
1

East West University
Faculty of

Electronics and Communication Engineering

SSC ENGLISH SOLUTION - An Android Application

B.Sc Project on Electronics & Telecommunication Engineering

 Submitted By

 MD.FAKHRUL ISLAM & MD.MAHAFUZER RAHMAN

 ID: 2010-3-55-016 ID: 2010-3-55-011

Supervisor

Mustafa Mahmud Hussain

Assistant Professor

Electronics & Communication Engineering Department

2

3

Supervisor’s Statement

Hereby I confirm that the present project was prepared under my supervision and that

is fulfills all the requirements for the Bachelor degree of Electronics &

Telecommunication Engineering.

………………………

….…………………………

Date Supervisor’s Signature

4

Author’s Statement

Hereby We Declare that the present project was prepared by us and none of its

contents was obtained by means that are against the law.

The project has never before been a subject of any procedure of obtaining an academic

degree.

Moreover, We declared that the present version of the project is identical.

……………………………… ………………………………

MD.FAKHRUL ISLAM MD.MAHAFUZER RAHMAN

5

Acknowledgement

First we would like to express our sincere gratitude to Allah that we could complete

our project. Then we are externally grateful to parents for their constant support

through put my academic work.

We are extremely fortunate towards our supervisor Mustafa Mahmud Hussain sir for

helping us throughout the project. He helped us in every possible way for completing

our project.

We are also thankful to our classmates for inspiring us and helping us to choose

mobile application development as a project.

6

Abstract

This paper describes the design and implementation of android BCS QUIZ

application. The main objective of the thesis was to discover development in the

android Platform and produce a prototype BCS QUIZ application. The

theoretical part of this paper discusses the android platform, its architecture and

the development process. The thesis can be used as a reference to carry out

further developments in android.

7

 TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

 08

CHAPTER 2

2.1.1 HISTORY 09

2.1.2 ANDROID BOOTUP PROCESS 13

2.1.3 LINUX KERNEL 14

2.1.4 INIT PROCESS 14

2.1.5 ZYGOTE 14

2.1.6 RUNTIME PROCESS 15

2.2.1 INTERFACE 16

2.2.2 ANDROID SOFTWARE DEVELOPMENT 17

2.2.3 ANDROID ADAPTION FOR MOBILE 18

CHAPTER 3

3.1 WHY ANDROID 20

3.1.1 MARKET GROWTH 21

3.1.2 TECHNICAL CAUSES 22

CHAPTER 4

 4.1 ANDROID ARCHITECTURE 24

CHAPTER 5

5.1 APPLICATION FRAME WORK 28

5.1.1 ANDROID LIBRARY 28

5.1.2 C/C++ LIBRARY 29

5.1.3 ACTIVITY 30

5.1.4 VIEW 33

5.1.5 XML 33

5.1.6 INTENT 34

5.2 ANDROID MANIFEST 34

CHAPTER 6

6.1 SNAPSHOT AND OVERVIEW OF SSC ENGLISH SOLUTION APP 35

CHAPTER 7

7.1 SSC ENGLISH SOLUTION JAVA CODE FOR APP 43

7.2 ANDROIDMANIFEST.XM & HTML 44

7.3 BIBLIOGRAPHY 50

8

Chapter 1

Introduction:

In recent years mankind has witnessed a revolution in the smart phone industry and emerging

growth in the usage of mobile applications that range from entertainment and educational

apps to simple games, health care apps and more.The concept ―mobile applications‖ has

become very central lately and has indeed turned into a great impact on our everyday life.

Almost everyone has some kind of mobile device like a mobile phone or smart phone and to

use it in the everyday life is understood. The way we are using our mobile devices have

changed and the expectations on those devices have increased. To summarize one can say

that the
needs and requests from the users’ are quite different compared to the situation a few years

ago. Today when using a mobile device we more or less are taking for granted, that such a

device is able to both enter the Internet and run applications like e-mail programs or text

editors. One can assert that the mobile phone has become a mobile multimedia device, letting

the user to do almost everything possible on a desktop. Not only have the devices been

changing regarding the hardware, but also the development of software and applications for

mobile

devices have gone through a change. Therefore the concept mobile applications including

development and the possibilities of using mobile devices in

everyday life situations, is very interesting and topical. Android has been with us in one form

or another for more than six years. During that time, we've seen an absolutely breathtaking

rate of change unlike any other development cycle that has ever existed. When it came time

for Google to dive in to the smartphone wars, the company took its rapid-iteration, Web-style

update cycle and applied it to an operating system, and the result has been an onslaught of

continual improvement. Lately, Android has even been running on a previously unheard of

six-month development cycle, and that's slower than it used to be. For the first year of

Android’s commercial existence, Google was putting out a new version every two-and-a-half

months.

9

Chapter 2

2.1.1 History

Android is the most widely used mobile operating system and, as of 2014, the highest

selling OS overall. Android devices sell more than Windows, iOS, and Mac OS X

devices combined with sales in 2012, 2013 and 2014

close to the installed base of all

PCs.

As of July 2013 the Google Play store has had over 1 million Android apps

published, and over 50 billion apps downloaded.

 A developer survey conducted in

April–May 2013 found that 71% of mobile developers develop for Android.

At

Google I/O 2014, the company revealed that there were over 1 billion active monthly

Android users, up from 538 million in June 2013.

Android's source code is released by Google under open source licenses, although

most Android devices ultimately ship with a combination of open source and

proprietary software.

Initially developed by Android, Inc., which Google backed

financially and later bought in 2005,

Android was unveiled in 2007 along with the

founding of the Open Handset Alliance—a consortium of hardware, software, and

telecommunication companies devoted to advancing open standards for mobile

devices.

Android is popular with technology companies which require a ready-made, low-cost

and customizable operating system for high-tech devices. Android's open nature has

encouraged a large community of developers and enthusiasts to use the open-source

code as a foundation for community-driven projects, which add new features for

advanced users or bring Android to devices which were officially released running

other operating systems. The operating system's success has made it a target for patent

litigation as part of the so-called "smartphone wars" between technology companies.

10

11

Android 5.0 "Lollipop" is the latest version of the Android mobile operating

system

12

Lolipop: Android 5.0 introduces a refreshed notification system. Individual

notifications are now displayed on cards to adhere to the material design language,

and batches of notifications can be grouped by the app that produced them.

Notifications are now displayed on the lock screen as cards, and "heads up"

notifications can also be displayed as large banners across the top of the screen, along

with their respective action buttons. A do-not-disturb feature is also added for

notifications. The recent apps menu was redesigned to use a three-dimensional stack

of cards to represent open apps. Individual apps can also display multiple cards in the

recent menu, rather than only one entry per app; for example, a web browser can show

all of its open tabs as individual cards.

Lollipop also contains major new platform features for developers, with over 5,000

new APIs added for use by applications. Additionally, the Dalvik virtual machine was

officially replaced by Android Runtime (ART), which is a new runtime environment

that was introduced as a technology preview in KitKat. ART is a cross-platform

runtime which supports the x86, ARM, and MIPS architectures in both 32-bit and 64-

bit environments. Unlike Dalvik, which uses just-in-time compilation (JIT), ART

compiles apps upon installation, which are then run exclusively from the compiled

version from then on. This technique removes the processing overhead associated with

the JIT process, improving system performance.

Lollipop also aims to improve battery consumption through a series of optimizations

known as "Project Volta". Among its changes are a new battery saver mode, job

scheduling APIs which can restrict certain tasks to only occur over Wi-Fi, and

batching of tasks to reduce the overall amount of time that internal radios are active.

13

The new developer tool called "Battery Historian" can be used for tracking battery

consumption by apps while in use. The Android Extension Pack APIs also provide

graphics functions such as new shaders, aiming to provide PC-level graphics for 3D

games on Android devices.

A number of system-level, enterprise-oriented features were also introduced under the

banner "Android for Work": Samsung contributed its Knox security framework for

segregating personal and work-oriented data from each other on a device, along with

accompanying APIs for managing the environment. Devices can also be configured so

that users do not have to unlock their device with a PIN or pattern if it is within a

trusted, physical location, or is in proximity to a user's Android Wear device. Device

encryption will be enabled by default.

2.1.2 ANDROID BOOTUP PROCESS:

Power On: Master boot record (MBR) is a boot sector which contains partition table

which has the information about how the device is partitioned in a structure. There is

no MBR or partition when the device is started for the first time. When the phone is

switched on, CPU will be in a no initialization state. Internal RAM is available and no

internal clocks are set up. The device starts executing code located in the ROM and

finds a specific block which has first Stage boot loader. The first boot loader points to

a second stage boot loader, which is located in a known block. This ―pointing‖ process

is called raw partition table

Boot loader: Boot loader is a code which is executed before android operating

system runs. It loads kernel to the RAM and sets up the initial memories.

Manufacturers use existing boot loaders or they create their own boot loaders. The

First stage boot loader will find and setup the external RAM. Now Main boot loader

is loaded and placed in external RAM as the RAM is available. The First important

14

program is in the second boot loader stage which contains code for file systems,

additional memory and network support etc. When the boot loader is done it goes to

the linux kernel [6].

2.1.3 Linux kernel

A kernel acts as a bridge between hardware and software. It setups cache protected

memory, scheduling and loads drivers. After initializing Memory management

units and caches, virtual memory can be used and user space processes can be

launched by the system. After finishing the setup Kernel looks for init process which

can found under system/core/init and launch it.

2.1.4 Init process

This process is the root process. Every process will be launched from this process. Init

process mounts directories like /sys, /dev, /proc. It will run init.rc script and

system service processes. This script is located in system/core/rootdir in the

Android open source project and describes system services, file system and

other parameters .

2.1.5 Zygote

After starting various daemons like Android Debug Bridge (adbd), Radio Interface

Layer Daemon (rild), etc, Init process initiates a process called Zygote. In java

there is a separate instance of a Virtual Machine for each application. In

android Dalvik, virtual machine is used as VM. So there is high consumption of

memory and time because of different instances of dalvik VM for every application.

Now Zygotes comes into play. It enables shared code across Dalvik VM, lower

memory footprint and minimal startup time. Zygote process starts at system boot up

and it preloads and initializes core library classes. After initialization, zygote

process waits for socket request coming from the runtime process. If any request

comes then it forks starts processes with VM instances.

2.1.6 Runtime process

The next init initiates the Runtime process and this process starts the service manager.

All the services should be registered with the service manager and it provides local

lookup service and binds services given their name. The runtime requests zygote to

start system server process. Zygote splits and starts up a new dalvik vm instance and

15

starts the service. To control display device and audio output device the system

server starts surface flinger and audio flinger. These services get registered with the

service manager so that other applications can use display and audio. Now the system

server will start all the core platform services and hardware services like activity

manager, window manager and power manager etc. All of these services will get

registered with the service manager

2.2.1 Interface

Android's default user interface is based on direct manipulation , using touch inputs,

that loosely correspond to real-world actions, like swiping, tapping, pinching, and

reverse pinching to manipulate on-screen objects, and a virtual keyboard. The

response to user input is designed to be immediate and provides a fluid touch

interface, often using the vibration capabilities of the device to provide haptic

feedback to the user. Internal hardware such as accelerometers, gyroscopes and

proximity sensorsare used by some applications to respond to additional user actions,

for example adjusting the screen from portrait to landscape depending on how the

http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Proximity_sensor

16

device is oriented, or allowing the user to steer a vehicle in a racing game by rotating

the device, simulating control of a steering wheel.

Android devices boot to the homescreen, the primary navigation and information point

on the device, which is similar to the desktop found on PCs. Android homescreens are

typically made up of app icons and widgets; app icons launch the associated app,

whereas widgets display live, auto-updating content such as the weather forecast, the

user's email inbox, or a news ticker directly on the homescreen. A homescreen may be

made up of several pages that the user can swipe back and forth between, though

Android's homescreen interface is heavily customisable, allowing the user to adjust

the look and feel of the device to their tastes. Third-party apps available on Google

Play and other app stores can extensively re-theme the homescreen, and even mimic

the look of other operating systems, such as Windows Phone. Most manufacturers,

and some wireless carriers, customise the look and feel of their Android devices to

differentiate themselves from their competitors.

Present along the top of the screen is a status bar, showing information about the

device and its connectivity. This status bar can be "pulled" down to reveal a

notification screen where apps display important information or updates, such as a

newly received email or SMS text, in a way that does not immediately interrupt or

inconvenience the user. Notifications are persistent until read (by tapping, which

opens the relevant app) or dismissed by sliding it off the screen. Beginning on

Android 4.1, "expanded notifications" can display expanded details or additional

functionality; for instance, a music player can display playback controls, and a

"missed call" notification provides buttons for calling back or sending the caller an

SMS message.

Android provides the ability to run applications which change the default launcher and

hence the appearance and externally visible behaviour of Android. These appearance

changes include a multi-page dock or no dock, and many more changes to

fundamental features of the user interface.

2.2.2 Android software development

The Android software development kit (SDK) includes a comprehensive set of

development tools.These include a debugger, libraries, a handset emulator based on

QEMU, documentation, sample code, and tutorials. Currently supported development

platforms include computers running Linux (any modern desktop Linux distribution),

Mac OS X 10.5.8 or later, and Windows XP or later. For the moment one can also

develop Android software on Android itself by using the AIDE - Android IDE - Java,

C++ app and the Java editor app. The officially supported integrated development

environment (IDE) is Eclipse using the Android Development Tools (ADT) Plugin,

though IntelliJ IDEA IDE (all editions) fully supports Android development out of the

box, and NetBeans IDE also supports Android development via a plugin.

Additionally, developers may use any text editor to edit Java and XML files, then use

http://en.wikipedia.org/wiki/Desktop_metaphor
http://en.wikipedia.org/wiki/Software_widget
http://en.wikipedia.org/wiki/News_ticker
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Theme_%28computing%29
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Mobile_phone_operator
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/List_of_Linux_distributions
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Windows_XP
https://play.google.com/store/apps/details?id=com.aide.ui
https://play.google.com/store/apps/details?id=com.aide.ui
https://play.google.com/store/apps/details?id=air.JavaEditor
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/NetBeans

17

command line tools (Java Development Kit and Apache Ant are required) to create,

build and debug Android applications as well as control attached Android devices

(e.g., triggering a reboot, installing software package(s) remotely).

Enhancements to Android's SDK go hand in hand with the overall Android platform

development. The SDK also supports older versions of the Android platform in case

developers wish to target their applications at older devices. Development tools are

downloadable components, so after one has downloaded the latest version and

platform, older platforms and tools can also be downloaded for compatibility testing.

Android applications are packaged in .apk format and stored under /data/app folder on

the Android OS (the folder is accessible only to the root user for security reasons).

APK package contains .dex files (compiled byte code files called Dalvik executables),

resource files, etc.

Android apps are written in the Java programming language. The Android SDK tools

compile code—along with any data and resource files—into an APK: an Android

package, which is an archive file with an .apk suffix. One APK file contains all the

contents of an Android app and is the file that Android-powered devices use to install

the app.

Once installed on a device, each Android app lives in its own security sandbox:

 The Android operating system is a multi-user Linux system in which each app

is a different user.

 By default, the system assigns each app a unique Linux user ID (the ID is used

only by the system and is unknown to the app). The system sets permissions for

all the files in an app so that only the user ID assigned to that app can access

them.

 Each process has its own virtual machine (VM), so an app's code runs in

isolation from other apps.

 By default, every app runs in its own Linux process. Android starts the process

when any of the app's components need to be executed, then shuts down the

process when it's no longer needed or when the system must recover memory

for other apps.

http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Apache_Ant

18

2.2.3 Android adaption for mobile

Technology analysts claim android will support nearly half of all smartphones and

tablets in just a few short years. Although each new Android release enhances the

mobile user experience exponentially, it also creates unique hardware-OS

compatibility challenges for mobile device manufacturers and system-on-a-chip (SoC)

providers.

A single generation of a mobile application processor can span through multiple

versions of an Android operating system. As such, mobile device manufacturers and

SoC providers must frequently adapt new Android OS versions to run on their existing

hardware. These ongoing adaptation efforts can quickly become overwhelming and

pull focus away from core R&D initiatives.

Based on the Android platform software system structure. Android phone is a standard

Smartphone. The so-called Smartphone, refers to "the same as personal computers,

with separate operating system, installed by the user software, games and other third-

party service provider process, through such programs to continue to expand the

functionality of the phone, and can be achieved through the mobile communication

network to access the wireless network, so that the general term for a class of mobile

phone.

19

Android is designed specifically for mobile terminal software platform and its

software architecture from the bottom is divided into four levels, as shown in the

figure.

20

Chapter 3

3.1 Why android

3.1.1 Market Groth:

Android is continuing its onward march. The latest market figures from analyst ABI

Research peg the platform at 80% marketshare of smartphone OSes, with just under

300 million smartphones running Android or an Android fork shipped in the quarter.

The analyst notes that basic mobile phone operating systems lost 5% share in the

quarter with Android hovering up most of those users as they upgrade to smartphones.

That suggests Google’s mobile platform is set to be the biggest winner as the

―billions‖ of remaining mobile subscribers upgrade to smartphones helping to keep

what is already the dominant smartphone platform ahead of the competition.

That’s bad news for Microsoft which now owns Nokia’s mobile making business, and

will be hoping to on-ramp users of basic Nokia mobile phones to its Windows Phone-

based Lumia smartphones. Currently, Android continues to exert more pulling

power for first time smartphone buyers.

Taking the mobile market as a whole so looking collectively at both smartphones and

basic mobiles. Android took a 44% share of the market in Q1 (up 24% year-on-year),

according to ABI’s data, with the Android Open Source Project (AOSP) which

companies including Amazon and Nokia have used to fork Android taking 13%.

Microsoft’s Windows Phone also grew its share of the market in Q1, with 16%

sequential growth and a 3% share overall but the platform remains very much the

underdog vs the dominance of Android.

Still, Microsoft can console itself that it’s the top underdog in mobile. The analyst

described Windows Phone as ―the only viable third ecosystem‖ noting the complete

collapse of BlackBerry’s OSes, and adding that low-cost Firefox OS remains a

potential challenger but has yet to make any significant dent.

Apple’s iOS grew 17% year on year but ABI said its growth is ―undoubtedly

flattening‖, noting that the iPhone 5c has done little to boost sales volumes.

21

Apple’s decision to limit itself to selling premium devices continues to constrain its

marketshare and as the lower-end portion of the smartphone market continues to

expand, fueled by users of basic mobiles upgrading to their first smartphone, that

share will inevitably be diluted further.

Worldwide Smartphone Sales to End Users by Operating System in 2013

(Thousands of Units)

Operating System

2015

 Units

2015 Market

Share (%)

2014

 Units

2014 Market

Share (%)
Android 1,004,675 78.9 227,549 80.8

iOS 191,426 17.9 43,062 15.3

Microsoft 8,271 2.5 7,580 2.7

BlackBerry 1,325 0.4 1,714 0.6

Other OS 1,268.7 0.4 1,731.0 0.6

Total 336,054.4 100.0 281,636.9 100.0

Table 1.1 worldwide Smartphone sales by operating system, Source: Gartner (May

2015) [http://www.gartner.com/newsroom/id/3061917]

22

3.1.2 Technical causes:

After so many years, one would think that the mobile market is now saturated with

every app imaginable to man – but that’s not the case. There are plenty of niches that

still need to be filled and even current markets with several leading apps can still fall

behind in quality. All that to say: there’s always room for new Android apps, and with

a little bit of know-how, you could be the next developer to create a smash hit.

Before you begin on your Android development journey, there are a few prerequisites

that you need to fulfill.

Java Experience: Android development is mostly done in Java. It’s not a difficult

language to learn, per se, but knowing how it applies to Android development can be

confusing without a firm foundation in the language. Android Java is not exactly

standard Java, but learning standard Java will make it much easier for you to pick up

Android development.

XML Experience: Knowing XML can be useful in a number of tech-related fields

and Android is no exception. In particular, XML files make it easier to declare UI

elements in the apps you create. Past experience is a big plus.

Development Environment: Most Android developers recommend using Eclipse as

the development environment for your coding sessions. You’ll also need to install the

Android SDK before you can begin making apps. Fortunately, Android provides a

single package that includes Eclipse, Android SDK, and related tools. Be aware that in

the near future, most Android development will move away from Eclipse toward

Android Studio, so you may want to look into that as well.

Perseverance: Lastly, learning the ins and outs of the Android development toolkit is

going to take time. Learning how to create a quality app is going to take even more

time. Don’t rush. Keep at it and focus your mind on the long term. If you don’t, you’ll

be frustrated and want to give up.

The operating system is the basis of Smartphone platform, which provides process

scheduling, task manager, file systems, network protocols and the phone peripherals

such as keyboards, LCD, Buletooth, WiFi and other equipment

management. The Choice of operating systems has a direct relationship between

product stability, cost, and development prospects. The mainstream of the current

Smartphone market, the operating system are the windows Mobile, symbian, IPhone,

Android. Windows Mobile is a famous Microsoft designed for intelligent Mobile

23

terminal development in the operating system, Due to the Windows operating system

used for, the user easy to get started, and compatible PC swing many file format. The

defect is that the system is relatively high share of resources, easy to collapse, and

Microsoft needs to develop products commission, while the operating system's user

interface is relatively obscure, bad user experience.

Symbian is currently the largest market share of Smartphone operating system, mainly

due to the amount of NOKIA large market share of products, NOKIA symbian

Smartphone operating system mainly used. The operating system applies to the

operation with the keyboard. The defect is that the mainstream media format support

is poor; development requires authorization; With the prevalence of

large-screen touch keyboard, the system is still in the keyboard operation mode of

operation.

Apple's IPhone leads the current trend of Smartphones: cool visual effects, convenient

user has and the faster speed of response. But unfortunately not opening to the outside

world is a private system. Android system achieved the completely open to the user,

anyone, any units can download the free code for development and design of mobile

devices with its own mobile terminal. At the same time, this system of Ul design also

accords with current trends. Motorola, Samsung, LG Sony Ericsson and other large

manufacturers have followed suit, using the system to develop their own intelligence

products. Based on Android development, no matter from

the technical (developers have the system all the code) or from the development costs

on the (no royalties), we will not be controlled by others, it has been more and more

manufacturers and developers welcome.

24

Chapter 4

4.1 Android Architecture

At the top of the stack are the applications themselves. This is where you find the

basic functions of the device such as making phone calls, accessing the Web browser

and accessing your contacts list. If you're an average user, this is the layer you'll use

most. You do that with the user interface. Only Google programmers, application

developers and hardware manufacturers access the other layers further down the stack.

The next layer is the application framework. This includes the programs that manage

the phone's basic functions like resource allocation, telephone applications, switching

between processes or programs and keeping track of the phone's physical location.

Application developers have full access to Android's application framework. This

allows them to take advantage of Android's processing capabilities and support

features when building an Android application. Think of the application framework as

a set of basic tools with which a developer can build much more complex tools.

The next level of software includes Android's libraries. You can think of libraries as a

set of instructions that tell the device how to handle different kinds of data. For

example, the media framework library supports playback and recording of various

audio, video and picture formats. Other libraries include a three-dimensional

acceleration library (for devices with accelerometers) and a Web browser library.

25

Android application programmers build their apps using the Java programming

language. It also includes the Dalvik Virtual Machine. Libraries provides a set of

C/C++ libraries which are used by various components of the Android system. The

Media Framework libraries are used to store and playback video as well as images.

SQLite is a lightweight relationship database available for all applications. SGL are

the underlying 2D graphics engine, while the 3D libraries are based on an OpenGL ES

implementation. LibWebCore is a web browser engine.All of these libraries and their

capabilities are available for the developer through the Android application

framework.Android Runtime includes core libraries and the Dalvik VM. Dalvik is the

process virtual machine (VM) in Google's Android operating system, which,

specifically, executes applications written for Android. stack-based machines must use

instructions to load data on the stack and manipulate that data, and, thus, require more

instructions than register machines to implement the same high level code, but the

instructions in a register machine must encode the source and destination registers

and, therefore, tend to be larger. This difference is primarily of importance to VM

interpreters for which opcode dispatch tends to be expensive along with other factors

similarly relevant to just-in-time compilation.The core libraries provide most of the

basic functionality available in the core libraries of the Java programming language.

The Dalvik VM is written as to reduce memory footprint and enable a device to run

multiple VM’s effectively.

http://www.alliance-rom.com/wiki/dalvik/
http://en.wikipedia.org/wiki/Process_virtual_machine
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/High-level_programming_language

26

Figure: Depicts the Android architecture

27

Android Device Manager The Application Framework architecture allows for reuse
of components. Any application can make use of the capabilities of a component and
also publish its own capabilities. Every application has underlying components,
including:

- Views consisting of i.e buttons, lists, text boxes and a web browser, all used to build
an application.
- An Activity Manager that controls navigation and manages the life cycle of an
application.
- A Notification Manager that enables all applications to have notifications displayed
as alerts in the status bar.
- A Resource Manager providing access to non-code resources such as localized
strings, graphics, and layout files.

28

Chapter 5

5.1 Application Frame Work

The Application Framework is a set of services that collectively form the environment

in which Android applications run and are managed. This framework implements the

concept that Android applications are constructed from reusable, interchangeable and

replaceable components. This concept is taken a step further in that an application is

also able to publish its capabilities along with any corresponding data so that they can

be found and reused by other applications.

The Android framework includes the following key services:

 Activity Manager – Controls all aspects of the application lifecycle and

activity stack.

 Content Providers – Allows applications to publish and share data with

other applications.
 Resource Manager – Provides access to non-code embedded resources such as

strings, color settings and user interface layouts.

 Notifications Manager – Allows applications to display alerts and

notifications to the user.

 View System – An extensible set of views used to create application user

interfaces.

 Package Manager – The system by which applications are able to find out

information about other applications currently installed on the device.

 Telephony Manager – Provides information to the application about the

telephony services available on the device such as status and subscriber

information.

 Location Manager – Provides access to the location services allowing an

application to receive updates about location changes.

5.1.1Android Libraries

This category encompasses those Java-based libraries that are specific to Android

development. Examples of libraries in this category include the application framework

libraries in addition to those that facilitate user interface building, graphics drawing

29

and database access. A summary of some key core Android libraries available to the

Android developer is as follows:

 android.app – Provides access to the application model and is the cornerstone

of all Android applications.

 android.content – Facilitates content access, publishing and messaging between

applications and application components.

 android.database – Used to access data published by content providers and

includes SQLite database management classes.

 android.graphics – A low-level 2D graphics drawing API including colors,

points, filters, rectangles and canvases.

 android.hardware – Presents an API providing access to hardware such as the

accelerometer and light sensor.

 android.opengl – A Java interface to the OpenGL ES 3D graphics rendering

API.

 android.os – Provides applications with access to standard operating system

services including messages, system services and inter-process communication.

 android.media – Provides classes to enable playback of audio and video.

 android.net – A set of APIs providing access to the network stack. Includes

android.net.wifi, which provides access to the device’s wireless stack.

 android.provider – A set of convenience classes that provide access to standard

Android content provider databases such as those maintained by the calendar

and contact applications.

 android.text – Used to render and manipulate text on a device display.

 android.util – A set of utility classes for performing tasks such as string and

number conversion, XML handling and date and time manipulation.

 android.view – The fundamental building blocks of application user interfaces.

 android.widget - A rich collection of pre-built user interface components such

as buttons, labels, list views, layout managers, radio buttons etc.

 android.webkit – A set of classes intended to allow web-browsing capabilities

to be built into applications.

Having covered the Java-based core libraries in the Android runtime, it is now time to

turn our attention to the C/C++ based libraries contained in this layer of the Android

software stack.

5.1.2C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based

and provide the primary APIs for developers writing Android applications. It is

important to note, however, that the core libraries do not actually perform much of the

actual work and are, in fact, essentially Java ―wrappers‖ around a set of C/C++ based

libraries. When making calls, for example, to the android.opengl library to draw 3D

graphics on the device display, the library actually ultimately makes calls to the

30

OpenGL ES C++ library which, in turn, works with the underlying Linux kernel to

perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including

2D and 3D graphics drawing, Secure Sockets Layer (SSL) communication, SQLite

database management, audio and video playback, bitmap and vector font rendering,

display subsystem and graphic layer management and an implementation of the

standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely

through the Java based Android core library APIs. In the event that direct access to

these libraries is needed, this can be achieved using the Android Native Development

Kit (NDK), the purpose of which is to call the native methods of non-Java

programming languages (such as C and C++) from within Java code using the Java

Native Interface (JNI).

Main application components

To began to program for android we need some basic, because some elements are very

different, even if programming an application in Android uses the java language,

therefore, an object oriented language.

All Android application contain more of the following components

5.1.3 Activity

An activity is an user interference that allows the user to interact with the screen, to

perform actions. For example, a text messaging application could have an activity

that displays a list of contacts to send messages. Once the contact is selected ,activity

could send information to a second activity that could serve to send the message to the

contact.

When an application is launched, what is displays is the result of an activity. At the

code level, for create an activity; we must create a class that extend the activity class.

An activity has a required on create() method. To interact with the program, through

the activity, there must be something displayed, that is why the activity, contains what

is called views.

31

Process

status
Description Priority

Foreground

An application in which the user is interacting with an activity,

or which has an service which is bound to such an activity.

Also if a service is executing one of its lifecycle methods or a

broadcast receiver which runs its onReceive() method.

1

Visible

User is not interacting with the activity, but the activity is still

(partially) visible or the application has a service which is used

by a inactive but visible activity.

2

Service
Application with a running service which does not qualify for 1

or 2.
3

Background

Application with only stopped activities and without a service

or executing receiver. Android keeps them in a least recent

used (LRU) list and if requires terminates the one which was

least used.

4

Empty Application without any active components.

32

 Activity lifecycle

Use, na".;gate.
to the activity

I
App PI''' • --

1

oneraate{}

I
onStart()

I
onResumeO

I
running

Anottler act;"';t)' comes
into the mregmuM

I

•

Use, ",turns
to the activity

L __ ~,",~e,.;""",,~ __ ~---------" I ,

Th1I actMty is
,.., k>nge ' ~bIe

I
onStop() ,

The activit'y I. f i~ ,stNng or
~ng clestroyed by the .ystem

I
OOO8.t,_,_, ''--__

I

onRe.taItO

User na".;gates
to the act;"';t)' ,

33

The Android system is also allowed to recycle Android components to free up

resources. This part explains which for activities, the lifecycle of other components is

described in the respective part of these components.

An activity can be in different states which are described by the following table.

State Description

Running Activity is visible and interacts with the user.

Paused
Activity is still visible but partially obscured, instance is running but might

be killed by the system.

Stopped Activity is not visible, instance is running but might be killed by the system.

Killed Activity has been terminated by the system of by a call to its finish() method.

5.1.4 View

A view is the basic building block for user interference components. A view occupied

a rectangular area on the screen. View is the base class for the widget, which are used

to create interactive UI components. There is different kinds of view, for example a

ListView is able to display only an interactive list of what we want to display, while

we webview allow us to display a webpage. As said before, a view occupies a

rectangular area on the screen. To organize these rectangles on the screen, there is a

text file written in the XML for every different screen.

5.1.5 XML

XML means Extensible Markup Language. Android provides a straight forward XML

vocabulary that corresponds to the view classes and sub classes. The goal of using

Android XML vocabulary, is to quickly design UI layouts and the screen elements

34

they contain, in the same way that creating web pages in HTML: with a series of

nested elements.

5.1.6 Intent

An activity can of course start another one, even if it but to do this, it will need special

object called intent. Intent is basic description of an operation to be performed. It can

launch an Activity, send a broadcastintent to any interested Broadcast receiver

components, and communicate with a background service. Intent performs binding

between the codes indifferent applications. It can be thought of as the link between

activities.

5.2 Android Mainfest

AndroidMainifest.xml file is necessary for all android applications and must have this

name in itsroot directory. In the manifest we can find essential information about the

application for the androidsystem, information that the system must have before it can

run any of the application’s code. Here is what we can find in the Android manifest:

-The name of the Java package for the application. The package name serves as a

unique identifier for the application.

-The description of the components of the application: the activities, services,

broadcast receivers, and content providers that the application is composed of and

under what conditions they can be launched.

-The process that will host application components.

-The permissions the application must have in order to access protected parts of the

API andinteract with other applications.

-The permissions that others are required to have in order to interact with the

application’s components.

-The list of tee instruments classes that provide profiling and other information as the

application is running. These declarations are present in the manifest only while the

application is published.

-The minimum level of the Android API that the application requires.

-The list of the libraries that the application must be linked against.

With all these elements, an application can be created

35

Chapter 6

6.1 Snapshot and overview of SSC ENGLISH SOLUTION APP

36

37

38

39

40

41

42

43

Chapter 7

7.1 JAVA Code For SSC ENGLISH SOLUTION APP

package nextapps.sscenglishsolution;

import android.os.Bundle;

import android.view.KeyEvent;

import android.widget.LinearLayout;

import android.widget.Toast;

import org.apache.cordova.DroidGap;

public class MainActivity extends DroidGap {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

super.loadUrl("file:///android_asset/www/index.html")

;

 }

}

44

7.2 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="nextapps.sscenglishsolution"

 android:installLocation="preferExternal">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:configChanges="orientation|screenSize|keyboardHidden">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE"/>

</manifest>

45

HTML CODE FOR INDEX:
<!DOCTYPE HTML>
<HTML>
 <HEAD>
 <LINK HREF="STYLE.CSS" REL="STYLESHEET">
 </HEAD>

 <BODY>
 <DIV CLASS="MAIN">
 <DIV CLASS="HEADER">
 <H1>SSC ENGLISH SOLUTION</H1>
 </DIV>

 <DIV CLASS="MAIN2">

 <DIV CLASS="BUTTON">
 <A

HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCWXF6Z01OUUHMR3M/VIEW?USP=SHARING">
 <P>BOARD QUESTION</P>

 </DIV>

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCAMHFRJIYDDHTCFK/VIEW?USP=SHARING">
 <P>SUGGESTION 2016</P>

 </DIV>

 <DIV CLASS="BUTTON">

46

 <P>TEST PAPER</P>
 </DIV>

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCDUFMVVLTVKQXNXC/VIEW?USP=SHARING">
 <P>TEXT BOOK(1ST PAPER)</P>
 </DIV>

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCVDC4VLBWR3J6ELE/VIEW?USP=SHARING">
 <P>TEXT BOOK(2ND PAPER)</P>
 </DIV>

 <DIV CLASS="BUTTON">

 <P>MODEL QUESTION</P>
 </DIV>

</DIV>
</DIV>
</BODY>
</HTML>

47

HTML CODE FOR PAGE 1:

<!DOCTYPE HTML>
<HTML>
 <HEAD>
 <LINK HREF="STYLE1.CSS" REL="STYLESHEET">
 </HEAD>

 <BODY>
 <DIV CLASS="MAIN">
 <DIV CLASS="HEADER">
 <H1>TEST PAPER</H1>
 </DIV>

 <DIV CLASS="MAIN2">

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCRNJMWK5XV2JLSEU/VIEW?USP=SHARING">
 <P>1ST PAPER</P>

 </DIV>

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCBTVWQ3O5VNBKYWS/VIEW?USP=SHARING">
 <P>2ND PAPER</P>

 </DIV>

 </DIV>
 </DIV>

48

 </BODY>

</HTML>

HTML CODE FOR PAGE 2:

<!DOCTYPE HTML>
<HTML>
 <HEAD>
 <LINK HREF="STYLE1.CSS" REL="STYLESHEET">
 </HEAD>

 <BODY>
 <DIV CLASS="MAIN">
 <DIV CLASS="HEADER">
 <H1>MODEL QUESTION</H1>
 </DIV>

 <DIV CLASS="MAIN2">

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/OPEN?ID=0B-
TXFWWX1QJCX1JMMMZFUTNQEVU">
 <P>1ST PAPER</P>

 </DIV>

 <DIV CLASS="BUTTON">
 <A HREF="HTTPS://DRIVE.GOOGLE.COM/FILE/D/0B-
TXFWWX1QJCY2Y5CMVTZFDRC00/VIEW?USP=SHARING">
 <P>2ND PAPER</P>

49

 </DIV>

 </DIV>
 </DIV>

 </BODY>

</HTML>

50

BIBLIOGRAPHY

[ADB] Android Developers Blog

http://android-developers.blogspot.com/

[ADG] Android Developers Group

http:// groups.google.com/group/android-developers

[AND] Android Developers

http://developers.android .com

http://w3schools.com

http://epubl.ltu.se/1404-5494/2010/006/LTU-HIP-EX-10006-SE.pdf

http://arstechnica.com/gadgets/2014/06/building-android-a-40000-

word-history-of-googles-mobile-os/

http://startapp.com/

http://www.btd.com.bd/

http://www.gartner.com/newsroom/id/2665715

http://w3schools.com/
http://epubl.ltu.se/1404-5494/2010/006/LTU-HIP-EX-10006-SE.pdf
http://arstechnica.com/gadgets/2014/06/building-android-a-40000-word-history-of-googles-mobile-os/
http://arstechnica.com/gadgets/2014/06/building-android-a-40000-word-history-of-googles-mobile-os/
http://www.gartner.com/newsroom/id/2665715

