
1

Design & Development of a Microcontroller

Based Electronic Queue Control

Developed by:

Morium Akter

ID: 2012-1-56-019

&

Naheed Md. Tousif Khan

ID: 2012-3-50-007

East West University

Department of Electronics & Communication Engineering

Project Supervisor:

Dr. Md. Habibur Rahman

Professor

Dept. of Electrical and Electronics Engineering

University of Dhaka

2

DECLARATION

We hereby declare that we carried out the work reported in this project in the Department of

Electronics and Communication Engineering, East West University, under the supervision of

Dr. Md. Habibur Rahman. We solemnly declare that to the best of our knowledge, no part of this

report has been submitted to elsewhere for award of any degree. All sources of knowledge, given in

this report, have been duly acknowledged.

Signature:

..

Naheed Md. Tousif Khan

ID: 2012-3-50-007

..

Morium Akter

ID : 2012-1-56-019

Supervisor

Dr. Md. Habibur Rahman

Professor

Dept. of Electrical and Electronics

Engineering

University of Dhaka

3

APPROVAL

This is to certify that the Project titled “Design & Development of a Microcontroller Based

Electronic Queue Control” submitted to the honorable members of the Board of Examiners of the

Faculty of Engineering for partial fulfillment of the requirements for the degree of Bachelor of

Science in Electronics & Telecommunications Engineering by the following students has been

accepted as satisfactory.

--

Dr. Md. Habibur Rahman

Professor, Electrical and Electronics

Engineering

University of Dhaka

Dr. M. Mofazzal Hossain

Chairperson

Dept. of Electronics and Communication

Engineering

East West University

Submitted By:

Morium Akter

ID : 2012-1-56-019

&

Naheed Md. Tousif Khan

ID : 2012-3-50-007

http://www.ewubd.edu/dr-m-mofazzal-hossain/

4

ACKNOWLEDGEMENTS

Many people deserve our thanks for their help in completing this project. We would like to thank

our department for giving us the chance to do this project and would remain grateful to all the

faculties of ECE Department. We want to express our thanks and deep appreciation to our advisor

Dr. Md. Habibur Rahman as he has exhausted all his knowledge and time by following up our daily

progress and encouraging advices and even by sharing on the troubles. We would like to extend our

thanks to the laboratory staff of ECE Dept. for their fast response and cooperation with us to get

some materials we need for our case. I have special acknowledgment for my group member for his

understanding and hard working from the beginning up to the end.

Finally, we would like to thank our family and all persons who were involved with this project for

their valuable help and professionalism during this project.

5

 ABSTRACT

In modern days, we must use various high-tech electronic devices and equipment to get our jobs

done and make the life easier. The purpose of this project is to design an Electronic Queue Control

System. Here, we have used 4-bit parallel registers (74LS175), BCD to 7-segment display decoder

driver (74LS47) and 7-segment display unit and an Arduino Uno board. Four I/O pins of Arduino

are arranging in the multiplexed form to send data to the display units. Different Clock pulses for

74LS175 registers have been used to save the input data in a particular register. 4-bit parallel

register save the input data from Arduino and send to the input of BCD to 7-segment display

decoder driver. Getting the output, BCD to 7-segment decoder driver display the binary number as

(0-9) in the 7-segment displays. This project will show how three 7-segment displays can be used

for counter numbers (0-9) (where services to the customers will be provided) and serial numbers (0-

99). The developed system can be used like a Queue Control system of any Supermarket checkouts,

Banks, Customer Care, Airport security etc. The system has been designed and implemented

practically. It is found that the system works perfectly.

https://en.wikipedia.org/wiki/Airport_security

6

TABLE OF CONTENTS

Short Contents Page

TITLE PAGE…………………………………………………………………………….…..01

DECLARATION…………………………………………………………………………….02

APPROVAL………………………………………………………………………………….03

ACKNOWLEDGEMENT…………………………………………………………………...04

ABSTRACT ………………………………………………………………………………….05

TABLE OF CONTENTS…………………………………………………………………….06

List of Table……………………………………………………………………………...........07

List of Figure……………………………………………………………………………..........08

CHAPTER

1. INTRODUCTION…………………………………………………………...09

 1.1 Queue

 1.2 Applications

 1.3 Purpose of this Project

 1.4 Outline of the report

 2. AN OVERVIEW OF MICROCONTROLLERS………………………....11

 2.1 Introduction15

 2.2 Microcontroller

 2.3 Advantages of Microcontroller

 3. THEORY BEHIND THE PROJECT…………………………………….....13

 3.1Arduino-UNO

 3.1.1 History of Arduino-UNO

 3.1.2 Figure of Arduino-UNO

 3.1.3 Architecture of Arduino-UNO

 3.1.4 Power

 3.1.5 Power LED Indicator

 3.1.6Reset Button

 3.1.7 Tx Rx LEDs

 3.1.8 Main IC

 3.1.9 Voltage Regulator

 3.1.10 Technical specs

 3.1.11 Schematic Diagram

 3.2 Getting started with Arduino Software……………………………………21

 3.2.1 The Integrated Development Environment (IDE)

 3.2.2 IDE Parts

7

 3.3 7-SEGMENT DISPLAY…………………………………………………….18

 3.3.1 Introduction

 3.3.2 History

 3.3.3 Figure

 3.3.4 Truth Table

 3.4 BCD to 7-segment display decoder driver…………………………………20

 3.4.1 Introduction

 3.4.2 Connection

 3.4.3 Figure

 3.4.4 Connection with 7-segment display

 3.4.5 Datasheet of 7447 decoder

 3.5 4-Bit Parallel Register……………………………………………………….23

 3.5.1 Introduction

 3.5.2 Logic Diagram

 3.5.3 Figure

 3.5.4 Truth Table

4. Design & Development of the System…………………………………………..21

 4.1 Hardware design

 4.2 Block Diagram

 4.3 Full Circuit Connection
 4.3.1 Components used in the System

4.4 7-Segment Display……………………………………………………………..27
 4.4.1 Introduction

 4.4.2 Schematic Diagram of 7-Segment Display

 4.4.3 Schematic Diagram between 7-Segment Display & 7447

 4.4.4 Description

 4.5 BCD to 7-Segment Decoder Driver (7447)…………………………………29

 4.5.1 Introduction

 4.5.2 Schematic Diagram of 7447

 4.5.3 Schematic Diagram between 7-Segment Display & 7447

 4.5.4 Description

8

 4.6 Switch………………………………………………………………………….30

 4.6.1 Introduction

 4.6.2 Figure of Switch

 4.6.3 Schematic Diagram between Switch & Arduino

 4.6.4 Description

4.7 4-Bit Parallel Register…………………………………………………………31

 4.7.1 Introduction

4.7.2 Schematic Diagram of 4-Bit Parallel Register

4.7.3 Schematic Diagram between 4-Bit Parallel Register&7-Segment Display & 7447

4.7.4 Description

4.8 Software Design………………………………………………………………..33
4.8.1 Installing Arduino

4.8.2 Verifying the hardware

4.8.3 Arduino Language

4.9Programming Code with Arduino

4.10 Flow Chart

5. Implementation & Result……………………………………………………….39

5.1 Implementation

5.2 Connection with Load

5.3 Result

6.CONCLUSION…………………………………………………………………..41
6.1 Conclusion
6.2 Future Work Scope

REFERENCES……………………………………………………………………..42

9

Chapter 1

INTRODUCTION

1.1 Queue

In general, a queue is a line of people or things waiting to be handled, usually in sequential order

starting at the beginning or top of the line or sequence. In computer technology, a queue is a

sequence of work objects that are waiting to be processed. The possible factors, arrangements, and

processes related to queues. Common implementations are circular buffers and linked lists.

Examples:: include checking out groceries or other goods that have been collected in a self service

shop, at an ATM, at a ticket desk, a city bus, or in a taxi stand.

1.2 Applications of Queue

People form a queue in a fixed, predictable position, such as at supermarket checkouts, some other

retail locations such as banks, airport security In the field of facilities management, structured

queues are commonly known with different names like "Queue Managers" or "Crowd Controllers"

or "Public Guidance Systems Very often, queue management systems are set up to manage ticket

ranking for a service (with or without a numbered ticket) with identification and thus enable a

serene and stress-free waiting. Extending the different possibilities, planned reception by

appointment and remotely rank allocation on or through Short Message Service can also be

included.

1.3 Purpose of This Project

This project will show how can we set up Arduino with BCD to 7-segment display decoder and 4-

bit parallel register and 7-segment display as Queue Control System. In recent years many places

use this system to remove crowd and for doing a peaceful work. This system is work as like First-

Come-First-Service. Clock pulse of 4-bit parallel register is essential for creating this queue system.

Because it is used to save the Input data and show as a counter display. 4-bit parallel register save

the input data from Arduino and send the output to BCD to 7-segment display decoder driver.

Getting the output, BCD to 7-segment display decoder driver display the binary number as (0-9) in

the 7-segment display. This project will show how 3piece 7-segment display use as counter

number(0-9) and serial number (0-99) like a Queue Control system.

In short the purpose of the project is---

o To design a smart control system

o To construct a smart electronic queue controller circuit in the breadboard

o Test for its functionality

o Product commercialization

o To design the control system with low cost components

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Groceries
https://en.wikipedia.org/wiki/Self_service
https://en.wikipedia.org/wiki/Retailing#Shops_and_Stores
https://en.wikipedia.org/wiki/Automatic_Teller_Machine
https://en.wikipedia.org/wiki/City_bus
https://en.wikipedia.org/wiki/Taxi_stand
https://en.wikipedia.org/wiki/Airport_security
https://en.wikipedia.org/wiki/Short_Message_Service

10

1.4 Outline of the report

Here we describe six chapters on the purpose of this project. First we describe the introduction part

that contains Queue, Applications, Purpose of this project. In the 2nd chapter we describe An over

view of Microcontroller that contains Introduction, Microcontroller, Advantages of Microtroller.

In the 3rd chapter we describes about Arduino, Schematic diagram of Arduino, Introduction of

7-Segment Display, BCD to 7-Segment display decoder driver(74LS47), 4-bit parallel

Register(74LS175), Truth table, Logic diagram of 74LS47 & 74LS175 etc. In the 4th chapter we

describes “The Theory Behind The Project” that brifly describes about the equipment related to the

project as 74LS47 & 74LS175, Switch, 7-segment display ,Block diagram, Full diagram of Ckt, All

Schematic Diagrams, Programming Code, Flow Chart etc. In the 5th chapter we describes about

Implementation & Result of the project. Last of all we describe the conclusion part that contains

conclusion and future work scope etc.

11

Chapter 2

AN OVERVIEW OF MICROCONTROLLERS

2.1 Introduction

Arduino is an open source electronics platform based on easy-to-use hardware and software. In this

project we use Arduino-UNO board. The Arduino hardware platform already has the power and

reset circuitry setup as well as circuitry to program and communicate with the microcontroller over

USB. In addition, the I/O pins of the microcontroller are typically already fed out to

sockets/headers for easy access. On the software side, Arduino provides a number of libraries to

make programming the microcontroller easier. The simplest of these are functions to control and

read the I/O pins rather than having to fiddle with the bus/bit masks normally used to interface with

the At mega I/O.

2.2 Microcontroller

A microcontroller is a small computer on a single integrated circuit containing a processor core,

memory and programmable input/output peripherals. It is highly integrated chip that contains all

the components comprising a controller. Microcontrollers are used in automatically controlled

products and devices, such as automobile engine control systems, remote controls, office machines,

implantable medical devices, appliance and other embedded systems. We used here for appliance

cases.

2.3 Advantages of Microcontroller

• The simplest computer processor is used as the "brain" of the future system.

• Single purposes and low power consumption.

• Depending on the taste of the manufacturer, a bit of memory, a few A/D converters,

timers, input/output lines etc. are added.

• Low cost and small packaging.

• Simple software able to control it all and which everyone can easily learn about has been

developed.

12

2.4 Development

The computer, commonly defined as a tool for processing, storing, and displaying information,

arose from a long line of analog devices used for effective counting and calculation, ranging from

the simple abacus (first invented in Sumeria around 2300 BC), to Napierʼs Bones (conceived in

1617, and the precursor to the slide rule), to Blaise Pascalʼs gear-based mechanical calculator

(1645).The development of the computer accelerated during the 1940ʼs, spurred on largely by the

highly industrialized nature of military production in World War II.The 1960ʼs marked a significant

evolutionary leap for computing, due to the development of solid state computers (such as the IBM

1401), which used transistors for processing operations, and magnetic core memory for storage.

The invention of integrated circuits in 1959 by Jack Kilby, which enabled transistors and circuits to

be fused onto small chips of semiconducting materials (such as silicon), allowed further

miniaturization of computer components. Another important development during this decade was

the advent of high-level computer programming languages that were written in symbolic language,

making computer code somewhat easier to read and learn than previous machine languages.

COBOL and FORTRAN were the main languages introduced during this period. The

microprocessor was introduced in 1970. The microprocessor essentially miniaturized all hardware

components of a computers central processing unit to fit onto a single, tiny integrated circuit, now

more popularly known as a microchip. The microchip also became the main driving component of

microcontrollers (such as the Arduino), which generally consist of a microchip, memory storage

hardware, and input/ output hardware for sensors. The 1970ʼs and 1980ʻs also saw the development

of a new generation of more powerful programming languages (such as C, C++, and later Java) for

applications in business and science.

2.5 Evoluation

The PIC microcontroller board, introduced in 1985 by General Instruments, became one of the

most popular tools for electronics enthusiasts (before the Arduino) for several reasons. Other

popular boards for hobbyists include the BASIC Stamp (Parallax Inc., 1990), and Wiring both of

which share the benefits of simplicity of programming, and a resulting ease of rapid-prototyping.

The Arduino project grew largely out of the “DIY” climate created by the burgeoning popularity of

rapid- prototyping boards like PIC. In fact, the immediate precursor to the Arduino was a custom

made Wiring microcontroller created by the artist/ designer Hernando Barragan in 2004 for his. In

2005, the Arduino team was formed in Ivrea, Italy, consisting of Barragan, Massimo Banzi, David

Cuartielles, Dave Mellis, Gianluca Marino, and Nicholas Zambetti. As a result, the Arduino

incorporated the following characteristic, a programming environment based on

processing language (a programming language conceived by Ben Fry and Casey Reas, also

conceived for artists/ designers), the ability to program the board via a standard USB connection,

and a low price point. The Arduino achieved rapid success even within its first two years of

existence, selling in a quantity of more than 50,000 boards. By 2009, it had spawned over 13

different incarnations, each specialized for different applications. Today, the Arduino

microcontroller has become one of the most popular prototyping platforms in the world, and is a

prime example of how hardware and software technologies originally created for military, business,

and scientific applications can be repurposed to serve the needs of individuals creating projects in

the realms of new media art and design.

13

Chapter 3

THEORY BEHIND THE PROJECT

3.1 Arduino-UNO

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware

and software. Arduino consists of both a physical programmable circuit board and a piece of

software, or IDE (Integrated Development Environment) that runs on your computer, used to write

and upload computer code to the physical board. The Arduino platform has become quite popular

with people just starting out with electronics, and for good reason. Unlike most previous

programmable circuit boards, the Arduino does not need a separate piece of hardware in order to

load new code onto the board – simply use a USB cable. Finally, Arduino provides a standard form

factor that breaks out the functions of the micro-controller into a more accessible package. The

Arduino software is free, the hardware boards are pretty cheap, and both the software and hardware

are easy to learn has led to a large community of users who have contributed code and released

instructions for a huge variety of Arduino-based projects.

3.1.1 History of Arduino-UNO

The Arduino is developed in 2005. The Arduino microcontroller was initially created as an

educational platform for a class project at the Interaction Design Institute Ivrea in Milan (Italy) in

2005. It derived from a previous work of the Wiring microcontroller designed by Hernando

Barragan in 2004. From the beginning, the Arduino board was developed to attract artists and

designers. The Wiring microcontroller was created by Hernando Barragan to be used for parsing

data to electronic devices. His aim was that it could be used by non-technical people who only had

basic experience with using computers. He first of all wanted it to be used as a prototyping tool.

Since he needed help to create an easy software tool to programmed the board he engaged Casey

Reas and Massimo Banzi as his assistants. Reas created the visual programming language for the

prototyping tool[2].

3.1.2 Figure of Arduino-UNO

Fig 3.1.2: Arduino-Uno

14

3.1.3 Architecture of Arduino-UNO

There are many varieties of Arduino boards that can be used for different purposes. The Arduino

UNO components are:

Fig 3.1.3: Arduino-UNO R3 Board

3.1.4 Power

The Arduino/Genuino Uno board can be powered via the USB connection or with an external

power supply. The power source is selected automatically.

The power pins are as follows:

➢ Vin: The input voltage to the Arduino/Genuino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated power source).

You can supply voltage through this pin, or, if supplying voltage via the power jack, access

it through this pin.

➢ 5V: This pin outputs a regulated 5V from the regulator on the board. The board can be

supplied with power either from the DC power jack (7 - 12V), the USB connector (5V), or

the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the

regulator, and can damage your board. We don't advise it.

➢ 3V3. A 3.3: volt supply generated by the on-board regulator. Maximum current draw is 50

mA.

➢ GND: Ground pins.

➢ IOREF: This pin on the Arduino/Genuino board provides the voltage reference with which

the microcontroller operates. A properly configured shield can read the IOREF pin voltage

15

and select the appropriate power source or enable voltage translators on the outputs to work

with the 5V or 3.3V.

3.1.5 Power LED Indicator

Just beneath and to the right of the word “UNO” on circuit board, there’s a tiny LED next to the

word ‘ON’. This LED should light up whenever plug Arduino into a power source. If this light

doesn’t turn on, there’s a good chance something is wrong.

3.1.6 Reset Button

The Arduino has a reset button. Pushing it will temporarily connect the reset pin to ground and

restart any code that is loaded on the Arduino. This can be very useful if code doesn’t repeat, but

we want to test it multiple times. Unlike the original Nintendo however, blowing on the Arduino

doesn’t usually fix any problems.

3.1.7 Tx Rx LEDs

Tx is short for transmit, Rx is short for receive. In our case, there are two places on the Arduino

UNO where Tx and Rx appear once by digital pins 0 and 1, and a second time next to the Tx and

Rx indicator LEDs. These LEDs will give us some nice visual indications whenever Arduino is

receiving or transmitting data.

3.1.8 Main IC

The black thing with all the metal legs is an IC, or Integrated Circuit. The main IC on the Arduino

is slightly different from board type to board type, but is usually from the AT mega line of IC’s

from the ATMEL Company. This can be important, as may need to know the IC type before

loading up a new program from the Arduino software. This information can usually be found in

writing on the top side of the IC.

3.1.9 Voltage Regulator

The voltage regulator is not actually something interacting with on the Arduino. But it is potentially

useful to know that it is there and what it’s for. It controls the amount of voltage that is let into the

Arduino board. It will turn away an extra voltage that might harm the circuit.

16

3.2.0 Technical Specifications

3.2.1 Schematic Diagram

Fig 3.2.1: Schematic Diagram of Arduino-Uno

17

3.2 Getting started with Arduino Software

We have to download and install the Arduino for Mac, Linux or Windows from arduino.cc.

Windows users also need to install a driver. Connect your board via USB, launch the Arduino

application and select Arduino-Uno from the tools to board menu. Open the sketch File.

Examples: 01. Basics: Blink. Click the toolbar button to upload it to your board.

3.2.1 The Integrated Development Environment (IDE)

Every microcontroller needs software to be programmed. The Arduino board is not a case apart. It

has its own integrated development environment (IDE).It is free and everyone can download it

from its official website using either the Windows, Mac OS X or Linux platform. That allows

Arduino Board to gain more users and it also helps it to grow.

3.2.2 IDE Parts

• Compile: Before program “code” can be sent to the board, it needs to be converted into

instructions that the board understands. This process is called Compiling.

• Stop: This stops the compilation process.

• Create new Sketch: This opens a new window to create news ketch.

• Open Existing Sketch: This loads a sketch from a file on our computer.

• Save Sketch: This saves the changes to the sketch.

• Upload to Board: This compiles and then transmits over the USB cable to our board.

• Serial Monitor: Until this point when our programs (sketches) didn’t work, we just pulled

out our hair and tried harder.

• Tab Button: This lets you create multiple files in your sketch. This is for more advanced

programming than we will do in this class.

• Sketch Editor: This is where write or edit sketches

• Text Console: This shows you what the IDE is currently doing and is also where error

messages display if make a mistake in typing program.

• Line Number: This shows what line number your cursor is on.

Fig 3.2.2: Arduino-Uno

18

3.3 7-SEGMENT DISPLAY

3.3.1 Introduction

A seven-segment display (SSD) is a widely used electronic display device for displaying decimal

numbers from 0 to 9. They are most commonly used in electronic devices like digital clocks, timers

and calculators to display numeric information. As its name indicates, it is made of seven different

illuminating segments which are arranged in such a way that it can form the numbers from 0-9 by

displaying different combinations of segments. It is also able to form some alphabets like A, B, C,

H, F, E, etc.

3.3.2 History

Seven-segment representation of figures can be found in patents as early as 1903 (in U.S. Patent

1,126,641), when Carl Kinsley invented a method of telegraphically transmitting letters and

numbers and having them printed on tape in a segmented format. In 1908, F W Wood invented an

8-segment display, which displayed the number 4 using a diagonal bar (U.S. Patent 974,943). In

1910, a seven-segment display illuminated by incandescent bulbs was used on a power-plant boiler

room signal panel.[8] They were also used to show the dialed telephone number to operators during

the transition from manual to automatic telephone dialing.[9] They did not achieve widespread use

until the advent of LEDs in the 1970s.

3.3.3 Figure

Fig 3.3.3: 7-Segment Display

https://en.wikipedia.org/wiki/Patent
https://www.google.com/patents/US1126641
https://www.google.com/patents/US1126641
https://www.google.com/patents/US974943
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-8
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-9

19

3.3.4 Truth Table

Fig 3.3.4: Truth Table

3.4 BCD to 7-Segment Display Decoder Driver

3.4.1 Introduction

The 74xx47 chip is used to drive 7 segment display. We must use the 74xx47 with a common

anode 7-segment display. The input to the 74xx47 is a binary number DCBA where D is 8s, C is 4s,

B is 2s and A is 1s. The inputs DCBA often come from a binary counter. The display is only

sensible if the binary number is between DCBA=0000 (0) and DCBA=1001 (9); this is called

Binary Coded Decimal or BCD for short. If the number is larger than 9 you get a strange output on

the display. Try this out by moving your mouse over the truth table.

The inputs 𝐵𝐼/𝑅𝐵𝑂 , 𝑅𝐵𝐼and 𝐿𝑇are usually connected to 5v.

 #Function of 𝐿𝑇& 𝐵𝐼/𝑅𝐵𝑂 , 𝑅𝐵𝐼 :

𝐵𝐼/𝑅𝐵𝑂 Stands for Blanking Input & Ripple Blanking Output.

𝑅𝐵𝐼 Stands for Ripple Blanking Input.

 𝐿𝑇 Stands for Lamp Test.

1. BI/RBO is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

The blanking input must be open or held at a high logic level when output functions 0 through 15

are desired, and ripple-blanking input (RBI) must be open or at a high logic level during the

decimal 0 output. X = input may be high or low.

2. When a low logic level is applied to the blanking input (forced condition) all segment outputs go

to a low logic level regardless of the state of any other input condition.

3. When ripple-blanking input (RBI) is at a low logic level, lamp test input is at high logic level and

20

A = B = C = D = low logic level, all segment outputs go to a low logic level and the ripple-blanking

output goes to a low logic level (response condition).

4. When blanking input/ripple-blanking output is open or held at a high logic level, and a low logic

level is applied to lamp test input, all segment outputs go to a high logic level.

3.4.2 Connection

Simple use:

1. Connect Vcc [pin 16], 𝐿𝑇 [pin 3], 𝐵𝐼/𝑅𝐵𝑂 [pin 4] and 𝑅𝐵𝐼[pin 5] to 5v.

2. Connect Gnd [pin 8] to 0v.

3. connect DCBA [pins 1, 2, 6 and 7] to DCBA on your counter.

4. Connect 𝑎, 𝑏 , 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 [pins 9-15] to a b c d e f g on the common anode 7-segment display.

3.4.3 Figure

Fig 3.4.3: BCD to 7-segment display decoder driver

3.4.4 Connection with 7-segment display

Fig 3.4.4: Connection with 7-segment display

21

3.4.5 Datasheet of 7447 decoder

Inputs Outputs

D C B A
/

Display

0 0 0 0 1 1 1 0 0 0 0 0 0 1

0 0 0 1 1 1 1 1 0 0 1 1 1 1

0 0 1 0 1 1 1 0 0 1 0 0 1 0

0 0 1 1 1 1 1 0 0 0 0 1 1 0

0 1 0 0 1 1 1 1 0 0 1 1 0 0

0 1 0 1 1 1 1 0 1 0 0 1 0 0

0 1 1 0 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 0 0 0 0 0 0 0

1 0 0 1 1 1 1 0 0 0 1 1 0 0

1 0 1 0 1 1 1 1 1 1 0 0 1 0

1 0 1 1 1 1 1 1 1 0 0 1 1 0

1 1 0 0 1 1 1 1 0 1 1 1 0 0

1 1 0 1 1 1 1 0 1 1 0 1 0 0

1 1 1 0 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.5 4-bit Parallel Register(74LS175):

3.5.1 Introduction:

74LS175 is a high speed Quad D Flip-Flop. Thedevice is useful for general flip-flop requirements

where clock and clear inputs are common. The information on the D inputs is stored during the

LOW to HIGH clock transition. Both true and complemented outputs of each flip-flop are

provided. A Master Reset input resets all flip-flops, independent of theClock or D inputs, when

LOW.

The LS175 is fabricated with the Schottky barrier diode process for high

speed and is completely compatible with all Motorola TTL families.

• Edge-Triggered D-Type Inputs

• Buffered-Positive Edge-Triggered Clock

• Clock to Output Delays of 30 ns

• Asynchronous Common Reset

• True and Complement Output

• Input Clamp Diodes Limit High Speed Termination Effects

22

3.5.2 Logic Diagram:

Fig 3.5.2: Logic Diagram of 4-bit parallel register

3.5.3 Figure

Fig 3.5.3: 4-bit Parallel Register

3.5.4 Truth Table:

D CK Q 𝑸

0 High 0 1

1 High 1 0

X 0 Qo 𝑸𝟎

X 1 Qo 𝑸𝟎

Fig 3.5.4: Truth Table

23

Chapter-4

Design & Development of the System

4.1 Hardware Design

The whole system design is divided into two parts to design a queue control system. One is the

design the smart system in the breadboard and controls the designed system. Another part is the

display part design to count the value in smart system. Finally, the queue control system is formed a

complete integrated system. In this project Arduino development board is more efficient.

4.2 Block Diagram:

Fig 4.2: Block Diagram

ARDUINO 4-Bit Parallel Register

BCD to 7-segment

Decoder Driver

7-Segment

Display

Counter Number &

Serial Number

Switch

24

4.3 Full Circuit Diagram

Fig 4.3: Full Circuit Diagram

4.3.1 Components Used in this System:

• 7-Segment Display

• BCD to 7-Segment Display Decoder Driver

• 4-Bit Parallel Register

• Switch

• Arduino-Uno

25

4.4 7-Segment Display

4.4.1 Introduction

Seven-segment displays are commonly used in digital clocks, clock radios, timers, wristwatches,

and calculators. They can also be found in motor-vehicle odometers, speedometers, radio frequency

indicators, and practically any other display that makes use of alphanumeric characters alone

(without the need for graphics). Some seven-segment displays produce an "italicized" (slanted) set

of characters.

4.4.2 Schematic Diagram of 7-Segment Display

Fig 4.4.2: 7-Segment Display

4.4.3 Schematic Diagram of connection between 7-Segment Display & 7447

Fig 4.4.3: Schematic Diagram of connection between 7-Segment Display & 7447

http://whatis.techtarget.com/definition/alphanumeric-alphameric

26

4.4.4 Description

Seven-segment displays may use a liquid crystal display (LCD), a light-emitting diode (LED) for

each segment, or other light-generating or controlling techniques such as cold cathode gas

discharge (Panaplex), vacuum fluorescent, incandescent filaments (Numitron), and others. For

gasoline price totems and other large signs, vane displays made up of electromagnetically flipped

light-reflecting segments (or "vanes") are still commonly used. An alternative to the 7-segment

display in the 1950s through the 1970s was the cold-cathode, neon-lamp-like nixie tube. Starting in

1970, RCA sold a display device known as the Numitron that used incandescent filaments arranged

into a seven-segment display [10].

• 7-segment display has Seven Segment & a Common point.

• Common Point connected to Vcc/+5V.

• Seven Segment connected to the seven pin of 7447(BCD to 7-Segment decoder driver).

• A-segment connected to 13 no. Pin of 7447.

• B-segment connected to 12 no. Pin of 7447.

• C-segment connected to 11 no. Pin of 7447.

• D-segment connected to 10 no. Pin of 7447.

• E-segment connected to 9 no. Pin of 7447.

• F-segment connected to 15 no. Pin of 7447.

• G-segment connected to 14 no. Pin of 7447.

4.5 BCD to 7-Segment Decoder Driver

4.5.1 Introduction

74LS47 (BCD to 7-Segment display) accepts four lines of BCD (8421) input data and generates

their complements internally. The data is decoded with seven AND/OR gates to drive indicator

LEDs of the seven segment directly. The outputs correspond to Common anode (CA) configuration

of seven segment[11].

4.5.2 Schematic Diagram of 74LS47

Fig 4.5.2: Schematic Diagram of 7447

https://en.wikipedia.org/wiki/Liquid_crystal_display
https://en.wikipedia.org/wiki/Light-emitting_diode
https://en.wikipedia.org/wiki/Cathode
https://en.wikipedia.org/wiki/Vacuum_fluorescent_display
https://en.wikipedia.org/wiki/Incandescent_lamp
https://en.wikipedia.org/wiki/Gasoline
https://en.wikipedia.org/wiki/Vane_display
https://en.wikipedia.org/wiki/Nixie_tube
https://en.wikipedia.org/wiki/RCA

27

4.5.3 Schematic Diagram of connection between 7-Segment Display & 7447

Fig 4.5.3: Schematic Diagram of connection between 7447 & 7-Segment Display

4.5.4 Description

74LS47 is a BCD to 7-Segment display decoder driver. It decodes the binary input. It has 16 pin.

The outputs correspond to Common anode (CA) configuration of seven segment.

• 𝐿𝑇 [pin 3], 𝐵𝐼/𝑅𝐵𝑂 [pin 4] , 𝑅𝐵𝐼[pin 5] are connected to Vcc.

• 13 no. Pin of 7447 connected to A-segment.

• 12 no. Pin of 7447 connected to B-segment.

• 11 no. Pin of 7447 connected to C-segment.

• 10 no. Pin of 7447 connected to D-segment.

• 9 no. Pin of 7447 connected to E-segment.

• 14 no. Pin of 7447 connected to G-segment.

• 15 no. Pin of 7447 connected to F-segment.

• Pin no. 1,2,6,7 connected as Output of 74LS175(4-bit Parallel Register).

28

4.6 Connection of Switches

4.6.1 Introduction

A push-button or simply button is a simple switch mechanism for controlling some aspect of a

machine or a process. Buttons are typically made out of hard material, usually plastic or metal. The

surface is usually flat or shaped to accommodate the human finger or hand, so as to be easily

depressed or pushed. Buttons are most often biased switches, though even many un-biased buttons

(due to their physical nature) require a spring to return to their un-pushed state. Different people use

different terms for the "pushing" of the button, such as press, depress, mash, hit, and punch.

4.6.2 Figure of Switch:

Fig 4.6.2: Switch

4.6.3 Schematic Diagram of Switch

Fig 4.6.3: Schematic Diagram of Switch With Arduino

https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Process_%28engineering%29
https://en.wikipedia.org/wiki/Plastic
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Switch#Biased_switches
https://en.wikipedia.org/wiki/Spring_%28device%29

29

4.6.4 Description

The "push-button" has been utilized in calculators, push-button telephones, kitchen appliances, and

various other mechanical and electronic devices, home and commercial. In industrial and

commercial applications, push buttons can be connected together by a mechanical linkage so that

the act of pushing one button causes the other button to be released. In this way, a stop button can

"force" a start button to be released. This method of linkage is used in simple manual operations in

which the machine or process have no electrical circuits for control. Pushbuttons are often color-

coded to associate them with their function so that the operator will not push the wrong button in

error. Commonly used colors are red for stopping the machine or process and green for starting the

machine or process.

4.7 4-bit Parallel Register (74LS175)

4.7.1 Introduction

These circuits are positive clock-enable input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on

the positive-going edge of the clock pulse if the clock-enable input (CLK) is low. Clock triggering

occurs at a particular voltage level and is not directly related to the transition time of the positive-

going pulse. When the clock input is at either the high or low level, the data (D) input signal has no

effect at the output. The circuits are designed to prevent false clocking by transitions at the clock-

enable (CLK) input.

4.7.2 Schematic Diagram of 4-bit parallel register(74LS175)

Fig 4.7.2: 4-bit parallel register(74LS175)

https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Push-button_telephone
https://en.wikipedia.org/wiki/Kitchen_appliances
https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Color-coded
https://en.wikipedia.org/wiki/Color-coded
https://en.wikipedia.org/wiki/Error

30

4.7.3 Schematic Diagram of 74LS175 with 7447 & 7-segment display

Fig 4.7.3: Schematic Diagram of 74LS175 with 7447 & 7-segment display

4.7.4 Description

The 74LS175 consists of four edge-triggered D flip-flops with individual D inputs and Q and Q

outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their

individual D inputs on the LOW to HIGH clock (CP) transition, causing individual Q and Q

outputs to follow . A LOW input on the Master Reset (MR) will force all Q outputs LOW and Q

outputs HIGH independent of Clock or Data inputs[12].

• Master Reset [pin 1] & [pin 16]connected to Vcc.

• 1st output [pin 2] connected to 7447[pin7].

• 2nd output [pin 7] 1st connected to 7447[pin 1].

• 3rd output [pin 10] connected to 7447[pin2].

• 4th output [pin 15] connected to 7447[pin 6].

• Pin 3,6,11,14 has no connection.

• 1st Input [pin 4] connected to Arduino[pin13].

• 2nd Input [pin 5] connected to Arduino[pin12].

• 3rd Input [pin 12] connected to Arduino[pin11].

• 4th Input [pin 13] connected to Arduino[pin10].

4.8 Software Design

Software design is divided into two parts. First we write the Arduino program in Arduino software.

Then we compile it to the Arduino hardware. This Arduino command is control the Arduino

hardware and other circuit connection. Then check the output in 7-segment display.

4.8.1 Installing Arduino

Arduino runs on Windows. Then we go to the Arduino software web site at http://arduino.cc/en/

Main/Software and download the version of the software compatible with our system. We use

Arduino 1.0.5 version[6].

http://arduino.cc/en/

31

4.8.2 Verifying the Hardware

Now that we have the Arduino IDE software installed, let’s connect the computer to the Arduino

board, load a small program, and verify that all components are working together. First, need to

connect the USB cable to our mc board and then plug the other end of the USB cable into our

computer.

4.8.3 Arduino Language

The Arduino language is implemented in C/C++ and based in Wiring. When we write an Arduino

sketch, we are implicitly making use of the Wiring library, which is included with the Arduino IDE.

This allows us to make run able programs by using only two functions: setup () and loop (). As

mentioned, the Wiring language is inspired by Processing, and the Arduino language structure is

inherited from the Processing language, where the equivalent functions are called setup (). We need

to include both functions in every Arduino program, even if we don’t need one of them. Let’s

analyze the structure of a simple Arduino sketch using again the Blink example.

4.9 Programming Code With Arduino

 */

// the setup function runs once when you press reset or power the board

int turn;

bool c1,c2,c3,c4,c5,c6,c7,c8,c9;

// the loop function runs over and over again forever

void digdis(int u,int d){

 digitalWrite(10,u%2);

 u=u/2;

 digitalWrite(11,u%2);

 u=u/2;

 digitalWrite(12,u%2);

 u=u/2;

 digitalWrite(13,u);

 digitalWrite(d,HIGH);

 delay(50);

32

 digitalWrite(d,LOW);

}

void trndisp() {

 int u,t;

 u=turn%10;

 t=turn/10;

 digdis(t,1);

 digdis(u,2);

}

void setup() {

 // initialize digital pin 13 as an output.

 turn =0;

 c1=c2=c3=c4=c5=c6=c7=c8=c9=1;

 //display outputs

 pinMode(13, OUTPUT);

 pinMode(12, OUTPUT);

 pinMode(11, OUTPUT);

 pinMode(10, OUTPUT);

 //clock pulses

 pinMode(0, OUTPUT);

 pinMode(1, OUTPUT);

 pinMode(2, OUTPUT);

 //input switches

 pinMode(3, INPUT);

 pinMode(4, INPUT);

 pinMode(5, INPUT);

 pinMode(6, INPUT);

 pinMode(7, INPUT);

33

 pinMode(8, INPUT);

 pinMode(9, INPUT);

 //iniate clock pins LOW

 digitalWrite(0,LOW);

 digitalWrite(1,LOW);

 digitalWrite(2,LOW);

 trndisp();

 digdis(0,0);

 }

void loop(){

 //cheking switch 1

 if(digitalRead(3)==0) {

 delay(10);

 if(digitalRead(3)==0);c1=0;

 }

 if(digitalRead(3)==1 & c1==0){

 c1=1;turn = (turn+1)%100; digdis(1,0); trndisp();

 }

 //cheking switch 2

 if(digitalRead(4)==0) {

 delay(10);

 if(digitalRead(4)==0);c2=0;

 }

 if(digitalRead(4)==1 & c2==0){

 c2=1;turn = (turn+1)%100; digdis(2,0); trndisp();

 }

 //cheking switch 3

34

 if(digitalRead(5)==0) {

 delay(10);

 if(digitalRead(5)==0);c3=0;

 }

 if(digitalRead(5)==1 & c3==0){

 c3=1;turn = (turn+1)%100; digdis(3,0); trndisp();

 }

 //cheking switch 4

 if(digitalRead(6)==0) {

 delay(10);

 if(digitalRead(6)==0);c4=0;

 }

 if(digitalRead(6)==1 & c4==0){

 c4=1;turn = (turn+1)%100; digdis(4,0); trndisp();

 }

//cheking switch 5

 if(digitalRead(7)==0) {

 delay(10);

 if(digitalRead(7)==0);c5=0;

 }

 if(digitalRead(7)==1 & c5==0){

 c5=1;turn = (turn+1)%100; digdis(5,0); trndisp();

 }

 //cheking switch 6

 if(digitalRead(8)==0) {

 delay(10);

 if(digitalRead(8)==0);c6=0;

35

 }

 if(digitalRead(8)==1 & c6==0){

 c6=1;turn = (turn+1)%100; digdis(6,0); trndisp();

 }

 //cheking switch 7

 if(digitalRead(9)==0) {

 delay(10);

 if(digitalRead(9)==0);c7=0;

 }

 if(digitalRead(9)==1 & c7==0){

 c7=1;turn = (turn+1)%100; digdis(7,0); trndisp();

 }

}

36

4.10Flow Chart Diagram:

START

Initialize All Switches Initialize All Switches

Initialize All Display & Token

Counter Display

On??

Check Token Number

Match Token + Table

Number

Go to Check

Wait for Next

Display

No Yes

37

Chapter 5

IMPLEMANTATION AND RESULT

5.1 Implementation

All the parts are connected as the designed circuit in a bread board. Then we upload the

programming code into the Arduino and tested the performance of the whole system. It works

properly according to our design.

5.2 Connection of the whole system

38

5.3 Result

Description

• After Completeing our code and project successfully, we connect the system with power

supply and then tested. For a trial test, the button no. 1 has been pressed. When the button is

not released, there is no change in the display. When the button is released, the counter

display shows “1” and the serial no. disply shows “01”.

• Counter-1

• Serial Number- 01

• For a another trial test, the button no. ‘2’ has been pressed. When the button is not released,

there is no change in the display. When the button is released, the counter display shows “2”

and the serial no. disply shows “02”.

• Counter-2

• Serial Number-02

39

• For a 3rd trial test, the button no. 3 has been pressed. When the button is not released, there

is no change in the display. When the button is released, the counter display shows “3” and

the serial no. disply shows “13”.

• Counter-3

• Serial No.-13

• For a 4th trial test, the button no. 7 has been pressed. When the button is not released, there

is no change in the display. When the button is released, the counter display shows “7” and

the serial no. disply shows “16”.

• Counter-7

• SerialNo. -16

40

5.4 Avoiding Unwanted Increase of Turn Number

Here we have used seven push button switches to display the counter no. and serial no. The

switches are always kept in the “High” positions. When we press a button it produces “Low” output

and the system understand the position but there will be no change in the display. When the button

is released then the display shows the new results. For this feature, if anyone presses a button for

some time the output will update once.

Another source of unwanted triggering of the system is switch bouncing effect. We know, when

any mechanical switch is closed it will first produce some transient spikes that may miss-trigger the

system. To avoid this miss-triggering, contact debouncing has been incorporated in the software.

41

Chapter 6

CONCLUSION

6.1 Conclusion

The Queue Control System Using 7-segment display has been designed and developed for making

our life more easy and secured. We use 5V from Arduino board and BCD to 7-segment display

decoder driver and 4-bit parallel register. Finally, we have designed and developed the whole

control system and tested using different switches. We fix all the problems encountered during the

design and testing of the system. Finally, we successfully achieved our goals. The developed Queue

control system is efficient and the production cost is low. So, our work is suitable for commercial

use.

6.2 Future Work Scope

We have used a small subset of each of these technologies. This project gives us an opportunity to

do a big project in future. The applications stated above are some demo applications that are

absolutely possible with its future development. Initially for the limitation of time and required

fund we were able to develop just a Queue Control System.

42

REFFERENCE

1. The Electronics Handbook by J. C. Whitaker, 1996, CRC Press

2. Introduction to Arduino by Alan G. Smith, September 30, 2011

3. Arduino projects by Enrique Ramos Melgar and Ciriaco Castro Diez

4. Beginning Arduino by Michael McRoberts ,2nd Edition

5. https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg

6. https://www.arduino.cc/en/Guide/Introduction

7. https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg

8. https://www.arduino.cc/en/Main/ArduinoBoardUno

9. www.datasheetcatalog.com/datasheets_pdf/S/N/7/4/SN74175.shtml

10. http://thanglong.ece.jhu.edu/Course/137/Lab4-7segment.pdf

11. https://www.scribd.com/doc/42776362/BCD-to-7-segment-Display

12. http://www.engineersgarage.com/electronic-components/74ls47-datasheet

https://upload.wikimedia.org/wikipedia/commons/3/38/Arduino_Uno_-_R3.jpg
https://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.datasheetcatalog.com/datasheets_pdf/S/N/7/4/SN74175.shtml
http://thanglong.ece.jhu.edu/Course/137/Lab4-7segment.pdf
https://www.scribd.com/doc/42776362/BCD-to-7-segment-Display
http://www.engineersgarage.com/electronic-components/74ls47-datasheet

	Simple use:

