
 4.1.3 Insert Data 43
 4.1.4 Update Data 43
 4.1.5 Update Notice 44
 4.1.6 User Login 45
 4.1.7 User Registration 45
 4.1.8 User Registered 45
 4.1.9 Registered User Login 46
 4.1.10 User Panel 47-49

Chapter 5: Conclusion and Future Work

5.1 Conclusion 51
5.2 Future Work 51

References

52

9

Chapter 1: Introduction

10

1.1 Introduction

The world growing telecom network in the world with many users moving towards smart phones
and majority by students. Study Life is one of many free options in the Android ecosystem and
the app can integrate result, urgent notice, academic calendar, advising system and other
events. These mobile applications provide a connection to the student with the university. It is
very helpful to the student to connect with university about all activity. Android is open Google
mobile platform which provide greater flexibility, Rapid Application Development Easy to
Develop Interface with rich API collection. It mixture of Java, C++,PHP, HTML. Our creativity
is to make an android based application that would be an efficient app for smart phone and also
an entertaining app for user/students. So we started working to create an android application
“Get Info” and that’s will make life became too easy.

1.2. Motivations

Usually in a university there is lot of activity as like as different kind of event, club etc.
sometimes we cannot get any message or notification form university or from other sector. So it
is difficult to get information from this source. We have "project name" apps to get the
notification about urgent notice, semester result, academic calendar etc. Where if you have a
smart phone and have an app which get notified you about the all of activity which are given up
and it make the life easy and comfortable. With concerning all of those problems I have
motivated to make this application.

1.3. Objectives

The main objectives of my application are:

 Registration and Login system

 Notification

 Updating and Show notification from database

 Advising System

 Evaluation

 Calendar

 showing all information in database

11

1.4. Contribution

In survey of existing mode we discuss the details about the android. We collect the all
requirements to develop an android application. Software and hardware requirements are also
discussed in the chapter to initialize an android development environment. In our project it
discuss ion with details. We mention proposed model, database structure, class diagrams, class
descriptions, data flow diagram, requirements, testing results, and requirements to run our
application. At last we provide a user manual in Chapter User Manual that describes the proper
way of using my application.

1.5 Organization of the Project Report

Following the step we reach the goal –

We collected the necessary information about Android.

We learned Android programming technique.

Collected requirements for our project.

 We used SQLite database system for the application.

 Design all necessary diagrams of our project Data flow diagram.

We tested our application and it passed in all the method We applied.

We created a manual for the general user.

12

Chapter 2

Literature Review and Survey of Existing Models

13

2.1. What is Android?

Android is a mobile operating system (OS) currently developed by Google, based on the Linux
kernel and designed primarily for touch screen mobile devices such as smart phones and tablets.
Android's user interface is mainly based on direct manipulation, using touch gestures that loosely
correspond to real-world actions, such as swiping, tapping and pinching, to manipulate on-screen
objects, along with a virtual keyboard for text input. In addition to touch screen devices, Google
has further developed Android TV for televisions, Android Auto for cars, and Android Wear for
wrist watches, each with a specialized user interface. Variants of Android are also used on
notebooks, game consoles, digital cameras, and other electronics. As of 2015, Android has the
largest installed base of all operating systems.[1]

2.2 . History of Android

In this portion we will describe the history of android and I also show relation between my
project and android.

2.2.1. Foundation

Android, Inc. was founded in Palo Alto, California, United States in October 2003 by Andy
Rubin (co-founder of Danger), Rich Miner (co-founder of Wildfire Communications, Inc.), Nick
Sears (once VP at T-Mobile), and Chris White (headed design and interface development at

WebTV) to develop, in Rubin's words "smarter mobile devices that are more aware of its owner's
location and preferences". Despite the obvious past accomplishments of the founders and early
employees, Android Inc. operated secretly, revealing only that it was working on software for
mobile phones. That same year, Rubin ran out of money. Steve Perlman, a close friend of Rubin,
brought him $10,000 in cash in an envelope and refused a stake in the company. [2]

2.2.2. Acquisition by Google

Google acquired Android Inc. on August 17, 2005, making Android Inc. a wholly owned
subsidiary of Google. Key employees of Android Inc., including Andy Rubin, Rich Miner and
Chris White, stayed at the company after the acquisition. Not much was known about Android
Inc. at the time of the acquisition, but many assumed that Google was planning to enter the
mobile phone market with this move.

14

2.2.3. Post-acquisition by Google

At Google, the team led by Rubin developed a mobile device platform powered by the Linux
kernel. Google marketed the platform to handset makers and carriers on the promise of providing
a flexible, upgradable system. Google had lined up a series of hardware component and software
partners and signaled to carriers that it was open to various degrees of cooperation on their part.
Speculation about Google's intention to enter the mobile communications market continued to
build through December 2006. Reports from the BBC and The Wall Street Journal noted that
Google wanted its search and applications on mobile phones and it was working hard to deliver
that. Print and online media outlets soon reported rumors that Google was developing a Google
branded handset. Some speculated that as Google was defining technical specifications, it was
showing prototypes to cell phone manufacturers and network operators.

In September 2007, InformationWeek covered an Evacuee serve study reporting that Google had
filed several patent applications in the area of mobile telephony.

2.2.4. Open Handset Alliance

On November 5, 2007, the Open Handset Alliance, a consortium of several companies which
include Broadcom Corporation, Google, HTC, Intel, LG, Marvell Technology Group, Motorola,
NVidia, Qualcomm, Samsung Electronics, Sprint Nextel, T-Mobile and Texas Instruments
unveiled itself. The goal of the Open Handset Alliance is to develop open standards for mobile
devices. On the same day, the Open Handset Alliance also unveiled their first product, Android,
a mobile device platform built on the Linux kernel version 2.6. On December 9, 2008, 14 new
members joined, including ARM Holdings, Atheros Communications, Asustek Computer Inc.,
Garmin Ltd, Huawei Technologies, PacketVideo, Softbank, Sony Ericsson, Toshiba Corp, and
Vodafone Group Plc. [10]

2.2.5. Android Open Source Project

The Android Open Source Project (AOSP) is led by Google, and is tasked with the maintenance
and development of Android. According to the project "The goal of the Android Open Source
Project is to create a successful real-world product that improves the mobile experience for end
users." AOSP also maintains the Android Compatibility Program, defining an "Android
compatible" device "as one that can run any application written by third-party developers using
the Android SDK and NDK", to prevent incompatible Android implementations. The
compatibility program is also optional and free of charge, with the Compatibility Test Suite also
free and open-source.

15

2.2.6. Version history

Android has been updated frequently since the original release of "Astro", with each fixing bugs
and adding new features. Each version is named in alphabetical order, with 1.5 "Cupcake" being
the first named after a dessert and every update since following this naming convention. [10]

List of Android version names:

1. Cupcake

2. Donut

3. Eclair

4. Froyo

5. Gingerbread

6. Honeycomb

7. Ice Cream Sandwich

8. Android 4.2 Jelly Bean (API level 17)

9. Android 4.3 Jelly Bean (API level 18)

10. Android 4.4 Kit Kat (API level 19)

11. Android 5 Lollipop (API level 21)

2.3 Gingerbread refined the user interface, improved the soft keyboard and copy/paste features,
improved gaming performance, SIP support (VoIP calls), and added support for Near Field
Communication.

3.0 Honeycomb was a tablet-oriented release which supports larger screen devices and
introduces many new user interface features, and supports multi core processors and hardware
acceleration for graphics. The Honeycomb SDK has been released and the first device featuring
this version, the Motorola Xoom tablet, went on sale in February 2011.

3.1 Honeycomb was announced at the 2011 Google I/O on 10 May 2011. One feature focuses on
allowing Honeycomb devices to directly transfer content from USB devices.

3.2 Honeycomb released at July 15 2011, is "an incremental release that adds several new
capabilities for users and developers". Highlights include optimization for a broader range of
screen sizes; new "zoom-to-fill" screen compatibility mode; capability to load media files
directly from the SD card; and an extended screen support API, providing developers with more

16

precise control over the UI. Android 3.2 Honeycomb is the latest Android version that is
available to tablets.

4.0.x Ice Cream Sandwich released at December 16, 2011, it's easy multitasking, rich
notifications, customizable home screens, resizable widgets, and deep interactivity and adds
powerful new ways of communicating and sharing.

4.1.x Jelly Bean released at July 9, 2012 Based on Linux kernel 3.0.31, Jelly Bean was an
incremental update with the primary aim of improving the functionality and performance of the
user interface. The performance improvement involved "Project Butter", which uses touch
anticipation, triple buffering, and extended vsync timing and a fixed frame rate of 60 fps to
create a fluid and "buttery-smooth" UI. Android 4.1 Jelly Bean was released to the Android Open
Source Project on 9 July 2012, and the Nexus 7 tablet, the first device to run Jelly Bean.

4.2. x Jelly Bean released at November 13, 2012 its API level is 17.

4.3. x Jelly Bean released at July 24, 2013API level is 18.

4.4 Kit Kat released at October 31, 2013 API level is 19. [4]

2.3 Design and Architecture of Android

Android consists of a kernel based on the Linux kernel, with middleware, libraries and APIs
written in C and application software running on an application framework which includes Java
compatible libraries based on Apache Harmony. Android uses the Dalvik virtual machine with
just-in-time compilation to run Dalvikdex-code (Dalvik Executable), which is usually translated
from Java byte code.

The main hardware platform for Android is the ARM architecture. There is support for x86 from
the Android x 86 projects and Google TV uses a special x86 version of Android.

17

2.4 Architecture of Android

2.5 Application

Android will ship with a set of core applications including an email client, SMS program,
calendar, maps, browser, contacts, and others. All applications are written using the Java
programming language.

Application Framework:

By providing an open development platform, Android offers developers the ability to build
extremely rich and innovative applications. Developers are free to take advantage of the device
hardware, access location information, run background services, set alarms, add notifications to
the status bar, and much, much more.

18

Developers have full access to the same framework APIs used by the core applications. The
application architecture is designed to simplify the reuse of components; any application can
publish its capabilities and any other application may then make use of those capabilities (subject
to security constraints enforced by the framework). This same mechanism allows components to
be replaced by the user.

Underlying all applications is a set of services and systems, including:

1. A rich and extensible set of Views that can be used to build an application, including lists,
grids, text boxes, buttons, and even an embeddable web browser.

2. Content Providers that enable applications to access data from other applications (such as
Contacts), or to share their own data.

3. A Resource Manager, providing access to non-code resources such as localized strings,
graphics, and layout files.

4. A Notification Manager that enables all applications to display custom alerts in the status bar.

5. An Activity Manager that manages the lifecycle of applications and provides a common
navigation back stack.

2.6 Libraries

Android includes a set of C/C++ libraries used by various components of the Android system.
These capabilities are exposed to developers through the Android application framework. Some
of the core libraries are listed below:

System C library - a BSD-derived implementation of the standard C system library (libc), tuned
for embedded Linux-based devices.

Media Libraries - based on Packet Video’s Open CORE; the libraries support playback and
recording of many popular audio and video formats, as well as static image files, including
MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG.

Surface Manager - manages access to the display subsystem and seamlessly composites 2D and
3D graphic layers from multiple applications.

Lib Web Core - a modern web browser engine which powers both the Android browser and an
embeddable web view.

SGL - the underlying 2D graphics engine.

19

3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either
hardware 3D acceleration (where available) or the included, highly optimized 3D software
pasteurizer.

Free Type - bitmap and vector font rendering.

SQLite- a powerful and lightweight relational database engine available to all applications.

2.7 Android Runtime

Android includes a set of core libraries that provides most of the functionality available in the
core libraries of the Java programming language. Every Android application runs in its own
process, with its own instance of the Dalvik virtual machine. Dalvik has been written so that a
device can run multiple VMs efficiently. The Dalvik VM executes files in the Dalvik Executable
(.dex) format which is optimized for minimal memory footprint. The VM is register-based, and
runs classes compiled by a Java language compiler that have been transformed into the .dex
format by the included "dx" tool. The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory management.

2.8 Applications

Applications are usually developed in the Java language using the Android Software
Development Kit, but third party other development tools are available, including a Native
Development Kit for applications or extensions in C or C++, Google App Inventor, a visual
environment for novice programmers and various cross platform mobile web applications
frameworks. Applications can be acquired by end-users either through a store such as Google
Play or the Amazon App store, or by downloading and installing the application's APK files
from a site.

2.9 Google Play

Google Play is an online software store developed by Google for Android devices. An
application program ("app") called "Play Store" is preinstalled on most Android devices and
allows users to browse and download apps published by third-party developers, hosted on
Google Play. As of February 2013, there were more than 800,000 apps available for Android,
and the estimated number of applications downloaded from the Play Store exceeded 20 billion.
The operating system itself is installed on 500 million total devices.

20

Only devices that comply with Google's compatibility requirements are allowed to preinstall and
access the Play Store. The app filters the list of available applications to those that are
compatible with the user's device, and developers may restrict their applications to particular
carriers or countries for business reasons.

Google offers many free applications in the Play Store including Google Voice, Google Goggles,
Gesture Search, Google Translate, Google Shopper, Listen and My Tracks. In August 2010,
Google launched "Voice Actions for Android", which allows users to search, write messages,
and initiate calls by voice

2.10 Security of Application

Android applications run in a sandbox, an isolated area of the operating system that does not
have access to the rest of the system's resources, unless access permissions are granted by the
user when the application is installed. Before installing an application, the Play Store displays all
required permissions. A game may need to enable vibration, for example, but should not need to
read messages or access the phonebook. After reviewing these permissions, the user can decide
whether to install the application. The sandboxing and permissions system weakens the impact of
vulnerabilities and bugs in applications, but developer confusion and limited documentation has
resulted in applications routinely requesting unnecessary permissions, reducing its effectiveness.

The complexity of inter-application communication implies Android may have opportunities to
run unauthorized code. Several security firms have released antivirus software for Android
devices, in particular, Lookout Mobile Security, AVG Technologies, Avast!, F-Secure,
Kaspersky, McAfee and Symantec. This software is ineffective as sandboxing also applies to
such applications, limiting their ability to scan the deeper system for threats. A useful type of
security applications program and service, often described as "Find My Phone", is available for
Android, as well as for Microsoft Windows Phone and for Apple iPhone, whereby a registered
user can find the approximate location of the phone, if switched on, over the Internet. This helps
to locate lost or stolen phones. At least one of these can be installed on a phone after it has gone
missing

2.11 Software Development Tools

In this portion we will describe about android app development tools and the way to
development procedure.

21

2.11.1 Android SDK

The Android software development kit (SDK) includes a comprehensive set of development
tools. These include a debugger, libraries, a handset emulator based on QEMU, documentation,
sample code, and tutorials. Currently supported development platforms include computers
running Linux (any modern desktop Linux distribution), Mac OS X 10.5.8 or later, Windows XP
or later. The officially supported integrated development environment (IDE) is Eclipse using the

Android Development Tools (ADT) Plug-in, though developers may use any text editor to edit
Java and XML files then use command line tools (Java Development Kit and Apache Ant are
required) to create, build and debug Android applications as well as control attached Android
devices (e.g., triggering a reboot, installing software package(s) remotely). Enhancements to
Android's SDK go hand in hand with the overall Android platform development. The SDK also
supports older versions of the Android platform in case developers wish to target their
applications at older devices. Development tools are downloadable components, so after one has
downloaded the latest version and platform, older platforms and tools can also be downloaded
for compatibility testing.

2.11.2 Native Development Kit

Libraries written in C and other languages can be compiled to ARM or x86 native code and
installed using the Android Native Development Kit. Native classes can be called from Java code
running under the Dalvik VM using the System. Load Library call, which is part of the standard
Android Java classes. Complete applications can be compiled and installed using traditional
development tools. The ADB debugger gives a root shell under the Android Emulator which
allows native ARM code or x 86 codes to be uploaded and executed. ARM or x 86 codes can be
compiled using GCC on a standard PC. Running native code is complicated by the fact that
Android uses a non-standard C library (libc, known as Bionic). The underlying graphics device is
available as a frame buffer at /dev/graphics/fb0. The graphics library that Android uses to
arbitrate and control access to this device is called the Skia Graphics Library (SGL), and it has
been released under an open source license. Skia has backend for both win32 and UNIX,
allowing the development of cross-platform applications, and it is the graphics engine underlying
the Google Chrome web browser. Unlike Java App development based on the Eclipse IDE, the
NDK is based on command-line tools and requires invoking them manually to build, deploy and
debug the apps. Several third-party tools allow integrating the NDK into Eclipse and Visual
Studio

22

2.11.3 Android Open Accessory Development Kit

The Android 3.1 platform (also back ported to Android 2.3.4) introduces Android Open
Accessory support, which allows external USB hardware (an Android USB accessory) to interact
with an Android-powered device in a special "accessory" mode. When an Android-powered
device is in accessory mode, the connected accessory acts as the USB host (powers the bus and
enumerates devices) and the Android-powered device acts as the USB device. Android USB
accessories.

 2.11.4 App Inventor for Android

On 12 July 2010, Google announced the availability of App Inventor for Android, a Web-based
visual development environment for novice programmers, based on MIT's Open Blocks Java
library and providing access to Android devices' GPS, accelerometer and orientation data, phone
functions, text messaging, speech-to-text conversion, contact data, persistent storage, and Web
services, initially including Amazon and Twitter. "We could only have done this because
Android's architecture is so open," said the project director, MIT's Hal Abelson. Under
development for over a year, the block-editing tool has been taught to non-majors in computer
science at Harvard, MIT, Wellesley, Trinity College (Hartford,) and the University of San
Francisco, where Professor David Wolber developed an introductory computer science course
and tutorial book for non-computer science students based on App Inventor for Android

2.11.5 Hyper Next Android Creator

Hyper Next Android Creator (HAC) is a software development system aimed at beginner
programmers that can help them create their own Android apps without knowing Java and the
Android SDK. It is based on HyperCard that treated software as a stack of cards with only one
card being visible at any one time and so is well suited to mobile phone applications that have
only one window visible at a time. Hyper Next Android Creator's main programming language is
simply called Hyper Next and is loosely based on HyperCard's Hyper Talk language. Hypertext
is an interpreted English-like language and has many features that allow creation of Android
applications. It supports a growing subset of the Android SDK including its own versions of the
GUI control types and automatically runs its own.

23

2.12 The Simple Project

The goal of Simple is to bring an easy-to-learn-and-use language to the Android platform.
Simple is a BASIC dialect for developing Android applications. It targets professional and
nonprofessional programmers alike in that it allows programmers to quickly write Android
applications that use the Android runtime components.

Similar to Microsoft Visual Basic 6, Simple programs are form definitions (which contain
components) and code (which contains the program logic). The interaction between the
components and the program logic happens through events triggered by the components. The
program logic consists of event handlers which contain code reacting to the events. The Simple
project is not very active, the last source code update being in August 2009.[7]

2.13. App Components

Like other application android application has its own components, below I will describe these
components.

2.14. Application Fundamentals

Android applications are written in the Java programming language. The Android SDK tools
compile the code-along with any data and resource files-into an Android package, an archive file
with an .apk suffix.

All the code in a single .apk file is considered to be one application and is the file that Android
powered devices use to install the application. Once installed on a device, each Android
application lives in its own security sandbox:

The Android operating system is a multi-user Linux system in which each application is a
different user.

By default, the system assigns each application a unique Linux user ID (the ID is used only by
the system and is unknown to the application). The system sets permissions for all the files in an
application so that only the user ID assigned to that application can access them.

Each process has its own virtual machine (VM), so an application's code runs in isolation from
other applications.

By default, every application runs in its own Linux process. Android starts the process when any
of the application's components need to be executed, then shuts down the process when it's no
longer needed or when the system must recover memory for other applications.

24

In this way, the Android system implements the principle of least privilege. That is, each
application, by default, has access only to the components that it requires to do its work and no
more. This creates a very secure environment in which an application cannot access parts of the
system for which it is not given permission. However, there are ways for an application to share
data with other applications and for an application to access system services:

It's possible to arrange for two applications to share the same Linux user ID, in which case they
are able to access each other's files. To conserve system resources, applications with the same
user ID can also arrange to run in the same Linux process and share the same VM (the
applications must also be signed with the same certificate). An application can request
permission to access device data such as the user's contacts, SMS messages, the mountable

storage (SD card), camera, Bluetooth, and more. All application permissions must be granted by
the user at install time.

That covers the basics regarding how an Android application exists within the system. The rest
of this document introduces you to:

The core framework components that define your application.

The manifest file in which you declare components and required device features for your
application.

Resources that are separate from the application code and allow your application to gracefully
optimize its behavior for a variety of device configurations. [8]

2.15 Application Components

Application components are the essential building blocks of an Android application. These components
are loosely coupled by the application manifest file AndroidManifest.xml that describes each component
of the application and how they interact.

There are following four main components that can be used within an Android application:

Components Description

Activities
They dictate the UI and handle the user interaction to the smart phone
screen

25

Services They handle background processing associated with an application.

Broadcast Receivers They handle communication between Android OS and applications.

Content Providers They handle data and database management issues.

Activity:

An activity represents a single screen with a user interface, in-short Activity performs actions on the
screen. For example, an email application might have one activity that shows a list of new emails,
another activity to compose an email, and another activity for reading emails. If an application has more
than one activity, then one of them should be marked as the activity that is presented when the
application is launched.

An activity is implemented as a subclass of Activity class as follows

public class MainActivity extends Activity {

}

Services

A service is a component that runs in the background to perform long-running operations. For example, a
service might play music in the background while the user is in a different application, or it might fetch
data over the network without blocking user interaction with an activity.

A service is implemented as a subclass of Service class as follows

public class MyService extends Service {

}

Broadcast Receivers

26

Broadcast Receivers simply respond to broadcast messages from other applications or from the system.
For example, applications can also initiate broadcasts to let other applications know that some data has
been downloaded to the device and is available for them to use, so this is broadcast receiver who will
intercept this communication and will initiate appropriate action.

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and each message is
broadcaster as an Intent object.

public class MyReceiver extends BroadcastReceiver {

 public void onReceive(context,intent){}

}

Content Providers

A content provider component supplies data from one application to others on request. Such requests are
handled by the methods of the ContentResolver class. The data may be stored in the file system, the
database, or somewhere else entirely.

A content provider is implemented as a subclass of ContentProvider class and must implement a
standard set of APIs that enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider {

 public void onCreate(){}

}

We will go through these tags in detail while covering application components in individual chapters.

Additional Components

There are additional components which will be used in the construction of above mentioned entities, their
logic, and wiring between them. These components are −

Components Description

27

Fragment Represents a portion of user interface in an Activity.

Views UI elements that are drawn on-screen including buttons, lists forms etc.

Layouts View hierarchies that control screen format and appearance of the views.

Intents Messages wiring components together.

Resource External elements, such as strings, constants and drawable pictures.[9]

2.16 Activating Components

Three of the four component types—activities, services, and broadcast receivers—are activated
by an asynchronous message called an intent. Intents bind individual components to each other
at runtime (you can think of them as the messengers that request an action from other
components), whether the component belongs to your app or another.

An intent is created with an Intent object, which defines a message to activate either a specific
component or a specific type of component—an intent can be either explicit or implicit,
respectively.

For activities and services, an intent defines the action to perform (for example, to "view" or
"send" something) and may specify the URI of the data to act on (among other things that the
component being started might need to know). For example, an intent might convey a request
for an activity to show an image or to open a web page. In some cases, you can start an activity
to receive a result, in which case, the activity also returns the result in an Intent (for example,
you can issue an intent to let the user pick a personal contact and have it returned to you—the
return intent includes a URI pointing to the chosen contact).

For broadcast receivers, the intent simply defines the announcement being broadcast (for
example, a broadcast to indicate the device battery is low includes only a known action string
that indicates "battery is low").

The other component type, content provider, is not activated by intents. Rather, it is activated
when targeted by a request from a ContentResolver. The content resolver handles all direct
transactions with the content provider so that the component that's performing transactions

28

with the provider doesn't need to and instead calls methods on the ContentResolver object.
This leaves a layer of abstraction between the content provider and the component requesting
information (for security).

There are separate methods for activating each type of component:

 You can start an activity (or give it something new to do) by passing an Intent to
startActivity() or startActivityForResult() (when you want the activity to return a result).

 You can start a service (or give new instructions to an ongoing service) by passing an Intent
to startService(). Or you can bind to the service by passing an Intent to bindService().

 You can initiate a broadcast by passing an Intent to methods like sendBroadcast(),
sendOrderedBroadcast(), or sendStickyBroadcast().

 You can perform a query to a content provider by calling query() on a ContentResolver.

For more information about using intents, see the Intents and Intent Filters document. More
information about activating specific components is also provided in the following documents:
Activities, Services, BroadcastReceiver and Content Providers.[10]

2.17 The Manifest File

Before the Android system can start an app component, the system must know that the
component exists by reading the app's AndroidManifest.xml file (the "manifest" file). Your app
must declare all its components in this file, which must be at the root of the app project
directory.

The manifest does a number of things in addition to declaring the app's components, such as:

 Identify any user permissions the app requires, such as Internet access or read-access to the
user's contacts.

 Declare the minimum API Level required by the app, based on which APIs the app uses.

 Declare hardware and software features used or required by the app, such as a camera,
Bluetooth services, or a multitouch screen.

29

 API libraries the app needs to be linked against (other than the Android framework APIs),
such as the Google Maps library.[10]

2.18 Declaring components

The primary task of the manifest is to inform the system about the application's components. For
example, a manifest file can declare an activity as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest ... >

<applicationandroid:icon="@drawable/app_icon.png" ... >

<activityandroid:name="com.example.project.ExampleActivity"

android:label="@string/example_label" ... >

</activity>

...

</application>

</manifest>

In the <application> element, the android: icon attribute points to resources for an icon that
identifies the application.

In the <activity> element, the android: name attribute specifies the fully qualified class name of
the Activity subclass and the android: label attributes specifies a string to use as the user-visible
label for the activity.

You must declare all application components this way:

<activity> elements for activities

<service> elements for services

<receiver> elements for broadcast receivers

<provider> elements for content providers

30

Activities, services, and content providers that you include in your source but do not declare in
the manifest are not visible to the system and, consequently, can never run. However, broadcast
receivers can be either declared in the manifest or created dynamically in code (as Broadcast
Receiver objects) and registered with the system by calling registerReceiver(). [10]

2.19 Declaring components capabilities

As discussed above, in Activating Components, you can use an Intent to start activities, services,
and broadcast receivers. You can do so by explicitly naming the target component (using the
component class name) in the intent. However, the real power of intents lies in the concept of
intent actions. With intent actions, you simply describe the type of action you want to perform
(and optionally, the data upon which you’d like to perform the action) and allow the system to
find a component on the device that can perform the action and start it. If there are multiple
components that can perform the action described by the intent, then the user selects which one
to use. The way the system identifies the components that can respond to an intent is by
comparing the intent received to the intent filters provided in the manifest file of other
applications on the device.

When you declare a component in your application's manifest, you can optionally include intent
filters that declare the capabilities of the component so it can respond to intents from other
applications. You can declare an intent filter for your component by adding an <intent-filter>
element as a child of the component's declaration element.

For example, an email application with an activity for composing a new email might declare an
intent filter in its manifest entry to respond to "send" intents (in order to send email). An activity
in your application can then create an intent with the ―sendǁ action (ACTION_SEND), which
the system matches to the email application’s ―sendǁ activity and launches it when you invoke
the intent with startActivity(). [10]

2.20 Declaring application requirements

There are a variety of devices powered by Android and not all of them provide the same
features and capabilities. In order to prevent your app from being installed on devices that lack
features needed by your app, it's important that you clearly define a profile for the types of
devices your app supports by declaring device and software requirements in your manifest file.
Most of these declarations are informational only and the system does not read them, but
external services such as Google Play do read them in order to provide filtering for users when
they search for apps from their device.

31

For example, if your app requires a camera and uses APIs introduced in Android 2.1 (API
Level 7), you should declare these as requirements in your manifest file like this:

<manifest ... >
 <uses-feature android:name="android.hardware.camera.any"
 android:required="true" />
 <uses-sdk android:minSdkVersion="7" android:targetSdkVersion="19" />
 ...
</manifest>

Now, devices that do not have a camera and have an Android version lower than 2.1 cannot
install your app from Google Play.

However, you can also declare that your app uses the camera, but does not require it. In that
case, your app must set the required attribute to "false" and check at runtime whether the
device has a camera and disable any camera features as appropriate.

More information about how you can manage your app's compatibility with different devices is
provided in the Device Compatibility document.[10]

Device features

There are many hardware and software features that may or may not exist on a given Android
powered device, such as a camera, a light sensor, Bluetooth, a certain version of OpenGL, or the
fidelity of the touch screen. You should never assume that a certain feature is available on all
Android-powered devices (other than the availability of the standard Android library), so you
should declare any features used by your application with the <uses-feature> element.

Platform Version

Different Android-powered devices often run different versions of the Android platform, such as
Android 1.6 or Android 2.3. Each successive version often includes additional APIs not available
in the previous version. In order to indicate which set of APIs are available, each platform
version specifies an API Level (for example, Android 1.0 is API Level 1 and Android 2.3 is API
Level 9). If you use any APIs that were added to the platform after version 1.0, you should
declare the minimum API Level in which those APIs were introduced using the <uses-sdk>
element. It’s important that you declare all such requirements for your application, because,
when you distribute your application on Google Play, the store uses these declarations to filter
which applications are available on each device. As such, your application should be available
only to devices that meet all your application requirements.

32

2.21 Application Resources

An Android application is composed of more than just code—it requires resources that are
separate from the source code, such as images, audio files, and anything relating to the visual
presentation of the application. For example, you should define animations, menus, styles,
colors, and the layout of activity user interfaces with XML files. Using application resources
makes it easy to update various characteristics of your application without modifying code and—
by providing sets of alternative resources—enables you to optimize your application for a variety
of device configurations (such as different languages and screen sizes). For every resource that
you include in your Android project, the SDK build tools define a unique integer ID, which you
can use to reference the resource from your application code or from other resources defined in
XML. For example, if your application contains an image file named logo.png (saved in the
res/drawable/ directory), the SDK tools generate a resource ID named R. drawable. logo, which
you can use to reference the image and insert it in your user interface.[10]

One of the most important aspects of providing resources separate from your source code is the
ability for you to provide alternative resources for different device configurations. For example,
by defining UI strings in XML, you can translate the strings into other languages and save those

strings in separate files. Then, based on a language qualifier that you append to the resource
directory's name (such as res/values-fr/ for French string values) and the user's language setting,
the Android system applies the appropriate language strings to your UI.

Android supports many different qualifiers for your alternative resources. The qualifier is a short
string that you include in the name of your resource directories in order to define the device
configuration for which those resources should be used. As another example, you should often
create different layouts for your activities, depending on the device's screen orientation and size.
For example, when the device screen is in portrait orientation (tall), you might want a layout with
buttons to be vertical, but when the screen is in landscape orientation (wide), the buttons should
be aligned horizontally. To change the layout depending on the orientation, you can define two
different layouts and apply the appropriate qualifier to each layout's directory name. Then, the
system automatically applies the appropriate layout depending on the current device orientation.
[11]

33

2.30 Database

A database is an organized collection of data.[1] It is the collection of schemas, tables, queries,
reports, views and other objects. The data are typically organized to model aspects of reality in a
way that supports processes requiring information, such as modeling the availability of rooms in
hotels in a way that supports finding a hotel with vacancies.

A database management system (DBMS) is a computer software application that interacts with
the user, other applications, and the database itself to capture and analyze data. A general-
purpose DBMS is designed to allow the definition, creation, querying, update, and administration
of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft SQL Server, Oracle,
Sybase and IBM DB2. A database is not generally portable across different DBMSs, but
different DBMS can interoperate by using standards such as SQL and ODBC or JDBC to allow a
single application to work with more than one DBMS. Database management systems are often
classified according to the database model that they support; the most popular database systems
since the 1980s have all supported the relational model as represented by the SQL
language.[disputed – discuss] Sometimes a DBMS is loosely referred to as a 'database'.

2.3.1 SQLite Database

SQLite is a opensource SQL database that stores data to a text file on a device. Android comes in with built in
SQLite database implementation.

SQLite supports all the relational database features. In order to access this database, you don't need to establish any
kind of connections for it like JDBC,ODBC e.t.c

Database - Package

The main package is android.database.sqlite that contains the classes to manage your own databases

Database - Creation

In order to create a database you just need to call this method openOrCreateDatabase with your database name and
mode as a parameter. It returns an instance of SQLite database which you have to receive in your own object. Its
syntax is given below

SQLiteDatabase mydatabase = openOrCreateDatabase("your database name",MODE

Database - Insertion

We can create table or insert data into table using execSQL method defined in SQLiteDatabase class. Its
syntax is given below

34

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS TutorialsPoint(Username
VARCHAR,Password VARCHAR);");
mydatabase.execSQL("INSERT INTO TutorialsPoint VALUES('admin','admin');");

Database - Fetching

We can retrieve anything from database using an object of the Cursor class. We will call a method of this
class called rawQuery and it will return a resultset with the cursor pointing to the table. We can move the
cursor forward and retrieve the data.

Cursor resultSet = mydatbase.rawQuery("Select * from TutorialsPoint",null);
resultSet.moveToFirst();
String username = resultSet.getString(1);
String password = resultSet.getString(2); [14]

2.3.2 Website

A website, also written as web site,[1] or simply site,[2] is a set of related web pages typically
served from a single web domain. A website is hosted on at least one web server, accessible via a
network such as the Internet or a private local area network through an Internet address known as
a uniform resource locator (URL). All publicly accessible websites collectively constitute the
World Wide Web.

Web pages, which are the building blocks of websites, are documents, typically written in plain
text interspersed with formatting instructions of Hypertext Markup Language (HTML, XHTML).
They may incorporate elements from other websites with suitable markup anchors. Webpages
are accessed and transported with the Hypertext Transfer Protocol (HTTP), which may
optionally employ encryption (HTTP Secure, HTTPS) to provide security and privacy for the
user of the webpage content. The user's application, often a web browser, renders the page
content according to its HTML markup instructions onto a display terminal.

The pages of a website can usually be accessed from a simple Uniform Resource Locator (URL)
called the web address. The URLs of the pages organize them into a hierarchy, although
hyperlinking between them conveys the reader's perceived site structure and guides the reader's
navigation of the site which generally includes a home page with most of the links to the site's
web content, and a supplementary about, contact and link page.

Some websites require a subscription to access some or all of their content. Examples of
subscription websites include many business sites, parts of news websites, academic journal
websites, gaming websites, file-sharing websites, message boards, web-based email, social

35

networking websites, websites providing real-time stock market data, and websites providing
various other services (e.g., websites offering storing and/or sharing of images, files and so
forth).[15]

2.3.3 Website Design Feature

One of the elements of good web design is a lack of the elements that make bad web design. If
you stay away from everything listed on the page about dorky web pages, you've probably got a
pretty nice web site. In addition, keep these concepts in mind:

Text

Background does not interrupt the text

Text is big enough to read, but not too big

The hierarchy of information is perfectly clear

Columns of text are narrower than in a book to make reading easier on the screen

Navigation

Navigation buttons and bars are easy to understand and use

Navigation is consistent throughout web site

Navigation buttons and bars provide the visitor with a clue as to where they are, what
page of the site they are currently on

Frames, if used, are not obtrusive

A large site has an index or site map

36

Links

Link colors coordinate with page colors

Links are underlined so they are instantly clear to the visitor

Graphics

Buttons are not big and dorky

Every graphic has an alt label

Every graphic link has a matching text link

Graphics and backgrounds use browser-safe colors

Animated graphics turn off by themselves

General Design

Pages download quickly

First page and home page fit into 800 x 600 pixel space

All of the other pages have the immediate visual impact within 800 x 600 pixels

Good use of graphic elements (photos, subheads, pull quotes) to break up large areas of
text

Every web page in the site looks like it belongs to the same site; there are repetitive
elements that carry throughout the pages [16]

37

Chapter 3

 Proposed Models

\

38

3.1 Flow Chart for project

Flow chart for GetInfo android application

3.2 Notification page

Flow chart for notification page

Application

Registration

Login

Notification

Urgent
Notice

Result Calendar Advising

Notification

39

3.3 Admin Panel Page

3.4 Implementation Procedure

Creating a fair environment for android development

Here are some simple prerequisite one must have to develop an android app.

Update

Urgent
Notice

Result

Calendar

Advising

Admin

40

Hardware Requirement Tools:
Development PC must be a fast one. we used a quad core machine clocked at @ 3.1 GHz with
6GB ram. A big monitor or two is also helpful. During debugging it really release the pain.

3.4.1 Android Development Environment

We are created android development environment for our project. Google basically supports the
"Android Studio" version. But there are also other IDEs. We have used Android Studio for our
development. There is also other software but we Android Studio because we wanted such IDE
in which we could write java code and at the same time using the same IDE we could work on
GUI for android. Android studio provides us lot of feature to build up our project. That’s why we
use Android studio to develop our project

3.4.2 Project Setup:

For setup the android we go to ''file'--->"new"---->"android project". After complete the direction
you can get a simple project like 'hello'. Next procedure is ''run'' the project. Click "run"---->set
window "emulator""------>"Target select". After complete the procedure you get a result.

3.4.3 Library Insertion:

For completing my project we need to add one library with our project. The library function is
"useLibrary 'org.apache.http.legacy'[17]

 To import this function we have to follow this procedure is File---> import--->Android--->
apps-->build.gradle.

41

chapter 4

Implementation(Design)

42

4.1 Image View

4.1.1 Student Information

Fig: This web page will shows student Information. When students are registered.

4.1.2 Delete data

Fig: This web page will delete student result of the registered student.

43

4.1.3 Insert data

Fig: This web page will insert students result.

4.1.4 Update data

Fig: This web page will update students result.

44

4.1.5 Update Notice

Fig: This web page will update Notice.

3.3.2 Database Image

Fig: When admin insert Notice that time Database name “notice” will Update the notice.

Fig: When admin insert or update or delete result that time this Database will work.

Fig: When Users are registered that time this Database will work.

45

4.1.6 User Login

Fig: When user download this apps and run it, that time this layout will be show.

4.1.7 User Registration

Fig: When user presses the button register, that time this layout will be show.

4.1.8 User Registered

Fig: When users are registered, that time this page will be show. And the registered user will get
beck his information in this layout.

46

4.1.9 Registered user Login

Fig: When users are registered and press the button LOGIN this layout will be show.

Fig: When users are registered give his correct EMAIL, PASSWORD, and button LOGIN this
layout will be show. It is also a confirmation page.

47

4.1.10 User panel

Fig: After successfully login and press the button USER_PANEL this user panel layout will be
show. And press the button “result” the toast massage will display.

48

Fig: Press the button “urgent notice” this user panel layout will be show and the toast massage
will display.

Fig: Press the button “advising” this user panel layout will be show and the toast massage will display.

49

Calendar

Fig: Press the button “calendar” this user panel layout will be show and this image will display.

Fig: Press the button “evaluation” this user panel layout will display.

50

Chapter 5
Conclusion and Future Work

51

5.1 Conclusion:

Android was our choice because it is the most popular, user-friendly mobile operating
system in the world. It is also most selling smart phone in the world .We think the
application will be able to give the outcome that we wanted from the very beginning of
our development process. In the process of developing the application we learned many
things about the android operating system and the development related tricks. We also
adopted easier and fresh ways, tricks, and techniques that would definitely help in future
development. On the other hand it will help other android developers to develop it and
modify it according to their way to make this application more fruitful and global. We
will not say that we were perfect to make the application. We have also made a lot of
mistakes. But we think this will help a lot to develop android application. "Get Info"
using Android Application Very soon takes a place in the android market. And for sure
some modification will come to make it useable globally. It is really very hard task to
fulfill all the requirements with an application of smart phone. And we also try to contract
with university for taking my apps. So there are a lot of chances of further development
of the application in future. We have made my application keeping some space for further
development.

5.2 Future Project Work:

We will improve our project work in future where you will able to check information
from Notification. On the other hand by using the app we will try to make all
administration system notification in every sector.

52

Reference

1. https://en.wikipedia.org/wiki/Android_(operating_system)

2. https://en.wikipedia.org/wiki/Android_(operating_system)#History

3 http://developer.android.com/guide/components/fundamentals.html

4 https://en.wikipedia.org/wiki/Android_version_history

5 http://forum.xda-developers.com/showthread.php?t=1595487

6 http://en.wikipedia.org/wiki/Android_(operating_system)

7http://developer.android.com/guide/components/fundamentals.html

8 http://en.wikipedia.org/wiki/Android_(operating_system)

9.http://www.tutorialspoint.com/android/android_application_component.htm
10..http://developer.android.com/guide/components/fundamentals.html

11. http://en.wikipedia.org/wiki/Google_Play

12. http://gaut.am/making-an-ocr-android-app-using-tesseract/

13. http://en.wikipedia.org/wiki/Optical_character_recognition

14. https://en.wikipedia.org/wiki/Database
 15. https://en.wikipedia.org/wiki/Website
16. http://www.ratz.com/featuresgood.html
17. http://developer.android.com/about/versions/marshmallow/android-6.0-
changes.html

