
 

Design & Developed of a
Based Home

East West University
Department of Electronics & Communication 

Dr. Md. Habibur Rahman

Dept. of Electrical and Electronics Engineering

Design & Developed of a Microcontroller 
Based Home Appliance Control System 

Using Wi-Fi  
 

Developed by: 
 

Md. Inzamul Islam 
ID: 2011-1-55-040 

 
S. M. Ariful Haider 
ID: 2011-2-55-021 

 
East West University 

Department of Electronics & Communication Engineering
 

Project Supervisor: 
Dr. Md. Habibur Rahman 

Professor 
Dept. of Electrical and Electronics Engineering 

University Of Dhaka 
 
 

1 

Microcontroller 
Appliance Control System 

Engineering  



2  
DECLARATION 

 
We hereby declare that we carried out the work reported in this project in the Department of 
Electronics and Communication Engineering, East West University, under the supervision of Dr. Md. Habibur Rahman. We solemnly declare that to the best of our knowledge, no part 
of this report has been submitted elsewhere for award of a degree. All sources of knowledge used 
have been duly acknowledged. 
 
Signature: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              
 
 
 
 
 

 
........................................................................ 

S.M. Ariful Haider 
ID : 2011-2-55-021 

 
......................................................................... 

Md. Inzamul Islam 
ID : 2011-1-55-040 

------------------------------------- 
Supervisor 

Dr. Md. Habibur Rahman 
Professor, Dept. of Electrical and 

Electronics Engineering 
University Of Dhaka 



3  
APPROVAL 

 
This is to certify that the Project titled as “Design and Developing of a Microcontroller Based 
Home Appliance Control System Using Wi-Fi” submitted to the respected members of the Board 
of Examiners of the Faculty of Engineering for partial fulfillment of the requirements for the 
degree of Bachelor of Science in Electronics & Telecommunications Engineering by the 
following students and has been accepted as satisfactory. 

 
 
 
 
 
 
 
 
 

 
                            
   
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

------------------------------------------------------ 
Dr. Md. Habibur Rahman 

Professor, Electrical and Electronics 
Engineering 

University of Dhaka 

 
 

--------------------------------------------------- 
Dr. Gurudas Mandal 

Chairperson & Associate Professor, 
Dept. of Electronics and Communication 

Engineering 
East West University 

Submitted By: 
Md. Inzamul Islam ID : 2011-1-55-040 

 
S.M. Ariful Haider ID : 2011-2-55-021  



4  
ACKNOWLEDGEMENTS 

 
 

Many people deserve our thanks for their help in completing this project. We would like to thank 
our department for giving us this chance to do this project. We want to express our thanks and 
deep appreciation to our advisor Dr. Md. Habibur Rahman as he has exhausted all his 
knowledge and time by following up our daily progress and encouraging advices and even by 
sharing on the troubles. We would like to extend our thanks to the laboratory staff of ECE Dept. 
for their fast response and cooperation with us to get some materials we need for our case. We 
have special acknowledgment for our group members for their understanding each other and 
hard working from the beginning up to the end. 
 
Finally, we would like to thank our family and  all persons who were involved with this project 
for their valuable help and professionalism during this project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 



5  
ABSTRACT 

 
In modern days, we must use various high-tech electronic devices and equipments to get our jobs 
done and make the life easier. The purpose of this project is to design a control system that is 
able to control a system device remotely from distant places and monitoring conditions of the 
system web page on the Arduino and advances step by step from there. This project shows how 
to set up an Arduino with Ethernet shield as a web server. The web servers in this project are 
used to serve up web pages that can be accessed from a web browser and allows our hardware to 
be controlled from web browser. Starting from basic, our example for this project is simple. We 
want to access our device by switching ON-OFF LED and monitor analog input data acquisition 
from web server, which are computer or mobile phone and Arduino connected to the same 
network. Also we can control ( ON/OFF ) every electronic and electrical load (operated by 220V 
) of our home like lights, fans, AC, refrigerators, TVs using relays with this system. The system 
has been designed and implemented practically. It is found that the system works perfectly. 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



6  
TABLE OF CONTENTS 

 
Short Contents           Page 
TITLE PAGE           01 
DECLARATION           02 
APPROVAL            03 
ACKNOWLEDGEMENT           04 
ABSTRACT            05 
TABLE OF CONTENTS          06 
LIST OF FIGURE           09 
CHAPTER 
  
 1. INTRODUCTION         10 
  
                        1.1 Physical Computing       10 
  1.2 The Internet of Things       10 
  1.3 Energy         10 
  1.4 Electrical Energy       11 
  1.5 Purpose of this Project       11 
  1.6 Outline of the report       11 
  
 2. AN OVERVIEW OF MICROCONTROLLERS    12 
  2.1 Introduction        12 
  2.2 Microcontroller        12 
  2.3 Advantages of Microcontroller      12 
  2.4 Arduino-UNO        13 
  2.5 Figure of Arduino-UNO       13 
                        2.6 History of Arduino-UNO      14 
                        2.7 Development        14 
                        2.8 Evaluation        15 
             
           3. THEORY BEHIND THE PROJECT      16 
                        3.1 Introduction 
                        3.2 Architecture of Arduino-UNO          16  
 3.2.1 Power       17 
       3.2.2 Memory       17 
       3.2.3 Input and Output        18 
 
 3.2.4 Power LED Indicator     18  
                                      3.2.5 Reset Button19 
                                       3.2.6 TX RX LEDs       19 
                                      3.2.7 Main IC       19 
                                        3.2.8 Voltage Regulator      19 



7  
                                         3.2.9 Technical specs      20 
                                         3.2.9 Schematic Diagram      20 
                        3.3 Getting started with Arduino Software    21 
                                         3.3.1 The Integrated Development Environment (IDE)   21 
                                         3.3.2 IDE Parts       21 
                        3.4 Arduino Ethernet Shield      22 
                                         3.4.1 Architecture of Arduino Ethernet Shield   23 
                                         3.4.2 Description        24 
                                         3.4.3 Connecting the Shield     25 
                                         3.4.4 Network Settings      25 
                                         3.4.5 SD Card       25 
                        3.5 Liquid Crystal Display (LCD)      26 
                                         3.5.1 Features of LCD Display     26 
                        3.6 What is a relay        27 
                                         3.6.1 Parts Required      27 
                                         3.6.2 Circuit Diagram of Relay     27 
        3.6.3 Arduino Connected Relay Module   28 
                                       3.6.4 Table of Connections     28 
   3.7 Wi-Fi          29 
                                        3.7.1 The Wi-Fi Alliance      29 
                  3.7.2 Wi-Fi Support      29 
                                        3.7.3 How it works       30 
                           3.7.4 Wireless Speed & Range     30 
                                        3.8 Wireless Access Points or (WAPs)    31 
  
 4. SYSTEM DESIGN AND ANALYSIS      32 
  4.1 Introduction        32 
  4.2 Hardware Design       32 
      4.2.1 Block Diagram of the control system   32 
                 4.2.2 Equipments Used in this System    33 
      4.2.3 Full Circuit Design      33 
      4.2.4 Connecting the Arduino Ethernet Shield   34 
      4.2.5Connection of Arduino Ethernet Shield with Wi-Fi  34 

access point  
       4.2.6 Connection to Load with Power Source   35 
  4.3 Software Design        37 
      4.3.1 Installing Arduino      37 
      4.3.2 Verifying the Hardware     37 
     4.3.3 Arduino Language      37 
     4.3.4  SD Card Web Server I/O     37 
     4.3.5 Overview of How the Web Server Works   38 
     4.3.6 Source Code       39 



8  
     4.3.7 Flow Chart       40 
 5. IMPLEMANTATION AND RESULT      41 
   5.1 Implementation        41 
                         5.3 Connection without Load      41 
                         5.4 Development of the Whole System with load     42 
 
            6. CONCLUSION         43 
                         6.1 Conclusion        43 
                         6.2 Future Work Scope       43 
 
APPENDIX           44 

         1. Programming Code Arduino Scatch     44 
         2. SD Card WEB page Code       55 

REFERENCES           63 
       
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9  
 
 

 
List of figure      

Figure 2.1:  Arduino-UNO 
Figure 3.1: Arduino-UNO R3 Board 
Figure 3.2: Schematic Diagram 
Figure 3.3: Arduino Ethernet Shield 
Figure 3.4: Architecture of Arduino     Ethernet Shield 
Figure 3.5: LCD Display 
Figure 3.6: Circuit Diagram of Relay 
Figure 3.7: Arduino Connected Reley Module 
Figure 3.8: Wireless Access Points  
Figure 4.1: Block Diagram of the control system 
Figure 4.2: Full Circuit Design  
Figure 4.3: Connection of Arduino Ethernet Shield 
Figure 4.4: Connection of Arduino Ethernet Shield with Wi-Fi access point 
Figure 4.5: Connection to Load with Power Source 
Figure 4.6: Logical Diagram 
Figure 5.1: Connection without load when device in on mode. 
Figure 5.2: Connection without load when device in OFF mode 
Figure 5.3: Connection without load when device in ON mode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



10  
Chapter 1 

 
 

INTRODUCTION  
 
1.1 Physical Computing  

Physical Computing uses electronics to prototype new materials for designers and artists. 
It involves the design of interactive objects that can communicate with humans using 
sensors and actuators controlled by a behavior implemented as software running inside a 
microcontroller (a small computer on a single chip). In the past, using electronics meant 
having to deal with engineers all the time, and building circuits one small component at 
the time; these issues kept creative people from playing around with the medium directly. 
Most of the tools were meant for engineers and required extensive knowledge. In recent 
years, microcontrollers have become cheaper and easier to use, allowing the creation of 
better tools. The progress that we have made with Arduino is to bring these tools one step 
closer to the novice, allowing people to start building stuff after only two or three days of 
a workshop. With Arduino, a designer or artist can get to know the basics of electronics 
and sensors very quickly and can start building prototypes with very little investment. 

 
 
1.2 The Internet of Things 
 

A thing, in the Internet of Things, can be a person with a heart monitor implant, a farm 
animal with a biochip transponder, an automobile that has built-in sensors to alert the 
driver when tire pressure is low  or any other natural or man-made object that can be 
assigned an IP address and provided with the ability to transfer data over a network. So 
far, the Internet of Things has been most closely associated with machine-to-machine 
(M2M) communication in manufacturing and power, oil and gas utilities. Products built 
with M2M communication capabilities are often referred to as being smart.  

 
 
1.3 Energy  

In physics, energy is a property of objects which can be transferred to other objects or 
converted into deferent forms but cannot be created or destroyed. It is difficult to give a 
comprehensive definition of energy because of its many forms, but one common 
definition is that it is the ability of a system to perform work. Energy is also a very 
important issue in our world. Energy is two types (potential energy and kinetic energy). 
World energy consumption refers to the total energy used by all of human civilization. 
Typically measured per year, it involves from every energy source applied towards 
humanity's endeavors across every industrial and technological sector, across every 
country. 

 
 



11  
1.4 Electrical Energy  

Electrical energy is the energy carried by moving electron sin an electric conductor. It 
cannot be seen, but it is one of our most useful forms of energy because it is relatively 
easy to transmit and use. All matter consists of atoms, and every atom contains one or 
more electrons, which are always moving. The movement of these electrons depends on 
how much energy it has. This means every object has potential energy, even though some 
have more than others. When electrons are forced along a path in a conducting substance 
such as a wire, the result is energy called electricity. Electrical generating plants do not 
create energy. They change other forms of energy into electricity. Lightning is one good 
example of electrical energy in nature, so powerful that it is not confined to a wire. 
Thunderclouds build up large amounts of electrical energy. This is called static 
electricity. 

 
 
1.5 Purpose of this Project  

This project shows how to set up an Arduino with Ethernet shield as a web server. The 
web servers in this project are used to serve up web pages that can be accessed from a 
web browser running on any computer and any Wi-Fi connected device connected to the 
same network as the Arduino. Arduino web server pages allow access to the Arduino 
hardware this allows hardware to be controlled (e.g. switching on and off an LED from 
the web page) and monitored (e.g. reading the state of a switch and displaying it on a web 
page). We can control every electronic device (Within 220V and more) of our home like 
Lights, Fan, AC, Refrigerator, TV etc. In this project, we describe how to control and 
designing a Wi-Fi based home appliance control system. In our project, we design a 
system which can turn on and off without using any switch. In home, a big office, a shop 
or in a university class room we can use it. For this project we use Arduino Ethernet 
shield, Arduino UNO, memory card, Wi-Fi router, pc and smart phone. It works after 
confirmation from smart phone or pc. It also used for secured our home or workplace. So 
this control system gives safe secured environment. In short the purpose of the project is 
 To design a smart home appliance control system 
 To construct a smart home controller circuit in the breadboard 
 Test for its functionality 
 Product commercialization 
 To design the control system with low cost components 

 
 
1.6 Outline of the report 
 

Here we describe four chapters on the purpose of this project. First we describe the 
introduction part that contains physical computing, the internet of things, energy, 
electrical energy and purpose of this project.  
 

 



12  
Chapter 2 

 
AN OVERVIEW OF MICROCONTROLLERS 

 
 

2.1 Introduction 
 

Arduino is an open source electronics platform based on easy-to-use hardware and 
software. In this project we use Arduino-UNO board. The Arduino hardware platform 
already has the power and reset circuitry setup as well as circuitry to program and 
communicate with the microcontroller over USB. In addition, the I/O pins of the 
microcontroller are typically already fed out to sockets/headers for easy access. On the 
software side, Arduino provides a number of libraries to make programming the 
microcontroller easier. The simplest of these are functions to control and read the I/O 
pins rather than having to fiddle with the bus/bit masks normally used to interface with 
the At mega I/O. 

 
 
2.2 Microcontroller 
 

A microcontroller is a small computer on a single integrated circuit containing a 
processor core, memory and programmable input/output peripherals. It is highly 
integrated chip that contains all the components comprising a controller. Microcontrollers 
are used in automatically controlled products and devices, such as automobile engine 
control systems, remote controls, office machines, implantable medical devices, 
appliance and other embedded systems. We used here for appliance cases. 

 
 
2.3 Advantages of Microcontroller 
 

 The simplest computer processor is used as the "brain" of the future system. 
 Single purposes and low power consumption. 
 Depending on the taste of the manufacturer, a bit of memory, a few A/D 

converters, 
 input/output lines etc. are added. 
 Low cost and small packaging. 
 Simple software able to control it all and which everyone can easily learn about 

has been developed. 
 
 
 
 

 



13  
2.4 Arduino-UNO  

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use 
Hardware and software. Arduino consists of both a physical programmable circuit board 
and a piece of software, or IDE (Integrated Development Environment) that runs on your 
computer, used to write and upload computer code to the physical board. The Arduino 
platform has become quite popular with people just starting out with electronics, and for 
good reason. Unlike most previous programmable circuit boards, the Arduino does not 
need a separate piece of hardware in order to load new code onto the board – simply use a 
USB cable. Finally, Arduino provides a standard form factor that breaks out the functions 
of the micro-controller into a more accessible package. The Arduino software is free, the 
hardware boards are pretty cheap, and both the software and hardware are easy to learn 
has led to a large community of users who have contributed code and released 
instructions for a huge variety of Arduino-based projects. 
 
 

2.5 Figure of Arduino-UNO 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Figure:  Arduino-UNO 
 



14  
2.6 History of Arduino-UNO 

 
The Arduino is developed in 2005. The Arduino microcontroller was initially created as 
an educational platform for a class project at the Interaction Design Institute Ivrea in 
Milan (Italy) in 2005. It derived from a previous work of the Wiring microcontroller 
designed by Hernando Barragan in 2004. From the beginning, the Arduino board was 
developed to attract artists and designers. The Wiring microcontroller was created by 
Hernando Barragan to be used for parsing data to electronic devices. His aim was that it 
could be used by non-technical people who only had basic experience with using 
computers. He first of all wanted it to be used as a prototyping tool. Since he needed help 
to create an easy software tool to programmed the board he engaged Casey Reas and 
Massimo Banzi as his assistants. Reas created the visual programming language for the 
prototyping tool. 

 
2.7 Development 

 
The computer, commonly defined as a tool for processing, storing, and displaying 
information, arose from a long line of analog devices used for effective counting and 
calculation, ranging from the simple abacus (first invented in Sumeria around 2300 BC), 
to Napierʼs Bones (conceived in 1617, and the precursor to the slide rule), to 
BlaisePascalʼs gear-based mechanical calculator (1645).The development of the 
computer accelerated during the 1940ʼs, spurred on largely by the highly industrialized 
nature of military production in World War II.The 1960ʼs marked a significant 
evolutionary leap for computing, due to the development of solid state computers (such 
as the IBM 1401), which used transistors for processing operations, and magnetic core 
memory for storage. The invention of integrated circuits in 1959 by Jack Kilby, which 
enabled transistors and circuits to be fused onto small chips of semiconducting materials 
(such as silicon), allowed further miniaturization of computer components. Another 
important development during this decade was the advent of high-level computer 
programming languages that were written in symbolic language, making computer code 
somewhat easier to read and learn than previous machine languages. COBOL and 
FORTRAN were the main languages introduced during this period. The microprocessor 
was introduced in 1970. The microprocessor essentially miniaturized all hardware 
components of a computers central processing unit to fit onto a single, tiny integrated 
circuit, now more popularly known as a microchip. The microchip also became the main 
driving component of microcontrollers (such as the Arduino), which generally consist of 
a microchip, memory storage hardware, and input/ output hardware for sensors. The 
1970ʼs and 1980ʻs also saw the development of a new generation of more powerful 
programming languages (such as C, C++, and later Java) for applications in business and 
science. 
 
 
 



15  
2.8 Evoluation 
 

The PIC microcontroller board, introduced in 1985 by General Instruments, became one 
of the most popular tools for electronics enthusiasts (before the Arduino) for several 
reasons. Other popular boards for hobbyists include the BASIC Stamp (Parallax Inc., 
1990), and Wiring both of which share the benefits of simplicity of programming, and a 
resulting ease of rapid-prototyping. The Arduino project grew largely out of the “DIY” 
climate created by the burgeoning popularity of rapid- prototyping boards like PIC. In 
fact, the immediate precursor to the Arduino was a custom made Wiring microcontroller 
created by the artist/ designer Hernando Barragan in 2004 for his. In 2005, the Arduino 
team was formed in Ivrea, Italy, consisting of Barragan, Massimo Banzi, David 
Cuartielles, Dave Mellis, Gianluca Marino, and Nicholas Zambetti. As a result, the 
Arduino incorporated the following characteristic, a programming environment based on 
processing language (a programming language conceived by Ben Fry and Casey Reas, 
also conceived for artists/ designers), the ability to program the board via a standard USB 
connection, and a low price point. The Arduino achieved rapid success even within its 
first two years of existence, selling in a quantity of more than 50,000 boards. By 2009, it 
had spawned over 13 different incarnations, each specialized for different applications. 
Today, the Arduino microcontroller has become one of the most popular prototyping 
platforms in the world, and is a prime example of how hardware and software 
technologies originally created for military, business, and scientific applications can be 
repurposed to serve the needs of individuals creating projects in the realms of new media 
art and design[1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16  
Chapter 3 

 
THEORY BEHIND THE PROJECT 

 
3.1 Introduction 

 
This project includes Arduino Uno broad, Arduino Ethernet Shield, Relay, Wi-Fi Router, 
Ethernet cable, RJ45 connector. We want to connect the Arduino Ethernet Shield to an 
Arduino. We developed the connection by using upper equipments. At first we developed 
a connection without load. Then we developed the circuit with 220V power load.  
  

3.2 Architecture of Arduino-UNO 
  

There are many varieties of Arduino boards that can be used for different purposes. The 
Arduino UNO components are: 
 
 
 

 Figure 3.1: Arduino-UNO R3 Board 
 

 
 



17  
3.2.1 Power 
 

The Arduino/Genuino Uno board can be powered via the USB connection or with an 
external power supply. The power source is selected automatically. External (non-USB) 
power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can 
be connected by plugging a 2.1mm center-positive plug into the board's power jack. 
Leads from a battery can be inserted in the GND and Vin pin headers of the POWER 
connector. The board can operate on an external supply from 6 to 20 volts. If supplied 
with less than 7V, however, the 5V pin may supply less than five volts and the board may 
become unstable. If using more than 12V, the voltage regulator may overheat and 
damage the board. The recommended range is 7 to 12 volts. 
The power pins are as follows: 
 Vin. The input voltage to the Arduino/Genuino board when it's using an external 

power source (as opposed to 5 volts from the USB connection or other regulated 
power source). You can supply voltage through this pin, or, if supplying voltage 
via the power jack, access it through this pin. 

 5V.This pin outputs a regulated 5V from the regulator on the board. The board 
can be supplied with power either from the DC power jack (7 - 12V), the USB 
connector (5V), or the VIN pin of the board (7-12V). Supplying voltage via the 
5V or 3.3V pins bypasses the regulator, and can damage your board. We don't 
advise it. 

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current 
draw is 50 mA. 

 GND. Ground pins. 
 IOREF. This pin on the Arduino/Genuino board provides the voltage reference 

with which the microcontroller operates. A properly configured shield can read 
the IOREF pin voltage and select the appropriate power source or enable voltage 
translators on the outputs to work with the 5V or 3.3V. 
 

 
 
3.2.2 Memory  

The ATmega328 has 32 KB (with 0.5 KB occupied by the boot loader). It also has 2 KB 
of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM 
library). 
 

 



18  
3.2.3 Input and Output 

 
Each of the 14 digital pins on the Uno can be used as an input or output, 
using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. 
Each pin can provide or receive 20 mA as recommended operating condition and has an 
internal pull-up resistor (disconnected by default) of 20-50k ohm. A maximum of 40mA 
is the value that must not be exceeded on any I/O pin to avoid permanent damage to the 
microcontroller. In addition, some pins have specialized functions: 
 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial 

data. These pins are connected to the corresponding pins of the ATmega8U2 
USB-to-TTL Serial chip. 

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt 
on a low value, a rising or falling edge, or a change in value. See the 
attachInterrupt() function for details. 

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() 
function. 

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI 
communication using the SPI library. 

 LED: 13. There is a built-in LED driven by digital pin 13. When the pin is HIGH 
value, the LED is on, when the pin is LOW, it's off. 

 TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the 
Wire library.  

 The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 
bits of resolution (i.e. 1024 different values). By default they measure from 
ground to 5 volts, though is it possible to change the upper end of their range 
using the AREF pin and the analogReference() function.  

 
 
3.2.4 Power LED Indicator 
 

Just beneath and to the right of the word “UNO” on circuit board, there’s a tiny LED next 
to the word ‘ON’. This LED should light up whenever plug Arduino into a power source. 
If this light doesn’t turn on, there’s a good chance something is wrong. 

 
 
 
 
 



19  
3.2.5 Reset Button 

 
The Arduino has a reset button. Pushing it will temporarily connect the reset pin to 
ground and restart any code that is loaded on the Arduino. This can be very useful if code 
doesn’t repeat, but we want to test it multiple times. Unlike the original Nintendo 
however, blowing on the Arduino doesn’t usually fix any problems. 

 
 
3.2.6 TX RX LEDs 

 
TX is short for transmit, RX is short for receive. In our case, there are two places on the 
Arduino UNO where TX and RX appear once by digital pins 0 and 1, and a second time 
next to the TX and RX indicator LEDs. These LEDs will give us some nice visual 
indications whenever Arduino is receiving or transmitting data. 

 
 
3.2.7 Main IC 

 
The black thing with all the metal legs is an IC, or Integrated Circuit. The main IC on the 
Arduino is slightly different from board type to board type, but is usually from the AT 
mega line of IC’s from the ATMEL Company. This can be important, as may need to 
know the IC type before loading up a new program from the Arduino software. This 
information can usually be found in writing on the top side of the IC. 

 
 
3.2.8 Voltage Regulator 

 
The voltage regulator is not actually something interacting with on the Arduino. But it is 
potentially useful to know that it is there and what it’s for. It controls the amount of 
voltage that is let into the Arduino board. It will turn away an extra voltage that might 
harm the circuit. 

  
 
 
 
 
 
 
 
 
 
 
 



20  
3.2.9 Technical specs 
 

Microcontroller` ATmega328 
Operating Voltage 5V 
Input Voltage 
(recommended) 7-12V 
Input Voltage (limits) 6-20V 
Digital I/O Pins 14 (of which 6 provide PWM 

output) 
Analog Input Pins 6 
DC Current per I/O Pin 40 Ma 
DC Current for 3.3V Pin 50 Ma 
Flash Memory 32 KB (ATmega328) of which 

0.5 KB used by bootloader 
SRAM 2 KB (ATmega328) 
EEPROM 1 KB (ATmega328) 
Clock Speed 16 MHz 

 
 
3.2.9 Schematic Diagram 

 
 
 

 Figure 3.2: Schematic Diagram 



21  
3.3 Getting started with Arduino Software 
 

First download and install the Arduino for Mac, Linux or Windows from arduino.cc. 
Windows users also need to install a driver. Connect your board via USB, launch the 
Arduino application and select Arduino-Uno from the tools to board menu. Open the 
sketch File. 
Examples: 01. Basics: Blink. Click the toolbar button to upload it to your board. 

 
 
3.3.1 The Integrated Development Environment (IDE) 

 
Every microcontroller needs software to be programmed. The Arduino board is not a case 
apart. It has its own integrated development environment (IDE).It is free and everyone 
can download it from its official website using either the Windows, Mac OS X or Linux 
platform. That allows Arduino Board to gain more users and it also helps it to grow. 
 
 

3.3.2 IDE Parts 
 

 Compile: Before program “code” can be sent to the board, it needs to be 
converted into instructions that the board understands. This process is called 
Compiling. 

 Stop: This stops the compilation process.  
 Create new Sketch: This opens a new window to create news ketch. 
 Open Existing Sketch: This loads a sketch from a file on our computer. 
 Save Sketch: This saves the changes to the sketch. 
 Upload to Board: This compiles and then transmits over the USB cable to our 

board. 
 Serial Monitor: Until this point when our programs (sketches) didn’t work, we 

just pulled out our hair and tried harder. 
 Tab Button: This lets you create multiple files in your sketch. This is for more 

advanced programming than we will do in this class. 
 Sketch Editor: This is where write or edit sketches 
 Text Console: This shows you what the IDE is currently doing and is also where 

error messages display if make a mistake in typing program. 
 Line Number: This shows what line number your cursor is on. 

 
 
 
 
 
 
 



22  
 
3.4 Arduino Ethernet Shield 
 

The Arduino Ethernet Shield connects your Arduino to the internet in mere minutes. Just 
plug this module onto your Arduino board, connect it to your network with an RJ45 cable 
(not included) and follow a few simple instructions to start controlling your world 
through the internet. As always with Arduino, every element of the platform – hardware, 
software and documentation – is freely available and open-source. This means you can 
learn exactly how it's made and use its design as the starting point for your own circuits. 
Hundreds of thousands of Arduino boards are already fueling people’s creativity all over 
the world, everyday. 

 Requires an Arduino board (not included) 
 Operating voltage 5V (supplied from the Arduino Board) 
 Ethernet Controller: W5100 with internal 16K buffer 
 Connection speed: 10/100Mb 
 Connection with Arduino on SPI port  

 
 

  
Figure 3.3: Arduino Ethernet Shield 

 
 



23  
3.4.1 Architecture of Arduino Ethernet Shield 
 

 

  

  
 

Figure 3.4: Architecture of Arduino Ethernet Shield  



24  
3.4.2 Description 
 

The Arduino Ethernet Shield allows an Arduino board to connect to the internet. It is based 
on the Wiznet W5100ethernet chip (datasheet). The Wiznet W5100 provides a network (IP) 
stack capable of both TCP and UDP. It supports up to four simultaneous socket connections. 
Use the Ethernet library to write sketches which connect to the internet using the shield. The 
ethernet shield connects to an Arduino board using long wire-wrap headers which extend 
through the shield. This keeps the pin layout intact and allows another shield to be stacked on 
top. The most recent revision of the board exposes the 1.0 pinout on rev 3 of the Arduino 
UNO board. The Ethernet Shield has a standard RJ-45 connection, with an integrated line 
transformer and Power over Ethernet enabled. There is an onboard micro-SD card slot, which 
can be used to store files for serving over the network. It is compatible with the Arduino Uno 
and Mega (using the Ethernet library). The onboard microSD card reader is accessible 
through the SD Library. When working with this library, SS is on Pin 4. The original revision 
of the shield contained a full-size SD card slot; this is not supported. The shield also includes 
a reset controller, to ensure that the W5100 Ethernet module is properly reset on power-up. 
Previous revisions of the shield were not compatible with the Mega and need to be manually 
reset after power-up. The current shield has a Power over Ethernet (PoE) module designed to 
extract power from a conventional twisted pair Category 5 Ethernet cable: 

 
 IEEE802.3af compliant 
 Low output ripple and noise (100mVpp) 
 Input voltage range 36V to 57V 
 Overload and short-circuit protection 
 9V Output 

 High efficiency DC/DC converter: typ 75% @ 50% load 
 1500V isolation (input to output) 

 
Arduino communicates with both the W5100 and SD card using the SPI bus (through the 
ICSP header). This is on digital pins 10, 11, 12, and 13 on the Uno and pins 50, 51, and 52 on 
the Mega. On both boards, pin 10 is used to select the W5100 and pin 4 for the SD card. 
These pins cannot be used for general I/O. On the Mega, the hardware SS pin, 53, is not used 
to select either the W5100 or the SD card, but it must be kept as an output or the SPI 
interface won't work. Note that because the W5100 and SD card share the SPI bus, only one 
can be active at a time. If you are using both peripherals in your program, this should be 
taken care of by the corresponding libraries. If you're not using one of the peripherals in your 
program, however, you'll need to explicitly deselect it. To do this with the SD card, set pin 4 
as an output and write a high to it. For the W5100, set digital pin 10 as a high output. The 
shield provides a standard RJ45 ethernet jack. The reset button on the shield resets both the 
W5100 and the Arduino board. The shield contains a number of informational LEDs: 



25  
 PWR: indicates that the board and shield are powered 
 LINK: indicates the presence of a network link and flashes when the shield transmits or 

receives data 
 FULLD: indicates that the network connection is full duplex 
 100M: indicates the presence of a 100 Mb/s network connection (as opposed to 10 Mb/s) 
 RX: flashes when the shield receives data 
 TX: flashes when the shield sends data 
 COLL: flashes when network collisions are detected 

 
3.4.3 Connecting the Shield 

 
To use the shield, mount it on top of an Arduino board (e.g. the Uno). To upload sketches 
to the board, connect it to your computer with a USB cable as you normally would. Once 
the sketch has been uploaded, you can disconnect the board from your computer and 
power it with an external power supply.Connect the shield to your computer or a network 
hub or router using a standard ethernet cable (CAT5 or CAT6 withRJ45 connectors). 
Connecting to a computer may require the use of a cross-over cable (although many 
computers, including all recent Macs can do the cross-over internally). 

 
 
3.4.4 Network Settings 
 

The shield must be assigned a MAC address and a fixed IP address using 
the Ethernet.begin() function. A MAC address is a globally unique identifier for a 
particular device. Current Ethernet shields come with a sticker indicating the MAC 
address you should use with them. For older shields without a dedicated MAC address, 
inventing a random one should work, but don't use the same one for multiple boards. 
Valid IP addresses depend on the configuration of your network. It is possible to use 
DHCP to dynamically assign an IP to the shield. Optionally, you can also specify a 
network gateway and subnet. 
 

3.4.5 SD Card 
 
The latest revision of the Ethernet Shield includes a micro-SD card slot, which can be 
interfaced with using the SD library. 

 
 
 



26  
3.5 Liquid Crystal Display (LCD) 
 LCD (Liquid Crystal Display) screen is an electronic display module and find a wide 

range of applications. A 16x2 LCD display is very basic module and is very commonly 
used in various devices and circuits. These modules are preferred over seven segments 
and other multi segment LEDs. The reasons being: LCDs are economical; easily 
programmable; have no limitation of displaying special & even custom characters (unlike 
in seven segments), animations and so on. A 16x2 LCD means it can display 16 
characters per line and there are 2 such lines. In this LCD each character is displayed in 
5x7 pixel matrix. This LCD has two registers, namely, Command and Data. The 
command register stores the command instructions given to the LCD. A command is an 
instruction given to LCD to do a predefined task like initializing it, clearing its screen, 
setting the cursor position, controlling display etc. The data register stores the data to be 
displayed on the LCD. The data is the ASCII value of the character to be displayed on the 
LCD 
 
 

3.5.1 Features of LCD Display 
 

   5 x 8 dots with cursor 
 Built-in controller (KS 0066 or Equivalent) 
 + 5V power supply (Also available for + 3V) 
 1/16 duty cycle 
 B/L to be driven by pin 1, pin 2 or pin 15, pin 16 or A.K (LED) 
 N.V. optional for + 3V power supply 

 
 

Figure 3.5: LCD Display 



27  
3.6 What is a relay 

A Relay is an electrically operated switch. Many relays use an electromagnet to 
mechanically operate the switch and provide electrical isolation between two circuits. In 
this project there is no real need to isolate one circuit from the other, but we will use an 
Arduino UNO to control the relay. We will develop a simple circuit to demonstrate and 
distinguish between the NO (Normally open) and NC (Normally closed) terminals of the 
relay. We will then use the information gained in this tutorial to make a much more 
exciting circuit. But we have to start somewhere. So let's get on with it. 

3.6.1 Parts Required 
 Freetronics Eleven or (Arduino UNO compatible board) 
 4 Channel Relay Module 
 2x LEDs 
 2x 330 ohm resistors 
 Jumper Wires (male to male) 
 Jumper Wires (female to male) 

 
3.6.3 Circuit Diagram of Relay 
 

  
 

 
Figure 3.6: Circuit Diagram of Relay 

 
 



 
 
3.6.2 Arduino Connected Reley
 

Figure 3.7: 
 
3.6.4 Table of Connections 
 

 

Arduino Connected Reley Module 

  
3.7: Arduino Connected Reley Module 

 

28 

 



29  
 
3.7  Wi-Fi  

 
Wi-Fi is the name of a popular wireless networking technology that uses radio waves to 
provide wireless high-speed Internet and network connections. A common misconception 
is that the term Wi-Fi is short for "wireless fidelity," however this is not the case. Wi-Fi is 
simply a trademarked phrase that means IEEE 802.11x. 

 
3.7.1 The Wi-Fi Alliance 

 
The Wi-Fi Alliance, the organization that owns the Wi-Fi registered trademark term 
specifically defines Wi-Fi as any "wireless local area network (WLAN) products that are 
based on the Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards." 
Initially, Wi-Fi was used in place of only the 2.4GHz 802.11b standard, however the Wi-
Fi Alliance has expanded the generic use of the Wi-Fi term to include any type of 
network or WLAN product based on any of the 802.11 standards, 
including 802.11b, 802.11a, dual-band, and so on, in an attempt to stop confusion about 
wireless LAN interoperability. 

 
 
3.7.2 Wi-Fi Support 

 
Wi-Fi  is supported by many applications and devices including video game consoles, 
home networks, PDAs, mobile phones, major operating systems, and other types 
of consumer electronics.  Any products that are tested and approved as "Wi-Fi Certified" 
(a registered trademark) by the Wi-Fi Alliance are certified as interoperable with each 
other, even if they are from different manufacturers. For example, a user with a Wi-Fi 
Certified product can use any brand of access point with any other brand of client 
hardware that also is also "Wi-Fi Certified". Products that pass this certification are 
required to carry an identifying seal on their packaging that states "Wi-Fi Certified" and 
indicates the radio frequency band used (2.5GHz for 802.11b,  802.11g, or 802.11n, and 
5GHz for802.11a). 

 
  
 
 
 



30  
 
3.7.3 How it works 
 

A wireless network or Wireless Local Area Network (WLAN) serves the same purpose 
as a wired one — to link a group of computers. Because "wireless" doesn't require costly 
wiring, the main benefit is that it's generally easier, faster and cheaper to set up. By 
comparison, creating a network by pulling wires throughout the walls and ceilings of an 
office can be labor-intensive and thus expensive. But even when you have a wired 
network already in place, a wireless network can be a cost-effective way to expand or 
augment it. In fact, there's really no such thing as a purely wireless network, because 
most link back to a wired network at some point. The Basics Wireless networks operate 
using radio frequency (RF) technology, a frequency within the electromagnetic spectrum 
associated with radio wave propagation. When an RF current is supplied to an antenna, 
an electromagnetic field is created that then is able to propagate through space. The 
cornerstone of a wireless network is a device known as an access point (AP). The primary 
job of an access point is to broadcast a wireless signal that computers can detect and 
"tune" into. Since wireless networks are usually connected to wired ones, an access point 
also often serves as a link to the resources available on the a wired network, such as an 
Internet connection. In order to connect to an access point and join a wireless network, 
computers must be equipped with wireless network adapters. These are often built right 
into the computer, but if not, just about any computer or notebook can be made wireless-
capable through the use of an add-on adapter plugged into an empty expansion 
slot, USB port, or in the case of notebooks, a PC Card slot. 

 
 
3.7.4 Wireless Speed & Range 
 

When you buy a piece of wireless network hardware, it will often quote performance 
figures (i.e., how fast it can transmit data) based on the type of wireless networking 
standard it uses, plus any added technological enhancements.  In truth, these performance 
figures are almost always wildly optimistic. While the official speeds of 
 802.11b, 802.11g and 802.11n networks are 11, 54, and 270 megabits per second (Mbps) 
respectively, these figures represent a scenario that simply not attainable in the real 
world. As a general rule, you should assume that in a best-case scenario you will get 
roughly one-third of the advertised performance. It's also worth noting that a wireless 
network is by definition a shared network, so the more computers you have connected to 
a wireless access point the less data each will be able to send and receive. Just as a 
wireless network's speed can vary greatly, so too can the range. For example, 802.11b 
and g officially work over a distance of up to 328 feet indoors or 1,312 feet outdoors, but 
the key term there is "up to". Chances are you won't see anywhere close to those 



31  
numbers. As you might expect, the closer you are to an access point, the stronger the 
signal and the faster the connection speed. The range and speed you get out of wireless 
network will also depend on the kind of environment in which it operates. And that 
brings us to the subject of interference. 

 
 
3.8 Wireless Access Points or ( WAPs ) 
 

Wireless access points (APs or WAPs) are special-purpose communication devices on 
wireless local area networks (WLANs). Access points act as a central transmitter and 
receiver of wireless radio signals. Mainstream wireless APs support Wi-Fi and are most 
commonly used to support public Internet hotspots and other business networks where 
larger buildings and spaces need wireless coverage. Access points are small hardware 
devices closely resembling home broadband routers. (Home routers actually integrate an 
access point into the rest of the device.) AP hardware consists of radio transceivers, 
antennas and device firmware. Access points enable so-called Wi-Fi infrastructure 
mode networking. Although Wi-Fi connections do not technically require the use of 
access points, APs enable Wi-Fi networks to scale to larger distances and numbers of 
clients. Modern access points support up to 255 clients (while very old ones supported 
only about 20). APs also provide bridging capability that enables a Wi-Fi network to 
connect to other wired networks. 

 

  
Figure 3.8: 8 Wireless Access Points  



32  
Chapter 4 

 
SYSTEM DESIGN AND ANALYSIS 

 
 
 
4.1 Introduction 
 

In this project helps those people who interested to build something with Arduino. To 
Design a project include into two parts, one is hardware design and another part is 
software design. We use Arduino Ethernet Shield, Relay module for the hardware design 
and we connected these components with microcontroller. Arduino software is 
downloaded from www.arduino.cc and C/C++ programmable language is used. Many 
examples are given in the ardiono.cc and this software is easy to usage. 

 
 
4.2 Hardware Design 
 

The whole system design is divided into two parts to design a smart home appliance 
control system. One is the design the smart system in the breadboard and controls the 
designed system. Another part is the display part design to count the value in smart 
system. Finally, the smart home appliance control system is formed a complete integrated 
system. In this project Arduino development board is more efficient. 

 
 
 
4.2.1 Block Diagram of the control system 
 
 

 
 
 
 
 
 
 
 

Figure 4.1: Block Diagram of the control system 
 

 
 
 
 

Mobile Phone  
or 
PC with a WEB 
Browser and  
Wi-Fi enable  
  

Wi-Fi access 
point that 
connected to 
the Ethernet 
Shield 

Ethernet Shield 
and Arduino 
UNO R3 Board 

Relay Module 
That connected 
to the both 
Arduino UNO 
and AC load  

AC Load  
Light Bulb, 
Switch, Fan etc 



33  
 
4.2.2 Equipments Used in this System 

 
 To design the project we use following component: 
 One Arduino Uno Board. 
 One bread board. 
 One Arduino Ethernet Shield. 
 One TP-link Wireless Access point.  
 RJ-45 Connector. 
 UTP Cable. 
 FourLED. 
 Four Relay & 12V power supply. 
 1k & 2k Resistance. 
 One table fan. 
 Three 100W bulb light. 

 
 
4.2.3 Full Circuit Design 

 
Here we have shown connection that we have done in this project. 
 

  
Figure 4.2: Full Circuit Design 

 



34  
4.2.4 Connecting the Arduino Ethernet Shield 

 
Setting it up is as simple as plugging the header pins from the shield into your Arduino. 

 

  
Figure 4.3: Connection of Arduino Ethernet Shield 

 
4.2.5 Connection of Arduino Ethernet Shield with Wi-Fi access point  
 

We also developed a connection of Arduino Ethernet Shield with Wi-Fi access point 
using RJ-45 connector and UTP cable. Plug the Arduino into computer's USB port and 
the Ethernet shield into Wi-Fi access point like the figure. 

 Figure 4.4: Connection of Arduino Ethernet Shield with Wi-Fi access point 



35  
4.2.6 Connection to Load with Power Source 

 
We use 12V Relay for connect a light or electricity supply of a room. The main operation 
of a relay comes in places where only a low-power signal can be used to control a circuit. 
It is also used in places where only one signal can be used to control a lot of circuits. The 
high end applications of relays require high power to be driven by electric motors. 

 

  
Figure 4.5: Connection to Load with Power Source 

 



36  
Relays are called contactors. We connect Arduino pin 13 with transistor’s base. The 
emitter is connected to ground and the collector is connected to relay and diode. The 
relay and diode are connected parallels. The two terminals of a relay operate as a switch. 
When the contacts are in contact then the current flows from Terminal to Terminal. There 
are two types of contacts, the NO and the NC. NO stands for Normal Open contact, while 
NC stands for Normal Closed contact. The Normal Open is a contact like the one showed 
in the previous illustration. When the contacts are still, then no current flows through it 
(because it is an OPEN circuit). On the other hand, a Normal Closed contact allows the 
current to flow when the contact is still. The NC contact is turned upside-down compared 
to the NO contact. This way, both contacts (NO and NC) will change state if a force is 
applied to the left metal heading from UP to DOWN. The device that forces the terminal 
to move is actually an electromagnet. A coil is placed right under the contact. When 
current is flown through this coil, magnetism is created. This magnetism can overcome 
the force of the spring and can pull the contact towards it, thus it changes its position. 
And due to the fact that the contact is usually a small piece of metal not capable to be 
pulled by the electromagnet, another piece of metal is attached to the common. The other 
side of relay is connected to bulb or electricity supply of a room. We need 12V power 
supply for relay. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



37  
4.3 Software Design 
 

Software design is divided into two parts. First we write the Arduino program in Arduino 
software. Then we compile it to the Arduino hardware. This Arduino command is control 
the Arduino hardware and other circuit connection. For making connection between 
Arduino and Wi-Fi enable device we need to install Arduino SD card that host a web 
page that displays to the browser.  

 
 
4.3.1 Installing Arduino 
 

Arduino runs on Windows. Go to the Arduino software web site at 
http://arduino.cc/en/Main/Software and download the version of the software compatible 
with our system. We use Arduino 1.0.5 version. 

 
 
4.3.2 Verifying the Hardware 
 

Now that we have the Arduino IDE software installed, let’s connect the computer to the 
Arduino board, load a small program, and verify that all components are working 
together. First, need to connect the USB cable to our mc board and then plug the other 
end of the USB cable into our computer. 
 

 
4.3.3 Arduino Language 
 

The Arduino language is implemented in C/C++ and based in Wiring. When we write an 
Arduino sketch, we are implicitly making use of the Wiring library, which is included 
with the Arduino IDE. This allows us to make run able programs by using only two 
functions: setup () and loop (). As mentioned, the Wiring language is inspired by 
Processing, and the Arduino language structure is inherited from the Processing 
language, where the equivalent functions are called setup (). We need to include both 
functions in every Arduino program, even if we don’t need one of them. Let’s analyze the 
structure of a simple Arduino sketch using again the Blink example. 

 
 
4.3.4  SD Card Web Server I/O 

In this project HTML, JavaScript, CSS, HTTP, Ajax and the SD card are used to make a 
web page that displays Arduino analog and digital inputs and allows digital outputs to be 
controlled. The Arduino web server hosts a web page that displays four analog input 



38  
values and the state of three switches. The web page allows four LEDs to be controlled – 
two LEDs are controlled using checkboxes and two LEDs are controlled using buttons. 
When more than one computer (web browser) is connected to the Arduino web server, 
then outputs (LEDs) switched on using one computer will be updated on the other 
computer – i.e. when a checkbox is clicked to switch an LED on from one computer, the 
checkbox will also be checked on the other computer automatically. 

 
 
4.3.5 Overview of How the Web Server Works 
 

After a web browser has requested and loaded the web page from the Arduino web 
server, the JavaScript in the web page will send an Ajax request for data from the 
Arduino every second. 
The web page that the Arduino web server hosts is shown here: 

The Arduino will respond to every Ajax request by sending an XML file back to the web 
browser. The XML file contains the values from the four analog inputs of the Arduino 
(A2 to A5), the state of three pins (switches on pins 2, 3 and 5) and the state of the four 
LEDs. 

 



39  
XML File Sent by Arduino 
When an LED is switched on from the web page by checking a checkbox, the JavaScript 
will send the state of the checkbox (send an instruction to switch the LED on) with the 
next Ajax request. The same will occur if the LED is switched off or if one of the buttons 
is used to switch an LED on or off. 

4.3.6 Source Code 
 

The source code for both the Arduino sketch and web page are a bit big to include on this 
page. It will show in Appendix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



40  
4.3.7 Flow Chart 

We have a logical diagram for this project. Here android mobile phone works as a input 
signal which start from beginning part. We have got output from electronic devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Data 
avialible 

from  Wi-Fi 

Begin 

Initialize all variable of 
the ports 

Set mode of opreration of the 
ports 

Main 
Loop 

Read data from Wi-Fi 

Change state of light 
acording to the commend 

Figure 4.6: Logical Diagram 



41  
Chapter 5 

 
IMPLEMANTATION AND RESULT 

 
5.1 Implementation 
 

All the parts are connected as circuit design. Then we upload the programming code in 
the Arduino and we get positive result. It works properly according to our design 

 
5.3 Connection without Load 

 
After connecting the whole system we think about our main project. For testing of the 
circuit connection we used a LED with 1k resistance. We install a sufficient program for 
light ON/OFF. At first we tried to give connection without load for safety purposes. To 
build the circuit, connect one end of the resistor to Arduino pin 13. Connect the long leg 
of the LED (the positive leg, called the anode) to the other end of the resistor. Connect 
the short leg of the LED (the negative leg, called the cathode) to the Arduino GND. Here 
we represent the photo of this connection. 

 
 
 

  
Figure 5.1: Connection without load when device in on mode. 



42  
5.4 Development of the Whole System with load 

 
In this stage we developed the main connection of this project. We said as last part about 
without load connection of LED, now we discuss the load connection with fan, lights, 
AC, refrigerator etc. Here for  AC load we use Arduino Relay Module. We also use some 
sensor for read the analog After all successful connection we will get output by 
controlling every device. We can control fan and  lights by using Wi-Fi. Here we 
represent the photo of this connection. 
 

  
    Figure 5.2: Connection with load when device in OFF mode 

 

  
          Figure 5.3: Connection with load when device in ON mode 



43  
Chapter 6 

 
CONCLUSION 

 
 
6.1 Conclusion 

 
The Home Appliance Control System Using Wi-Fi has been designed and developed for 
making our life more easy and secured. We use 5V from Arduino board and use 12V DC 
power supply for relay connection. We use the Arduino Ethernet shield and Wi-Fi 
technology. Finally, we have designed and developed the whole control system and tested 
using Mobile Phone. We fix all the problems encountered during the design and testing 
of the system. Finally, we successfully achieved our goals. In this study, the application 
of microcontroller with improved algorithm of extended specifications has increased the 
use of android mobile phone and improves the controlling the home appliances. The 
developed home appliance control system is efficient and the production cost is low. So, 
our Home Appliance Control System Using Wi-Fi is suitable for commercial use. 
 

  
 

6.2 Future Work Scope 
 
We have used a small subset of each of these technologies. This project gives us an 
opportunity to do a big project in future. The applications stated above are some demo 
applications that are absolutely possible with its future development. Initially for the 
limitation of time and required fund we were able to develop just a Home Appliance 
Control System.  



44  
APPENDIX 

 
1. Programming Code Arduino Scatch 
 
#include <SPI.h> 
#include <Ethernet.h> 
#include <SD.h> 
// size of buffer used to capture HTTP requests 
#define REQ_BUF_SZ   60 
 
// MAC address from Ethernet shield sticker under board 
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; 
IPAddress ip(192, 168, 0, 115); // IP address, may need to change depending 
on network 
EthernetServer server(80);  // create a server at port 80 
File webFile;               // the web page file on the SD card 
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as 
null terminated string 
char req_index = 0;              // index into HTTP_req buffer 
boolean LED_state[4] = {0}; // stores the states of the LEDs 
 
void setup() 
{ 
    // disable Ethernet chip 
    pinMode(10, OUTPUT); 
    digitalWrite(10, HIGH); 



45  
     
    Serial.begin(9600);       // for debugging 
     
    // initialize SD card 
    Serial.println("Initializing SD card..."); 
    if (!SD.begin(4)) { 
        Serial.println("ERROR - SD card initialization failed!"); 
        return;    // init failed 
    } 
    Serial.println("SUCCESS - SD card initialized."); 
    // check for index.htm file 
    if (!SD.exists("index.htm")) { 
        Serial.println("ERROR - Can't find index.htm file!"); 
        return;  // can't find index file 
    } 
    Serial.println("SUCCESS - Found index.htm file."); 
    // switches on pins 2, 3 and 5 
    pinMode(2, INPUT); 
    pinMode(3, INPUT); 
    pinMode(5, INPUT); 
    // LEDs 
    pinMode(6, OUTPUT); 
    pinMode(7, OUTPUT); 
    pinMode(8, OUTPUT); 
    pinMode(9, OUTPUT); 



46  
     
    Ethernet.begin(mac, ip);  // initialize Ethernet device 
    server.begin();           // start to listen for clients 
} 
 
void loop() 
{ 
    EthernetClient client = server.available();  // try to get client 
 
    if (client) {  // got client? 
        boolean currentLineIsBlank = true; 
        while (client.connected()) { 
            if (client.available()) {   // client data available to read 
                char c = client.read(); // read 1 byte (character) from client 
                // limit the size of the stored received HTTP request 
                // buffer first part of HTTP request in HTTP_req array (string) 
                // leave last element in array as 0 to null terminate string 
(REQ_BUF_SZ - 1) 
                if (req_index < (REQ_BUF_SZ - 1)) { 
                    HTTP_req[req_index] = c;          // save HTTP request character 
                    req_index++; 
                } 
                // last line of client request is blank and ends with \n 
                // respond to client only after last line received 
                if (c == '\n' && currentLineIsBlank) { 
                    // send a standard http response header 



47  
                    client.println("HTTP/1.1 200 OK"); 
                    // remainder of header follows below, depending on if 
                    // web page or XML page is requested 
                    // Ajax request - send XML file 
                    if (StrContains(HTTP_req, "ajax_inputs")) { 
                        // send rest of HTTP header 
                        client.println("Content-Type: text/xml"); 
                        client.println("Connection: keep-alive"); 
                        client.println(); 
                        SetLEDs(); 
                        // send XML file containing input states 
                        XML_response(client); 
                    } 
                    else {  // web page request 
                        // send rest of HTTP header 
                        client.println("Content-Type: text/html"); 
                        client.println("Connection: keep-alive"); 
                        client.println(); 
                        // send web page 
                        webFile = SD.open("index.htm");        // open web page file 
                        if (webFile) { 
                            while(webFile.available()) { 
                                client.write(webFile.read()); // send web page to client 
                            } 
                            webFile.close(); 



48  
                        } 
                    } 
                    // display received HTTP request on serial port 
                    Serial.print(HTTP_req); 
                    // reset buffer index and all buffer elements to 0 
                    req_index = 0; 
                    StrClear(HTTP_req, REQ_BUF_SZ); 
                    break; 
                } 
                // every line of text received from the client ends with \r\n 
                if (c == '\n') { 
                    // last character on line of received text 
                    // starting new line with next character read 
                    currentLineIsBlank = true; 
                }  
                else if (c != '\r') { 
                    // a text character was received from client 
                    currentLineIsBlank = false; 
                } 
            } // end if (client.available()) 
        } // end while (client.connected()) 
        delay(1);      // give the web browser time to receive the data 
        client.stop(); // close the connection 
    } // end if (client) 
} 



49  
 
// checks if received HTTP request is switching on/off LEDs 
// also saves the state of the LEDs 
void SetLEDs(void) 
{ 
    // LED 1 (pin 6) 
    if (StrContains(HTTP_req, "LED1=1")) { 
        LED_state[0] = 1;  // save LED state 
        digitalWrite(6, HIGH); 
    } 
    else if (StrContains(HTTP_req, "LED1=0")) { 
        LED_state[0] = 0;  // save LED state 
        digitalWrite(6, LOW); 
    } 
    // LED 2 (pin 7) 
    if (StrContains(HTTP_req, "LED2=1")) { 
        LED_state[1] = 1;  // save LED state 
        digitalWrite(7, HIGH); 
    } 
    else if (StrContains(HTTP_req, "LED2=0")) { 
        LED_state[1] = 0;  // save LED state 
        digitalWrite(7, LOW); 
    } 
    // LED 3 (pin 8) 
    if (StrContains(HTTP_req, "LED3=1")) { 



50  
        LED_state[2] = 1;  // save LED state 
        digitalWrite(8, HIGH); 
    } 
    else if (StrContains(HTTP_req, "LED3=0")) { 
        LED_state[2] = 0;  // save LED state 
        digitalWrite(8, LOW); 
    } 
    // LED 4 (pin 9) 
    if (StrContains(HTTP_req, "LED4=1")) { 
        LED_state[3] = 1;  // save LED state 
        digitalWrite(9, HIGH); 
    } 
    else if (StrContains(HTTP_req, "LED4=0")) { 
        LED_state[3] = 0;  // save LED state 
        digitalWrite(9, LOW); 
    } 
} 
 
// send the XML file with analog values, switch status 
//  and LED status 
void XML_response(EthernetClient cl) 
{ 
    int analog_val;            // stores value read from analog inputs 
    int count;                 // used by 'for' loops 
    int sw_arr[] = {2, 3, 5};  // pins interfaced to switches 



51  
     
    cl.print("<?xml version = \"1.0\" ?>"); 
    cl.print("<inputs>"); 
    // read analog inputs 
    for (count = 2; count <= 5; count++) { // A2 to A5 
        analog_val = analogRead(count); 
        cl.print("<analog>"); 
        cl.print(analog_val); 
        cl.println("</analog>"); 
    } 
    // read switches 
    for (count = 0; count < 3; count++) { 
        cl.print("<switch>"); 
        if (digitalRead(sw_arr[count])) { 
            cl.print("ON"); 
        } 
        else { 
            cl.print("OFF"); 
        } 
        cl.println("</switch>"); 
    } 
    // checkbox LED states 
    // LED1 
    cl.print("<LED>"); 
    if (LED_state[0]) { 



52  
        cl.print("checked"); 
    } 
    else { 
        cl.print("unchecked"); 
    } 
    cl.println("</LED>"); 
    // LED2 
    cl.print("<LED>"); 
    if (LED_state[1]) { 
        cl.print("checked"); 
    } 
    else { 
        cl.print("unchecked"); 
    } 
     cl.println("</LED>"); 
    // button LED states 
    // LED3 
    cl.print("<LED>"); 
    if (LED_state[2]) { 
        cl.print("on"); 
    } 
    else { 
        cl.print("off"); 
    } 
    cl.println("</LED>"); 



53  
    // LED4 
    cl.print("<LED>"); 
    if (LED_state[3]) { 
        cl.print("on"); 
    } 
    else { 
        cl.print("off"); 
    } 
    cl.println("</LED>"); 
     
    cl.print("</inputs>"); 
} 
 
// sets every element of str to 0 (clears array) 
void StrClear(char *str, char length) 
{ 
    for (int i = 0; i < length; i++) { 
        str[i] = 0; 
    } 
} 
 
// searches for the string sfind in the string str 
// returns 1 if string found 
// returns 0 if string not found 
char StrContains(char *str, char *sfind) 



54  
{ 
    char found = 0; 
    char index = 0; 
    char len; 
 
    len = strlen(str); 
     
    if (strlen(sfind) > len) { 
        return 0; 
    } 
    while (index < len) { 
        if (str[index] == sfind[found]) { 
            found++; 
            if (strlen(sfind) == found) { 
                return 1; 
            } 
        } 
        else { 
            found = 0; 
        } 
        index++; 
    } 
return 0; 
} 
 



55  
2. SD Card WEB page Code 
 
<!DOCTYPE html> 
<html> 
    <head> 
        <title>Arduino Ajax I/O</title> 
        <script> 
  strLED1 = ""; 
  strLED2 = ""; 
  strLED3 = ""; 
  strLED4 = ""; 
  var LED3_state = 0; 
  var LED4_state = 0; 
  function GetArduinoIO() 
  { 
   nocache = "&nocache=" + Math.random() * 1000000; 
   var request = new XMLHttpRequest(); 
   request.onreadystatechange = function() 
   { 
    if (this.readyState == 4) { 
     if (this.status == 200) { 
      if (this.responseXML != null) { 
       // XML file received - contains 
analog values, switch values and LED states 
       var count; 
       // get analog inputs 
       var num_an = 
this.responseXML.getElementsByTagName('analog').length; 



56  
       for (count = 0; count < num_an; 
count++) { 
       
 document.getElementsByClassName("analog")[count].innerHTML = 
        
 this.responseXML.getElementsByTagName('analog')[count].childNodes[0].node
Value; 
       } 
       // get switch inputs 
       var num_an = 
this.responseXML.getElementsByTagName('switch').length; 
       for (count = 0; count < num_an; 
count++) { 
       
 document.getElementsByClassName("switches")[count].innerHTML = 
        
 this.responseXML.getElementsByTagName('switch')[count].childNodes[0].node
Value; 
       } 
       // LED 1 
       if 
(this.responseXML.getElementsByTagName('LED')[0].childNodes[0].nodeValue === 
"checked") { 
       
 document.LED_form.LED1.checked = true; 
       } 
       else { 
       
 document.LED_form.LED1.checked = false; 
       } 
       // LED 2 



57  
       if 
(this.responseXML.getElementsByTagName('LED')[1].childNodes[0].nodeValue === 
"checked") { 
       
 document.LED_form.LED2.checked = true; 
       } 
       else { 
       
 document.LED_form.LED2.checked = false; 
       } 
       // LED 3 
       if 
(this.responseXML.getElementsByTagName('LED')[2].childNodes[0].nodeValue === 
"on") { 
       
 document.getElementById("LED3").innerHTML = "LED 3 is ON (D8)"; 
        LED3_state = 1; 
       } 
       else { 
       
 document.getElementById("LED3").innerHTML = "LED 3 is OFF (D8)"; 
        LED3_state = 0; 
       } 
       // LED 4 
       if 
(this.responseXML.getElementsByTagName('LED')[3].childNodes[0].nodeValue === 
"on") { 
       
 document.getElementById("LED4").innerHTML = "LED 4 is ON (D9)"; 
        LED4_state = 1; 
       } 
       else { 



58  
       
 document.getElementById("LED4").innerHTML = "LED 4 is OFF (D9)"; 
        LED4_state = 0; 
       } 
      } 
     } 
    } 
   } 
   // send HTTP GET request with LEDs to switch on/off if any 
   request.open("GET", "ajax_inputs" + strLED1 + strLED2 + 
strLED3 + strLED4 + nocache, true); 
   request.send(null); 
   setTimeout('GetArduinoIO()', 1000); 
   strLED1 = ""; 
   strLED2 = ""; 
   strLED3 = ""; 
   strLED4 = ""; 
  } 
  // service LEDs when checkbox checked/unchecked 
  function GetCheck() 
  { 
   if (LED_form.LED1.checked) { 
    strLED1 = "&LED1=1"; 
   } 
   else { 
    strLED1 = "&LED1=0"; 
   } 
   if (LED_form.LED2.checked) { 
    strLED2 = "&LED2=1"; 



59  
   } 
   else { 
    strLED2 = "&LED2=0"; 
   } 
  } 
  function GetButton1() 
  { 
   if (LED3_state === 1) { 
    LED3_state = 0; 
    strLED3 = "&LED3=0"; 
   } 
   else { 
    LED3_state = 1; 
    strLED3 = "&LED3=1"; 
   } 
  } 
  function GetButton2() 
  { 
   if (LED4_state === 1) { 
    LED4_state = 0; 
    strLED4 = "&LED4=0"; 
   } 
   else { 
    LED4_state = 1; 
    strLED4 = "&LED4=1"; 
   } 
  } 
 </script> 



60  
 <style> 
  .IO_box { 
   float: left; 
   margin: 0 20px 20px 0; 
   border: 1px solid blue; 
   padding: 0 5px 0 5px; 
   width: 120px; 
  } 
  h1 { 
   font-size: 120%; 
   color: blue; 
   margin: 0 0 10px 0; 
  } 
  h2 { 
   font-size: 85%; 
   color: #5734E6; 
   margin: 5px 0 5px 0; 
  } 
  p, form, button { 
   font-size: 80%; 
   color: #252525; 
  } 
  .small_text { 
   font-size: 70%; 
   color: #737373; 
  } 
 </style> 
    </head> 



61  
    <body onload="GetArduinoIO()"> 
        <h1>Arduino Ajax I/O</h1> 
        <div class="IO_box"> 
   <h2>Analog Inputs</h2> 
   <p class="small_text">A0 used by Ethernet shield</p> 
   <p class="small_text">A1 used by Ethernet shield</p> 
   <p>A2: <span class="analog">...</span></p> 
   <p>A3: <span class="analog">...</span></p> 
   <p>A4: <span class="analog">...</span></p> 
   <p>A5: <span class="analog">...</span></p> 
  </div> 
  <div class="IO_box"> 
   <h2>Switch Inputs</h2> 
   <p class="small_text">D0: used by serial RX</p> 
   <p class="small_text">D1: used by serial TX</p> 
   <p>Switch 1 (D2): <span class="switches">...</span></p> 
   <p>Switch 2 (D3): <span class="switches">...</span></p> 
   <p class="small_text">D4: used by Ethernet shield</p> 
   <p>Switch 3 (D5): <span class="switches">...</span></p> 
  </div> 
  <div class="IO_box"> 
   <h2>LEDs Using Checkboxes</h2> 
   <form id="check_LEDs" name="LED_form"> 
    <input type="checkbox" name="LED1" value="0" 
onclick="GetCheck()" />LED 1 (D6)<br /><br /> 
    <input type="checkbox" name="LED2" value="0" 
onclick="GetCheck()" />LED 2 (D7)<br /><br /> 
   </form> 
  </div> 



62  
  <div class="IO_box"> 
   <h2>LEDs Using Buttons</h2> 
   <button type="button" id="LED3" onclick="GetButton1()">LED 
3 is OFF (D8)</button><br /><br /> 
   <button type="button" id="LED4" onclick="GetButton2()">LED 
4 is OFF (D9)</button><br /><br /> 
   <p class="small_text">D10 to D13 used by Ethernet shield</p> 
  </div> 
    </body> 
</html> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



63  
REFERENCES 

1. History of Modern Computing by Paul E. Ceruzzi, Boston, MS: MIT Press 
2. The Electronics Handbook by J. C. Whitaker, 1996, CRC Press 
3. Introduction to Arduino by Alan G. Smith, September 30, 2011 
4. Arduino projects by Enrique Ramos Melgar and Ciriaco Castro Diez 
5. Beginning Arduino by Michael McRoberts ,2 nd  Edition 
6. Beginning C for Arduino,Ph.D. Jack Purdum, Copyright © 2012 by Jack Purdum, 

 
            7. www.sersc.org/journals/IJSH/vol2.../IJSH-Vol.2-No.3%20-%203.pdf 

8.www.academia.edu/7510788/Embedded_Web_Server_using_Arduino_Ethernet_Shield 
9. http://whatis.techtarget.com/definition/Internet-of-Things 
10. https://www.arduino.cc/en/Guide/Introduction 
11. https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg 
12. https://www.arduino.cc/en/Main/ArduinoBoardUno 
13. https://www.arduino.cc/en/Main/ArduinoEthernetShield 
14. https://www.arduino.cc/en/Guide/ArduinoEthernetShield 
15. http://arduinobasics.blogspot.com/2014/09/relay-module.html 
16. http://www.webopedia.com/TERM/W/Wi_Fi.html 
17.http://www.webopedia.com/DidYouKnow/Computer_Science/wireless_networks_exp
lained.asp 
18. http://compnetworking.about.com/cs/wireless/g/bldef_ap.htm 
19.http://www.google.com.bd/imgres?imgurl=http://i.embed.ly/1/display/resize%253Fke
y%253D1e6a1 
20. http://www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/step3/Get-started/ 
21. http://startingelectronics.org/tutorials/arduino/ethernet-shield-web-server-
tutorial/web-page-structure/ 
 

 


