
A Java Based Tool to Monitor Execution Time of 

Different Sorting Algorithms 

 

Submitted By 

Nusrat Chowdhury 

Id. 2009-3-60-002 

 

Supervised By 

Dr. Shamim Akhter 

Assistant Professor, 

Dept. of Computer Science and Engineering 

 

 
A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelors 

of Science in Computer Science and Engineering 

 

 

 
 

 

Department of Computer Science and Engineering 

East West University, Dhaka 

 
 

 
Jan, 2016 

 



Abstract 
 
 
 

 
In computer science, each sorting algorithm is better in some situation and has its own 

advantages. For example, the insertion sort is preferable to the quick sort for small files and for 

almost-sorted files. To measure the performance of each sorting algorithm, the most important 

factor is runtime that a specific sort uses to execute a data. Because the fastest algorithm is the 

best algorithm, it pays to know which is the sorting algorithm fastest.  

 
In this study, we will determine the efficiency of the various sorting algorithms according to the 

time and number of swaps by using randomized trials. The build environment will be built using 

the Java language. The research will discuss and implement several sorting algorithms such as 

bubble sort, selection sort, insertion sort and will also include complexity sort such as quick sort, 

cocktail sort, and merge sort. I will represent these algorithms as a way to sort an array or 

integers and run random trails of length. The research will provide the number of swaps and the 

runtime of each sorting algorithm. To investigate, I create a package called “sorting” which 

contains two classes. First is called “sorting Algorithms” which contains all sorting algorithms 

that can be called from any other classes. Another is “sorting Test” which is the class that we 

will use to test these sorting algorithms. The “sorting Test” class, will provide the amount of 

swaps of each sorting algorithm and the runtime (in millisecond) to execute a sort. In the 

experiment we will measure the runtime in millisecond because it can show the different of each 

algorithm better than using second. Each algorithm takes short time to execute a sort. It takes less 

than a second for a big size of array (n=50,000).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i 



Declaration 
 
 
 
 

 
We hereby declare that, this project was done under CSE499 and has not been submitted 
elsewhere for requirement of any degree or diploma or for any purpose  
 
 

 
Signature of the students 
 
 

 
------------------------------------ 
 
Nusrat Chowdhury 
 
2009-3-60-002 
 
Department of Computer Science and Engineering 
East West University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ii 



Letter of Acceptance 
 
 
 

I hereby declare that this thesis is from the student’s own work and best effort of mine, and all 

other source of information used have been acknowledge. This thesis has been submitted with 

my approval. 
 
 

 

Board of Examine rs 
 
 

 
---------------------------------- 
 
Dr. Shamim Akhte r  
Assistant Professor 
Department of Computer Science and Engineering 

East West University 
 
 

 
---------------------------------- 
 
Dr. Shamim H Ripon 
Associate Professor and Chairperson  
Department of Computer Science and Engineering 
East West University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iii 



Acknowledgement  
 
 
 
Firstly, my most heartfelt gratitude goes to my beloved parents for their endless support, 
continuous inspiration, great contribution and perfect guidance from the beginning to end.  

 
I owe my thankfulness to my supervisor Dr. Shamim Ak hter for his skilled, utmost direction, 
encouragement and care to prepare myself.  

 
My sincere gratefulness for the faculty of Computer Science and Engineering whose friendly 
attitude and enthusiastic support that has given me for four years.  

 
I am very grateful for the motivation and stimulation from my good friends and seniors.  
 
I also thank the researchers for their works that help me to learn and implement Time analysis of 
different sorting algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

iv 



Table of Contents  
Chapter…………………………………………………………………………………. Page 

  

Abstract………………………………………………………………………………….          i 
Declaration……………………………………………………………………………… ii 

  

Letter of Acceptance…………………………………………………………………… iii 
  

Acknowledge ment…...…………………………………………………………………. iv 
  

  
Chapter 1:  

   

1.1 Introduction…………………………………………………………………………… 1 
   

1.2 Objective……………………………………………………………………………… 1 
   

1.3 Motivation……………………………………………………………………………. 2 
   

1.4 Safety…………………………………………………………………………………. 3 
   

1.5 Equality and Accessibility……………………………………………………………. 3 
  

  
Chapter 2:  

   

2.1 Background Study……………………………………………………………………. 4 
  

  
Chapter 3:  

   

3.1 Proposed Model………………………………………………………………………. 6 
  

  
Chapter 4:  

   

4.1 Implementation………… ……………………………………………………………. 7 
  

  
Chapter 5:  

5.1 Program Code Algorithm……………………………………………………………..  8 
  

  
Chapter 6:  

   

6.1 Conclusion and Future Work………………………………………………………….  20 
  

  
References………………………………………………………………………………. 21 

   

 v  
 



1 
 

Chapter 1  

 
1.1 Introduction 

 
From time to time people ask the ageless question: Which sorting algorithm is the fastest? This 

question doesn't have an easy or unambiguous answer, however. The speed of sorting can 
depend quite heavily on the environment where the sorting is done, the type of items that are 
sorted and the distribution of these items.  

For example, sorting a database which is so big that cannot fit into memory all at once is quite 
different from sorting an array of 100 integers. Not only will the implementation of the algorithm 
be quite different, naturally, but it may even be that the same algorithm which is fast in one case 

is slow in the other. Also sorting an array may be different from sorting a linked list, for 
example.  

In this study I will only concentrate on sorting items in an array in memory using comparison 

sorting (because that's the only sorting method that can be easily implemented for any item type, 
as long as they can be compared with the less-than operator).  

 

1.2 Objectives 

The objective of my work is able to:  

 construct a simple user interface using appropriate Java libraries  
 evaluate user interfaces using appropriate techniques  
 describe the prototyping cycle  
 describe the use of empirical testing in the evaluation of design alternatives  

 describe and apply cognitive walkthrough for the evaluation of designs  
 produce usability requirements for an application context  

 describe the facilities offered by current window systems  
 implement a simple user interface in Java 

It describes the architecture and component functionality of a User Interface class library and 

produce design rationales for designs in the HCI literature and for your own designs.  

Even if it is just a Java application (i.e. solely consists of Java classes), JPF can be viewed as a 
Java Virtual Machine (JVM) in itself. The consequence is that (*.class) class files, and even the 
same files at times, are processed in two different ways in a JVM running JPF  

 as ordinary Java classes managed and executed by the host JVM (standard Java™ library 

classes, JPF implementation classes) 
 as "modeled" classes managed and processed (verified) by JPF 



2 
 

Class lookup in both layers is based on the CLASSPATH environment variable / command line 
parameter, but this should not obfuscate the fact that we have to clearly distinguish between 

these two modes. In particular, JPF (i.e. the "Model" layer) has its own class and object model, 
which is completely different and incompatible to the (hidden) class and object models of the 

underlying host JVM executing JPF 

 

Figure. 1: Java Virtual Machine 

1.3 Motivation 

Human computer interaction is arguably the most important topic to be studied as part of any 
computing science course. Here are some of the reasons why it is important to study this topic:  

 Unless we understand the needs of our users then there is little prospect that we will be 
able to support their tasks. This is a non-trivial problem. Users may not be able to tell you 

what they would like their system to do. If they have never used a computer, they may 
have unrealistic expectations. Even if they are familiar with computer systems then it 

may be difficult to look beyond the applications that they already use. For example, try to 
imagine what the successor to the Macintosh's operating system or Windows98 might 
look like. It is difficult to understand what the user is doing even with their present 

systems. For instance, it is crazy to ask someone what they do in their working day. Most 
people have thousands of tasks that vary over time - it's hard to know where to begin. 

One way round this is to watch people and record the activities that any new system must 
support. However, people will alter their behavior when they know that somebody is 
watching them use a system. This phenomenon has become known as the Hawthorne 

effect after a 1939 study of car workers in which output increased just because people 
were studying their production techniques. Human computer interaction addresses these 

problems by providing analytical techniques that can be used to identify users' real world 
activities so that designers are better prepared to support those tasks when they build 
computer systems. 



3 
 

1.4 Safety 

People make mistakes when they use computer systems. They inadvertently delete files. They 

ignore warnings and fail to read help files. They type the wrong input when asked to provide 
information to their systems. Such "errors" are to be expected. Whilst they may have only a 
minimal impact upon most office systems, they have more serious implications as computer 

systems are integrated into process control applications. Many recent aviation accidents that 
were blamed upon pilot error were originally caused by a well-known HCI "mode confusion" 

problem. This occurred when pilots thought that they were being asked to provide one set of 
figures but the system was, in fact, expecting another set of figures. Human computer interaction 
provides a range of evaluation techniques that can be used to detect situations in which such 

"errors" are likely to occur. 

1.5 Equality and Accessibility 

Computers provide their users with access to vast amounts of information. The techniques that 
we have devised for people to interact with these devices also prevents many users from 

accessing this information.Screen-readers can convert textual displays into spoken output but 
these applications will not work for the user interfaces that dominate today's mass market 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Chapter 2 

2.1 Background study 

In order to test the speed of the different sorting algorithms I made a C++ program which runs 
each algorithm several times for randomly-generated arrays.  

The test was run in a Windows Machine With JVM version 7  

The rand() function of glibc was used for random number generation. This should be a rather 

high-quality random number generator.  

Four different array sizes were used: 100, 5000, 100000 and 1 million items (the last one used 
only on the integer array tests). Random numbers between 0 and 10 times the array size were 

generated to create the array contents, except for the high-repetition test, in which numbers 
between 0 and 1/100 times the array size were generated (which means that each item is repeated 
in average 100 times).  

Four different random number distributions were used:  

1. Completely random.  
2. Almost sorted: 90% of the items are in increasing order, but 10% of randomly-chosen 

items are random.  

3. Almost reversed: Like above, but the sorted items are in reverse order.  
4. The array is already sorted, except for the last 256 items which are random. (This case 

was used to test which sorting algorithm would be best for this kind of data container, 
where items are kept sorted and new items are added to the end, and the entire container 
sorted after the amount of items at the end grows too large.)  

Four different test cases were run:  

1. Items are 32-bit integers. These are both very fast to compare and copy.  
2. Also 32-bit integers, but with a high number of repetitions. Each value in the array 

repeats approximately 100 times in average.  

3. Items are C++ strings with identical beginnings. Strings of 50 characters (with only the 
last 8 characters differing) were used for the test. This tests the case where copying is fast 

but comparison is slow (copying is fast because the strings in gcc use copy-on-write).  
4. Items are arrays of integers. Arrays of 50 integers (ie. 200 bytes) were used. Only the first 

integer was used for the comparison. This tests the case where comparison is fast but 

copying is slow.  

More detailed info for these test cases is given in their individual pages.  

I tried to implement the program so that it first counts how much time is spent generating the 
data to be sorted, and then this time is subtracted from the total time (before dividing it by the 



5 
 

number of loops). While it's not possible to do this in a very exact way, I'm confident that the 
results are close enough to reality.  

Each test case with each sorting algorithm was run several times, every time with different  

random data (about 100-10000 times depending on the size of the array). This was done to 
average out individual worst cases.  

Most Sorting Algorithm work by comparing the being sorted. It may be desirable to sort  

large chunk of data (for instance, a struct containing a name and address) based on only a portion 

of that data. The piece of data actually used to determine the sorted order is called the key.  
 

Sorting algorithms are usually judged by their efficiency. In this case, efficiency refers to the 
algorithmic efficiency as the size of the input grows large and is generally based on the number 
of elements to sort. Most of the algorithms in use have an algorithmic efficiency of either O(n^2) 

or O(n*log(n)). A few special case algorithms can sort certain data sets faster than O(n*log(n)). 
These algorithms are not based on comparing the items being sorted and rely on tricks. It has 

been shown that no key-comparison algorithm can perform better than O(n*log(n)).  
 
Many algorithms that have the same efficiency do not have the same speed on the same input. 

First, algorithms must be judged based on their average case, best case, and worst case 
efficiency. Some algorithms, such as quick sort, perform exceptionally well for some inputs, but 

horribly for others. Other algorithms, such as merge sort, are unaffected by the order of input 
data. Even a modified version of bubble sort can finish in O(n) for the most favorable inputs.  
 

A second factor is the "constant term". As Big-O notation abstracts away many of the details of a 
process, it is quite useful for looking at the big picture. But one thing that gets dropped out is the 

constant in front of the expression: for instance, O(c*n) is just O(n). In the real world, the 
constant, c, will vary across different algorithms.  

 
A second criterion for judging algorithms is their space requirement. Some algorithms never 

require extra space, whereas some are most easily understood when implemented with extra 
space. Space requirements may even depend on the data structure used (merge sort on arrays 

versus merge sort on linked lists, for instance).  

A third criterion is stability. Most simple sorts do just this, but some sorts, do not.  
 

 

 

 



6 
 

Chapter 3 

3.1 Proposed Model 

Interfaces are used to encode similarities which the classes of various types share, but do not 

necessarily constitute a class relationship. For instance, a human and a parrot can both whistle; 
however, it would not make sense to represent Humans and Parrots as subclasses of a Whistler 

class. Rather they would most likely be subclasses of an Animal class (likely with intermediate 
classes), but both would implement the Whistler interface. 

Another use of interfaces is being able to use an object without knowing its type of class, but 
rather only that it implements a certain interface. For instance, if one were annoyed by a 

whistling noise, one may not know whether it is a human or a parrot, because all that could be 
determined is that a whistler is whistling. The call whistler.whistle() will call the implemented 

method whistle of object whistler no matter what class it has, provided it implements Whistler. 
In a more practical example, a sorting algorithm may expect an object of type Comparable. Thus, 
without knowing the specific type, it knows that objects of that type can somehow be sorted.  

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Sorting_algorithm
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


7 
 

Chapter 4 

4.1 Implementation 

To implement this project the software tools that used here are open source , that mean it is free 

to download , which reduce the cost to buy software for implementing project .For design  the 
project HTML, Jawing  and Java are used for design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Chapter 5 

5.1 Program Code Algorithm 

/* 

 * To change this license header, choose License Headers in Project Properties. 

 * To change this template file , choose Tools | Templates  

 * and open the template in the editor.  

 */ 

packagealgo; 

 

importjava.awt.Graphics2D;  

importjava.awt.HeadlessException; 

importjava.awt.RenderingHints; 

importjava.awt.event.ActionEvent; 

importjava.awt.event.ActionListener; 

importjava.awt.image.BufferedImage; 

importjava.io.File; 

importjava.io.FileInputStream; 

importjava.io.FileNotFoundException; 

importjava.io.IOException; 

importjava.io.PrintWriter; 

importjava.io.UnsupportedEncodingException; 

importjava.util.Random;  

importjava.util.logging.Level; 

importjava.util.logging.Logger;  

importjavax.imageio.ImageIO; 

importjavax.swing.ImageIcon; 

importjavax.swing.JComboBox;  

importjavax.swing.JFrame;  

importjavax.swing.JOptionPane; 

importjavax.swing.WindowConstants; 

importjavax.swing.event.DocumentEvent; 

importjavax.swing.event.DocumentListener; 

 

importorg.jfree.chart.ChartFactory; 

importorg.jfree.chart.ChartPanel; 

importorg.jfree.chart.JFreeChart;  

importorg.jfree.chart.p lot.PlotOrientation; 

importorg.jfree.data.category.CategoryDataset; 

importorg.jfree.data.category.Defau ltCategoryDataset; 

importorg.jfree.u i.RefineryUtilit ies; 

 

/** 

 * 

 * @author Nusrat 

 */ 

classPlotBarextendsJFrame{ 

 

publicPlotBar(String applicationTitle, String chartTitle, String btn)throwsFileNotFoundException,IOException{  

super(applicationTit le);  

JFreeChartbarChart=ChartFactory.createBarChart (  

chartTitle, 

"Algorithms", 



9 
 

"Execution Time(ms)", 

createDataset(btn), 

PlotOrientation.VERTICAL, 

true,true,false); 

this.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);  

ChartPanelchartPanel=newChartPanel(barChart);  

chartPanel.setPreferredSize(newjava.awt.Dimension(550,420));  

setContentPane(chartPanel); 

} 

 

doublefileReadTime(String fileName)throwsFileNotFoundException,IOException{ 

        File file=new File(fileName);  

FileInputStreamfis=newFileInputStream(file);  

byte[] data =newbyte[(int)file.length()]; 

fis.read(data); 

fis.close();  

        String str=newString(data,"UTF-8");  

returnDouble.parseDouble((str.isEmpty())?"0.0":str);  

} 

 

privateCategoryDatasetcreateDataset(String btn)throwsFileNotFoundException,IOException{  

final String BinarySearchMergeSort="Binary"; 

final String InterpolationSearchMerge="Interpolation"; 

final String NormalMergeSort="Normal"; 

final String TanSort="TAN"; 

finalDefau ltCategoryDataset dataset =newDefaultCategoryDataset(); 

 

if(btn.equals("COMPARE")){ 

dataset.addValue(fileReadTime("time_binary_search_merge_sort.txt")*1000,BinarySearchMergeSort,BinarySearch

MergeSort); 

dataset.addValue(fileReadTime("time_interpolation_search_merge_sort.txt")*1000,InterpolationSearchMerge,Interp

olationSearchMerge); 

dataset.addValue(fileReadTime("time_normal_merge_sort.txt")*1000,NormalMergeSort,NormalMergeSort);  

dataset.addValue(fileReadTime("time_tan_sor2.txt")*1000,TanSort,TanSort );  

}elseif(btn.equals("PLOT")){ 

switch(Algorithm.comboAlgo.getSelectedIndex()){  

/// For Heap.jpg image  

case0: 

JOptionPane.showMessageDialog(null,"Select Algorithm To Plot Time","Algorithm 

Selection",JOptionPane.INFORMATION_MESSAGE); 

break; 

/// For merge.jpg 

case1: 

dataset.addValue(fileReadTime("time_binary_search_merge_sort.txt")*1000,BinarySearchMergeSort,BinarySearch

MergeSort); 

break; 

/// For quick.jpg 

case2: 

dataset.addValue(fileReadTime("time_interpolation_search_merge_sort.txt")*1000,InterpolationSearchMerge,Interp

olationSearchMerge); 

case3: 

dataset.addValue(fileReadTime("time_normal_merge_sort.txt")*1000,NormalMergeSort,NormalMergeSort);  

break; 

 

case4: 

dataset.addValue(fileReadTime("time_tan_sor2.txt")*1000,TanSort,TanSort);  



10 
 

break; 

default: 

break; 

} 

} 

 

return dataset; 

} 

} 

 

publicclass Algorithm extendsjavax.swing.JFrameimplementsActionListener{  

 

JComboBoxcb; 

 

/** 

     * Creates new form Algorithm 

     * 

     * @throws java.io.IOException 

     */ 

publicAlgorithm()throwsIOException{ 

setTitle("Algorithm Simulation"); 

initComponents(); 

BufferedImagewPic= ImageIO.read(ClassLoader.getSystemResource("algo/res/bubbles.jpg")); 

imageLabel.setIcon(newImageIcon(wPic)); 

// Listen for changes in the text  

datasetGen.getDocument().addDocumentListener(newDocumentListener(){  

publicvoidchangedUpdate(DocumentEvent e){  

warn(); 

} 

 

publicvoidremoveUpdate(DocumentEvent e){  

warn(); 

} 

 

publicvoidinsertUpdate(DocumentEvent e){  

warn(); 

} 

 

publicvoidwarn(){ 

try{ 

if(Integer.parseInt(datasetGen.getText())<=0||Integer.parseInt(datasetGen.getText())>50000){  

JOptionPane.showMessageDialog(null,  

"Error: Please enter number 1 to 50000"," Error Massage", 

JOptionPane.ERROR_MESSAGE);  

} 

}catch(NumberFormatException|HeadlessException e){  

} 

 

} 

 

});  

} 

 

/** 

     * This method is called from within the constructor to initialize the form.  

     * WARNING: Do NOT modify th is code. The content of this method is always  



11 
 

     * regenerated by the Form Editor. 

     */ 

    @SuppressWarnings("unchecked") 

// <editor-fo ld defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents 

privatevoidinitComponents(){ 

 

comboAlgo=newjavax.swing.JComboBox(); 

buttonOk=newjavax.swing.JButton(); 

imageLabel=newjavax.swing.JLabel(); 

labelExecutionTime=newjavax.swing.JLabel(); 

labelExecutionOutput=newjavax.swing.JLabel(); 

labelExecution=newjavax.swing.JLabel(); 

labelExecutionTimeElapsed=newjavax.swing.JLabel();  

btnPlot=newjavax.swing.JButton(); 

datasetGen=newjavax.swing.JTextField();  

btnGenerate=newjavax.swing.JButton(); 

btnCompare=newjavax.swing.JButton(); 

 

        setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);  

setPreferredSize(newjava.awt.Dimension(550,420));  

 

comboAlgo.setModel(newjavax.swing.DefaultComboBoxModel(new String[]{"Select A lgorithm","Binary Search 

Merge Sort","Interpolation Search Merge Sort","Normal Merge Sort","Tan Sort"}));  

comboAlgo.addActionListener(newjava.awt.event.ActionListener(){  

publicvoidactionPerformed(java.a wt.event.ActionEventevt){ 

comboAlgoActionPerformed(evt); 

} 

});  

 

buttonOk.setText(" Run"); 

buttonOk.addActionListener(newjava.awt.event.ActionListener(){  

publicvoidactionPerformed(java.awt.event.ActionEventevt){ 

buttonOkActionPerformed(evt);  

} 

});  

 

labelExecutionTime.setText("Time Elapsed :"); 

labelExecutionTime.setToolTipText(""); 

 

labelExecution.setText(" Execution :"); 

 

btnPlot.setText("Plot"); 

btnPlot.addActionListener(newjava.awt.event.ActionListener(){  

publicvoidactionPerformed(java.awt.event.ActionEventevt){ 

btnPlotActionPerformed(evt); 

} 

});  

 

btnGenerate.setText(" Generate Dataset"); 

btnGenerate.addActionListener(newjava.awt.event.ActionListener(){  

publicvoidactionPerformed(java.awt.event.ActionEventevt){ 

btnGenerateActionPerformed(evt);  

} 

});  

 

btnCompare.setText("Compare");  



12 
 

btnCompare.addActionListener(newjava.awt.event.ActionListener(){  

publicvoidactionPerformed(java.awt.event.ActionEventevt){ 

btnCompareActionPerformed(evt); 

} 

});  

 

javax.swing.GroupLayout layout =newjavax.swing.GroupLayout(getContentPane()); 

getContentPane().setLayout(layout); 

layout.setHorizontalGroup( 

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

.addGroup(layout.createSequentialGroup()  

.addGap(30,30,30) 

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

.addGroup(layout.createSequentialGroup()  

.addComponent(labelExecution,javax.swing.GroupLayout.PREFERRED_SIZE,61,javax.swing.GroupLayout.PREF

ERRED_SIZE) 

.addGap(41,41,41) 

.addComponent(labelExecutionOutput,javax.swing.GroupLayout.DEFAULT_SIZE,javax.swing.GroupLayout.DEF

AULT_SIZE,Short.MAX_VALUE)) 

.addGroup(layout.createSequentialGroup()  

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,false) 

.addGroup(layout.createSequentialGroup() 

.addComponent(labelExecutionTime,javax.swing.GroupLayout.PREFERRED_SIZE,97,javax.swing.GroupLayout.P

REFERRED_SIZE) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)  

.addComponent(labelExecutionTimeElapsed,javax.swing.GroupLayout.PREFERRED_SIZE,159,javax.swing.Group

Layout.PREFERRED_SIZE)) 

.addGroup(layout.createSequentialGroup()  

.addComponent(comboAlgo,javax.swing.GroupLayout.PREFERRED_SIZE,219,javax.swing.GroupLayout.PREFE

RRED_SIZE) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)  

.addComponent(datasetGen,javax.swing.GroupLayout.PREFERRED_SIZE,104,javax.swing.GroupLayout.PREFER

RED_SIZE) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)  

.addComponent(btnGenerate,javax.swing.GroupLayout.DEFAULT_SIZE,javax.swing.GroupLayout.DEFAULT_SI

ZE,Short.MAX_VALUE)) 

.addGroup(layout.createSequentialGroup()  

.addComponent(imageLabel,javax.swing.GroupLayout.PREFERRED_SIZE,416,javax.swing.GroupLayout.PREFE

RRED_SIZE) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)  

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

.addComponent(btnCompare) 

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,false) 

.addComponent(buttonOk,javax.swing.GroupLayout.DEFAULT_SIZE,75,Short.MAX_VALUE)  

.addComponent(btnPlot,javax.swing.GroupLayout.DEFAULT_SIZE,javax.swing.GroupLayout.DEFAULT_SIZE,S

hort.MAX_VALUE))))) 

.addContainerGap(12,Short.MAX_VALUE))))  

); 

layout.setVert icalGroup( 

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

.addGroup(layout.createSequentialGroup()  

.addGap(18,18,18) 

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

.addGroup(layout.createSequentialGroup()  

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)  

.addComponent(comboAlgo,javax.swing.GroupLayout.PREFERRED_SIZE,javax.swing.GroupLayout.DEFAULT_



13 
 

SIZE,javax.swing.GroupLayout.PREFERRED_SIZE)  

.addComponent(datasetGen,javax.swing.GroupLayout.PREFERRED_SIZE,javax.swing.GroupLayout.DEFAULT_

SIZE,javax.swing.GroupLayout.PREFERRED_SIZE)  

.addComponent(btnGenerate)) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)  

.addComponent(imageLabel,javax.swing.GroupLayout.PREFERRED_SIZE,250,javax.swing.GroupLayout.PREFE

RRED_SIZE)) 

.addGroup(layout.createSequentialGroup()  

.addGap(37,37,37) 

.addComponent(buttonOk) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)  

.addComponent(btnPlot) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED) 

.addComponent(btnCompare))) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,javax.swing.GroupLayout.DEFAULT

_SIZE,Short.MAX_VALUE) 

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,false) 

.addComponent(labelExecution,javax.swing.GroupLayout.DEFAULT_SIZE,29,Short.MAX_VALUE)  

.addComponent(labelExecutionOutput,javax.swing.GroupLayout.DEFAULT_SIZE,javax.swing.GroupLayout.DEF

AULT_SIZE,Short.MAX_VALUE)) 

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)  

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,false) 

.addComponent(labelExecutionTime,javax.swing.GroupLayout.DEFAULT_SIZE,29,Short.MAX_VALUE)  

.addComponent(labelExecutionTimeElapsed,javax.swing.GroupLayout.DEFAULT_SIZE,javax.swing.GroupLayout

.DEFAULT_SIZE,Short.MAX_VALUE)) 

.addContainerGap()) 

); 

 

pack();  

}// </editor-fo ld>//GEN-END:initComponents 

 

privatevoidcomboAlgoActionPerformed(java.awt.event.ActionEventevt){//GEN-

FIRST:event_comboAlgoActionPerformed 

// TODO add your handling code here: 

//        cb = (JComboBox) evt.getSource(); 

//        String comboSelected = (String) cb.getSelectedItem();  

//        System.out.println(comboSelected);  

/// For bubbles.jpg image 

switch(comboAlgo.getSelectedIndex()){ 

/// For Heap.jpg image  

case0: 

try{ 

BufferedImagewPic= ImageIO.read(ClassLoader.getSystemResource("algo/res/bubbles.jpg")); 

//JLabelwIcon = new JLabel(new ImageIcon(original));  

 

labelExecutionOutput.setText(""); 

 

imageLabel.setIcon(newImageIcon(wPic)); 

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

break; 

/// For merge.jpg 

case1: 

try{ 



14 
 

BufferedImage original = ImageIO.read(ClassLoader.getSystemResource("algo/res/heap.jpg"));  

//JLabelwIcon = new JLabel(new ImageIcon(original));  

 

labelExecutionOutput.setText(""); 

 

//double widthFactor = .4; 

//double heightFactor = .4; 

// imageLabel.setIcon(new ImageIcon(bufferResize(orig inal, widthFactor, heightFactor))); 

imageLabel.setIcon(newImageIcon(original));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

break; 

/// For quick.jpg 

case2: 

try{ 

BufferedImage origina l = ImageIO.read(ClassLoader.getSystemResource("algo/res/merge.jpg"));  

 

//double widthFactor = .3; 

//double heightFactor = .38;  

labelExecutionOutput.setText(""); 

 

// imageLabel.setIcon(new ImageIcon(bufferResize(orig inal, widthFactor, heightFactor)));  

imageLabel.setIcon(newImageIcon(original));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

break; 

case3: 

try{ 

BufferedImage original = ImageIO.read(ClassLoader.getSystemResource("algo/res/quick.png"));  

doublewidthFactor=.8;  

doubleheightFactor=.9;  

labelExecutionOutput.setText(""); 

imageLabel.setIcon(newImageIcon(bufferResize(orig inal,widthFactor,heightFactor)));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

break; 

 

case4: 

 

try{ 

BufferedImage original = ImageIO.read(ClassLoader.getSystemResource("algo/res/chess.png")); 

//double widthFactor = .5; 

//double heightFactor = .5; 

labelExecutionOutput.setText(""); 

//imageLabel.setIcon(new ImageIcon(bufferResize(original, widthFactor, heightFactor)));  

imageLabel.setIcon(newImageIcon(original));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 



15 
 

break; 

default: 

break; 

} 

 

}//GEN-LAST:event_comboAlgoActionPerformed  

 

privateBufferedImagebufferResize(BufferedImage orig inal,doublewidthFactor,doubleheightFactor){ 

 

// original image width & height 

int w, h; 

        w =original.getHeight(); 

        h =original.getWidth(); 

//        System.out.println(original.getHeight());  

//        System.out.println(original.getWidth());  

 

// new width & height calculated by mult iplying factor 

intnewWidth=new Double(orig inal.getWidth()*widthFactor).intValue();  

intnewHeight=new Double(orig inal.getWidth()*heightFactor).intValue();  

 

// new resized image 

BufferedImagebuffResized=newBufferedImage(newW idth,newHeight,original.getType());  

 

        Graphics2D g =buffResized.createGraphics(); 

 

g.setRenderingHint(RenderingHints.KEY_INTERPOLATION,RenderingHints.VALUE_INTERPOLATION_BILI

NEAR); 

g.drawImage(orig inal,0,0,newWidth,newHeight,0,0, w, h,null);  

g.dispose(); 

 

returnbuffResized; 

} 

 

 

privatevoidbuttonOkActionPerformed(java.awt.event.ActionEventevt){//GEN-

FIRST:event_buttonOkActionPerformed  

long time; 

/// For bubbles.jpg image 

switch(comboAlgo.getSelectedIndex()){ 

/// For Bubble.jpg image 

case0: 

JOptionPane.showMessageDialog(null,"Select Algorithm","Algorithm 

Selection",JOptionPane.INFORMATION_MESSAGE); 

 

break; 

/// For merge.jpg 

case1: 

 

labelExecutionOutput.setText("Binary Search Merge Sort");  

try{ 

// New Code Added 

longstartTime=System.currentTimeMillis(); 

System.out.println(comboAlgo.getSelectedItem().toString());  

                    Runtime rt=Runtime.getRuntime();  

                    Process pr=rt.exec(new String[]{"cmd.exe", 

"/c", 



16 
 

"start", 

"Binary_search_merge_sort.exe" 

});  

// New Code Added 

                    time =(System.currentTimeMillis()-startTime);  

System.out.println("\n Time Elapsed Binary Merge sort: "  

+ time +" ms"); 

 

labelExecutionTimeElapsed.setText(String.valueOf(time +" ms"));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

 

break; 

/// For quick.jpg 

case2: 

 

labelExecutionOutput.setText("Interpolation Merge Sort");  

try{ 

// New Code Added 

longstartTime=System.currentTimeMillis(); 

System.out.println(comboAlgo.getSelectedItem().toString());  

                    Runtime rt=Runtime.getRuntime();  

                    Process pr=rt.exec(new String[]{"cmd.exe", 

"/c", 

"start", 

"interpolation_search_merge_sort.exe" 

});  

// New Code Added 

                    time =System.currentTimeMillis()-startTime;  

System.out.println("\n Time Elapsed Interpolation Merge Sort: "  

+ time +" ms"); 

labelExecutionTimeElapsed.setText(String.valueOf(time +" ms"));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.c lass.getName()).log(Level.SEVERE,null, ex);  

} 

 

break; 

case3: 

 

labelExecutionOutput.setText("Normal Merge Sort");  

try{ 

// New Code Added 

longstartTime=System.currentTimeMillis(); 

System.out.println(comboAlgo.getSelectedItem().toString());  

                    Runtime rt=Runtime.getRuntime();  

                    Process pr=rt.exec(new String[]{"cmd.exe", 

"/c", 

"start", 

"normal_merge_sort.exe" 

});  

// New Code Added 

                    time =System.currentTimeMillis()-startTime;  

System.out.println("\n Time Elapsed Normal Merge Sort: "  



17 
 

+ time +" ms"); 

labelExecutionTimeElapsed.setText(String.valueOf(time +" ms"));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

 

break; 

 

case4: 

 

labelExecutionOutput.setText("TAN Sort"); 

try{ 

// New Code Added 

longstartTime=System.currentTimeMillis(); 

System.out.println(comboAlgo.getSelectedItem().toString());  

                    Runtime rt=Runtime.getRuntime();  

                    Process pr=rt.exec(new String[]{"cmd.exe", 

"/c", 

"start", 

"TAN_SOR2.exe" 

});  

// New Code Added 

                    time =System.currentTimeMillis()-startTime;  

System.out.println("\n Time Elapsed TAN Sort: "  

+(System.currentTimeMillis()-startTime)+" ms"); 

labelExecutionTimeElapsed.setText(String.valueOf(time +" ms"));  

 

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

 

break; 

default: 

break; 

} 

 

}//GEN-LAST:event_buttonOkActionPerformed 

 

privatevoidbtnPlotActionPerformed(java.awt .event.ActionEventevt){//GEN -FIRST:event_btnPlotActionPerformed 

try{ 

if(Algorithm.comboAlgo.getSelectedIndex()==0){  

JOptionPane.showMessageDialog(null,"Select Algorithm To Plot Time","Algorithm 

Selection",JOptionPane.INFORMATION_MESSAGE); 

}else{ 

PlotBar chart =newPlotBar("Algorithm Execution","Time Chart of Algorithm","PLOT");  

chart.pack();  

RefineryUtilit ies.centerFrameOnScreen(chart); 

chart.setVisible(true);  

} 

}catch(FileNotFoundException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

}//GEN-LAST:event_btnPlotActionPerformed 



18 
 

 

privatevoidbtnGenerateActionPerformed(java.awt.event.ActionEventevt){//GEN-

FIRST:event_btnGenerateActionPerformed 

        Random randomGenerate=newRandom();  

 

if(!datasetGen.getText().is Empty()){ 

            St ring range =datasetGen.getText(); 

            Integer n =Integer.parseInt(range); 

if(n >50000){ 

                n =50000;  

} 

try{ 

PrintWriter pw =newPrintWriter("data.txt","UTF-8");  

for(inti=0;i< n;i++){ 

pw.print ln(randomGenerate.nextInt(50000));  

} 

pw.close();  

JOptionPane.showMessageDialog(null,"Dataset Generated","Data 

Generation",JOptionPane.INFORMATION_MESSAGE);  

}catch(FileNotFoundException|UnsupportedEncodingException ex){  

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

}else{ 

JOptionPane.showMessageDialog(null,"Please Input Range","Range 

Input",JOptionPane.INFORMATION_MESSAGE);  

} 

 

}//GEN-LAST:event_btnGenerateActionPerformed  

 

privatevoidbtnCompareActionPerformed(java.awt.event.ActionEventevt){//GEN-

FIRST:event_btnCompareActionPerformed  

try{ 

PlotBar chart =newPlotBar("Algorithm Execution Plot","Comparison of Sorting A lgorit hms","COMPARE"); 

chart.pack();  

RefineryUtilit ies.centerFrameOnScreen(chart); 

chart.setVisible(true);  

}catch(FileNotFoundException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

}//GEN-LAST:event_btnCompareActionPerformed  

 

/** 

     * @paramargs the command line arguments 

     */ 

publicstaticvoidmain(String args[]){ 

/* Set the Nimbus look and feel */  

//<editor-fold defau ltstate="collapsed" desc=" Look and feel setting code (optional) ">  

/* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.  

         * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html  

         */ 

try{ 

for(javax.swing.UIManager.LookAndFeelInfo info :javax.swing.UIManager.getInstalledLookAndFeels()){  

if("Nimbus".equals(info.getName())){ 

javax.swing.UIManager.setLookAndFeel(info.getClassName());  



19 
 

break; 

} 

} 

}catch(ClassNotFoundException ex){ 

java.util.logging.Logger.getLogger(Algorithm.class.getName()).log(java.util.logging.Level.SEVERE,null, ex);  

}catch(InstantiationException ex){ 

java.util.logging.Logger.getLogger(Algorithm.class.getName()).log(java.util.logging.Level.SEVERE,null, ex);  

}catch(IllegalAccessException ex){ 

java.util.logging.Logger.getLogger(Algorithm.class.getName()).log(java.util.logging.Level.SEVERE,null, ex);  

}catch(javax.swing.UnsupportedLookAndFeelException ex){  

java.util.logging.Logger.getLogger(Algorithm.class.getName()).log(java.util.logging.Level.SEVERE,null, ex);  

} 

//</editor-fold> 

 

/* Create and display the form */  

java.awt.EventQueue.invokeLater(new Runnable(){ 

publicvoidrun(){ 

try{ 

new Algorithm().setVisible(true);  

}catch(IOException ex){ 

Logger.getLogger(Algorithm.class.getName()).log(Level.SEVERE,null, ex);  

} 

} 

});  

 

} 

 

// Variab les declaration - do not modify//GEN-BEGIN:variables 

privatejavax.swing.JButtonbtnCompare;  

privatejavax.swing.JButtonbtnGenerate; 

privatejavax.swing.JButtonbtnPlot; 

privatejavax.swing.JButtonbuttonOk; 

publicstaticjavax.swing.JComboBoxcomboAlgo; 

privatejavax.swing.JTextFielddatasetGen; 

privatejavax.swing.JLabelimageLabel;  

privatejavax.swing.JLabellabelExecution; 

privatejavax.swing.JLabellabelExecutionOutput; 

privatejavax.swing.JLabellabelExecutionTime;  

privatejavax.swing.JLabellabelExecutionTimeElapsed; 

// End of variables declaration//GEN-END:variables 

 

 

    @Override  

publicvoidactionPerformed(ActionEvent e){  

//throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, 

choose Tools | Templates. 

} 

} 

 

 

 



20 
 

Chapter 6 

6.1 Conclusion and Future Works 

Actually, I Want to make a bridge between C++ and Java Programs. This Work is an 

Introduction of This Bridge. In Future this program can be used as a module of Large Industrial 

Project’s as a Module.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

References 

1. http://www.dcs.gla.ac.uk/~johnson/teaching/hci-java/course.html 

2. Savitch, Walter and Carrano, Frank. Arrays. Java: Introduction to Problem Solving and 

Programming (5th Edition). Prentice Hall, 9780136072256.  

3. http://docs.oracle.com/javase/tutorial/uiswing/ 

4. http://zetcode.com/tutorials/javaswingtutorial/ 

5. http://www.tutorialspoint.com/java/ 

6. http://www.cprogramming.com/tutorial.html 

 


	2_Abstract_-_Copy.pdf
	page1
	page3
	page5
	page7
	page9

	3_chapter_-_Copy.pdf
	Intro_HCI


