
Web Optimizer: Reducing the Intermediate Web Traffic

Submitted by:

Al-Imtiaz

ID: 2014-2-96-004

Department of computer Science and Engineering,

East West University

Supervised by:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of computer Science and Engineering,

East West University

East West University

Aftabnagar, Dhaka, Bangladesh, September 2016.

Page 2 of 77

Web Optimizer: Reducing the Intermediate Web Traffic

Submitted by:

Al-Imtiaz

ID: 2014-2-96-004

Department of computer Science and Engineering,

East West University

2016

Supervised by:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of computer Science and Engineering,

East West University

This thesis is submitted to the department of Computer Science and Engineering as the

requirement for the degree of Master of Computer Science and Engineering at

East West University

Aftabnagar, Dhaka, Bangladesh, September 2016.

Page 3 of 77

Abstract

Usage of Internet is growing rapidly at this time in all over the world. Among all other services,

the World Wide Web is the most popular Internet applications. Internet contains various useful

information and therefore, the dependency on Internet is increasing day by day. Providing Internet

facilities as a tool to complete mundane activities becomes quite common in schools, colleges,

government and non-government organizations etc.

However, the process of digitalization has not been achieved as desired due

to the lack of infrastructure, awareness and proper use of technologies. Developing countries like

Bangladesh are still struggling to provide Internet facilities to all other citizens. The

availability of Internet at the user end and high expense of Internet data are the main obstacles

right now.

There are so many technologies working together on server side to handle the thousands of client’s

requests at minimum possible time. Those thousands requests come back with thousands

responses. All of those messages and contents use Internet as their communication medium and

those contents are also known as web traffic.

Existing Technologies like web cache and Content Data Network (CDN) work to reduce the web

traffic by caching it locally to serve it later. There are few scopes to improve the current

technologies. The goal of this thesis is to reduce the web traffic that will lead to faster web

browsing experience. Here “Cache Tree” and “LiteWeb” have been introduced and few existing

technologies have been modified to work as “Cache Broadcasting” and “Cache Sharing”.

Page 4 of 77

Declaration

I hereby declare that, this thesis was done under CSE599 and has not been submitted elsewhere

for requirement of any degree or diploma or for any purpose except for publication.

Al Imtiaz

ID: 2014-2-96-004

Department of Computer Science and Engineering,

East West University

Page 5 of 77

Letter of Acceptance

Letter of Acceptance

The this entitled “Web Optimizer: Reducing the Intermediate Web Traffic” submitted by AL Imtiaz, ID:

2014-2-96-004 to the Department of Computer Science and Engineering, East West University, Dhaka

1212, Bangladesh is accepted as satisfactory for partial fulfillment of requirements for the degree of Masters

of Science (MS) in Computer Science and Engineering on September, 2016.

Board of Examiners

1. ___
 Dr. Mohammad Rezwanul Huq Supervisor
 Assistant Professor

 Department of Computer Science and Engineering

 East West University.

2. ___
 Dr. Md. Mozammel Huq Azad Khan Internal Member
 Professor & Chairperson
 Department of Computer Science and Engineering
 East West University.

3.___
 Dr. Abu Raihan Mostofa Kamal External Member
 Associate Professor
 Department of Computer Science and Engineering
 Islamic University of Technology.

Page 6 of 77

Acknowledgement

Firstly, my most heartfelt gratitude goes to my beloved parents for their endless support,

continuous inspiration, great contribution and perfect guidance from the beginning to the end.

I wish to pay my heartiest gratitude to Dr. Mohammad Rezwanul Huq, Asst. Professor for his

encouragement and guidance to compete this thesis.

Page 7 of 77

Table of Contents

Chapter 1: Introduction

1. Introduction .. 13

1.1 Scenario Analysis.. 19

1.1.1 Redundant data transmission ... 19

1.1.2 Cache validation check .. 21

1.1.3 Content priority .. 21

1.2. Proposed Solution: ... 22

 1.2.1 Proposed Architecture ... 22

a) Server Side Web Optimizer (SSWO) ... 22

b) Client Side Web Optimizer (CSWO) .. 23

Chapter 2: Existing Technologies

2.1 Web cache .. 24

a)Browser Caches ... 25

b)Proxy Caches server .. 26

c)Server Side Caches .. 28

2.1.1 Web Cache Architecture ... 27

2.1.2 How “Web Cache” works ... 28

2.1.2.1. Validating cached responses byE-Tags ... 28

2.1.2. 2. Cache-Control by Max-age ... 28

2.1.2. 3. Defining optimal Cache-Control policy.. 30

2.1.2. 4. Invalidating and updating cached responses ... 31

2.1.2. 5. Expiration Model .. 32

a) Age Calculations ... 33

b) Expiration Calculations .. 34

2.1.2. 6. Caching Checklist ... 34

2.2 Content Delivery Networks (CDN).. 35

2.2.1. How CDNs Work:... 36

Page 8 of 77

2.2.2.Security: ... 37

2.3 Recommended Practices and Rules to optimize web pages ... 38

Chapter 3: Proposed Solution

3. Proposed Architecture: .. 48

a)Server Side Web Optimizer (SSWO) .. 48

b)Client Side Web Optimizer (CSWO) ... 49

3.1. Cache Sharing ... 50

3.1.1 Cacheable contents: .. 51

3.1.2. Scenario Analysis.. 52

3.1.3 How “Cache Sharing” works .. 53

3.1.4 Challenges .. 55

a)Security: ... 55

b)Multiple Browsers: .. 56

c)Dynamic Contents: .. 56

d)Content availability: .. 56

e)Freshness of contents: .. 56

3.1.5. Advantages of Cache Sharing ... 56

3.2.Cache Tree .. 58

3.2.1 Case Study ... 58

3.2.2. Cache Tree .. 59

3.2.3 How “Cache Tree” works: ... 61

3.2.3.1Working procedure of Cache Tree: .. 59

3.2.3.2Example Scenario: .. 59

3.2.4. Challenges ... 64

3.2.5. Advantages of Cache Tree .. 64

3.3. Cache Broadcasting .. 67

3.3.1. Scenario Analysis .. 67

3.3.2. Cache Broadcasting ... 67

3.3.3 How “Cache Broadcasting” works ... 67

Page 9 of 77

3.3.4 Example Scenario ... 68

3.3.5.Challenges: ... 68

3.3.6Advantages .. 68

3.4. LiteWeb ... 65

3.4.1.Scenario Analysis: .. 69

3.4.2.Introduction to LiteWeb ... 69

3.4.3.How “LiteWeb” works ... 70

3.4.4.Scenario analysis .. 70

3.4.5.Challenges .. 71

3.4.6.Advantages ... 71

Chapter 4: Validation

4.1. Prototype of Cache Tree .. 69

4.2. Prototype of Key Content ... 70

Conclusion and Fututre work .. 72

Reference .. 73

Page 10 of 77

List of Figures

Figure 1: An approach of monitoring Web Traffic ... 14

Figure 2: Internet user in the World by Regions ... 15

Figure 3: World internet usage and population Statistics ... 15

Figure 4: Top 10 Internet Properties by global monthly unique visitors, Feb, 2013 [3] 16

Figure 5: Content have been served from server .. 17

Figure 6: Content have been served form browser’s cache .. 17

Figure 8: HTTP Response message form server ... 17

Figure 7: Flow chart of web cache validation procedure.. 18

Figure 9: Web content saved from cached contents after validation check .. 19

Figure 10: Content Delivery Network (CDN) helps to reduce the distance between client and content 19

Figure 11: Local Network connected with internet through an Internet provider....................................... 20

Figure 12: Redundant Web Traffic on internet ... 20

Figure 13: Multiple Cache validation check request to reuse content .. 21

Figure 14: Clients have to download different types of contents from server to render a web page. 21

Figure 15: Client side and server side web optimizer ... 22

Figure 16: Browsing w3school without cached content ... 24

Figure 17: Browsing w3school with cached content .. 24

Figure 18: Browser store cacheable contents .. 25

Figure 19: Browser cache is being used. ... 26

Figure 20: Proxy Caches Server.. 26

Figure 21: Distributed architecture of web cache ... 27

Figure 22: Cache control by E-Tag ... 28

Figure 23 Cache control by Max-age .. 29

Figure 24: Optimal Cache control policy by Google .. 30

Figure 25: Cache control precedence ... 31

Figure 26: Cacheable contents on web pages ... 35

Figure 27: Serving content without CDN ... 36

Figure 28: Serving static content through CDN .. 37

Figure 29: Serving dynamic content through CDN .. 37

Figure 30: Client side and server side web optimizer ... 48

Figure 31: Server Side Web Optimizer ... 49

Figure 32: Client Side Web Optimizer ... 49

Figure 33: Local networks connected with internet through an Internet provider. 51

Figure 34: Cache log of CSWO .. 52

Figure 35: Flow chart of proposed cache management architecture ... 53

Figure 36: Insert new item on the heap ... 57

Figure 37: Regular Cache Tree (Server Side) ... 58

Figure 38: Cache Tree (Client side) .. 58

Figure 39: Additional information with HTTP request for cache tree .. 58

Page 11 of 77

Figure 40: New contents have been served from server to client ... 59

Figure 41: Response message are being served from server... 62

Figure 42: SSWO Broadcasting Cache to CSWO ... 63

Figure 43: “LiteWeb” request is being served by server .. 66

Figure 44: Client is Downloading content from the server (First time) .. 69

Figure 45: Heap data structure has been used to construct this Cache Tree ... 69

Figure 46: There is no updated content on the server ... 69

Figure 47: Updated “Cache Tree” of Server ... 70

Figure 48: Server informed the client about new contents ... 70

Figure 49: New contents have been served from server to client ... 70

Figure 50: Client collect the new updated content form server .. 70

Figure 51: Regular Request served by Server ... 71

Figure 52: “LiteWeb” request is being served by server .. 71

Figure 53: Key Contents Severed by the server .. 71

Page 12 of 77

Abbreviation and Acronyms

WO = Web Optimizer

CSWO = Client Side Web Optimizer

SSWO = Server Side Web Optimizer

LLpCC= Long Live Public Cacheable Content

Page 13 of 77

Chapter 1

Introduction

Page 14 of 77

In this age of digitalization and globalization the appeal of better internet facility is become one of

the major issues. Web traffics have been increasing tremendously and it becomes a fundamental

issue to provide a better experience to the end user by managing those traffics. These growths of

web traffic are expected to continue, not only as the web becomes a de facto front-end for many

emerging cloud-based services, but also as many applications getting migrated to the Web.

Figure 1: An approach of monitoring Web Traffic

The World Wide Web (www) is an information space where documents and other web resources

are identified by URLs, interlinked by hypertext links, and can be accessed via the Internet. It has

become known simply as the Web. The World Wide Web was central to the development of the

Information Age and is the primary tool billions of people use to interact on the Internet.

Web pages are primarily text documents formatted and annotated with Hypertext Markup

Language (HTML). In addition to formatted text, web pages may contain images, video, and

software components that are rendered in the user's web browser as coherent pages of multimedia

content. Embedded hyperlinks permit users to navigate between web pages. Multiple web pages

with a common theme, a common domain name, or both, may be called a website. Website content

can largely be provided by the publisher or interactive where users contribute content or the content

depends upon the user or their actions. Websites may be mostly informative, primarily for

entertainment, or largely for commercial purposes.

Web traffic is the amount of data traveled on the internet and those data are sent and received by

the visitors of a web site and server. This internet has already become giant networks which have

to maintain huge amounts of web traffic in every moment. This huge web traffic may cause the

slowness of the entire system. The amount of Global digital information created and shared will

be double within next two years according to the current growth rate of web traffic.

Web traffic is being acquired from the access log of web data. It only assumes simple and static

Web pages, and once Web pages are identified, other contents can be derived, such as the number

of embedded objects, total page size, total page time, and inter-arrival time.

Page 15 of 77

Browser stores all cacheable web contents for a while. When a user browses the same page within

a few minutes then the content will be served from the cache memory of the browser. Sometimes

browser keeps those contents for a long time. And also each time there is a request for that cache

content the browser also checks it is valid/fresh or not.

Figure 2: Internet user in the World by Regions

The web contents are increasing day by day. Hundreds of Giga Bytes are traveling this internet in

each second. To serve better server are sending larger contents like images, videos to clients. Cache

is a smart solution to reduce those static contents by saving those in local computer’s memory.

There are many different technologies such as Content Delivery network, proxy cache server to

improve the overall performance of internet.

Figure 3: World internet usage and population Statistics

There are very few popular websites those are browsed more frequently.

48%

18%

10%

10%

9%

4%

1% Asia
Europe
Latin America
Africa
North America
Middle East
Australia

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

4500000000

Africa Asia Europe Middle East North
America

Latin America Australia

Total Population Internet User

Page 16 of 77

Figure 4shows the top 10 web sites. Among them 80% of top ten global internet properties are

owned by USA [3].

In most of the time the popularity of a website depends on the geographical region. In most of the

cases the users of a network browse same types of website (News portal, popular sites). Those

contents have to be served from server. Among those content some are dynamic (very light

weighted content) and others are static (images, weight of those contents is very high).

Each time a user browses a page, browser stores few contents to server it later. This mechanism is

applied in all modern browsers.

Figure 4: Top 10 Internet Properties by global monthly unique visitors, Feb, 2013 [3]

According to HTTP Archive, amongst the top 300,000 sites (by Alexa rank), nearly half of all, the

downloaded responses can be cached by the browser, which is a huge savings for repeat page

views and visits. Some application will have 50% of resources that can be cached: some sites can

cache 90%+ of their resources, while others may have a lot of private or time-sensitive data that

can’t be cached at all. By 2019, mobile-connected tablets will generate nearly double the traffic

generated by the entire global mobile network in 2014. [10]

Page 17 of 77

Fetching something over the network is both slow and expensive: large responses require many

round-trips between the client and server, which delays when they are available and can be

processed by the browser, and also incurs data costs for the visitor. As a result, the ability to cache

and reuse previously fetched resources is a critical aspect of optimizing for performance.

There are few existing technologies that help to improve the web browsing experience. Among

them Web Cache and Content Delivery Network are most common technology used by developers.

The working procedures of Web cache and CDN have been discussed on chapter 2.

Every browser has HTTP cache management architecture by default. It has to ensure that each

server response provides correct HTTP header directives to instruct the browser on when and for

how long the response can be cached by the browser.

Server

Router
Client

200 KB
200 KB

logo.jpg

logo.jpg

Request for

logo.jpg

Response

Figure 5: Content have been served from server

ServerRouter

clients

200 KB

200 KB

logo.jpg

logo.jpg

Validation check

request for

logo.jpg
Cache hits

If logo.jpg is fresh it

will be served from

cache

Figure 6: Content have been served form browser’s cache

Together, freshness and validation are the most important ways that a cache works with content.

A fresh representation will be available instantly from the cache, while a validated representation

will avoid sending the entire representation over again if it hasn’t changed.

ServerRouter

clients

200 KB

200 KB

logo.jpg

logo.jpg

Validation check

request for

logo.jpg
Cache hits

If logo.jpg is fresh it

will be served from

cache

Figure 6shows a generic view of cache control.

HTTP cache has to be enabled at server side to make contents cacheable at user ends.

Page 18 of 77

Figure 7: HTTP Response message form server

website request -

www.yahoo.com

Potentially

Cacheable

Content?

Cache Hit?

Fetch content from

Cache server

Fetch content from

Yahoo

Web server

Place the web

Page in cache

server

Return yahoo

Home page to

End-user

Generate

dynamic

Content from

Yahoo’s server.

Return yahoo

Home page to

End-user

 NO

YES

YES

NO

Figure 8: Flow chart of web cache validation procedure

When the server returns a response it also emits a collection of HTTP headers, describing its

content-type, length, caching directives, validation token, and more. For example, in the above

exchange the server returns a 1024-byte response, instructs the client to cache it for up to 120

seconds, and provides a validation token (“x234dff”) that can be used after the response has

expired to check if the resource has been modified.

Page 19 of 77

Web cache helps to reduce the web traffic by serving content locally shown in Figure 9, but the

browser has to check the validation each cacheable contents separately to be ensured that he is

serving the right contents.

Web cache can save a huge amount of web traffic, where a cache validation is required as shown

fig 8.

Server
Router

Clients

200 KB

200 KB

logo.jpg

logo.jpg

Served content from

server (200 KB)

To reuse this logo.jpg

Cache validation is

required (1 KB)

Figure 9: Web content saved from cached contents after validation check

Web cache reduces the amount of downloadable content and it helps to browse website faster. On

the other hand, CDN work with the distance between client and server.

ServerCDN copy

client

200 KB

200 KB

logo.jpg

logo.jpg

Request for

logo.jpg

Served from CDN copy

200 KB

logo.jpg

200

KB

200

KB

copy

Figure 10: Content Delivery Network (CDN) helps to reduce the distance between client and

content

The goal of “web optimizer” is to optimize the present technology by decreasing the cache

validation request through “Cache Tree”, “Cache Broadcasting” and let users browse key content

based on their bandwidth limitation by using “LiteWeb” and “Cache Sharing” will reduce the web

traffic by sharing and resolving cache request locally.

1.1 Scenario Analysis:

1.1.1. Redundant data transmission

Internet is networks of networks. All the computers of every small network are connected

through internet. Every ends of a network are a client/server. Every request/response

message has to travel from client to server and the distance might be thousands of miles.

Page 20 of 77

ServerISP

C3

Thousands of Miles away

Network 1

C1

C2

Internet

Figure 11: Local Network connected with internet through an Internet provider.

Suppose, there is network consist of 30 users on a network named as “Network 1”. They

all are contacted to same ISP/local server/internet provider. They are intra connected and

can communicate without internet. Through an internet provider they are connected with

internet.

Let, three users of Network 1 are browsing googl.com. They will send individual request to

the server and server will send the response. So the intermediate path has to carry same

content for three times. The aim of “Cache Sharing” is to avoid those redundant web traffics

from internet.

ServerInternet provider

(Web Optimizer)
C3

Thousands of Miles away
Network 1

C1

C2

Internet

Figure 12: Redundant Web Traffic on internet

An example scenario has been discussed on chapter 3. To solve this problem “cache sharing” have

been proposed. The goal of Cache broadcasting is to reduce the intermediate traffic of server and

client with the help of SSWO and CSWO. Here long live public cacheable content (LLpCC) are

suitable contents for broadcasting, because they do not change very frequently and could be cached

for a long time. So the broadcasting requests have to be called very frequently.

Page 21 of 77

1.1.2. Cache validation check

Suppose there is a website named abc.com and it contains few cacheable contents. Among them

10 contents are cacheable and others are not cacheable. Browser will store/cache all of those

cacheable contents.

During the second request for the same page browser will send 10 "freshness" check

request to be ensured that all contents are fresh and 2 regular requests to download rest

of the contents. After the first request, every request will contain 10 "freshness" check

requests and 2 regular requests. Most of the time those "freshness" check requests will

return with negative result.

ServerRouter

U-1

200 KB

200 KB

logo.jpg

logo.jpg

To reuse a cached content the

browser have to check the

freshness of that content

Cache hits

Figure 13: Multiple Cache validation check request to reuse content

To minimize this huge amount request ‘Max-age’ attribute of cached contents could be

used. But there is no appropriate value of ‘Max-age’. If the value is large then there are

possibilities to loss some update and again if the value is small, then the number of

unnecessary request will increase.

1.1.3. Content priority

Every web page contains important contents named as “key content”. Those are the required

information requested by client. But to represent and beatification some additional contents have

been sent to the client’s PC. If the bandwidth of client’s PC is not sufficient to download all of

those contents within a short time, then the users have to wait for those less important contents to

be downloaded.

Page 22 of 77

Server
Router

Client

Web

contents

Less important content

(like media contents for

beatification)

Key contents

jpg HTML

Figure 14: Clients have to download different types of contents from server to render a web

page.

But user may want to browse only the key contents due to the bandwidth and data limitations.

1.2 Proposed solution:

World Wide Web is the heart and the internet is the backbone of virtual world. The Web is growing

day by day. Simultaneously the web traffic is also increasing with respect to the internet users.

There are four different modules of Web Optimizer and their goals are:

1. Cache Sharing: To make reusable cached content by peer to peer sharing them

with other computers of same networks.

2. Cache Tree: To reduce the freshness check request by grouping cache content.

3. Cache Broadcasting: To Reduce network traffic by broadcasting public cacheable

content from server to client.

4. LiteWeb: Responsive Web Content based on the bandwidth of client’s computer

1.2.1. Proposed architecture:

This Web Optimizer will work with traditional Client-server architecture. It has two parts:

1. Server Side Web Optimizer (SSWO)

2. Client Side Web Optimizer (CSWO)

Both will act as proxy server with few additional responsibilities.

Page 23 of 77

Server

Web

Optimizer

(Client side)
Client

Router
Web

Optimizer

(Server side)

Figure 15: Client side and server side web optimizer

This Client side web optimizer will work as proxy server. CSWO will track the public cacheable

contents at client side and SSWO will help to broadcast Long Live Public Cacheable Contents.

The Details working procedure of “Web optimizer” have been discussed in chapter 3.

Web cache is one of the most used web optimization technique to reduce the web traffic. Storing

be contents to use it during next request for that website is known as “Web cache”. Content

Delivery Network (CDN) is another web optimization technique that stores a copy of all files from

server. The architecture of Web cache and CDN has been discussed in next chapter.

Page 24 of 77

Chapter 2

Existing Technologies

Page 25 of 77

2.1 Web cache

Web caches are being used to handle this huge amount of web traffic by storing frequently browsed

web content on the browser of client’s computer or local proxy server. Wide range of researchers

has been done in this field and numbers of architecture have been developed for cache

management. Goals of Cache are: [9]

• To minimize the response time
• To reduce the Web Traffic
• To reduce the server processing time

Here “Firebug” application is being used to demonstrate the advantages of web cache. At first

browser have to download 340KB data and it takes 2.42Sec (Figure 19). During that time browser

stores some data as cached content. From next time browser will use those cache contents and so

that it has to download few contents from server. Less content requires less time and that’s why

the website will appear faster than before.

Figure 16: Browsing w3school without cached content

Figure 17: Browsing w3school with cached content

Page 26 of 77

Web cache is a mechanism to store the web contents temporary (caching), such as HTML pages

and images, supporting style sheet and other scripts this. Cache helps to reduce Network traffic,

bandwidth usage, loading time, and lighten the load on a Web server by reducing the number of

incoming requests; browsers retrieve portions of data from the cache rather than directly from the

server. Web cache stores copies of documents passing through it; then, if there is another request

for the same URL, it can use the response that it has stored previously, instead of asking the origin

server for it again. There are three types of web cache.

a) Browser Caches

Browser’s “Cache” is used for the temporary storage of Web pages on a hard disk. Every web page

retrieves from the server for the first time, the browsers cheek the cache first time, if there are the

same content then it server form the cache. Then the browser attempt to read the page from its

“cache”, instead of spending the extra time and network traffic to download it again.

Figure 18: Browser store cacheable contents

The Figure 18shows how a JavaScript file is saved into the browser cache on the first visit to a

web page and

Figure 19shows how browser uses that cached contents:

Page 27 of 77

Figure 19: Browser cache is being used.

This browser cache helps to avoid client-server-client data transmission by using local content

which is typically 100 to 1000 times faster than downloading the file proxy server.

b) Proxy Caches server

A proxy cache server is a shared network device that can undertake Web transactions on behalf of

a client, and, like the browser, the proxy cache server stores the web content. Subsequent requests

for this content, by this or any other client of this network of the cache will trigger the cache to

deliver the locally stored copy of the content, without downloading the original content from

server.

Figure 20: Proxy Caches Server

Proxy caches aren’t part of the client’s content or the server content. Proxy caches are one kind of

shared cache; rather than just having one person using them, they usually have been used by a

large number of users by this they are reducing latency and network traffic. That’s because popular

representations are reused a number of times.

Proxy servers may also perform additional tasks, such as compressing data and optimizing

documents. Systems that assist in such way are referred to as web accelerators. Sometimes caching

proxy servers are most useful in distributed environments, where the proxy server can act as both

a load balancer and optimizer.

Page 28 of 77

c) Server Side Caches

Also known as “Reverse proxy caches” or “Gateway caches,” Server Side Caches are also

intermediaries, but instead of being deployed by network administrators to save bandwidth, they’re

typically deployed by Webmasters themselves, to make their sites more scalable, reliable and

better performing.

2.1.1. Web Cache Architecture:

Multiple Web-caching servers can be used together to provide for more efficient caching. There are
two basic caching architectures that use multiple caching servers working together:

 Distributed Caching

 Hierarchical Caching

As the name implies, distributed caching distributes, or spreads, the cached Web objects across two

or more caching servers. These servers are all on the same level on the network. The figure below

illustrates how distributed caching works.

Figure 21: Distributed architecture of web cache

Hierarchical caching works a little differently. In this setup, caching servers are placed at different

levels on the network. Upstream caching servers communicate with downstream proxies.

Hierarchical caching is more efficient in terms of bandwidth usage, but distributed caching is more

efficient in terms of disk space usage. [7]

There are several methods of controlling a distributed proxy cache network in order to improve

both the utilization of the cache information and the access concentration by using Internet Cache

Protocol (ICP) information and round-trip time (RTT) estimation [11].

Page 29 of 77

2.1.2. How “Web Cache” works

HTTP protocol helps to manage the web Cache. It includes some information in HTTP header that

helps browser to detect and validate cacheable contents.

2.1.2.1. Validating cached responses by E-Tags

HTTP 1.1 introduced a new kind of validator called the ETag. E-Tags are unique identifiers that

are generated by the server and changed every time the representation does. Almost all caches use

Last-Modified times as validators. This is the time that the document last changed. When a cache

has a representation stored that includes a Last-Modified header, it can use it to ask the server if

the representation has changed since the last time it was browsed.

Most modern Web servers will generate both ETag and Last-Modified headers to use as validators

for static content (i.e., files) automatically. ETag validation is also becoming prevalent. Validators

are very important; if one isn’t present, and there isn’t any freshness information (Expires or

Cache-Control) available, caches will not store a representation at all.

Validation token is communicated by the server via the ETag HTTP header Validation token

enables efficient resource update checks: no data transfer if the resource has not changed.

Figure 22: Cache control by E-Tag

In above example the client automatically provides the ETag token within the “If-None-Match”

HTTP request header, the server checks the token against the current resource, and if it has not

changed returns a “304 Not Modified” response which tells the browser that the response it has in

cache has not changed and can be renewed for another 120 seconds.

2.1.2.2. Cache-Control by Max-age

Each resource can define its caching policy via Cache-Control HTTP header Cache-Control

directives control who can cache the response, under which conditions, and for how long.

Page 30 of 77

Figure 23: Cache control by Max-age

Cache-Control header was defined as part of the HTTP/1.1 specification and supersedes previous

headers (e.g. Expires) used to define response caching policies. All modern browsers support

Cache-Control.

a) “no-cache” and “no-store”

“no-cache” indicates that the returned response cannot be used to satisfy a subsequent request to

the same URL without first checking with the server if the response has changed. As a result, if a

proper validation token (ETag) is present; no-cache will incur a roundtrip to validate the cached

response, but can eliminate the download if the resource has not changed.

b) “public” vs. “private”

If the response is marked as “public” then it can be cached, even if it has HTTP authentication

associated with it, and even when the response status code isn’t normally cacheable.

By contrast, “private” responses can be cached by the browser but are typically intended for a

single user and hence are not allowed to be cached by any intermediate cache - e.g. an HTML page

with private user information can be cached by that user’s browser, but not by a CDN.

c) “max-age”

This directive specifies the maximum time in seconds that the fetched response is allowed to be

reused for from the time of the request - e.g. “max-age=60” indicates that the response can be

cached and reused for the next 60 seconds.

Table 1 : Details of Cache control attributes

Cache-Control directives Explanation

max-age=86400 Response can be cached by browser and any intermediary

caches (i.e. it is "public") for up to 1 day (60 seconds x 60

minutes x 24 hours)

Page 31 of 77

private, max-age=600 Response can be cached by the client’s browser only for up to

10 minutes (60 seconds x 10 minutes)

no-store Response is not allowed to be cached and must be fetched in

full on every request.

2.1.2.3. Defining optimal Cache-Control policy

Google has designed an optimal cache control policy.

Figure 24: Optimal Cache control policy by Google

Follow the decision tree above to determine the optimal caching policy for a particular resource,

or a set of resources used by an application. Ideally, the developer should aim to cache as many

responses as possible on the client for the longest possible period, and provide validation tokens

for each response to enable efficient revalidation.

Page 32 of 77

2.1.2.4. Invalidating and updating cached responses

Client-side caching and quick updates can achieved be changing the URL of the resource and force

the user to download the new response whenever its content changes. Typically, this is done by

embedding a fingerprint of the file, or a version number, in its filename - e.g. style.x234dff.css.

Figure 25: Cache control precedence

The ability to define per-resource caching policies allows us to define “cache hierarchies” that

allow us to control not only how long each is cached for, but also how quickly new versions are

seen by visitor. For example, let’s analyze the above example:

 The HTML is marked with “no-cache”, which means that the browser will always

revalidate the document on each request and fetch the latest version if the contents change.

Also, within the HTML markup the developer embeds fingerprints in the URLs for CSS

and JavaScript assets: if the contents of those files change, then the HTML of the page will

change as well and new copy of the HTML response will be downloaded.

 The CSS is allowed to be cached by browsers and intermediate caches (e.g. a CDN), and

is set to expire in 1 year. Note that “far future expires” of 1 year could be used safely

because embed fingerprint its filename: if the CSS is updated, the URL will change as well.

 The JavaScript is also set to expire in 1 year, but is marked as private, perhaps because it

contains some private user data that the CDN shouldn’t cache.

 The image is cached without a version or unique fingerprint and is set to expire in 1 day.

The combination of ETag, Cache-Control, and unique URLs allows us to deliver the best of all

worlds: long-lived expiry times, control over where the response can be cached, and on-demand

updates.

Page 33 of 77

2.1.2.5. Expiration Model

HTTP caching works best when caches can entirely avoid making requests to the origin server.

The primary mechanism for avoiding requests is for an origin server to provide an explicit

expiration time in the future, indicating that a response MAY be used to satisfy subsequent

requests. In other words, a cache can return a fresh response without first contacting the server.

The expiration mechanism applies only to responses taken from a cache and not to first-hand

responses forwarded immediately to the requesting client. If an origin server wishes to force a

semantically transparent cache to validate every request, it MAY assign an explicit expiration time

in the past. This means that the response is always stale, and so the cache SHOULD validate it

before using it for subsequent requests.

If an origin server wishes to force any HTTP/1.1 cache, no matter how it is configured, to validate

every request, it SHOULD use the "must- revalidate" cache-control directive. Servers specify

explicit expiration times using either the Expires header, or the max-age directive of the Cache-

Control header.

An expiration time cannot be used to force a user agent to refresh its display or reload a resource;

its semantics apply only to caching mechanisms, and such mechanisms need only check a

resource's expiration status when a new request for that resource is initiated. See section 3.3 for an

explanation of the difference between caches and history mechanisms.

a) Age Calculations

In order to know if a cached entry is fresh, a cache needs to know if its age exceeds its freshness

lifetime. A response's age can be calculated in two entirely independent ways:

1. Now minus date_value, if the local clock is reasonably wellsynchronized to the origin

server's clock. If the result is negative, the result is replaced by zero.

2. age_value, if all of the caches along the response path implement HTTP/1.1.

There are two independent ways to compute the age of a response when it is received, these can

be combined as

corrected_received_age = max (now - date_value, age_value)

Because of network-imposed delays, some significant interval might pass between the time that a

server generates a response and the time it is received at the next outbound cache or client. If

uncorrected, this delay could result in improperly low ages.

Because the request that resulted in the returned Age value must have been initiated prior to that

Age value's generation, the developer can correct for delays imposed by the network by recording

the time at which the request was initiated. Then, when an Age value is received, it MUST be

interpreted relative to the time the request was initiated, not the time that the response was received.

So,

Page 34 of 77

corrected_initial_age = corrected_received_age+ (now - request_time)

Where "request_time" is the time (according to the local clock) when the request that elicited this

response was sent.

b) Expiration Calculations

The age is calculated as described in section 3.2.3; this section describes how to calculate the

freshness lifetime, and to determine if a response has expired. In the discussion below, the values

can be represented in any form appropriate for arithmetic operations.

The term "expires_value" is to denote the value of the Expires header. The term "max_age_value"

is to denote an appropriate value of the number of seconds carried by the "max-age" directive of

the Cache-Control header in a response.

The max-age directive takes priority over Expires, so if max-age is present in a response, the

calculation is simply:

freshness_lifetime = max_age_value

Otherwise, if Expires is present in the response, the calculation is:

freshness_lifetime = expires_value - date_value

Note that neither of these calculations is vulnerable to clock skew, since all of the information

comes from the origin server.

If none of Expires, Cache-Control: max-age, or Cache-Control: s- maxage appears in the response,

and the response does not include other restrictions on caching, the cache MAY compute a

freshness lifetime using a heuristic. The cache MUST attach Warning 113 to any response whose

age is more than 24 hours if such warning has not already been added.

Also, if the response does have a Last-Modified time, the heuristic expiration value SHOULD be

no more than some fraction of the interval since that time. A typical setting of this fraction might

be 10%.

The calculation to determine if a response has expired is quite simple:

response_is_fresh = (freshness_lifetime>current_age)

2.1.2.6. Caching checklist

There is no one best cache policy. There are few basic techniques on caching strategy:

Page 35 of 77

1. Use consistent URLs: if anyone serve the same content on different URLs, then that

content will be fetched and stored multiple times.

2. Ensure the server provides a validation token (ETag): validation tokens eliminate the

need to transfer the same bytes when a resource has not changed on the server.

3. Identify which resources can be cached by intermediaries: those with responses that

are identical for all users are great candidates to be cached by a CDN and other

intermediaries.

4. Determine the optimal cache lifetime for each resource: different resources may have

different freshness requirements. Audit and determine the appropriate max-age for each

one.

5. Determine the best cache hierarchy for a site: the combination of resource URLs with

content fingerprints, and short or no-cache lifetimes for HTML documents allows anyone

to control how quickly updates are picked up by the client.

Depending on a traffic patterns, type of data served, and application-specific requirements for

data freshness, the developer will have to define and configure the appropriate per-resource

settings, as well as the overall “caching hierarchy”.

Page 36 of 77

2.2 Content Delivery Networks (CDN)

The interaction between a user and online content is far more complex today than it was a few

years ago. Today’s users are much more likely to be streaming a longer video from a mobile phone

or accessing a SaaS portal when working from home. These are far more complex experiences that

did not exist five or so years ago. Given the expected growth of the CDN market in the coming

years, this post will define exactly what a CDN is and how it operates.

A content delivery network, also called a CDN, improves the performance, security and reliability

of a website. Since the start of the internet, websites have evolved in how they deliver content to

the end user. In the example below, a Twitter stream. Highlighted in red, is what is known as static

content. The logo and profile descriptions are basic graphics and HTML text that rarely change.

Highlighted in yellow, is what is known as dynamic content. The Twitter stream represents content

that is always changing and moving.

Figure 26: Cacheable contents on web pages

It is the growing popularity of dynamic online experiences, like Twitter, that are driving the growth

of CDNs.

Page 37 of 77

2.2.1. How CDNs Work:

A CDN has Points of Presence (PoPs) or data centers that are situated around the world. Within

each PoP are thousands of servers. Both the PoPs and servers help accelerate the speed at which

content is delivered to the end user.

Below, is a representation of how a web page works without a CDN. An end user requests a page

in which all the page’s components (images, HTML, dynamic content) are retrieved from the

website’s server or origin, which could be anywhere in the world. In the example below, the user

is in North America, while the origin that holds the content requested is all the way across the

globe.

Figure 27: Serving content without CDN

Below are images that represent how a web page loads content using a CDN. A CDN caches all

files locally (images, HTML, etc.) in the local PoP they have established. As a result, when an end

user requests a web page, it loads faster. If the CDN does not have an image or file that is requested

by the user, it will load from the origin as needed.

Page 38 of 77

Figure 28: Serving static content through CDN

A CDNs approach changes for sites that have dynamic content. CDNs that support dynamic

content create a “super highway” to accelerate the delivery of content across a long distance. An

individual ISP cannot provide this. In the image below, the “super highway” helping to facilitate

the delivery of dynamic content from the origin to the end user.

Figure 29: Serving dynamic content through CDN

2.2.2. Security:

Lastly, a CDN should protect itself and all the data it stores as well as a website’s origin from any

data breaches or internet hackers. The most common data threats are various forms of distributed

denial of service (DDoS) attacks. A CDN has proper techniques for preventing, detecting and

correcting different forms of DDoS attacks. Prevention measures such as HTTP load balancing,

Page 39 of 77

have an always-on approach, making sites less vulnerable to attacks. Detection systems within a

CDN look for suspicious behavior and highlight the need for additional investigation and action.

An example of detection might be a traffic surge in which case the CDN provider has systems in

place to automatically notify those responsible for the website. Corrective measures such as

secured DNS will block out unwanted requests while continuing to allow trustworthy requests to

continue being served. Advance CDN with p2p content sharing is another new technology

discussed on [14].

2.3 Recommended Practices and Rules to optimize web pages

The performance of World Wide Web depends on web contents, web technologies and networks.

The technology behind the WWW is improving day by day. Many researchers are working on it.

Yahoo’s Exceptional Performance team has identified 34 rules that affect web page performance.

YSlow's web page analysis is based on the 23 of these 34 rules that are testable.

1. Minimize HTTP Requests

2. Use a Content Delivery Network

3. Avoid empty src or href (Avoid Empty Image src)

4. Add an Expires or a Cache-Control Header

5. Gzip Components

6. Put Style Sheets at the Top

7. Put Scripts at the Bottom

8. Avoid CSS Expressions

9. Make JavaScript and CSS External

10. Reduce DNS Lookups

11. Minify JavaScript and CSS

12. Avoid Redirects

13. Remove Duplicate Scripts

14. Configure ETags

15. Make AJAX Cacheable

16. Use GET for AJAX Requests

17. Reduce the Number of DOM Elements

18. No 404s

19. Reduce Cookie Size

20. Use Cookie-Free Domains for Components

21. Avoid Filters

22. Do Not Scale Images in HTML

23. Make favicon.ico Small and Cacheable

Few important rules are briefly discussed here.

Page 40 of 77

2.3.1. Minimize HTTP Requests

80% of the end-user response time is spent on the front-end. Most of this time is tied up in

downloading all the components in the page: images, stylesheets, scripts, flash, etc. Reducing the

number of components in turn reduces the number of HTTP requests required to render the page.

This is the key to faster pages.

One way to reduce the number of components in the page is to simplify the page's design. Here

are some techniques for reducing the number of HTTP requests, while still supporting rich page

designs.

Combined files are a way to reduce the number of HTTP requests by combining all scripts into a

single script, and similarly combining all CSS into a single stylesheet. Combining files is more

challenging when the scripts and stylesheets vary from page to page, but making this part of release

process improves response times.

Reducing the number of HTTP requests in a page is the place to start. This is the most important

guideline for improving performance for first time visitors 40-60% of daily visitors to a site come

in with an empty cache. Making a page fast for these first time visitors is the key to a better user

experience.

2.3.2. Use a Content Delivery Network

As a first step to implementing geographically dispersed content, don't attempt to redesign the web

application to work in a distributed architecture. Depending on the application, changing the

architecture could include daunting tasks such as synchronizing session state and replicating

database transactions across server locations. Attempts to reduce the distance between users and

the content could be delayed by, or never pass, this application architecture step.

Remember that 80-90% of the end-user response time is spent downloading all the components in

the page: images, styleSheets, scripts, Flash, etc. This is the Performance Golden Rule. Rather

than starting with the difficult task of redesigning the architecture of application, it's better to first

disperse its static content. This not only achieves a bigger reduction in response times, but it's

easier thanks to content delivery networks. The working procedure has been discussed on section

2.2.

Page 41 of 77

2.3.3. Add an Expires or a Cache-Control Header

There are two aspects to this rule:

 For static components: implement "Never expire" policy by setting far future Expires header

 For dynamic components: use an appropriate Cache-Control header to help the browser with

conditional requests

Web page designs are getting richer and richer, which means more scripts, stylesheets, images,

and Flash in the page. A first-time visitor of a page may have to make several HTTP requests, but

by using the Expires header those components could be make as cacheable. This avoids

unnecessary HTTP requests on subsequent page views. Expires headers are most often used with

images, but they should be used on all components including scripts, stylesheets, and Flash

components.

Expires: Thu, 15 Apr 2010 20:00:00 GMT

This example of the ExpiresDefault directive sets the Expires date 10 years out from the time of

the request.

2.3.4. Gzip Components

The time it takes to transfer an HTTP request and response across the network can be significantly

reduced by decisions made by front-end engineers. It's true that the end-user's bandwidth speed,

Internet service provider, proximity to peering exchange points, etc. are beyond the control of the

development team. But there are other variables that affect response times. Compression reduces

response times by reducing the size of the HTTP response.

Starting with HTTP/1.1, web clients indicate support for compression with the Accept-Encoding

header in the HTTP request.

Accept-Encoding: gzip, deflate

2.3.5. Put Style sheets at the Top

Front-end engineers that care about performance want a page to load progressively; that is, the

client wants the browser to display whatever content it has as soon as possible. This is especially

important for pages with a lot of content and for users on slower Internet connections. The problem

with putting stylesheets near the bottom of the document is that it prohibits progressive rendering

Page 42 of 77

in many browsers, including Internet Explorer. These browsers block rendering to avoid having to

redraw elements of the page if their styles change. The user is stuck viewing a blank white page.

2.3.6. Put Scripts at the Bottom

The problem caused by scripts is that they block parallel downloads. The HTTP/1.1

specification suggests that browsers download no more than two components in parallel per

hostname. If the images served from multiple hostnames, the web browser will get more than two

downloads in parallel. While a script is downloading, however, the browser won't start any other

downloads, even on different hostnames.

2.3.7. Make JavaScript and CSS External

Using external files in the real world generally produces faster pages because the JavaScript and

CSS files are cached by the browser. JavaScript and CSS that are inlined in HTML documents get

downloaded every time the HTML document is requested. This reduces the number of HTTP

requests that are needed, but increases the size of the HTML document. On the other hand, if the

JavaScript and CSS are in external files cached by the browser, the size of the HTML document

is reduced without increasing the number of HTTP requests.

2.3.8. Reduce DNS Lookups

The Domain Name System (DNS) maps hostnames to IP addresses, just as phonebooks map

people's names to their phone numbers. When anyone type www.yahoo.com into browser, a DNS

resolver contacted by the browser returns that server's IP address. DNS has a cost. It typically takes

20-120 milliseconds for DNS to lookup the IP address for a given hostname. The browser can't

download anything from this hostname until the DNS lookup is completed.

DNS lookups are cached for better performance. Most browsers have their own caches, separate

from the operating system's cache. As long as the browser keeps a DNS record in its own cache,

it doesn't bother the operating system with a request for the record.

2.3.9. Minify JavaScript and CSS

Minification is the practice of removing unnecessary characters from code to reduce its size

thereby improving load times. When code is minified all comments are removed, as well as

unneeded white space characters (space, newline, and tab). In the case of JavaScript, this improves

Page 43 of 77

response time performance because the size of the downloaded file is reduced. Two popular tools

for minifying JavaScript code are JSMin and YUI Compressor. The YUI compressor can also

minify CSS.

2.3.10. Avoid Redirects

Redirects are accomplished using the 301 and 302 status codes. Here's an example of the HTTP

headers in a 301 response:

 HTTP/1.1 301 Moved Permanently

 Location: http://example.com/newuri

 Content-Type: text/html

The browser automatically takes the user to the URL specified in the Location field.

If a domain name change is the cause of using redirects, an alternative is to create a CNAME (a

DNS record that creates an alias pointing from one domain name to another) in combination

with Alias or mod_rewrite.

2.3.11. Remove Duplicate Scripts

Unnecessary HTTP requests happen in Internet Explorer, but not in Firefox. In Internet Explorer,

if an external script is included twice and is not cacheable, it generates two HTTP requests during

page loading. Even if the script is cacheable, extra HTTP requests occur when the user reloads the

page.

2.3.12. Configure ETags

Entity tags (ETags) are a mechanism that web servers and browsers use to determine whether the

component in the browser's cache matches the one on the origin server. (An "entity" is another

word a "component": images, scripts, stylesheets, etc.) ETags were added to provide a mechanism

for validating entities that is more flexible than the last-modified date. An ETag is a string that

uniquely identifies a specific version of a component. The only format constraints are that the

string be quoted. The origin server specifies the component's ETag using the ETag response

header. The working procedures of ETag have been discussed on 2.1.2 and 2.1.3.

Page 44 of 77

2.3.13. Post-load Components

Contents absolutely required in order to render the page initially could be stored separately. The

rest of the content and components can wait.

JavaScript is an ideal candidate for splitting before and after the onload event. For example, if

anyone has JavaScript code and libraries that do drag and drop and animations, those can wait,

because dragging elements on the page comes after the initial rendering. Other places to look for

candidates for post-loading include hidden content (content that appears after a user action) and

images below the fold.

2.3.14. Preload Components

Preload may look like the opposite of post-load, but it actually has a different goal. By preloading

components, anyone can take advantage of the time the browser is idle and request components

(like images, styles and scripts) will need in the future. This way when the user visits the next

page, most of the components already in the cache and the page will load much faster for the user.

2.3.15. Reduce the Number of DOM Elements

A complex page means more bytes to download and it also means slower DOM access in

JavaScript. It makes a difference if anyone loop through 500 or 5000 DOM elements on the page

when developer wants to add an event handler for example.

A high number of DOM elements can be a symptom that there's something that should be improved

with the markup of the page without necessarily removing content.

2.3.16. Split Components Across Domains

Splitting components allow to maximize the parallel downloads. Do not use more than 2-4 domains

because of the DNS lookup penalty. For example, anyone can host HTML and dynamic content

on www.example.org and split static components between

static1.example.org andstatic2.example.org.

Page 45 of 77

2.3.17. Minimize the Number of iframes

Iframes allow an HTML document to be inserted in the parent document. It's important to

understand how iframes work so they can be used effectively.

2.3.18. No 404s

HTTP requests are expensive so making an HTTP request and getting a useless response (i.e. 404

Not Found) is totally unnecessary and will slow down the user experience without any benefit.

2.3.19. Reduce Cookie Size

HTTP cookies are used for a variety of reasons such as authentication and personalization.

Information about cookies is exchanged in the HTTP headers between web servers and browsers.

It's important to keep the size of cookies as low as possible to minimize the impact on the user's

response time.

 Eliminate unnecessary cookies

 Keep cookie sizes as low as possible to minimize the impact on the user response time

 Be mindful of setting cookies at the appropriate domain level so other sub-domains are not

affected

 Set an Expires date appropriately. An earlier Expires date or none removes the cookie

sooner, improving the user response time

2.3.20. Avoid Filters

The IE-proprietary AlphaImageLoader filter aims to fix a problem with semi-transparent true color

PNGs in IE versions < 7. The problem with this filter is that it blocks rendering and freezes the

browser while the image is being downloaded. It also increases memory consumption and is

applied per element, not per image, so the problem is multiplied.

The best approach is to avoid AlphaImageLoader completely and use gracefully degrading PNG8

instead, which are fine in IE. If anyone absolutely need AlphaImageLoader, use the underscore

hack _filter as to not penalize IE7+ users.

Page 46 of 77

2.3.21. Make favicon.ico Small and Cacheable

The favicon.ico is an image that stays in the root of a server. It's a necessary evil because even if

anyone don't care about it the browser will still request it, so it's better not to respond with a 404

Not Found.

It's small, preferably under 1K.

2.3.22. Avoid Empty Image src

Image with empty string src attribute occurs more than one will expect. It appears in two forms:

1. straight HTML <imgsrc="">

2. JavaScript varimg = new Image();

img.src = "";

Both forms cause the same effect: browser makes another request to the server.

 Internet Explorer makes a request to the directory in which the page is located.

 Safari and Chrome make a request to the actual page itself.

 Firefox 3 and earlier versions behave the same as Safari and Chrome, but version 3.5

addressed this issue [bug 444931] and no longer sends a request.

 Opera does not do anything when an empty image src is encountered.

Empty source is bad.

1. Cripple a server by sending a large amount of unexpected traffic, especially for pages that

get millions of page views per day.

2. Waste server computing cycles generating a page that will never be viewed.

3. Possibly corrupt user data. If anyone is tracking state in the request, either by cookies or in

another way, he has the possibility of destroying data. Even though the image request does

not return an image, all of the headers are read and accepted by the browser, including all

cookies. While the rest of the response is thrown away, the damage may already be done.

The root cause of this behavior is the way that URI resolution is performed in browsers. This

behavior is defined in RFC 3986 - Uniform Resource Identifiers. When an empty string is

encountered as a URI, it is considered a relative URI.

Page 47 of 77

Firefox, Safari, and Chrome are all resolving an empty string correctly per the specification, while

Internet Explorer is resolving it incorrectly, apparently in line with an earlier version of the

specification, RFC 2396 - Uniform Resource Identifiers (this was obsoleted by RFC 3986). So

technically, the browsers are doing what they are supposed to do to resolve relative URIs. The

problem is that in this context, the empty string is clearly unintentional.

The src attribute must be present, and must contain a valid URL referencing a non-interactive,

optionally animated, image resource that is neither paged nor scripted.

Hopefully, browsers will not have this problem in the future. Unfortunately, there is no such clause

for <script src=""> and <link href="">. Maybe there is still time to make that adjustment to ensure

browsers don't accidentally implement this behavior.

Though there are so many technologies to optimize the web traffic and to improve the internet

browsing experience, but there are few scopes to improve the present technologies. In next chapter

few example scenarios have been discussed and new architectures have been proposed to solve

those problems.

Page 48 of 77

Chapter 3

Proposed Solution

Page 49 of 77

The goal of Web Optimizer is to reduce the intermediate web traffic. There are four different of

web optimizers and their goals are: (discussed in section 1.2).

1. Cache Sharing

2. Cache Tree

3. Cache Broadcasting

4. LiteWeb

Proposed Architecture:

This Web Optimizer will work with traditional Client-server architecture. It has two parts:

3. Server Side Web Optimizer (SSWO)

4. Client Side Web Optimizer (CSWO)

Both will act as proxy server with few additional responsibilities.

Server

Web

Optimizer

(Client side)
Client

Router
Web

Optimizer

(Server side)

Figure 30: Client side and server side web optimizer

a) Server Side Web Optimizer (SSWO)

The goal of server side web optimizer is to reduce the load of server as acting as proxy server and

optimize the web content by tracking, caching and broadcasting web content.

 SSWO will keep track of client/CSWO and it will broadcast all long live public cacheable

content (LLpCC).

 SSWO will send key-content as a lighter version of website if client’s bandwidth is low.

 Maintain a Cache Tree based on the data type and their popularity. It will help to find any

update of cacheable content.

Page 50 of 77

Server

Web

Optimizer

(Server side)

Broadcast

Low Bandwidth

Sent

Key-content

long live public
cacheable

content (LLpCC)

Figure 31: Server Side Web Optimizer

b) Client Side Web Optimizer (CSWO)

The goal of Client Side web optimizer is to keep log of cacheable content of client’s pc and reduces

web traffic by sharing web contents in between end users.

 Broadcast LLpCC who have requested for that content previously.

 Keep track of cache content and browser’s request. Connect Clients locally to let them to

share their cached content.

 Maintain a Cache Tree based on the data type and their popularity. This tree will help to

find out any changes on server side quickly and help client to synchronous cacheable

content with server.

Web

Optimizer

(Client side)

Router

Figure 32: Client Side Web Optimizer

Page 51 of 77

3.1. Cache sharing

Browser stores all cacheable web contents for a while. When a user browses the same page

within a few minutes then the content will be served from the cache memory of browser.

Sometimes browser keeps those contents for a long time. And also each time there is a request for

that cache content the browser also checks is it valid/fresh or not.

In most of the time the popularity of web site depends on the geographical region. In most of the

cases the users of a network browse same types of website (News portal, popular sites). Those

content have to be served from server. Among those content some are dynamic (very light

weighted content) and others are static (images, weight of those content is very high).

Each time a user browses a page, Browser stores few contents to server it later. This mechanism

is applied in all modern browsers.

The aim of this “Cache Sharing” is to decrease the distance between server and client by serving

the content from a neighbor’s computer. It will improve the browsing experience by decreasing

the downloading time and also it will decrease the web traffic.

3.1.1. Cacheable contents:

There are different types of contents on a web page. All contents will be grouped/

categorized based on their properties.

1. Long Live public cacheable Content (LLpCC).

2. Temporary Cacheable Content (CC)

3. Key Content (KC)

4. Non Cacheable Content (NCC)

An Extra tag could be added with contents to track the all cacheable contents:

Content-type: LLpCC

Most of websites contain LLpCC like

 Images (Logo and branding images)

 Static images (Those does not change frequently)

 Downloadable Content/Media Files

 Style sheets (CSS files)

 Basic JavaScript files and so on.

Page 52 of 77

And also there are few important contents of websites are known as Key Contents (KC).

Key contents are the main part of websites. Those key contents have to be cached very

carefully and check the validation with high priority.

 HTML pages

 Content related images

 Frequently modified JavaScript and CSS

Some contents are sensitive and should avoid caching, those are:

 Sensitive data (banking information, password etc.)

 Dynamic Content (based on request, result)

 Frequently changed contents (News portal)

Here this internet provider may work as “Client Side Web optimizer” or another proxy

server has to set for it. This web optimizer will maintain a log of all LLpCC.

3.1.2. Scenario Analysis

Internet connects millions of computers with another. This internet could be divided into

so many small networks. There exist many computers in a network and they are connected

to internet through an internet provider. The distance between a client pc and server could

be thousands of miles. All the web contents have to travel this long path to serve the client.

ServerInternet provider

(Web Optimizer)
C3

Thousands of Miles away

Network 1

C1

C2

Internet

Figure 33: Local networks connected with internet through an Internet provider.

Suppose, there is network consist of 30 users on a network named as “Network 1”. They

all are contacted to same ISP/local server/internet provider. They are intra connected and

Page 53 of 77

can communicate without internet. Through an internet provider they are connected with

internet.

Let, three users of Network 1 are browsing googl.com. They will send individual request to

the server and server will send the response. So the intermediate path has to carry same

content for three times. The aim of “Cache Sharing” is to avoid those redundant web traffics

from internet.

3.1.3. How “Cache Sharing” works

Client side web optimizer (CSWO) will keep track of cacheable content of client’s PC. If

CSWO receive a new request that could be served from client side, then it will not send the

request to the server. CSWO will connect host pc (who has that content) with the requester

and establish a peer to peer connection to transmit the requested content. The goal “Web

Optimizer” could be achieved by with the help of Client side web optimizer. Shareable

browser cache will reduce the load of proxy server, network traffic and web pages will be

faster. Normally Browser caches are stored in user’s computer. The aim of “Cache Sharing”

is to make shareable those caches with others.

The CSWO have to maintain a log of public cache contents of end user. A Browser plug-in

“Cache Manager” could be introduced to handle intra-networked Figure 5 cache requests

shows how the proposed architecture will work. The working procedure of p2p content

sharing have been discussed on [8] [12].

Page 54 of 77

Web

Optimizer

Router

C1
C2

C3

Host File Source Timestamp

Google.com logo.jpg C3 1 Feb 2016

Yahoo.com style.css C1 20 Jan 2016

Cache log

Figure 34: Cache log of CSWO

3.1.3.1. Data Transaction:

If the content is available on the network and fresh, then that content will be served.

 At first there will be peer to peer connection. This connection will be established by the
proxy server.

 Then the content will be served through this connection.

Here the CSWO is playing a vital role in this architecture. CSWO will check the availability

of cache provider, which have the requested cache and alive on the local network. If there

are any, then it will set a peer to peer connection with client and cache provider. The CSWO

is responsible to check the freshness of cache by using the E-Tag or/and modification date

of that contents. If the cache failed to pass the validation test, then the cache will be fetched

from main server.

Page 55 of 77

website request -

www.google.com

Potentially

Cacheable

Content?

Is there

any Cache provider

available on the

network?

Set a peer to peer

connection

between cache

provider and client

Fetch content from

google’s

web server

Save the content on

browser's Cache

Request for

dynamic

Content from

google’s server.

Return the

Home page of

Google to

End-user

 NO

YES

YES

NO

Check the log of

CSWO and its

freshness

Update the log of

Caches, maintained

by the proxy server

Download the cache

from cache provider

Return the

Home page of

Google to

End-user

Figure 35: Flow chart of proposed cache management architecture

3.1.4. Challenges

There are few sensitive issues of this architecture. Sharing contents without any

authentication is very risky but normally the cached contents are encrypted by browsers.

a) Security:

The security of caches is one of the major issues of this proposed solution. The caches will

be locally stored and shared among each other. Any one may inject malware or virus with

those caches. Encryption could be a handy solution for this issue.

Page 56 of 77

The cache contents have to be encrypted in browser cache memory. Only public cacheable

content could be send through this connection. Proxy server is responsible to check the

malicious content.

b) Multiple Browsers:

Most of the user may use more than one browser on their computer. And the user may

not install this plug-in on all browsers, if they do then synchronizing and maintaining those

caches of all browsers is another issue.

c) Dynamic Contents:

Dynamic contents are not cacheable, because the contents have been served from the

database of main server.

d) Content availability:

To find out requested contents in this network, all public cacheable contents have to be

tracked. Then the availability of that content with address will be traceable. There have to

be a computer/proxy server to keep track of all those caches.

e) Freshness of contents:

There should be a validation check before each transaction. CSWO may help regarding this

issue.

3.1.5. Advantages of Cache Sharing

This cache sharing technique will reduce the web traffic. Less web traffic and request is

needed for faster internet.

Assume,

n is number of cacheable content.

d is the distance from client to web optimizer

D is the distance from web optimizer to server (Where D >> d)

c is the contest time of server, required to process a single request.

A is the amount of data is being transmitted from web optimizer to server

a is the amount of data is being transmitted from client to web optimizer.

Page 57 of 77

m is the validation check request by web optimizer to check the validation of cached

content.

Table 1. Comparison between traditional system and cache sharing.

Criteria Traditional Cache Sharing

Data transmission (d*a+D*A)*n d*a*n+m

Server processing time required n*c

(individual request have to be

processed)

m*c

(request send by

web optimizer)

3.2. Cache Tree

Popular web sites have been browsed thousands of times in a day. Most of the contents

of those sites are dynamically generated [Result publication sites/ shear market] or few of

them updates continuously [News portal / Blog]. On the other hand, there are private,

password protected data of social networking websites, Banks, E-mails and those are not

cacheable.

There are some less sensitive contents on every regular website, among them style sheets

(CSS file), action scripts (JavaScript), images (logo/ photos) are very common and does not

change very frequently. If the administrator finds any bug or wants to alter the look or

wants to add some new features, then they change/update those contents. That means

every sites have cacheable contents. Those cacheable contents are being cached in cache

server and locally stored in browser’s cache memory.

All cacheable contents could be distributed into different cache server. But there are some

general issues related with distributed web caching architecture. Such as Extra overhead,

size of cache, cache coherence problem, scalability, robustness, hit ratio, and Load

balancing, low latency and so on. On the other hand, web servers have to perform lots of

functionality to cautiously server the content. Here the validation check request is an

overhead for server.

Page 58 of 77

The browser sends a validation check request to the server to check the freshness of that

particular resources requested by a user to make sure that the cached resources stored in

browser cache are still fresh. Those requests create some extra web traffics on the internet.

The aim of “Cache Tree” is to find out an efficient and effective solution to reduce web

traffic by optimizing cache validation check request.

3.2.1. Case Study

Suppose there is a website named abc.com and it contains few cacheable contents. User

may visit those pages separately or one from other. This website contains

Content type Cacheable content Key content
 Image file 3 1
 CSS file 5 0
 HTML file 0 1
 Js file 2 0

Now there is a request for abc.com. Home page requires 12 files. According to the

traditional system browse will send 12 different requests and download them to render

the home page of abc.com. Among them 10 contents are cacheable and others are not

cacheable. Browser will store/cache all of those cacheable contents.

During the second request for the same page browser will send 10 "freshness" check

request to be ensured that all contents are fresh and 2 regular requests to download rest

of the contents. After the first request, every request will contain 10 "freshness" check

requests and 2 regular requests. Most of the time those "freshness" check requests will

return with negative result. The main aim of “Cache Sharing” is to reduce this validation

check requests.

Let, 1 million Facebook users are browsing this website 5 times in a day and each time they

browse five different pages in an average and there are 10 files to check the freshness,

then the total number of validation check request will be.

Facebook user 10, 00,000

Daily visit 5 times

Page 59 of 77

Number of pages 5

Number of Resources 10

Total: 1000000 x 5 x 5 x 10 = 25, 00, 00,000

25cr validation check request required for only one site. In most of the case those request

returns with negative result that means there are no update for that resources. And also

the servers have to process those request and send response message to the browser. So

there is more 25Cr responses message from server.

To minimize this huge amount request ‘Max-age’ attribute for cached contents could be

used. But there is no appropriate value of ‘Max-age’. If the value is large then there are

possibilities to loss some update and again if the value is small, then the number of

unnecessary request will increase.

The aim of “Cache Tree” is to find out an efficient and effective solution for popular site to

eliminate this Validations check request.

3.2.2. Cache Tree

A cache tree will be maintained as secondary index for all cacheable contents. All contents

will be distributed into different cache trees. This tree will work as secondary index. A single

file could be member of multiples trees. All cache trees could be categorized into two

types.

 Grouped Cache Tree (Various Types of file required for a specific task).

 Regular Cache Tree (Based on MIME types)

Among those files LLpCC will not update frequently. Those are the static contents for a website. It
may contain logo, style file and images to represent the theme of that website.

During each request all contents will be checked their freshness. This group will ensure

that all required files are fresh or not. It will reduce the freshness check request and find

out any changes with minimum time and process by using the cache tree.

Page 60 of 77

To check any updates for a specific grouped contents the browser has to send a validation

check request with cached time and group name. If the last modified content of that

grouped is older than cached time, then no contents will be served from server.

“Regular Cache Tree” will contain all cacheable contents of a website. This tree will be

generated based on the file types.

The data structure of cache tree is very important. According to the aim of “Cache Tree”

the most updated contents have to be on the top of the tree. So that most recent file will

get higher priority than others. If any old files get modified, then it should be on top.

Figure 36: Insert new item on the heap

Cache tree will be maintained based on a Heap, where the most recent will get the highest priority.

i. Select a content:

The most recent element will get the highest priority, is always on top, so it will take Θ (1)
to.

ii. Add a content:

Since the cache tree is a complete binary tree, it has minimum height, and the worst case
number of moves up is logarithmic, Θ (log n) according to the heap size (n).

iii. Remove a content:

Page 61 of 77

Removing content from the cache tree is less used than others. This step also required Θ
(log n) to remove content from the tree.

Cache tree will be always rearranged based on the modification time of file. If a file gets

modified, then it will be inserted into first position. So always the top node is the newest

file or most updated file of this tree.

3.2.3. How “Cache Tree” works:

The Cache tree is heap where recent content will get higher priority.

Logo.jpg

logo.jpg logo.jpg

logo.jpg logo.jpg

Logo.JPG

[5 Feb 2016]

Style.css

[1 Feb 2016]

Activity.js

[2 Feb 2016]

Banner.PNG

[20 Jan 2016]

Background.PNG

[20 Jan 2016]

Figure 37: Regular Cache Tree (Server Side)

Same cache tree will be maintained in server side and client side. And the cache tree of

client side will be synchronized by downloading the new content from server.

Client

logo.jpg

logo.jpg logo.jpg

Style.css

[1 Feb 2016]

Banner.PNG

[20 Jan 2016]

Background.PNG

[20 Jan 2016]

Figure 38: Cache Tree (Client side)

The timestamp of root node will be send with http request.

CacheTree Name: Blue

Page 62 of 77

CacheTree Type: Regular cache tree
CacheTree Timestamp: 1 Feb 2016

Figure 39: Additional information with HTTP request for cache tree

All updated contents, newer than CT timestamp will be sent to the client and also the cache

tree will be synchronized. It will also update the “CT timestamp” of client’s cache tree. Client

will use the new “CT timestamp” for next request.

Server

Router

Client

Logo.jpg

Style.css Activity.js

Banner.PNG Background.png

Logo.jpg

Style.css Activity.js

Banner.PNG Background.png

Figure 40: New contents have been served from server to client

3.2.3.1. Working procedure of Cache Tree:

Same cache tree will be maintained on client side and server side. Client’s browser will add

the last updated time for each group of cacheable contents with request header. An

attribute “cached-time: 15:30:00 1 Jan 2016” will be added with the HTTP request header.

If any content of that group has been updated in the server side, then the cached-time for

that group will be changed after synchronizing and downloading all new contents.

1. New user: All contents will be sent to the clients Browser. Browser will store those file till
there is no request to update those files from server.

2. Server has update: If server has any updates for a particular group of cacheable content. Then
server will update its cache tree.

3. Request from previous user: previous user means, who have already browsed this site before.
Client’s browsers have the cached contents. At this point there could be two scenarios.

a. Server has new “Cacheable Public Contents”. It will compare the “cached-time” of
client’s contents with the modified time with server content. If the server content is
updated, then new/ modified contents of that group will be sent to the client’s browser.
All Contents will be up-to-dated, and also the cached-time will be updated.

b. If the server has not any updates, then content will be severed from the browser cache
and “Cached-Time” will be updated.

Page 63 of 77

3.2.3.2. Example Scenario:

Group a1 (required for home page) requested on 5 January. All cacheable contents have

been saved in browser cache.

A CSS file has been changed on 7 January and the cache tree of server side has been

updated.

Group a1 is requested on 10 January. Browser will send the last updated time of server

with http request. Server will compare this date with modification date of top node of list

which contains all cache files for Home page.

Server will send all content newer than "updated date".

5 January

Client Side

1.css 2.css 5.css

Jan 5 Jan

5

 Jan 5

Server side

1.css 2.css 5.css

Jan 1 Jan

1

 Jan 1

7 January

Server side

5.css 1.css 2.css

Jan 7 Jan

1

 Jan 1

10 January

Client side:

• Send request with “Last Update date: Jan 5”.

Server side:

• Receive the request and send all newer content than Jan 5. Here “5.css” is newer.

Page 64 of 77

• Server will send the file to the client and client will also update its cache tree.

Client side:

5.css 1.css 2.css

Jan

7

 Jan

1

 Jan 1

15 January

Client side:

• Send request with “Last Update date: Jan 10”.

Server side:

• Will receive the request and checked it with the modification date of top node of Group a1.

If the modification date is same or older, then no data will be send. A negative response will be
send. (8 different request and response messages have been resolved by only one request and
response message. Here it also saves the server processing time)

File compression technology could be used to reduce more web traffic. If there are more

than one newer file, then only one compressed file will be sent to the client.

3.2.4. Challenges

Cache tree has to be maintained by client PC and the server. In client side all cache and

cache tree is managed by the web browser application (such as, Opera, Google chrome).

The cache handling mechanism is different from one browser to another. So the cache

tree has to be implemented for such a way that can handle multiple caching mechanisms

simultaneously.

3.2.5. Advantages of Cache Tree

This cache tree will reduce the cache validation request and it will also reduce the web traffic.
Less web traffic and request is needed for faster internet.

Assume,

n is number of cached content (validation is required to reuse them).

m is number of positive response message per request (with content).

o is number of negative response from server (no update is required)

Page 65 of 77

c is the contest time of server, required to process a single request.

TABLE I. COMPARISON BETWEEN TRADITIONAL SYSTEM AND CACHE TREE

Criteria Traditional Cache Tree

Validation check request for single

content

1

1

Validation check request for multiple

Contents

n

1

Response message from server to

client

n m

where, m<< n

Web traffic on the internet Request: n

Response : o+m

Total: n+(o+m)

Request: 1

Response: m

Total: 1+m

Server processing time required to

find new sendable content

n*c

(individual request

from client have to be

processed)

1*c

(only 1 request to find

new cacheable

content)

Page 66 of 77

3.3. Cache Broadcasting

Internet technologies are changing day by day. Web developer may update their web services to

provide the most updated features. According to the web architecture client have to send individual

request to the server and server will serve the content. This request could be reduced by using

cacheable content with ‘cache tree’, max-age, E-Tag.

To serve individual request of client the server sends the response and it travels a long path of

internet. Here the aim of “Cache Broadcasting” is to reduce the intermediate web traffic by

broadcasting Public cacheable contents.

3.3.1. Scenario Analysis

Assume that, there are 200 users and they are browsing “facebook.com”. So the server of Facebook

has to serve the logo of Facebook (for example) at least 200 times through path-1, path-2 path-3

(Figure 41). If the content is cacheable then the client can store that content either the server has to

send those contents again and again. If this content is not cacheable or end user does not keep any

cache of it then the server has to send this content again and again.

If there is an update for this content on server then according to the traditional system, the file

has to be sent to the end user individually if they request for it.

Let,

The file size is 10Kb.

There are 200 end-users.

Total “server to client” data transmission is 2000Kb and also the server has to process 200

requests which have been requested by the end user.

Server

CSWO-1

U-2

Router
SSWO

CSWO-2

U-12

U-1

U-11

Path-1

Path-2

Path-3

Figure 41: Response message are being served from server

Page 67 of 77

If it is cacheable contents then, 200 individual requests from client to server after the first visit to

check the freshness of those contents.

The goal of Cache broadcasting is to reduce the intermediate traffic of server and client with the

help of SSWO and CSWO. Here LLpCC are suitable contents for broadcasting, because they do

not change very frequently and could be cached for a long time. So the broadcasting requests have

to be called very frequently.

3.3.2. Cache Broadcasting

Long Live Public Cacheable Content (LLpCC) does not change very frequently. If there are any

changes in server side those will be broadcasted to the client side. This process will reduce the

freshness check request and save server processing time and data transmission time. Those LLpCC

are also locally shareable.

3.3.3. How “Cache Broadcasting” works

Server Side Web Optimizer will handle this cache broadcasting with the help of client side web

optimizer.

1. Server sider web optimizer (SSWO) is responsible for broadcasting LLpCCs. Server will

send the broadcasted content to the SSWO and it will send all contents to all known Client

Side Web Optimizer (CSWO).

Server

CSWO-1

U-2

Router
SSWO

CSWO-2

U-12

U-1

U-11

Path-1

Path-2

Path-3

Figure 42: SSWO Broadcasting Cache to CSWO

2. CSWO have to keep track of all end users who have browsed that content earlier and

contain those LLpCCs. CSWO receive the broadcasting request from SSWO and then send

it to end user. (force update might be an issue for security)

 Or

Page 68 of 77

CSWO will keep those LLpCC and during the next request for this content then CSWO

will serve it.

3. During regular browsing, the CSWO is responsible to check the freshness of those LLpCC.

Cache Tree could be implemented to check the freshness by only one request to be ensured

that all LLpCC are fresh or CSWO will check the freshness periodically (once a day)

According to the old system they have to send individual request for each contents. In most

of the cases those responses are negative.

This broadcasting will reduce the server to client data transmission.

3.3.4. Example Scenario

With the help of broadcasting LLpCC, if there are updates in the server the server will send it to

the SSWO. Then the SSWO will broadcast it to the CSWO.

CSWO will serve it to the end user. If the file size is 10Kb then the data transmission between

 Server to SSWO is 10Kb

 SSWO to CSWO is 20Kb (there are 2 CSWO)

 CSWO to End user is 2000Kb (200 End user)

Here, it saves at least 1980Kb data transmission from server to CSWO for a single update.

3.3.5. Challenges:

The Broadcasting is simple way to send content but it causes problems like traffic jams, network

congestion and so on.

1. Possibilities of Network Jam.

2. Security is one of the major issues of cache broadcasting. There are some possibilities of

harmful contents being broadcasted and downloaded by the clients.

This security risk could be handled by ensuring that the client is accepting the

broadcasted contents when he needs it.

3.3.6. Advantages

This Cache Broadcasting will reduce the web traffic by reducing the redundant server to client

data transmission.

Page 69 of 77

3.4. LiteWeb

Internet is now medium of communication, services, education and business. Many organizations

are providing so many services through internet. But this internet is not available to all of us. In

many countries, Internet is a dream for them. Some Developing countries are trying to improve

their internet facilities, but due to so many constraints the end users are not receiving the optimum

services. Most of the mobile operators offer internet facilities with “data limit”. In most of the

country, the bandwidth of internet is very poor. To make a website more interactive developers

use large images and lots of scripts.

LiteWeb will be helpful to browse a website with low bandwidth. Many web sites contain so many

style sheet, animations, and videos to make web pages more attractive to the viewers. Except key-

contents most of them are avoidable. A web page that contains only key-content will be treated as

example of LiteWeb.

3.4.1. Scenario Analysis:

Let Internet Speed of User-12 is very slow. User-12 is trying to browse abc.com, but it seems

very slow. It takes more times to download all scripts and images of that website and render all

of it on the browser.

abc.com contains

50 Kb of text

750 Kb of script

2000Kb of images (15 images, including logo and other theme related files)

Total 2800Kb data have to be transferred from server to client. Among them 50 Kb of text and 3

200Kb of are key contents. That means 250 Kb data are the important information and rest of

contents are sent to decorate the page.

If the bandwidth of user is 50Kbps then it will take almost 1 minute to download all the contents.

3.4.2. Introduction to LiteWeb

LiteWeb are consists of all key contents. Those key contents will be severed to the client with the

help of web optimizer. Before that, the developers have to decide what contents will be treated as

“key contents”. Few more information could be added with contents to solve this problem.

Content-type: Key-Contents

MIME is used to describe the content type. A new tag “Key-Content” will be added to track all

key contents of a website. On the other hand, a tree similar with “Cache Tree” could be used to

track all key contents of a web site.

Page 70 of 77

According to the client’s request or based on the feedback of CSWO all those Key contents will

be sent to the clients. This response will be lighter than regular response, that’s why it is named as

“LiteWeb”.

3.4.3. How “LiteWeb” works

Client side Web optimizer will send request for LiteWeb content based on the bandwidth of clients.

Clients may also change the settings as

 Automatically detect and request for LiteWeb.

 Only LiteWeb

 LiteWeb (key content) will get higher priority

CSWO will also keep track of client’s bandwidth and send it to the SSWO. SSWO will check the

bandwidth of client side computer. It will check the settings (embedded information with request)

from the request of the web browser, then SSWO will take decision based on the client’s

preference.

During regular transmission key content will get higher priority and will be sent before other

contents.

ServerCSWOClient Router
SSWO

Bandwidth

information

and

preference

Request

for Light

Web

Process the request by collecting

the necessary content from server

Figure 43: “LiteWeb” request is being served by server

3.4.4. Scenario analysis

With the help of LiteWeb technology, the necessary content could be served faster with low

bandwidth. Based on the user’s preference rest of the content could be served later. Here the web

developers have to distinguish the key contents from others.

Traditional technology takes about 1 minute to download 2800 Kb contents, where key contents

are only 250Kb. with the bandwidth of 50Kbps, key contents will take only 5 seconds to be

transferred from server to client. The clients do not have to wait to browse this website.

This LiteWeb technology will also save the data limit of user. Some internet providers restrict the

data limit or offer good bandwidth with low price.

By using the LiteWeb technology, the user may save their data usages.

Page 71 of 77

“Responsive design” web site designs are getting popular that change the appearance of website

based on the screen resolution/dimension. The goal of “LiteWeb” is a responsive design that will

change the web content (image/script) based on the availability of internet bandwidth.

3.4.5. Challenges

The look of expected website is the main challenges for “LiteWeb”.

1. Inconsistent Layout could be major problem for “LiteWeb”. Because many scripts and

images will not be served from server.

Responsive web design with proper information of height and width of multimedia

contents is a solution for this challenge.

2. Possibilities of missing information. Mostly images will not be included as Key-content.

To solve this problem alternative text (“alt” attribute of “img” tag, used to add alternative

information about that images) could be very useful.

On request image, could be another option. Beside alternative information there will be

button to download that image.

3.4.6. Advantages

This “LiteWeb” will reduce the web traffic that will help the client to download necessary content

faster within limited bandwidth.

1. Key contents will get more priority, so the clients do not have to download unnecessary

scripts or images.

2. The LiteWeb will also reduce the web traffic.

Page 72 of 77

Chapter 4

Validation

Page 73 of 77

To validate the proposed solution a prototype system has been designed based on java. Where

the server sends response to the client according to the proposed architecture.

4.1. Prototype of Cache Tree

A prototype has been designed to demonstrate the working procedure of “Cache Tree” based on

java (Appendix I). Where, there are 12 contents on the server. Client’s required those contents to

render a page. During the first request the client will download all of those contents.

From Client: Have to update items(id): 0 1 2 3 4 5 6 7 8 9 10 11

From Client: Adding Content: 0

From Client: Adding Content: 1

From Client: Adding Content: 2

From Client: Adding Content: 3

From Client: Adding Content: 4

From Client: Adding Content: 5

From Client: Adding Content: 6

From Client: Adding Content: 7

From Client: Adding Content: 8

From Client: Adding Content: 9

From Client: Adding Content: 10

From Client: Adding Content: 11

Figure 44: Client is Downloading content from the server (First time)

There is a heap on the server side and it works as “Cache Tree”. This heap contains the content id

and timestamp.

Heap Content: Id: 9 Time: 1

Heap Content: Id: 10 Time: 1

Heap Content: Id: 11 Time: 1

Heap Content: Id: 6 Time: 4

Heap Content: Id: 8 Time: 2

Heap Content: Id: 5 Time: 5

Heap Content: Id: 4 Time: 6

Heap Content: Id: 0 Time: 10

Heap Content: Id: 3 Time: 7

Heap Content: Id: 2 Time: 8

Heap Content: Id: 7 Time: 3

Heap Content: Id: 1 Time: 9

Figure 45: Heap data structure has been used to construct this Cache Tree

If there are no updates on the server side, then it will send a negative response to the client.

From Client: Nothing to do, updated Till now

Figure 46: There is no updated content on the server

Meanwhile, two new contents have been added on the server and two other contents have been

updated. At the same time the cache tree has to update accordingly. The cache tree will help the

server to find out the new content at minimum possible time and inform the client.

Page 74 of 77

Heap Content: Id: 12 Time: -1

Heap Content: Id: 7 Time: -1

Heap Content: Id: 13 Time: -1

Heap Content: Id: 6 Time: 4

Heap Content: Id: 10 Time: 1

Heap Content: Id: 5 Time: -1

Heap Content: Id: 9 Time: 1

Heap Content: Id: 0 Time: 10

Heap Content: Id: 3 Time: 7

Heap Content: Id: 2 Time: 8

Heap Content: Id: 8 Time: 2

Heap Content: Id: 1 Time: 9

Heap Content: Id: 11 Time: 1

Heap Content: Id: 4 Time: 6

Figure 47: Updated “Cache Tree” of Server

After that, if client request for those content. The server will inform the client that there are 4 new

updates.

From Client: Have to update items (id): 5 7 12 13

Figure 48: Server informed the client about new contents

Server

Router

Client

Logo.jpg

Style.css Activity.js

Banner.PNG Background.png

Logo.jpg

Style.css Activity.js

Banner.PNG Background.png

Figure 49: New contents have been served from server to client

After that the client will collect those contents form server.

From Client: Updating Content ID: 5

From Client: Updating Content ID: 7

From Client: Adding Content: 12

From Client: Adding Content: 13

Figure 50: Client collect the new updated content form server

If the modification date is same or older than no data will be send. A negative response will be

send. (12 different request and response messages have been resolved by only one request and

response message. Here it also saves the server processing time)

Page 75 of 77

4.2. Prototype of Key Content

A prototype has been designed to demonstrate the working procedure of “Key Content”. To

identify the key content an extra information has been added with content properties. If the client

request for “Key contents” due to bandwidth limitation, then the server will send only the key

contents related with the requested page.

number of content :5

Total Data: 3800

File name: logo.jpg || Size: 250 || Modification Date: 5

File name: style.css || Size: 50 || Modification Date: 5

File name: image1.jpg || Size: 500 || Modification Date: 5

File name: image2.jpg || Size: 1000 || Modification Date: 5

File name: image3.jpg || Size: 2000 || Modification Date: 5

Figure 51: Regular Request served by Server

ServerCSWOClient Router
SSWO

Bandwidth

information

and

preference

Request

for Light

Web

Process the request by collecting

the necessary content from server

Figure 52: “LiteWeb” request is being served by server

Here the server sends 5 contents and the total size of 5 contents are 3800 Bytes. If the client request for

only “key contents” then the server will send only 2 contents.

number of content :2

Total Data: 750

File name: logo.jpg || Size: 250 || Modification Date: 5

File name: image1.jpg || Size: 500 || Modification Date: 5

Figure 53: Key Contents Severed by the server

Here, this procedure saved 3050 bytes and it will load five times faster than regular system.

Page 76 of 77

Conclusion and Future Work

The goal of web optimizer is to minimize the intermediate web traffic that will help to browse web

content faster. There are few excising architectures that work to improve the web browsing

experience. Among them Web Cache works to minimize the number of downloadable contents

and Content Delivery Network (CDN) works to minimize the distance between client and server.

The working procedures of web cache and CDN have been discussed on chapter 2. Where web

cache requires freshness check for each cached contents and it causes extra web traffic.

Redundant web content on internet is another scope of improvement. A scenario has been

discussed on chapter 1, where redundant content exit on intermediate path in between server and

local network. Bandwidth limitation on client’s end is one of the major challenges of present web

technology.

A new architecture named as “Web Optimizer” has been proposed to improve the present scenario

of web. This architecture includes Server Side Web Optimizer (SSWO) and Client Side Web

Optimizer (CSWO) as transparent proxy server. This SSWO and CSWO helps to minimize web

traffic by using “Cache Tree”, “Cache Broadcasting” and “Cache Sharing”. To serve the key

contents to the clients “LiteWeb” have been introduced.

Cache Tree helps to synchronize cached content of browser with server’s contents based on the

modification date. Only new or updated contents will be downloaded from server. Only one check

is required to be confirmed that there are no downloadable contents on the server, where the

number of cached contents does not matter.

Cache Broadcasting ensures that multiple clients of a network do not have sent same request to the

server for required content individually. The server will broadcast new cacheable contents to all

known CSWO. Then CSWO is responsible to distribute or serve it to the client.

Cache Sharing tries to collect required contents from local network. Here CSWO maintain a log

of public cacheable contents. If any client of that network requires any file, then CSWO check its

log and if that content is stored on another computer of same network then the CSWO establish a

peer to peer connection with another. Then the host of that content acts as server and send the

response. Here CSWO is responsible to check the freshness of those contents according to its log

file. LiteWeb helps to serve only the key content based on the request of client. This LiteWeb helps

to browse website with low bandwidth.

The proposed “Web optimizer” will help to browse internet faster by minimizing the web traffic.

To validate this proposed system a prototype has been designed based on java. But the actual

environment is different form prototype. Our future plan is to implement this proposed architecture

within real application.

Page 77 of 77

Reference

[1] Mukesh Dawar, Charanjit Singh , “Study on web Caching Architecture: A Survey”,

International Journal of Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 11, November 2013.

[2] Valeria Cardellini , Michele Cola janni, Philip S. Yu , “Dynamic Load Balancing on Web-

server Systems”, IEEE Internet Computing, vol. 3, no. 3, pp. 28-39.

[3] “Optimizing content efficiency”, url: https://developers.google.com. Accessed on :

20January 2016.

[4] “ How to control cache”, http://www.web-caching.com/ , Accessed on : 22January 2016

[5] “ Caching tutorial”, https://www.mnot.net , Accessed on : 29 February 2016.

[6] “Caching in HTTP”, https://www.w3.org/Protocols/ , Accessed on : 2 February 2016.

[7] P. Rodriguez, C. Spanner, E.W. Biersack, “Analysis of Web caching architectures:

hierarchical and distributed caching”, IEEE/ACM Transactions on Networking (Volume:

9, Issue: 4, Aug 2001)

[8] R.L.R. Mattson and S. Ghosh, "HTTP(P2P): a transaction based (HTTP) peer-to-peer

protocol for the dissemination of Web-objects in congested networks", Cluster Computing

and the Grid 2004. CCGrid 2004. IEEE International Symposium on, pp. 174-181, 2004.

[9] Troy A. Johnson , Patrick Seeling , “CacheConnect: On-device proxy and web cache for

performance increases”, Consumer Communications & Networking Conference (CCNC),

2016 13th IEEE Annual.

[10] "Cisco visual networking index: Global mobile data traffic forecast update 2014–2019",

Feb. 2015.

[11] T. Miyoshi, “Consideration about the cache server optimization and stable network

access”, Knowledge-Based Intelligent Electronic Systems, 2008.

[12] Jin Li. “On peer-to-peer (P2P) content delivery,” Peer-to-Peer Networking and

Applications, vol. 1, pp. 45-63, Jan. 2000.

[13] Jia Wang, “A Survey of Web Caching Schemes for the Internet”, Cornell Network Research

Group (C/NRG), 2009.

[14] Hai Jiang, Jun Li, Zhongcheng Li , Xiangyu Bai , "Performance Evaluation of Content

Distribution in Hybrid CDN-P2P Network "; Second International Conference on Future

Generation Communication and Networking 2008.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20Rodriguez.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.C.%20Spanner.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.W.%20Biersack.QT.&newsearch=true

