
EAST WEST UNIVERSITY 

 

 

Investigating Scope of NoSQL approach using Hadoop 

platform 

 

Submitted by: 

Rohul Amin Shuvo 

ID: 2011-3-60-011 

Fatema Tuz Zohora 

ID: 2011-3-60-010 

 

Supervised by: 

Dr. Mohammad Rezwanul Huq 

Assistant Professor 

Department of Computer Science and Engineering 

East West University 

 

A project submitted in partial fulfillment of the requirements for the 

degree of Bachelor of Science in Computer Science and Engineering to 

the Department of Computer Science and Engineering 

Spring 2016  



[i] 
 

Abstract 

 

With the current emphasis on huge data storing, NoSQL database have surged in 

popularity. Big data is used for massive data sets having large and complex structure 

with difficulties of storing, analyzing and visualizing for further results. These 

databases are claimed to perform better than SQL databases. The primary purpose 

of this project is to independently investigate the performance of some NoSQL and 

SQL-based approach. We used maximum, minimum and average operations on key-

value stores implemented by NoSQL and SQL databases. In these project we used 

synthetically generated temperature data for experimental purpose. 

[Rohul Amin Shuvo] 

[Fatema Tuz Zohora] 

 

 

 

 

 

 

 

 

 

 

 

         



[ii] 
 

Declaration  

We hereby declare that, this project was done under CSE497 and has not been 

submitted elsewhere for requirement of any degree or diploma or any purpose except 

for publication. 

 

 

Signature of the Candidates  

 

 

Rohul Amin Shuvo 

ID: 2011-3-60-011 

 

 

 

Fatema Tuz Zohora  

ID: 2011-3-60-010 

 

 

 

 

 

 

    



[iii] 
 

Letter of Acceptance  

 

This thesis is submitted by Rohul Amin shuvo, Id: 2011-3-60-011 and Fatema Tuz 

Zohora, Id: 2011-3-60-010 to the department of Computer Science and Engineering, 

East West University, Dhaka Bangladesh is accepted as satisfactory for the partial 

fulfillment of the requirement for the degree of Bachelor of Science in Computer 

Science and Engineering on May 5th, 2016. 

 

Board of Examiners  

 

 

1. ----------------------- 

Dr. Mohammad Rezwanul Huq 

Assistant Professor (Supervisor) 

Department of Computer Science and Engineering 

     East West University, Dhaka, Bangladesh 

 

 

 

2. ------------------------- 

Prof. Dr. Md. Mozammel Huq Azad Khan  

Professor & Chairperson 

Department of Computer Science and Engineering 

     East West University, Dhaka, Bangladesh 

  

    



[iv] 
 

Acknowledgement  

 

We would like to thank Almighty Allah for giving us the strength and patience. 

 

We would like to thank our honorable teacher and supervisor, Dr. Mohammad 

Rezwanul Huq, Assistant Professor, Dept. of CSE at East West University, who 

guided us to proper analysis of the system with support and feedbacks. 

 

We also thank the researchers around the world for their work that helped us to learn 

and implement Hadoop MapReduce model.  

 

Finally, we would like to thank our parents whom has given us support and love. 

Without them we would not be able to achieve this far. 

 

 

 

 

 Rohul Amin Shuvo 

 

Fatema Tuz Zohora 

 

 

 

 

 

 

       



[v] 
 

Table of Contents 

Abstract              i 

Declaration            ii 

Letter of Acceptance          iii 

Acknowledgement          iv 

 

Chapter 1:  

Introduction                  1-2 

1.1 Problem Specification  ------------------------------------------------------1 

1.2 Motivation    ------------------------------------------------------1 

1.3 Purpose of the project ------------------------------------------------------2 

1.4 Technology stack  ------------------------------------------------------2 

 

 

Chapter 2:  

Terminology           3-6 

2.1 Overview of SQL       -----------------------------------------------3 

2.1.1 Characteristics of SQL  -----------------------------------------------3-4 

2.1.2 Limitations    -----------------------------------------------4 

2.2 Overview of NoSQL  -----------------------------------------------4 

2.2.1 Characteristics of NoSQL ----------------------------------------------5 

2.2.2  Limitations    -----------------------------------------------5 

2.2.3 Overview of Hadoop and MapReduce --------------------------------6 

2.2.4 Role of Data Architecture in NoSQL   --------------------------------6 

 

 

 



[vi] 
 

Chapter 3: 

Theoretical Comparison        15-18 

 3.1 Comparison Between Databases ---------------------------------------------7 

 3.1.1 MySQL     ----------------------------------------------7-8 

 3.1.2 Hadoop    ----------------------------------------------8-10 

 3.2 Functional Programming instead of Declarative Queries ---------------10 

 3.3 Scale-out instead of Scale-up  -----------------------------------------------11 

 

Chapter 4:  

Working Procedure         12-16  

 

 

Chapter 5: 

Conclusion & Future Work        17 

5.1 Conclusion ---------------------------------------------------------------------------17 

5.2 User Friendliness --------------------------------------------------------------------17 

5.3 Future Work -------------------------------------------------------------------------18 

 

 

References            19-20 

Appendix            21-38 

 

 



1 
 

Chapter 1 

Introduction 

 

 

1.1 Problem Specification 

 

NoSQL is one of the another type of data storage other than databases that is used to 

store huge amount of data storage. NoSQL is a non-relational database management 

system and is portable. On the other-hand traditional databases are relational and are 

well suited to meet the ACID criteria for data. Data is held in tables connected by 

relational algebra, and transactions are performed in a way that is consistent with 

ACID principles. But for non-relational databases ACID has always been sacrificed 

for other qualities, like speed and scalability. NoSQL and SQL both have their own 

features. But for future purpose and huge data collection and also unstructured data, 

NoSQL is the light. SQL can only work with structured data, so when we will be in 

need of storing and analyzing unstructured data, we can only depend on non-

relational database. 

 

 

1.2 Motivation 

 

As today there is an enormous volume of data, examining these large sets contains 

structure and unstructured data of different types and sizes. Data Analytics allows 

the user to analyze the unusable data to make a faster and better decision. Now-a-

days organizations are used to deal with huge data, which provokes various new 

ways of thoughts regarding how the data are produced, ordered, controlled and 

analyzed. Big Data can be given an all-encompassing term for any collection of data 

sets so large or complex. It becomes difficult to process those data using traditional 

data processing application. This paper represents the comparison of processing data 

using SQL and Big Data. In future the traditional databases can’t hold the enormous 

volume of data. So it’s better to change our thoughts about database before time. 



2 
 

1.3 Purpose of the Project 

 

We have developed two applications to measure the execution time for SQL and 

NoSQL database. We have worked with some synthetically generated data of 

Bangladesh’s seven cities from year 2001 to 2014 for 365 days of year. The 

application is developed in a manner where user can choose year, month, day and 

the aggregate functions maximum and minimum to see the results and performance 

of both SQL and NoSQL database. With these we want to prove that only NoSQL 

can hold the future of the enormous volume of data and execute it faster than any 

SQL. 

 

 

1.4 Technology stack  

 

These SQL and NoSQL applications are developed by java programming language. 

We have used a processing technique for NoSQL application named MapReduce 

which is a program model for distributed computing based on java on Hadoop 

platform.  The SQL application has been developed with java and MySQL.  

Programming Language: Java  

Database: MYSQL 

Graphical User Interface: Java Swing 

 

 

 

 

 

 

 



3 
 

Chapter 2 

Terminology  

 

2.1 Overview of SQL 

 

SQL is Structured Query Language, which is a computer language for storing, 

manipulating and retrieving data stored in relational database. It can store and 

analyze structured data. SQL is the standard language for Relation Database System. 

All relational database management systems like MySQL, MS Access, Oracle, 

Sybase, Informix and SQL Server use SQL as standard database language. By 

writing queries we can manipulate data stored in database. SQL database is available 

in Basic, Standard, and Premium service tiers. Each service tier offers different 

levels of performance and capabilities to support lightweight to heavyweight 

database workloads. We can build an application on a small database, then change 

the service tier manually or programmatically at any time as our application needs, 

without downtime of our application. MySQL is an open source relational database 

management system. It is more powerful elixir database; it has gradually evolved to 

support higher-scale needs as well. It is still most commonly used in small to medium 

scale single server deployments, either as a component in web application or as a 

standalone database server. 

 

 

2.1.1 Characteristics of SQL 

 

 SQL is very simple and easy to learn. 

 SQL allows the user to create, update, delete, and  

retrieve data from a database. 

 SQL is an ANSI and ISO standard computer language  

for creating and manipulating databases. 

https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-scale-up/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-scale-up/


4 
 

 SQL works with database programs like DB2, Oracle,  

MS Access, Sybase, MS SQL Server etc. 

 Applications written in SQL can be easily ported across systems. Such 

porting could be required when DBMS needs to upgrade. 

 

 

2.1.2 Limitations 

 

 Works with structured data only 

 Relations must have a fixed set of columns  

 High cost for data processing  

 

 

2.2 Overview of NoSQL 

 

NoSQL means Not Only SQL, implying that when designing a software solution or 

product, there are more than one storage mechanism that could be used based on the 

needs. Developers are working with applications that create massive volumes of 

new, frequently changing data types structured, semi-structured, unstructured and 

polymorphic data. Relational databases were not designed to handle semi-structured 

or unstructured data that face modern applications, nor were they built to take 

advantage of the processing power available today. 

 

 

 

 



5 
 

2.2.1 Characteristics of NoSQL 

 

 NoSQL does not use SQL language. 

 NoSQL stores large volume of data. 

 In distributed environment we use NoSQL without any inconsistency. 

 If any faults or failures exist in any machine, then there will be no 

discontinuation of any work. 

 NoSQL is open source database, its source code is available to everyone and 

is free to use it without any overheads. 

 NoSQL allows data to store in any record not having any fixed schema. 

 NoSQL does not use concept of ACID properties. 

 It has more flexible structure. 

 NoSQL is scalable leading to high performance in a linear way. 

 

 

2.2.2 Limitations 

 

 NoSQL database demands a lot of technical skill with both installation and 

maintenance.  

 In present, it is easier to find an RDBMS expert than a NoSQL expert. 

 

 

 

 

 

 



6 
 

2.2.3 Overview of Hadoop and MapReduce 

 

Hadoop is an open-source software framework. It is used for storing data and 

running applications on clusters of commodity hardware. It provides massive storage 

for any kind of data, enormous processing power and the ability to handle virtually 

limitless concurrent tasks or jobs [10]. The reason behind organizations turn to 

Hadoop is its ability to store and process huge amounts of data and any kind of data 

quickly. Currently, four core modules are included in the basic framework from the 

apache foundation. In this project we worked with the software programming model 

MapReduce.  It is the programming paradigm that allows executing operations on 

massive amount of data across hundreds or thousands of servers in a Hadoop cluster. 

MapReduce refers to two separate and distinct tasks that Hadoop programs perform 

[16].  One is map job and second one is reduce job. The map job takes a set of data 

and converts it into another set of data, where individual elements are broken down 

into tuples. The reduce job takes the output from a map as input and combines those 

data tuples into a smaller set of tuples. The reduce job is always performed after the 

map job that’s why it’s called MapReduce.  

 

 

2.2.4 Role of Data Architecture in NoSQL 

 

There are four components in NOSQL’s building block. 

1. Modelling language: It describes the structure of the database and also 

defines schema on which it is based. 

2. Database Structure: Each and every database while building uses its own 

data structures and stores data using permanent storage device. 

3. Database Query language: All the operations are performed on the 

database that are create, update, read and delete (CURD). 

4. Transactions: During any transaction in the data, there may be some types 

of faults or failure. But the machine will not stop working. 

 

 



7 
 

Chapter 3 

Theoretical Comparison  

 

 

3.1 Comparison Between Databases  

 

In this project for NoSQL we have used Hadoop which is basically a distributed file 

system, not a database. It let us store large amount of file data on a cloud of machines, 

handling data redundancy. For the other part of this project we have used MySQL 

as SQL Database. It is a freely available open source Relational Database 

Management System (RDBMS) that uses Structured Query Language(SQL). SQL is 

the most popular language for adding, accessing and managing content in a database. 

It is most noted for its quick processing, proven reliability, ease and flexibility of 

use. 

 

 

3.1.1 MySQL  

 

MySQL is a fast, easy-to-use RDBMS being used for many small and big businesses. 

MySQL is developed, marketed, and supported by MySQL AB, which is a Swedish 

company. Now we will discuss about how MySQL components works together.  

 

The topmost layer of MySQL architecture contains the services that aren’t unique to 

MySQL. They’re services most network-based client/server tools or servers need: 

connection handling, authentication, security etc. 

 

In second layer the brain of MySQL is here, including code for query parsing, 

analysis, optimization, caching and all the built in functions. Stored procedures, 

triggers and views all functions provided across storage engines lives in this level. 



8 
 

 

The third layer contains the storage engines, which are responsible for storing and 

retrieving all data stored in MySQL. Each storage engine has its own advantages and 

limitations. The low level functions that performs operations like beginning of 

transaction or fetching row that has primary key are in the API. The storage engines 

don’t parse SQL or communicate with each other; they simply respond to requests 

from the server [12].  

 

The applications fetch the data from database through a driver. Then the driver 

manager requests the connector to connect with the server and with the query the 

application gets the data it was expecting.  

 

 

3.1.2 Hadoop  

 

Hadoop provides an API for processing all that stored data - Map-Reduce. 

The basic idea is that since the data is stored in many nodes, it’s better off processing 

it in a distributed manner where each node can process the data stored on it rather 

than spend a lot of time moving it over the network. Hadoop can handle data in a 

very fluid way. Hadoop is more than just a faster, cheaper database and analytics 

tool. Hadoop doesn’t insist to structure data. Data may be unstructured and schema 

less. Users can dump their data into the framework without needing to reformat it 

[15]. By contrast, relational databases require that data be structured and schemas be 

defined before storing the data. Hadoop has two parts. One is MapReduce and 

another is HDFS. The Hadoop Distributed File System (HDFS) is a distributed file 

system designed to run on commodity hardware. It has a master/slave architecture. 

Advantages of this architecture is backups of the entire database has relatively no 

impact on the master. Analytic applications can read from the slave without 

impacting the master. MapReduce is the original framework for writing applications 

that process large amounts of structured and unstructured data stored in the Hadoop 

Distributed File System (HDFS). Apache Hadoop YARN opened Hadoop to other 

data processing engines that can now run existing MapReduce jobs to process data 

in many different ways at the same time. MapReduce has a simple model of data 



9 
 

processing: inputs and outputs for the map and reduce functions are key-value pairs. 

The map and reduce functions in Hadoop MapReduce have the following general 

form: 

map: (K1, V1) → list (K2, V2) 

reduce: (K2, list(V2)) → list (K3, V3) 

The first phase of a MapReduce program is called mapping. A list of data elements 

is provided, one at a time, to a function called the Mapper, which converts each 

element individually to an output data element. Reducing lets user aggregate values 

together. A reducer function receives an iterator of input values from an input list. It 

then combines these values together, returning a single output value. Reducing use 

to turn a large volume of data into a smaller data. In MapReduce, no value stands on 

its own. Every value has a key associated with it. Keys identify related values. The 

mapping and reducing functions receive not just values, but pairs of key with value. 

The output of each of these functions is the same. How MapReduce works with word 

count is given below in figure-3.1.2. 

 

       Figure-3.1.2 MapReduce word count problem 

MapReduce job usually splits the input data-set into independent chunks which are 

processed by the map tasks in a completely parallel manner. The framework sorts 



10 
 

the outputs of the maps which are then input to the reduce tasks. Typically, both the 

input and output file are stored in Hadoop distribute file system. Reduce gathers its 

output while all the tasks are processing. Reduce can’t begin before all mapping is 

done. The output of reduce is also a key and value. In figure-3.1.2 is a data-set of 

some words. The MapReduce job will split the input into some chunks. Then in the 

map task it will generate the chunks as some key value pair. Then in shuffling task 

it will collect the key value pair in alphabetic order. At last reducer will gather the 

output. 

   

 

3.2 Functional Programming instead of Declarative Queries 

 

SQL is fundamentally a high-level declarative language. Users query data by stating 

the result they want and let the database engine figure out how to derive it. Under 

MapReduce user specify the actual steps in processing the data, which is more 

analogous to an execution plan for a SQL engine. Under SQL user has query 

statements; under MapReduce user has scripts and codes. MapReduce allows to 

process data in a more general fashion than SQL queries. For example, one can build 

complex statistical models from data or reformat image data. SQL is not well 

designed for such tasks. 

On the other hand, when working with data that do fit well into relational structures, 

some people may find MapReduce less natural to use. Those who are accustomed to 

the SQL paradigm may find it challenging to think in the MapReduce way. But note 

that many extensions are available to allow one to take advantage of the scalability 

of Hadoop while programming in more familiar paradigms. In fact, some enable to 

write queries in a SQL-like language, and the query is automatically compiled into 

MapReduce code for execution [13].  

  

 



11 
 

3.3 Scale-out Instead of Scale-up 

 

Scaling commercial relational databases is expensive. Their design is more friendly 

to scaling up. To run a bigger database one need to buy a bigger machine. In fact, 

it’s not unusual to see server vendors market their expensive high-end machines as 

“database-class servers.” Unfortunately, at some point there won’t be a big enough 

machine available for larger data sets. More importantly, the high-end machines are 

not cost effective for many applications. For example, a machine with four times the 

power of a standard PC costs a lot more than putting four such PCs in a cluster. 

Hadoop is designed to be a scale-out architecture operating on a cluster of 

commodity PC machines. Adding more resources means adding more machines to 

the Hadoop cluster. Hadoop clusters with ten to hundreds of machines is standard. 

In fact, other than for development purposes, there’s no reason to run Hadoop on a 

single server [13]. 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Chapter 4 

Working Procedure 

   

To work with this project, first we learnt about Java, NoSQL, Hadoop, MapReduce, 

HDFS. For this we have collected many articles, paper works, videos on these 

keywords. The first thing we have learnt is what is Hadoop, MapReduce and HDFS. 

MapReduce is a programming model based on Java. So we had to learn Java first. 

At first we have solved some basic problems in java. After that we tried the 

MapReduce word count problems. We have worked on Linux operating system. At 

first Linux was difficult to handle. But after some time it is actually very easy to 

work in. The best feature of Linux operating systems is its low susceptibility to virus 

and malware infestation. We have installed Hadoop on Ubuntu. Then we have 

installed JDK the java developers kit and have installed eclipse by giving some 

command in the terminal. Then we created a new project and added the jar files. 

Without jar files the MapReduce will not work. Then we have solved a problem with 

word count using MapReduce. It’s the basic concept of learning how MapReduce 

works. We have solved many other problems including the one we have described 

in this research. Now we are going to show how did we go through the installation 

part.  

At first we checked whether there is any JDK installed or not by giving a command 

in the terminal. After seeing JDK not installed we gave a command which is- sudo 

apt-get install openjdk-7-jdk. After pressing enter button the terminal asked for the 

password. So we simply gave the password.  

After giving the password it asked for the confirmation of installing 109MB of JDK 

package. We needed internet connection to download and install the JDK. So after 

checking the internet connection we typed Y to begin the download and installation.  

After installation, to confirm if the JDK installed successfully we gave a command 

in the terminal- java -version. If JDK is installed it will show the current version of 

java. 

The second pre-requisite was ssh. So to install ssh we gave a command – sudo apt-

get install ssh. Again it asked for confirmation. And we typed y.  



13 
 

After installing all the pre-requisite we downloaded the apache Hadoop. We browsed 

in the Google for apache mirror and there were many links. We choose the top most 

link and then from the apache.bytenet.in site we typed Hadoop to find the folder. 

After clicking the Hadoop folder, we could see three folders. We clicked the core 

folder and from that folder we clicked the stable1. After that we clicked Hadoop-

1.2.1.tar.gz to download the file. 

After download we created an own directory named shanta. Then we copied the tar 

file into the new directory and extract that file there. After that we entered into the 

folder. After that we entered the conf folder. In the conf folder there are the main 

files we were going to install. The core-site.xml, Hadoop-env.sh, hdfs-site.xml, 

mapred-site.xml, masters and slaves these are the six files we are going to install. 

We opened the files in the text editor. Then we edited some text and saved it.  

Then we need to update the hadoop environment variables or java environment 

variables in the bashrc file. For that we gave a command- gedit ~/.bashrc. It opened 

up the bashrc file. Then we edited that file.  

Then we typed ssh-keygen –t dsa –p ‘’ –f ~/.ssh/id_dsa in the terminal. Then after 

executing the command we typed cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys. 

After executing it we typed ssh localhost. It showed us the last login time.  

Then to format the namenode we typed hadoop namenode –format. We can execute 

this command only one time. The namenode will be formatted. If we execute the 

command again it will reformat the namenode. 

After that we need to start the hadoop. But at first we started the hdfs. To start that 

we typed start-dfs.sh. To confirm it has started we typed jps. If hdfs is running, then 

after executing the command it will show the datanode, namenode, jps and 

secondaryNamenode.  

Then to start mapreduce we typed start-mapred.sh. After executing this command, 

the job tracker and task tracker will run. We jps to confirm all the required things 

are running. 

To stop all the tasks, we typed stop-dfs.sh. Then all the programs stopped.  

By executing these commands, we have set the environment to execute mapreduce. 

Then we started eclipse and created new java project. We right clicked on that project 

then clicked build path. And then clicked on libraries and then clicked the add 

external libraries. Then we added the jar files. After that we have solved a word 



14 
 

count problem in that project. We created an input text file with random sentences. 

Then we showed the output in the console. After that we modified the code and 

showed the output in an output file. We have solved many problems till now. And 

our final work was to calculate the maximum and minimum temperature of a specific 

date. We have used composite group key to send it into reducer. While we select the 

year, month and day it sends the individual dates as one key. The key that reducer 

will take as input will be a specific date then. After that it will calculate the minimum 

and maximum temperature of that specific date from the entire input file. So it will 

show only two results. The max and the min from the entire input text file. 

 

1. This is the input files we used in this project. There are 14 files for 14 years. 

All the temperatures are synthetically generated.  

 

     Figure 4.1: Input files used in this demo project  

 

 

 

 

 

 

 

 

 



15 
 

2. These files include year, city, month, day and temperature.  

 

 
Figure 4.2: Data from year 2004  

 

3. Then after running the program we can see a dialogue box. User will select 

date, month and year from the dropdown list and to see result user will select 

maximum temperature or minimum temperature and then press submit 

button. 

 

     Figure 4.3: Demo project interface  

 

 



16 
 

4. After Pressing the Submit button user will show the directory of the file 

where the data is located. And user will write the name of the file where the 

output is going to be store. 

 

 Figure 4.4 Demo project interface  

 

5. Finally, the output will be shown in a dialogue box for the group by 

attributes user had chosen. 

 
Figure 4.5 output of the demo project 



17 
 

 

Chapter 5  

Conclusion & Future Work 

 

 

5.1 Conclusion 

In this project we have shown the comparison between SQL and NoSQL. The 

purpose of this work was to prove better performance of NoSQL than SQL and to 

investigate the scope of NoSQL approach using Hadoop environment. From this 

work we have learnt many things. The architecture of Hadoop MapReduce and 

MySQL. By implementing two java based applications we have found that all in all 

NoSQL’s performance is better than the traditional one. Hadoop MapReduce reads 

data from text files so there is no problem of connection or request to the server. But 

if we use SQL server management system or MySQL database and try to execute 

any operation from an application it will first search for the connection to be build. 

That will kill time. These are the overheads of using SQL databases. It also consumes 

memory space to store data. But as NoSQL reads from a text file it doesn’t need 

much space. And it also doesn’t need to make rows or columns which is required in 

any SQL database. So we can say that using NoSQL database it makes life easier 

and time saving. For the large volume of data NoSQL is well suited. It will save our 

time and ease the way of handling large volume of data.  

 

 

5.2 User Friendliness  

 

In organizations they do not hire people to do just a specific task. There are many 

ranks from lower to upper grade. Normally lower grade officers are given the task 

to store data in database and execute query on them. For this they need to know 

about SQL. So they need to hire those who knows about SQL queries or have to 



18 
 

train them. From that perspective storing and analyzing data is not user friendly. 

But if organizations use applications then it is much easier to handle those data 

without knowing SQL. And it will also lessen the cost of training one employee. 

 

5.3 Future Work 

NoSQL is the most updated type of non-relational database. Developers are still 

working on it. This database works with unstructured data also, so it’s a big 

advantage for many organizations who wants to store and manipulate that types of 

data. Many big organizations are using NoSQL database to store their data 

automatically.  Such as Google use Bigtable. Netflix, LinkedIn and twitter also use 

NoSQL as their database. The use of NoSQL will increase when they will face 

problems using the traditional database and will find NoSQL more comfortable 

than the traditional ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

5.4 References 

 

[1] B. Tudorica and C. Bucur, “A comparison between several NoSQL databases 

with comments and notes,” in Roedunet International Conference (RoEduNet), 

2011 10th, june 2011, pp. 1 –5 

[2] D. Bartholomew, “SQL vs. NoSQL,” Linux Journal, no. 195, July 2010 

[3] S. Tiwari, Professional NoSQL. Wiley/Wrox, August 2011 

[4] www.researchgate.net 

https://www.researchgate.net/publication/261079289_A_performance_comparison

_of_SQL_and_NoSQL_databases  [Accessed: January 24, 2016]. 

[5] www.digitalocean.com 

https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-

databases-and-different-database-models [Accessed: March 05, 2016]. 

[6] Springer Open 

http://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0008-6 

[Accessed: March 08, 2016]. 

[7] IEEE Xplore 

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6567202&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6567202 

[Accessed: March 08, 2016]. 

[8] http://www.christofstrauch.de/nosqldbs.pdf  [Accessed: March 08, 2016]. 

[9] sas.com 

http://www.sas.com/en_my/insights/big-data/hadoop.html [Accessed: April 02, 

2016]. 

[10] www.ijarcsse.com/docs/papers/8_August2012/...2.../V2I800154.pdf 

[11] Digital Ocean 

https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-

databases-and-different-database-models [Accessed: March 17, 2016]. 

 

https://www.researchgate.net/publication/261079289_A_performance_comparison_of_SQL_and_NoSQL_databases
https://www.researchgate.net/publication/261079289_A_performance_comparison_of_SQL_and_NoSQL_databases
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models
http://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0008-6
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6567202&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6567202
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6567202&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6567202
http://www.christofstrauch.de/nosqldbs.pdf
http://www.sas.com/en_my/insights/big-data/hadoop.html
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models


20 
 

[12] Safari  

https://www.safaribooksonline.com/library/view/high-performance-

mysql/9781449332471/ch01.html [Accessed: March 18, 2016]. 

[13] Google  

https://sites.google.com/site/hadoopintroduction/home/comparing-sql-databases-

and-hadoop [Accessed: March 20, 2016]. 

[14] Hadoop  

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html [Accessed: March 25, 

2016]. 

[15] MAPR https://www.mapr.com/products/apache-hadoop [Accessed: March 29, 

2016]. 

 

[16] IBM https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/ 

[Accessed: March 24, 2016]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.safaribooksonline.com/library/view/high-performance-mysql/9781449332471/ch01.html
https://www.safaribooksonline.com/library/view/high-performance-mysql/9781449332471/ch01.html
https://sites.google.com/site/hadoopintroduction/home/comparing-sql-databases-and-hadoop
https://sites.google.com/site/hadoopintroduction/home/comparing-sql-databases-and-hadoop
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.mapr.com/products/apache-hadoop
https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/


21 
 

Appendix:  

 

Main.java 

import java.awt.Color; 

import java.awt.Container; 

import java.awt.Dimension; 

import java.awt.FlowLayout; 

import java.awt.GridBagConstraints; 

import java.awt.GridBagLayout; 

import java.awt.Insets; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.awt.event.ItemEvent; 

import java.awt.event.ItemListener; 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

import java.io.IOException; 

 

import javax.swing.JApplet; 

import javax.swing.JButton; 

import javax.swing.JCheckBox; 

import javax.swing.JComboBox; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.JPanel; 

import javax.swing.JScrollPane; 

import javax.swing.JTextField; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.border.LineBorder; 

 

 

public class Main extends JApplet{ 

  

 String month[]={"JAN","FEB","MAR"}; 

  



22 
 

 JButton button = new JButton("SUBMIT"); 

 JFrame frame = new JFrame(); 

  

 JComboBox d = new JComboBox(); 

 JComboBox m = new JComboBox(); 

 JComboBox y = new JComboBox(); 

 JCheckBox maxcheck = new JCheckBox(); 

 JCheckBox mincheck = new JCheckBox(); 

  

 JLabel showmax = new JLabel("Show Max temperature: "); 

 JLabel showmin = new JLabel("Show Min temperature: "); 

  

 String day,mon,year; 

  

 Container ct = new Container(); 

  

  public static void main(String[] args){ 

   Main obj = new Main(); 

   obj.combo(); 

    

  } 

 

   

  public void combo() 

 { 

 

  for(int i=1;i<=31;i++) 

  { 

   if(i<=9)d.addItem("0"+String.valueOf(i)); 

   else d.addItem(String.valueOf(i)); 

  } 

  for(int i=0;i<3;i++)m.addItem(month[i]); 

   

  for(int i=2001;i<=2016;i++)y.addItem(String.valueOf(i)); 

  



23 
 

 day = d.getSelectedItem().toString(); 

  d.addActionListener(new ActionListener()  

  { 

    

   public void actionPerformed(ActionEvent ae)  

   {  

    day = d.getSelectedItem().toString(); 

   } 

  }); 

   

   

  mon = m.getSelectedItem().toString(); 

  m.addActionListener(new ActionListener()  

  { 

    

   public void actionPerformed(ActionEvent ae)  

   {  

    mon = m.getSelectedItem().toString(); 

   } 

  }); 

   

   

  year = y.getSelectedItem().toString(); 

  y.addActionListener(new ActionListener()  

  { 

    

   public void actionPerformed(ActionEvent ae)  

   {  

    year = y.getSelectedItem().toString(); 

   } 

  }); 

   

 

  maxcheck.addItemListener(new ItemListener() { 

    



24 
 

   @Override 

   public void itemStateChanged(ItemEvent e)  

   { 

    // TODO Auto-generated method stub 

    if(e.getStateChange()==1){ 

     Constants.maxchecked = true; 

    } 

    else { 

     Constants.maxchecked = false; 

    } 

   } 

  }); 

   

  mincheck.addItemListener(new ItemListener() { 

    

   @Override 

   public void itemStateChanged(ItemEvent e) { 

    // TODO Auto-generated method stub 

    if(e.getStateChange()==1){ 

     Constants.minchecked = true; 

    } 

    else { 

     Constants.minchecked = false; 

    } 

   } 

  }); 

   

   

 

     button.addActionListener(new ActionListener()  

     { 

       public void actionPerformed(ActionEvent ae)  

       { 

    try  

    { 



25 
 

    MaxTemperatureMapper mtm= new MaxTemperatureMapper(); 

     BufferedWriter writer = new BufferedWriter(new  

FileWriter("/home/shanta/Documents/Data/data.txt")); 

     writer.write(year+" "+mon+" "+day+"\r\n"); 

      

     writer.close(); 

  

      

     Runnable a = new Event(); 

     Thread t = new Thread(a); 

     t.start(); 

      

    }  

    catch (IOException e)  

    { 

      

     e.printStackTrace(); 

    } 

       } 

     }); 

   

 

   

  button.setBackground(Color.CYAN); 

   

  ct = getContentPane(); 

  ct.setLayout(new FlowLayout()); 

  ct.add(d); 

  ct.add(m); 

  ct.add(y); 

   

  ct.add(showmax); 

  ct.add(maxcheck); 

  ct.add(showmin); 

  ct.add(mincheck); 



26 
 

  ct.add(button); 

  ct.setVisible(true); 

  ct.setBackground(Color.YELLOW); 

  frame.setBackground(Color.BLUE); 

  frame.getContentPane().add(ct); 

  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  frame.setSize(250, 300); 

  frame.setVisible(true); 

 } 

} 

Event.java 

import javax.swing.*; 

import java.awt.Component; 

import javax.swing.JFileChooser; 

import javax.swing.JFrame; 

import javax.swing.JTextField; 

import javax.swing.JButton; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.io.BufferedWriter; 

import java.io.FileWriter; 

import java.io.IOException; 

public class Event extends JFrame implements Runnable 

{ 

 private JTextField txtPath; 

 private JTextField txtPath2; 

 JButton button1; 

 JButton button2; 

 JButton button3; 

 JLabel label1; 

 JLabel label2; 

 JLabel label3; 

 static String args0; 

 static String args1; 

   



27 
 

  

 public static void main(String[] args){ 

   

  new Event();  

  }  

 

 public void Event(){ 

   

  this.setSize(400, 400); 

 

   

  this.setLocationRelativeTo(null); 

 

  this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

 

  this.setTitle("Hadoop User Interface"); 

     

  JPanel thePanel = new JPanel(); 

   

        JLabel label1=new JLabel("Enter Input File Directory"); 

        thePanel.add(label1); 

         

 

  txtPath = new JTextField(); 

  txtPath.setBounds(10, 10, 414, 21); 

  thePanel.add(txtPath); 

  txtPath.setColumns(10); 

   

  JButton btnBrowse = new JButton("Browse"); 

  btnBrowse.setBounds(10,41,87,23); 

  thePanel.add(btnBrowse); 

   

  btnBrowse.addActionListener(new ActionListener() { 

    

 



28 
 

   public void actionPerformed(ActionEvent e) { 

    JFileChooser fileChooser = new JFileChooser(); 

     

    fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES); 

 

    Component parent = null; 

     

    int rVal = fileChooser.showOpenDialog(parent); 

    if (rVal == JFileChooser.APPROVE_OPTION) { 

      args0 = fileChooser.getSelectedFile().getAbsolutePath(); 

     System.out.println("one twoooo......"+args0); 

        System.out.println("Please Choose Your Input Directory: " + args0); 

        System.out.println("one......"+args0); 

    }else { 

         System.out.println("No Selection "); 

       } 

     

    System.out.println("one......" + args0); 

     

     txtPath.setText(fileChooser.getSelectedFile().toString()); 

    } 

   } 

    

   ); 

 

        JLabel label2=new JLabel("Enter Output File Directory"); 

        thePanel.add(label2); 

  txtPath2 = new JTextField(); 

  txtPath2.setBounds(200, 20, 514, 221); 

  thePanel.add(txtPath2); 

  txtPath2.setColumns(10); 

   

  JButton btnBrowse2 = new JButton("Browse"); 

  btnBrowse2.setBounds(10,41,87,23); 

  thePanel.add(btnBrowse2); 



29 
 

  btnBrowse2.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent e) { 

    JFileChooser fileChooser = new JFileChooser(); 

     

    fileChooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

    Component parent1 = null; 

    int rVal1 = fileChooser.showOpenDialog(parent1); 

    if (rVal1 == JFileChooser.APPROVE_OPTION) { 

    

    args1 = fileChooser.getSelectedFile().getAbsolutePath(); 

     

    BufferedWriter writer; 

    try { 

     writer = new BufferedWriter(new 

FileWriter("/home/shanta/Documents/Data/finalOutputDir.txt")); 

     writer.write(args1); 

     writer.close(); 

    } catch (IOException e1) { 

     // TODO Auto-generated catch block 

     e1.printStackTrace(); 

    } 

 

     

        

    System.out.println("Please Choose Your Output Directory: " + args1); 

    } else { 

         System.out.println("No Selection "); 

       } 

     

    System.out.println("two......"+args1); 

    txtPath2.setText(fileChooser.getSelectedFile().toString()); 

    } 

    

    

} ); 



30 
 

 

   

        JLabel label4=new JLabel("Click Ok to Execute Hadoop"); 

        thePanel.add(label4); 

  button1 = new JButton("Ok"); 

     

  ListenForButton lForButton = new ListenForButton(); 

     

  button1.addActionListener(lForButton); 

     

  thePanel.add(button1); 

   

  this.add(thePanel); 

   

  this.setVisible(true); 

  

 } 

  

 private class ListenForButton implements ActionListener{ 

   

 

  public void actionPerformed(ActionEvent e){ 

 

   if(e.getSource() == button1){ 

    

    MaxTemperature mt = new MaxTemperature(); 

    try { 

 

     mt.exec(args0, args1);  

      

    } catch (Exception e1) { 

     e1.printStackTrace(); 

    } 

     

   }   



31 
 

  }  

 } 

 

 @Override 

 public void run() { 

   

  // TODO Auto-generated method stub 

  Event(); 

 } 

} 

 

 

MaxTemperature.java 

 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.*; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.*; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

public class MaxTemperature 

{ 

  

 public void exec(String args0, String args1) throws Exception 

            { 

      System.out.println(args0); 

      System.out.println(args1); 

         

                       if (args0 == null && args1 == null) 

                        { 

                               System.err.println("Please Enter the input and output parameters"); 

                               System.exit(-1); 

                        } 

                        



32 
 

                      Configuration conf = new Configuration(); 

 

                      Job job = new Job(conf, "min,max and average"); 

                       

                      job.setJarByClass(MaxTemperature.class); 

                      job.setJobName("Max temperature"); 

                        

                      FileInputFormat.addInputPath(job,new Path(args0)); 

                      FileOutputFormat.setOutputPath(job,new Path (args1)); 

                        

                      job.setMapperClass(MaxTemperatureMapper.class); 

                      job.setReducerClass(MaxTemperatureReducer.class); 

                       

                      job.setMapOutputKeyClass(CompositeGroupKey.class); 

                      job.setMapOutputValueClass(Text.class); 

                       

                      job.setOutputKeyClass(CompositeGroupKey.class); 

                      job.setOutputValueClass(Reducer.class); 

                       

                        

                      System.exit(job.waitForCompletion(true)?0:1);                                              

            } 

} 

MaxTemperatureMapper.java 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapreduce.*; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.List; 

 

public class MaxTemperatureMapper extends Mapper <LongWritable, Text, CompositeGroupKey, Text> 

{ 



33 
 

 int year; 

 String mnth; 

 int date; 

   

 List<Integer> n = new ArrayList<Integer>(); 

 List<String> m = new ArrayList<String>(); 

 List<Integer> d = new ArrayList<Integer>(); 

  

 public void map(LongWritable key, Text value, Context context) throws IOException,  InterruptedException 

 { 

   

   BufferedReader br = null; 

   

   try  

   { 

   

    String sCurrentLine; 

   

    br = new BufferedReader(new FileReader("/home/shanta/Documents/Data/data.txt")); 

   

    while ((sCurrentLine = br.readLine()) != null)  

    { 

      String line = sCurrentLine.toString(); 

      String[] arr=line.split(" "); 

      year = Integer.parseInt(arr[0]); 

      mnth = arr[1]; 

      date = Integer.parseInt(arr[2]); 

 

      n.add(year); 

      m.add(mnth); 

      d.add(date); 

    }       

 

      } 

   



34 
 

   catch (IOException e)  

   { 

    e.printStackTrace(); 

   }  

     

   String line = value.toString(); 

            int year1 = Integer.parseInt(line.substring(0,4)); 

   String mnth1 = line.substring(7,10); 

             int date1 = Integer.parseInt(line.substring(10,12)); 

 

              int temp= Integer.parseInt(line.substring(12,14)); 

              String city = line.substring(4,7); 

\        

               

              if(year1==year && mnth.equals(mnth1) && date==date1)  

              { 

              CompositeGroupKey cntry = new CompositeGroupKey(year1,mnth1,date1); 

             

     

    context.write(cntry, new Text(city + "_" + temp)); 

              } 

                       

      } 

} 

MaxTemperatureReducer.java 

 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.*; 

import java.io.IOException; 

 

import javax.swing.JFrame; 

 

public class MaxTemperatureReducer extends Reducer <CompositeGroupKey, Text, CompositeGroupKey, Text >{ 

  

 public void reduce(CompositeGroupKey key, Iterable<Text> values, Context context) throws IOException,InterruptedException 



35 
 

            { 

      long max = Long.MIN_VALUE; 

      long min = Long.MAX_VALUE; 

 

      Text maxCity = null; 

      Text minCity = null; 

      System.out.println(maxCity); 

       

      for(Text value : values){ 

        

       String compositeString = value.toString(); 

       System.out.println(compositeString); 

       String[] compositeStringArray = compositeString.split("_"); 

       System.out.println(compositeStringArray); 

        

       Text tempCity = new Text(compositeStringArray[0]); 

       System.out.println("Temperature of City "+tempCity); 

       long tempValue = new Long(compositeStringArray[1]).longValue(); 

       System.out.println("Temperature Value "+tempValue); 

       

       //TODO 

        

       if(tempValue > max){ 

        max = tempValue; 

        System.out.println("max is"+max); 

        maxCity = tempCity; 

        System.out.println("maxcity: "+maxCity); 

       } 

       if(min > tempValue){ 

         min = tempValue; 

            System.out.println("min is "+min); 

            minCity = tempCity; 

            System.out.println("mincity: "+minCity); 

       } 

      } 



36 
 

    

  System.out.println("max "+max); 

  String keyText = new String(" max" + "(" + maxCity.toString() + "):" + max + " min" + "(" + minCity.toString() + "):" + 

min); 

   

  if(Constants.maxchecked && Constants.minchecked)keyText+=" *"; 

  else if(Constants.maxchecked)keyText+=" +"; 

  else if(Constants.minchecked)keyText+=" -"; 

  else keyText+=" "; 

   

  System.out.println("value is"+ keyText); 

  context.write(key,new Text(keyText)); 

     } 

  

  

} 

finalOutput.java 

import java.awt.Color; 

import java.awt.Container; 

import java.awt.FlowLayout; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

 

import javax.swing.JApplet; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.SwingConstants; 

 

 

public class finalOutput extends JApplet{ 

  

 public static String dateline=null; 

 public static String maxtempline=null; 

 public static String mintempline=null; 



37 
 

 public static String flag=null; 

 public void swing() 

 { 

  JFrame frame = new JFrame("Output"); 

  Container ct = new Container(); 

  JLabel first = new JLabel(); 

  first.setText(dateline); 

  JLabel second = new JLabel(); 

  second.setText("Maximum temperature : "+maxtempline); 

  JLabel third = new JLabel(); 

  third.setText("Minimum temperature : "+mintempline); 

  ct = getContentPane(); 

  ct.setLayout(new FlowLayout()); 

  ct.add(first); 

  if(flag.equals("+"))ct.add(second); 

  else if(flag.equals("-"))ct.add(third); 

  else if(flag.equals("*")){ 

   ct.add(second); 

   ct.add(third); 

  } 

   

  ct.setVisible(true); 

  ct.setBackground(Color.YELLOW); 

  frame.getContentPane().add(ct); 

  frame.setSize(300, 300); 

  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  frame.setVisible(true); 

 } 

 public static void main(String[] args){ 

   

  BufferedReader br = null; 

   

  try  

  { 

  



38 
 

   String sCurrentLine=null; 

   String outputdir=null; 

    

   br = new BufferedReader(new FileReader("/home/shanta/Documents/Data/finalOutputDir.txt")); 

  

   while ((sCurrentLine = br.readLine()) != null)  

   { 

     outputdir = sCurrentLine.toString(); 

   } 

   br.close(); 

    

   sCurrentLine=null; 

   br = new BufferedReader(new FileReader(outputdir+"/part-r-00000")); 

   while ((sCurrentLine = br.readLine()) != null) 

   { 

    String[] arr = sCurrentLine.split(" "); 

    dateline = arr[0]; 

    maxtempline = arr[1]; 

    mintempline = arr[2]; 

    if(sCurrentLine.contains("+"))flag="+"; 

    else if(sCurrentLine.contains("-"))flag="-"; 

    else if(sCurrentLine.contains("*"))flag="*"; 

   } 

   br.close(); 

  } 

  catch (IOException e)  

  { 

   e.printStackTrace(); 

  } 

   

  finalOutput output = new finalOutput(); 

  output.swing(); 

 } 

}                       

 


