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Abstract 

Object tracking in a video is the problem of estimating the positions and other related 

information regarding moving objects in video. Object tracking is a very important task in 

the field of security automation surveillance systems. For detecting and tracking the 

moving objects, surveillance system are used. First stage of the system is detecting the 

moving objects in the video. Second stage of the system is tracking the detected object. 

Here, detection of the moving object is done by using a simple background subtraction and 

tracking of moving objects is done by using Kalman filter. The algorithm is applied 

successfully on standard video datasets. The videos used here for testing have been taken 

at indoor as well as outdoor environment having moderate to complex environments. 

Kalman filter tracks an object by assuming the initial state and estimating noise covariance. 

It provides an efficient method for calculating the state estimation process. An 

experimental result which came from different moving object video samples shows a very 

good result. This filter is intended to be robust without being programmed with all 

environment specific rules. 
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Chapter 1 

Introduction 

Object detection and tracking in a video is an active research topic in computer vision that 

tries to detect, recognize and track objects in a sequence of images in video and also makes 

an attempt to understand and describe object behavior in video by replacing the old 

traditional methods of monitoring cameras by human operators. Object detection and 

tracking in a video is an important and challenging task in many practical applications such 

as surveillance, vehicle navigation and autonomous robot navigation. Object detection is 

nothing but locating objects in the frame of a video sequence. The availability of high speed 

computers, high quality video cameras, and the need for automated video analysis has led 

to a great interest in object tracking algorithms. 

There are three key steps in video analysis: detection of interesting moving objects, 

tracking of such objects from frame to frame, and analysis of object tracks to recognize 

their behavior. 

Video tracking can be defined as an action which can estimate the trajectory of an 

object in the image plane as it moves within a scene. 

 

1.1 Objective 

The aim of the project is to detect and track the moving object in a video using Kalman 

filter. In recent times, automatic security surveillance systems are an active research area 

due to an increasing demand for such systems in public places such as airports, 

underground stations and mass events [1]. The main objective of this algorithm is to assist 

human operators in analyzing the bulky video data so that work load becomes less for 

humans. The goal of the work in this thesis is:  

1) To set up a system for automatic detection and tracking of moving objects in a 

video using stationary camera, which may serve as a foundation for higher level reasoning 

tasks and applications.  

2) To make improvements in commonly used algorithms. 
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Therefore, the main objectives are: 

 To analyze detection algorithm to detect the objects.  

 To analyze some tracking method for tracking the objects. 

 

1.2 Significance 

Importance of object tracking from videos is increasing day by day and it’s a very 

challenging task in many practical application like surveillance, vehicle navigation and 

automated robot navigation. We use tracking for  

• To detect moving object 

• Know the motion and speed of vehicles  

• To count the objects 

• To see the path of movement 

• To know the future step of the object  

• To see the path of movement 

 

 

Figure1.1: significance of object tracking 

 

For this reason automated video analysis has generated a great deal of interested in 

object tracking algorithms. 

The Kalman filter has numerous applications in technology now a days. The Kalman 

filter is a widely applied concept in time series analysis used in fields such as signal 

processing and econometrics. Kalman filters also are one of the main topics in the field of 

robotic motion planning and control, and they are sometimes included in trajectory 

optimization. The Kalman filter also works for modeling the central nervous system's 
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control of movement. Due to the time delay between issuing motor commands and 

receiving sensory feedback, usage of the Kalman filter supports the realistic model for 

making estimates of the current state of the motor system and issuing updated commands 

[2]. 

 

1.3 Methodology 

To detect object from a video using Kalman filter there are mainly three simple steps which 

is necessary to follow step by step. First we use Background Subtraction (image 

processing) to detect the object from the video and for this we need to convert the video 

into frames. Secondly we use Gaussian filter to smooth the moving object to get the 

predicted values from the frames one after another. And thirdly we apply Kalman filter to 

find the accurate position of the moving object. 

 

1.3.1 Background Subtraction 

Background subtraction is a widely used approach for detecting moving objects in videos 

from static cameras. The rationale in the approach is that of detecting the moving objects 

from the difference between the current frame and a reference frame, often called the 

“background image”, or “background model”. As a baric, the background image must be a 

representation of the scene with no moving objects and must be kept regularly updated so 

as to adapt to the varying luminaire conditions and geometry settings. More complex 

models have extended the concept of “background subtraction” beyond its literal meaning 

[3]. 

In background subtraction we uses the difference of the current image and the 

background image to detect the motion region and it is generally able to provide data 

included information about object. The background image is subtracted from the current 

video frame. And if the pixel difference is larger than the set threshold value T, then it 

determines that the pixels of the moving object, or as a background pixels [4]. 
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Here, for our project work, to start object detection, we select the video and convert 

the video into frames using Free Studio software which gives us frames of the video 

maintaining sequence and for this sequence images we can detect the moving one after 

another frames which is just like the video. When we get the frames, we take some frames 

for background substation. From the background, it will be easy to detect the moving 

object. 

 

1.3.2 Gaussian Filter 

By background subtraction we get the moving object and after that we apply Gaussian filter 

to get smoother image of the object which we actually want to track. On the other hand it 

can be said by using Gaussian filter we see the moving object more clearly in different 

colors which make more understanding to detect the object that we want to track. From 

this we also get a value of position of the object which is the accurate value of the tracking 

object. 

 

1.3.3 Kalman Filter 

Kalman filter technique is used to estimate the state of a linear system where state is 

assumed to be distributed by a Gaussian. In 1960, R.E. Kalman published his famous paper 

describing a recursive solution to the discrete-data linear filtering problem. Object tracking 

is performed by predicting the object's position from the previous information and 

verifying the existence of the object at the predicted position. Secondly, the observed 

likelihood function and motion model must be learnt by some sample of image sequences 

before tracking is performed [5]. 

Tracking is the process of locating moving objects over time in each frame of videos. 

A Kalman filter is not a filter. It is an optimal estimator i.e. infers parameters of interest 

from indirect, inaccurate and uncertain observations. It process the new measurements as 

they arrive regularly i.e. Kalman filter is recursive. The word ‘filter’ is used because it is the 

process of finding the ‘best estimate’ from noisy data for ‘filtering out’ the noise. It is an 
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estimate obtained through combining both prediction and measurement. The Kalman filter 

consists of two stages: Time update (prediction) and the measurements update 

(correction). The time update equations projecting forward (in time) the current state and 

error co-variance estimates for obtaining the priori estimates for the next time step. The 

time Update equation is called predictor equation. The measurement update equations 

incorporates a new measurement into the a priori estimate to obtain an improved a 

posterior estimate. The measurement update is called corrector equation [1]. 
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Chapter 2 

Background and Literature Reviews 

 

2.1 Related Work 

Now a days tracking is very popular topic and many people work on it to track object more 

clearly from a distance and for this reason Kalman filter is also very well known to most of 

the people.  

In April 2013, Hitesh A Patel, Darshak A thakure, published a paper on “Moving 

Object Tracking Using Kalman Filter”. For detecting the moving object, they used 

background subtraction method and tracking of single moving object had been done using 

Kalman filter. The algorithm was applied successfully on standard surveillance video 

datasets of CAVIAR and PETS. But in that paper, for detecting the object they did not use 

background subtraction method with thresholding process. They only applied background 

subtraction method by averaging all the frames pixels. Also they did not use any filtering 

method like Gaussian Filter, Median Filter etc. for smoothing the frame image. The 

following figure shows how they work on their research [5]. 
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Figure 2.1: Object Tracking on CAVIAR dataset video using Kalman filter. Left column indicates original frame 

and right column indicates tracked output [A] 50th frame [B] 300th frame [C] 650th frame [5]. 
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In 2015,Pravin A. Dhulekar, Vaishnavi D. Hire, Mandar S. Agnihotripublished 

another paper based on “Moving Object Tracking Using Kalman Filter”. The paper 

presented the moving object tracking using Kalman filter and referenced of Background 

elimination. In this method they used fixed camera for video capturing and first frame of 

video was directly considered as Reference background frame and that frame is subtract 

from current frame to detect the moving object and set the threshold T value. As if the pixel 

difference is greater than the set threshold value T, then it determines that the pixels from 

travelling object, else the background image pixels. But this specified threshold suitable 

only for an ideal condition is not suitable for complex environmental condition with light 

effect changes. In that research, they also did not use any filtering method that could reduce 

the noise from image. 

On 5th October 2016, THOTA VINOD RAJA, M. TIRUPATHAMMA, made a research 

paper on “Object Detection and Tracking in video using Kalman Filter where is showed to 

track an object using Kalman filter with median filter and threshold process. They used 

segmentation algorithm to detect the object.  
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The following figure showed who they worked with background subtraction method 

with thresholding process with median filter method and with Kalman filter algorithm [1]. 

 

 

Figure 2.2: object detection and tracking in video using Kalman filter [1]. 

 

 There are many other works in where only Median filter is used to detect the object 

with Kalman filter. But in our research, we use background subtraction method with 

thresholding process by using histogram idea. For this we able to know where the exact 

position of the object is. And also we use Gaussian Filtering process for smoothing the 

image so that we could see our interesting mobile object more precisely. And finally, we use 

the almighty Kalman Filter algorithm for tracking our mobile object.  
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2.2 Detection Algorithm 

For complete a work we have to do many works. In this project we do something like this. 

To track a moving object by using Kalman filter we use video conversion to make a video 

frames, we use background subtraction to detect the object where actually it is situated, we 

use Gaussian filter to make the object more clear in the image and after that we apply 

Kalman filter to detect the object actual position. After that we also show the path of object 

where it used to move by using mean values of the object moving. 

 

2.2.1 Video Conversion 

At the 1st of the work we have to select the video from which we will track a moving object. 

Then we use ‘Free Studio’ software to convert the video into frames. We use this software 

because by using this we get the frames sequence number correctly. 

First we open the software and select ‘Free video to jpg ‘. Then we select add files for 

uploading the video in this software. We also can choose how many frames will be created 

after a limited time. Then we select convert button and after a few seconds the video will 

convert into frames and shown that the process is completed. We also can change the 

folder location where the frames saved or it chose it default.  

 

2.2.2 Image Processing  

Image is a collection of some points in ‘X’ and ‘Y’ co-ordinates so every points have 

relations with each other’s like there is image of a pen on a table. Then the table’s value is 1 

in all place but where the pen there is value is greater than 1. So image processing goal is to 

find features of the different values of the image [6].  

So in image processing we do three works  

1. Average background subtraction. 

2. Noise reduction via image smoothing using 2D Gaussian filter. 
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3. Threshold and point detection in binary image. 

Background subtraction (BS) is a common and widely used technique for generating a 

foreground mask (namely, a binary image containing the pixels belonging to moving 

objects in the scene) by using static cameras [7].  

As the name suggests, BS calculates the foreground mask performing a subtraction 

between the current frame and a background model, containing the static part of the scene 

or, more in general, everything that can be considered as background given the 

characteristics of the observed scene [7]. 

 

 

 

 

Figure2.3: Background Subtraction model [7]. 

 

Background modeling consists of two main steps: 

1. Background Initialization. 

2. Background Update. 
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In the first step, an initial model of the background is computed, while in the second step 

that model is updated in order to adapt to possible changes in the scene. 

2.2.3 Gaussian Filter 

The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' 

images and remove detail and noise. In this sense it is similar to the mean filter but it uses a 

different kernel that represents the shape of a Gaussian (`bell-shaped') hump [8]. This 

kernel has some special properties which are detailed below: 

 

How It Works: 

The Gaussian distribution in 1-D has the form: 

𝐺(𝑥) = (
1

√2𝜋𝜎
) 𝑒

−(
𝑥2

2𝜎2
)
 

Here 𝞂 is the standard deviation of the distribution. We have also assumed that the 

distribution has a mean of zero (i.e. it is centered on the line x=0). The distribution is 

illustrated in Figure 2.4 [12]. 
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Figure 2.4: 1-D Gaussian distribution with mean 0 and 𝞂=1 

 

 

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form: 

𝐺(𝑥, 𝑦) = (
1

2𝜋𝜎2
) 𝑒

−{
(𝑥2+𝑦2)

2𝜎2
}
 

This distribution is shown in Figure 2.5 

 

Figure 2.5: 2-D Gaussian distribution with mean (0,0) and 𝞂=1 

 

The idea of Gaussian smoothing is to use this 2-D distribution as a `point-spread' 

function, and this is achieved by convolution. Since the image is stored as a collection of 

discrete pixels we need to produce a discrete approximation to the Gaussian function 

before we can perform the convolution. In theory, the Gaussian distribution is non-zero 

everywhere, which would require an infinitely large convolution kernel, but in practice it is 

effectively zero more than about three standard deviations from the mean, and so we can 

truncate the kernel at this point. Figure 3 shows a suitable integer-valued convolution 

kernel that approximates a Gaussian with a 𝞂of 1.0. It is not obvious how to pick the values 

of the mask to approximate a Gaussian. One could use the value of the Gaussian at the 
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center of a pixel in the mask, but this is not accurate because the value of the Gaussian 

varies non-linearly across the pixel. We integrated the value of the Gaussian over the whole 

pixel (by summing the Gaussian at 0.001 increments). The integrals are not integers: we 

rescaled the array so that the corners had the value 1. Finally, the 273 is the sum of all the 

values in the mask [9]. 

 

                            
1

 273
× 

 

 

 

Figure 2.6: Discrete approximation to Gaussian function with 𝞂=1.0 

 

Once a suitable kernel has been calculated, then the Gaussian smoothing can be 

performed using standard convolution method. The convolution can in fact be performed 

fairly quickly since the equation for the 2-D isotropic Gaussian shown above is separable 

into x and y components. Thus the 2-D convolution can be performed by first convolving 

with a 1-D Gaussian in the x direction, and then convolving with another 1-D Gaussian in 

the y direction. (The Gaussian is in fact the only completely circularly symmetric operator 

which can be decomposed in such a way.) Figure 4 shows the 1-D x component kernel that 

would be used to produce the full kernel shown in Figure 2.6 (after scaling by 273, 

rounding and truncating one row of pixels around the boundary because they mostly have 

the value 0. This reduces the 7x7 matrix to the 5x5 shown above.). The y component is 

exactly the same but is oriented vertically. 

 

1 4 7 4 1 

4 16 26 16 4 

7 26 41 26 7 

4 16 26 16 4 

1 4 7 4 1 
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.006 .061 .242 .383 .242 .061 .006 

Figure 2.7: One of the pair of 1-D convolution kernels used to calculate the full kernel shown in Figure 2.6 more 

quickly. 

A further way to compute a Gaussian smoothing with a large standard deviation is 

to convolve an image several times with a smaller Gaussian. While this is computationally 

complex, it can have applicability if the processing is carried out using a hardware pipeline. 

The Gaussian filter not only has utility in engineering applications. It is also 

attracting attention from computational biologists because it has been attributed with 

some amount of biological plausibility, e.g. some cells in the visual pathways of the brain 

often have an approximately Gaussian response. 

 

Usability 

The effect of Gaussian smoothing is to blur an image, in a similar fashion to the mean filter. 

The degree of smoothing is determined by the standard deviation of the Gaussian. (Larger 

standard deviation Gaussians, of course, require larger convolution kernels in order to be 

accurately represented.) 

The Gaussian outputs a `weighted average' of each pixel's neighborhood, with the 

average weighted more towards the value of the central pixels. This is in contrast to the 

mean filter's uniformly weighted average. Because of this, a Gaussian provides gentler 

smoothing and preserves edges better than a similarly sized mean filter. 

One of the principle justifications for using the Gaussian as a smoothing filter is due 

to its frequency response. Most convolution-based smoothing filters act as lowpass 

frequency filter. This means that their effect is to remove high spatial frequency 

components from an image. The frequency response of a convolution filter, i.e. its effect on 
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different spatial frequencies, can be seen by taking the transform of the filter. Figure 2.8 

shows the frequency responses of a 1-D mean filter with width 5 and also of a Gaussian 

filter with 𝞂 = 3 

 

 

Figure 2.8: Frequency responses of Box (i.e. mean) filter (width 5 pixels) and Gaussian filter 

 (𝞂 = 3 pixels). The spatial frequency axis is marked in cycles per pixel, and hence no value above 0.5 has a real 

meaning. 

 

2.3 The Process of Kalman Filtering 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process in several aspects: it 

supports estimations of past, present, and even future states, and it can do the same even 

when the precise nature of the modelled system is unknown [5]. 

The Kalman filter model assumes that the state of a system at a time t evolved from 

the prior state at time t-1 according to the equation 
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𝑋𝑡 = 𝐹𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 

 

(2.3) 

 

 

 

Where, 

 𝑋𝑡 Is the state vector containing the terms of interest for the system (e.g., position, 

velocity, and heading) at time t. 

 𝑢𝑡  Is the vector containing any control inputs (steering angle, throttle setting, 

braking force). 

 𝐹𝑡 Is the state transition matrix which applies the effect of each system state 

parameter at time t-1 on the system state at time t (e.g., the position and velocity at 

time t-1 both affect the position at time t). 

 𝐵𝑡 Is the control input matrix which applies the effect of each control input 

parameter in the vector 𝑢𝑡on the state vector (e.g., applies the effect of the throttle 

setting on the system velocity and position). 

 𝑤𝑡 Is the vector containing the process noise terms for each parameter in the state 

vector. The process noise is assumed to be drawn from a zero mean multivariate 

normal distribution with covariance given by the covariance matrix𝑄𝑡. 

 

Measurements of the system can also be performed, according to the model 

 

𝑧𝑡 = 𝐻𝑡 × 𝑋𝑡 + 𝑣𝑡  

 

(2.4) 

 

Where, 

 𝑧𝑡 Is the vector of measurement. 

 𝐻𝑡 Is the transformation matrix that maps the state vector parameters into the 

measurement domain 
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 𝑣𝑡 Is the vector containing the measurement noise terms for each observation in the 

measurement vector. Like the process noise, the measurement noise is assumed to 

be zero mean Gaussian white noise with covariance 𝑅𝑡. 

 

 

In the derivation that follows, we will consider a simple one-dimensional tracking 

problem, particularly that of a train moving along a railway line (see 

Figure 2.9). We can therefore consider some example vectors and matrices in this problem. 

The state vector 𝑋𝑡contains the position and velocity of the train  

 

 𝑋𝑡 = [
𝑋𝑡
�̇�𝑡
] 

 

The train driver may apply a braking or accelerating input to the system, which we will 

consider here as a function of an applied force𝑓𝑡and the mass of the train m.  

 

 

 

Figure 2.9: This figure shows the one-dimensional system under consideration. 

 

Such control information is stored within the control vector 𝑢𝑡  

 

𝑢𝑡 =
𝑓𝑡
𝑚
. 
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The relationship between the force applied via the brake or throttle during the time 

period dt (the time elapsed between time epochs t-1 and t) and the position and velocity of 

the train is given by the following equations: 

 

𝑋𝑡 = 𝑋𝑡−1 + (𝑋𝑡−1 ∗ 𝑑𝑡) +
𝑓𝑡(𝑑𝑡)

2

2𝑚
. 

 

𝑋𝑡 = �̇�𝑡−1 +
(𝑓𝑡𝑑𝑡)

𝑚
. 

 

These linear equations can be written in matrix form as 

 

[
𝑋𝑡
�̇�𝑡
] = [

1 𝑑𝑡
0 1

] [
𝑋𝑡−1
�̇�𝑡−1

] + [
(𝑑𝑡)2/2
𝑑𝑡

] ∗
𝑓𝑡
𝑚
. 

 

And so by comparison with (1), we can see for this example that 

 

𝐹𝑡 = [
1 𝑑𝑡
0 1

] 

𝐵𝑡 = [
(𝑑𝑡)2/2
𝑑𝑡

] 

 

The true state of the system 𝑋𝑡cannot be directly observed, and the Kalman filter 

provides an algorithm to determine an estimate �̂�𝑡by combining models of the system and 

noisy measurements of certain parameters or linear functions of parameters. The estimates 

of the parameters of interest in the state vector are therefore now provided by probability 

density functions (pdfs), rather than discrete values. 

To fully describe the Gaussian functions, we need to know their variance and 

covariance, and these are stored in the covariance matrix 𝑃𝑡 . The terms along the main 

diagonal of Ptare the variances associated with the corresponding terms in the state vector. 

The off-diagonal terms of 𝑃𝑡provide the covariance between terms in the state vector. In 
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the case of a well-modeled, one-dimensional linear system with measurement errors 

drawn from a zero-mean Gaussian distribution, the Kalman filter has been shown to be the 

optimal estimator [10]. 

 

The Kalman filter algorithm involves two stages: prediction and measurement 

update. The standard Kalman filter equations for the prediction stage are 

 

�̂�𝑡|𝑡−1 = 𝐹𝑡�̂�𝑡−1|𝑡−1 + 𝐵𝑡𝑢𝑡 

 

(2.5) 

 

𝑃𝑡|𝑡−1 = 𝐴𝑡𝑃𝑡−1|𝑡−1𝐴𝑡
𝑇 + 𝑄𝑡 

 

(2.6) 

 

Where 𝑄𝑡the process noise covariance matrix is associated with noisy control 

inputs. Equation (2.5) was derived explicitly in the discussion above. We can derive (2.6) as 

follows. The variance associated with the prediction �̂�𝑡|𝑡−1 of an unknown true value 𝑋𝑡is 

given by 

 

𝑃𝑡|𝑡−1 = 𝐸[(𝑋𝑡 − �̂�𝑡|𝑡−1)(𝑋𝑡 − �̂�𝑡|𝑡−1)
𝑇
] 

 

And taking the difference between (2.5) and (2.3) gives 

 

𝑋𝑡 − �̂�𝑡|𝑡−1 = 𝐹(𝑋𝑡−1 − �̂�𝑡|𝑡−1) + 𝑤𝑡 

=> 𝑃𝑡|𝑡−1 = 𝐸 [(𝐹(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1) + 𝑤𝑡) × (𝐹(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1) + 𝑤𝑡)
𝑇
)

= 𝐹𝐸 [(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1) × (𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)
𝑇
] × 𝐹𝑡

+ 𝐹𝐸[(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)𝑤𝑡
𝑇] + 𝐸[𝑤𝑡𝑋𝑡−1 − �̂�𝑡−1|𝑡−1

𝑇 ]𝐹𝑇 + 𝐸[𝑤𝑡𝑤𝑡
𝑇]. 
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Noting that the state estimation errors and process noise are uncorrelated 

 

𝐸[(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)𝑤𝑡
𝑇] = 𝐸 [𝑤𝑡(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)

𝑇
] = 0 

⟹ 𝑃𝑡|𝑡=1 = 𝐹𝐸 [(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)(𝑋𝑡−1 − �̂�𝑡−1|𝑡−1)
𝑇
] 𝐹𝑇 + 𝐸[𝑤𝑡𝑤𝑡

𝑇] ⟹ 𝑃𝑡|𝑡−1

= 𝐹𝑃𝑡−1|𝑡−1𝐹
𝑇 + 𝑄𝑡. 

 

The measurement update equations are given by 

 

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 −𝐻𝑡�̂�𝑡|𝑡−1) 

 

(2.7) 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1 

 

 

 

 

Where, 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1

 

 

(2.8) 

Derivation 

The Kalman filter will be derived here by considering a simple one-dimensional tracking 

problem specifically that of a train is moving along a railway line. At every measurement 

epoch we wish to know the best possible estimate of the location of the train (or more 

precisely, the location of the radio antenna mounted on the train roof). Information is 

available from two sources:  

1) Predictions based on the last known position and velocity of the train. And  

2) Measurements from a radio ranging system deployed at the track side.  

The information from the predictions and measurements are combined to provide 

the best possible estimate of the location of the train [11]. The system is shown graphically 

in Figure 2.9. 
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Figure 2.10: The initial knowledge of the system at time t = 0. The red Gaussian distribution represents the pdf 

providing the initial confidence in the estimate of the position of the train. The arrow pointing to the right 

represents the known initial velocity of the train. 

 

The initial state of the system (at time t = 0 s) is known to a reasonable accuracy, as shown 

in Figure 2.10. The location of the train is given by a Gaussian pdf. At the next time epoch (t 

= 1 s), we can estimate the new position of the train, based on known limitations such as its 

position and velocity at t = 0, its maximum possible acceleration and deceleration, etc. In 

practice, we may have some knowledge of the control inputs on the brake or accelerator by 

the driver. In any case, we have a prediction of the new position of the train, represented in 

Figure 3 by a new Gaussian pdf with a new mean and variance. Mathematically this step is 

represented by (2.3). The variance has increased, representing our reduced certainty in the 

accuracy of our position estimate compared to t = 0, due to the uncertainty associated with 

any process noise from accelerations or decelerations undertaken from time t = 0 to time t 

= 1. 
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Figure 2.11: Here, the predict ion of the location of the train at time t = 1 and the level of uncertainty in that 

prediction is shown. The confidence in the knowledge of the position of the train has decreased, as we are not 

certain if the train has undergone any accelerations or decelerations in the intervening period from t = 0 to t = 1. 

 

 

 

 

 

Figure 2.12: Shows the measurement of the location of the train at time t = 1 and the level of uncertainty in that 

noisy measurement, represented by the blue Gaussian pdf. The combined knowledge of this system is provided by 

multiplying these two pdfs together [11]. 
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Figure 2.13: Shows the new pdf (green) generated by multiplying the pdfs associated with the prediction and 

measurement of the train’s location at time t = 1. This new pdf provides the best estimate of the location of the 

train, by fusing the data from the prediction and the measurement. 

 

At t = 1, we also make a measurement of the location of the train using the radio 

positioning system, and this is represented by the blue Gaussian pdf in Figure 2.12. The 

best estimate we can make of the location of the train is provided by combining our 

knowledge from the prediction and the measurement. This is achieved by multiplying the 

two corresponding pdfs together. This is represented by the green pdf in Figure 2.13. 

A key property of the Gaussian function is exploited at this point: the product of two 

Gaussian functions is another Gaussian function. This is critical as it permits an endless 

number of Gaussian pdfs to be multiplied over time, but the resulting function does not 

increase in complexity or number of terms; after each time epoch the new pdf is fully 

represented by a Gaussian function. This is the key to the elegant recursive properties of 

the Kalman filter. 

The stages described above in the figures are now considered again mathematically 

to derive the Kalman filter measurement update equations. 

The prediction pdf represented by the red Gaussian function in Figure 2.11 is given by the 

equation 

 

𝑦1(𝑟; µ1, 𝜎1 ≜ (
1

√2𝜋𝜎1
2
) 𝑒

−
(𝑟−µ1)

2

2𝜎1
2

 
 

(2.9) 
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The measurement pdf represented by the blue Gaussian function in Figure 2.12 is 

given by 

 

𝑦2(𝑟; µ2, 𝜎2) ≜ (
1

√2𝜋𝜎2
2
)𝑒

−
(𝑟−µ2)

2

2𝜎2
2

 
(2.10) 

 

The information provided by these two pdfs is fused by multiplying the two 

together, i.e., considering the prediction and the measurement together (see Figure 2.11). 

The new pdf representing the fusion of the information from the prediction and 

measurement, and our best current estimate of the system, is therefore given by the 

product of these two Gaussian functions 

 

 

𝑦𝑓𝑢𝑠𝑒𝑑(𝑟; µ1, 𝜎1, µ2, 𝜎2) = (
1

√2𝜋𝜎1
2
)𝑒

−
(𝑟−µ1)

2

2𝜎1
2
× (

1

√2𝜋𝜎2
2
) 𝑒

−
(𝑟−µ2)

2

2𝜎2
2

 

= (
1

2𝜋√𝜎1
2𝜎1

2
)𝒆−((𝒓−µ𝟏)

𝟐÷𝟐𝞼𝟏
𝟐)+((𝒓−µ𝟐)

𝟐/𝟐𝞼𝟏
𝟐) 

 

(2.11) 

 

The quadratic terms in this new function can expanded and then the whole 

expression rewritten in Gaussian form [11] 

 

𝑦𝑓𝑢𝑠𝑒𝑑(𝑟; µ𝑓𝑢𝑠𝑒𝑑, 𝜎𝑓𝑢𝑠𝑒𝑑) =

(

 
1

√2𝜋𝜎𝑓𝑢𝑠𝑒𝑑
2

)

 𝑒
−
(𝑟−µ𝑓𝑢𝑠𝑒𝑑)

2

2𝜎𝑓𝑢𝑠𝑒𝑑
2

 

 

(2.12) 
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Where, 

µ𝑓𝑢𝑠𝑒𝑑 =
µ1𝜎2

2 + µ2𝜎1
2

𝜎1
2 + 𝜎2

2 = µ1 +
𝜎1
2(µ2 − µ1)

(𝜎1
2 + 𝜎2

2)
 

(2.13) 

 

And, 

𝜎𝑓𝑢𝑠𝑒𝑑
2 =

𝜎1
2𝜎2

2

(𝜎1
2 + 𝜎2

2)
= 𝜎1

2 − (
𝜎1
4

𝜎1
2 + 𝜎2

2) 
(2.14) 

 

These last two equations represent the measurement update steps of the Kalman 

filter algorithm, as will be shown explicitly below. However, to present a more general case, 

we need to consider an extension to this example. 

In the example above, it was assumed that the predictions and measurements were 

made in the same coordinate frame and in the same units. This has resulted in a 

particularly concise pair of equations representing the prediction and measurement update 

stages. It is important to note however that in reality a function is usually required to map 

predictions and measurements into the same domain. In a more realistic extension to our 

example, the position of the train will be predicted directly as a new distance along the 

railway line in units of meters, but the time of flight measurements are recorded in units of 

seconds. 

To allow the prediction and measurement pdfs to be multiplied together, one must 

be converted into the domain of the other, and it is standard practice to map the 

predictions into the measurement domain via the transformation matrix 𝐻𝑡. 

We now revisit (2.9) and (2.10) and, instead of allowing 𝑦1 and 𝑦2 to both represent 

values in meters along the railway track, we consider the distribution y2 to represent the 

time of flight in seconds for a radio signal propagating from a transmitter positioned at x = 

0 to the antenna on the train. The spatial prediction pdf y1 is converted into the 

measurement domain by scaling the function by c, the speed of light. Equations (2.9) and 

(2.10) therefore must be rewritten as 
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𝑦1(𝑠; µ1, 𝜎1, 𝑐) ≜

(

 
1

√2𝜋 (
𝜎1

𝑐
)
2

)

 𝑒
−
(𝑠−(

µ1
𝑐
))
2

2(
𝜎1
𝑐
)
2

 

 

(2.15) 

 

And, 

 

𝑦2(𝑠; µ2, 𝜎2) ≜ (
1

√2𝜋𝜎2
2
) 𝑒

−
(𝑠−µ2)

2

2𝜎2
2

 
 

(2.16) 

 

Where both distributions are now defined in the measurement domain, radio 

signals propagate along the time “s” axis, and the measurement unit is the second.  

Following the derivation as before we now find 

 

 

µ𝑓𝑢𝑠𝑒𝑑

𝑐
= (

µ1
𝑐
) +

{(
𝜎1

𝑐
)^2(µ2 − (

µ1

𝑐
))}

{(
𝜎1

𝑐
)
2

+ 𝜎2
2}

. 

⟹ µ𝑓𝑢𝑠𝑒𝑑 = µ1 + (

𝜎1
2

𝑐

((
𝜎1

𝑐
)
2

+ 𝜎1
2)
) × (µ2 − (

µ1
𝑐
)) 

 

(2.17) 

 

Substituting H= 1/c and 𝐾 = (𝐻𝜎1
2/(𝐻2𝜎1

2 + 𝜎2
2))  results in  

 

µ𝑓𝑢𝑠𝑒𝑑 = µ1 + 𝐾 × (µ2 − 𝐻µ1) (2.18) 

 

Similarly the fused variance estimate becomes 

 

µ𝑓𝑢𝑠𝑒𝑑
2

𝑐2
= (

𝜎1
𝑐
)
2

−
(
𝜎1

𝑐
)
4

{(
𝜎1

𝑐
)
2

+ 𝜎2
2}
. 
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⟹ 𝜎𝑓𝑢𝑠𝑒𝑑
2 = 𝜎1

2 −

(
(
𝜎1
2

𝑐
)

{(
𝜎1
𝑐
)
2
+𝜎2

2}
)𝜎1

2

𝑐
. 

= 𝜎1
2 − 𝐾𝐻𝜎1

2 (2.19) 

 

We can now compare certain terms resulting from this scalar derivation with the 

standard vectors and matrices used in the Kalman filter algorithm: 

 

µ𝑓𝑢𝑠𝑒𝑑 → �̂�𝑡|𝑡 The state vector following data fusion. 

µ1 → �̂�𝑡|𝑡−1 The state vector before data fusion, i.e., the prediction. 

𝜎𝑓𝑢𝑠𝑒𝑑
2 → 𝑃𝑡|𝑡 The covariance matrix (confidence) following data fusion. 

𝜎1
2 → 𝑃𝑡|𝑡−1 The covariance matrix (confidence) before data fusion. 

µ2 → 𝑧𝑡 The measurement vector. 

𝜎2
2 → 𝑅𝑡 The uncertainty matrix associated with a noisy set of 

measurements. 

𝐻 → 𝐻𝑡 The transformation matrix used to map state vector parameters 

into the measurement domain. 

 

𝐾 =
(𝐻𝜎1

2)

(𝐻2𝜎1
2 + 𝜎2

2)
→ 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡

𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
𝑇 + 𝑅𝑡)

−1
 

 

K= The Kalman Gain. 

 

 

 

 

 

 

 

 

 



[29] 
 

It is now easy to see how the standard Kalman filter equations relate to (2.18) and 

(2.19) derived above: 

 

µ𝑓𝑢𝑠𝑒𝑑 = µ1 + {
𝐻𝜎1

2

(𝐻2𝜎1
2 + 𝜎2

2)
} × (µ2 − 𝐻µ1) 

→ �̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 = 𝐻𝑡�̂�𝑡|𝑡−1) 

𝜎𝑓𝑢𝑠𝑒𝑑
2 = 𝜎1

2 − {
𝐻𝜎1

2

(𝐻2𝜎1
2 + 𝜎2

2)
}𝐻𝜎1

2 

→ 𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1. 

 

The Kalman filter can be taught using a simple derivation involving scalar 

mathematics, basic algebraic manipulations, and an easy-to-follow thought experiment. 
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Chapter 3 

Object Tracking and Implementation 

 

3.1 Object Detection 

Block diagram representation of steps for object detection is shown as, 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram for Object Detection 

 

Background is a stationary layer located behind all other layers. Anything that is not 

background is likely foreground i.e., moving objects. Background model is initialized by 

considering first ‘n’ frames. Here ‘30’ frames are considered. The background model is 

developed by averaging these initial ‘30’ frames [1]. 

For implementing the object detection process, we apply the following methods: 

 

 

3.1.1 Make Average of Background Images 

For making average of background we read first N-th number of images and then take the 

average image of them. We use this process because it’s make a good image model of what 

the background looks like.  

Background Model 

Initialization 

Background Model 

Development 

Background 

Subtraction 



[31] 
 

 

Figure 3.2:  Average Background Image 

 

3.1.2 Subtract Background 

Background subtraction is a process for removing background from an image. We subtract 

background from the current images to find the moving object. That is the best useful 

process for finding moving object.  

 

 

 

Figure 3.3: Subtract Background Image 
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3.1.3 Gaussian Filter 

We use filter for removing noise and shadows from the images. Here, we use Gaussian filter 

for filtering the images. Gaussian filter is a default filter in mat lab, we can just change the 

filter size and its sigma value. Here we use filter size is 20 and sigma is 10. 

 

 

Figure 3.4:  Gaussian Filtering 

 

 

3.1.4 Threshold Process and find Centroid 

Thresholding process is an image processing technique for converting grayscale or color 

image to a binary image based on a threshold value [1]. For finding more visible object we 

apply thresholding. Here, we applying histogram based thresholding process. From the 

histogram we find the value for thresholding. Then we find out the centroid value of the 

moving object from the threshold images. This centroid value is used for measurement 

value in object tracking. 
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Figure 3.5:   Threshold and Detect Centroid 

 

 

3.2 Object Tracking Using Kalman Filter 

Once the object has been detected then it can be tracked along its path. Many standard 

methods are available for object tracking Wiz. Kalman filter, Particle filter, Mean-shift 

based kernel tracking etc. [5]. Here, for our project we use Kalman Filter. Because, this 

Kalman Filter is one of the greater discoveries in the history of statistical estimation theory 

and possibly the greatest discovery in the twentieth century. It has enabled mankind to do 

many things that could not have been done without it, and it has become as indispensable 

as silicon in the makeup of many electronic systems. 

 

As we already give the detail description of Kalman filter method in above, here we 

give short note about the Kalman filter for understanding our simulation precisely. 
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The equations for Kalman filters fall in two groups: time update equations and 

measurement update equations. The time update equations are responsible for projecting 

forward (in time) the current state and error covariance estimates to obtain the a priori 

estimate for the next time step. The measurement update equations are responsible for the 

feedback. That is used for incorporating a new measurement into the a priori estimate to 

obtain an improved a posteriori estimate. The time update equations can also be thought of 

as predictor equations, while the measurement update equations can be thought of as 

corrector equations. Given figure shows the final estimation algorithm resembles that of a 

predictor-corrector algorithm for solving numerical problems .The time update projects 

the current state estimate ahead in time. The measurement update adjusts the projected 

estimate by an actual measurement at that time [5]. 

 

 

 

 

 

                                        Time Update                                      Measurement Update 

                                          (“Predict”)                                                (“Correct”) 

 

 

 

 

Figure 3.6: Discrete Kalman Filter Cycle 

 The time update projects the current state estimate ahead in time. Time update 

equations: 

𝑆𝑡𝑎𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑋𝑝𝑟𝑒𝑑𝑡 = 𝐴 × 𝑋𝑡−1 + 𝐵 × 𝑢𝑡 + 𝑤𝑡−1 (3.2) 

𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑃𝑝𝑟𝑒𝑑𝑡 = 𝐴 × 𝑃𝑡−1𝐴
𝑇 + 𝑄 (3.3) 
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In eq. (3.2) 𝑋𝑝𝑟𝑒𝑑𝑡 is vector representing predicted process state at time t. X is a 4-

dimensional vector [x y dx dy], where x and y represent the coordinates of the object’s 

center, and dx and dy represent its velocity. 𝑋𝑡−1is vector representing process state at 

time t-1. A is a 4x4 process transition matrix of the form. 

 

 

         1     0     1     0 

𝐴 =  0     1     0     1 

          0     0     1     0 

          0     0     0     1 

 

 

𝑢𝑡is a control vector and B relates optional control vector 𝑢𝑡  into state space. 𝑤𝑡−1is a 

process noise. In eq. (3.3) 𝑃𝑝𝑟𝑒𝑑𝑡 is predicted error covariance at time t. 𝑃𝑡−1 is a matrix 

representing error covariance in the state prediction at time t-1, and Q is the process noise 

covariance. 

 

 The Measurement Update equations: 

After predicting the state 𝑋𝑝𝑟𝑒𝑑𝑡 and its error covariance at time t using the time 

update steps, the Kalman filter next uses measurement to correct its prediction during the 

measurement update steps. 

 

𝐾𝑎𝑙𝑚𝑎𝑛 𝐺𝑎𝑖𝑛, 𝐾𝑡 = 𝑃𝑝𝑟𝑒𝑑𝑡 × 𝐻
𝑇 × (𝐻 × 𝑃𝑝𝑟𝑒𝑑𝑡 × 𝐻

𝑇 + 𝑅)−1 

 

(3.4) 

𝑆𝑡𝑎𝑡𝑒 𝑈𝑝𝑑𝑎𝑡𝑒, 𝑋𝑡 = 𝑋𝑝𝑟𝑒𝑑𝑡 + 𝐾𝑡 × (𝑍𝑡 − 𝐻 × 𝑋𝑝𝑟𝑒𝑑𝑡) 

 

(3.5) 

𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑈𝑝𝑑𝑎𝑡𝑒, 𝑃𝑡 = (𝐼 − 𝐾𝑡 × 𝐻) × 𝑃𝑝𝑟𝑒𝑑𝑡 

 

(3.6) 

  

 In eq. (3.4) 𝐾𝑡 is Kalman gain. H is matrix converting state space into 

measurement space and R is measurement noise covariance. Determining 𝑅𝑡 for set of 
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measurement is difficult, many Kalman implementations statistically analyse training data 

to determine fixed R for all future time updates. In eq. (3.5) 𝑋𝑡 is a process actual state. 

Using Kalman gain   𝐾𝑡 and measurement 𝑍𝑡  process state 𝑋𝑡 can be updated. Here 𝑍𝑡is the 

most likely x and y coordinates of the target objects in the frame. The final step in Kalman 

filter is to update the error covariance 𝑃𝑝𝑟𝑒𝑑𝑡into 𝑃𝑡  as given in eq. (3.6). After each time 

and measurement update pair, the process is repeated with previous posteriori estimates 

used to project or predict the new priori estimate. 

 

 

 

 

3.3 Implementation 

Tracking of moving object has been done using Kalman filter. Here tracking of any object 

can be done by providing the frame number from which tracking has to be started.  

Following steps have been implemented for tracking a single object. 

 

 Background frame has been calculated by taking average of first 30 frames. 

 Then, subtract average background image (frame) from current image. 

 Apply Gaussian Filter for smoothing the subtracted image and removing the noise 

and shadows from the subtracted image. 

 Thresholding process has been applied based on histogram for finding where the 

object is locate. 

 Calculate the centroid position of the object and store the data in array for 

measurement values. 

 For selected object its centroid position has been found out and from centroid 

information all the equation of time and measurement update have been calculated.  

 Then, for selected frame the actual position X and error P has been calculated. 
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Our proposed method: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Block diagram for object detection and tracking 

 

 For all remaining frames following steps have been repeated- 

 Background subtraction has been done to find out all the moving regions in 

the frame. 

 From the found regions, region with the lowest distance from the region 

selected in previous frame has been selected, that is done with thresholding 

process by using histogram. 

 Selected region's centroid and other parameter have been used to calculate 

time and measurement update equations. 

 Obtained state position values X has been stored in Array for every frame. 

 Line joining each stored point has been drawn in final frame which shows 

the trajectory of the selected moving object [5].  
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Chapter 4 

Results and Analysis 

A simulation of the proposed algorithm to determine the real position of the moving object 

in a video which are describe in chapter 03. Object tracking and implementation was 

performed to verify this algorithm. This experiment was designed in 2-D space. At first we 

assume that there is no object in the first ‘n’ frames. We take the average of the ‘n’th image 

frames for make our background image. We take here average image because it makes 

sharper image for background. Here, n is an integer numbers. We consider n=30 for our 

method. 

The tracking algorithm has been successfully applied on two sample video. The 

algorithm have been implemented and tested on Matlab2013a (64bit) with the operating 

system windows 10. 

 

Video-1:  This is a person moving video. It consists of 1028 frames. Resolution of 

the video 480*640.The video captured in indoor environments. 

 

Video-2: This is a car moving video. It consists of 687 frames. Resolution of the 

video 480*640. The video captured in outdoor environments. 

 

The different stages of results of different frames for the input video are shown in below 

with figure. 
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Video-1(Indoor environment): 

 

Figure-4.1: Result for frame number: 1 

 

Figure-4.2: Result for frame number: 100 
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Figure-4.3: Result for frame number: 300 

 

 

Figure-4.4: Result for frame number: 500 
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Figure-4.5: Result for frame number: 700 

 

Figure-4.6: Result for frame number: 900 
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Figure-4.7: Traveling path of the person in frame position 

 

Figure-4.8: Graphical representation of object path (person path) 
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Video-2(outdoor environment): 

 

Figure-4.9: Result for frame number: 1 

 

Figure-4.10: Result for frame number: 200 
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Figure-4.11: Result for frame number: 300 

 

 

Figure-4.12: Result for frame number: 450 
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Figure-4.13: Result for frame number: 550 

 

 

Figure-4.14: Result for frame number: 600 
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Figure-4.15: Traveling path of the car in frame position 

 

 

Figure-4.16: Graphical representation of object path (Car path) 
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Our proposed method only works when the video is collected from a stationary camera. 

Here, we used background subtraction method for object detection .So, if we collect the 

video from moving camera then the proposed method couldn’t works.  

When we detect the object we have to know the centroid value of the object. This centroid 

value is used for measurement value for object tracking. If there is no object on this frame, 

then we set the value of the centroid is 1. In this case, if we pick random value then it makes 

a noise measurement value in centroid value.  

We couldn’t show the detected object and it’s centroid in the same image. So, we detect the 

object first time and then find the centroid in the second. Then we combined these two 

image for showing the centroid point on the detected object.  

Here, in the above picture we show the object tracking in different frame and showing the 

object traveling path on the image. Also make a graphical representation figure for the 

object traveling path. 

After analyzing the following result of the tracking method, we conclude that our algorithm 

is able to track any single moving object from the stationary video and it also able to shown 

the traveling path of that moving object. This algorithm is works in indoor environments as 

well as outdoor environments. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion 

In this paper, an accurate method for moving object detection and tracking capability has 

been presented with the merits and demerits of Kalman filter with various filtering 

methods that existed in the current demerits like lack real time, reliability etc. The system 

works on videos of indoor as well as outdoor environment taken using static camera under 

moderate to complex background condition. This implemented module can be applied to 

any computer vision application for moving object detection and tracking and mostly used 

in video surveillance applications. 

 

5.2 Future Work 

Our work can be used in artificial intelligence to detect the path of any moving objects 

because robot’s sensor work fast but it must be accurately to be perfect to see the moving 

objects path. So tracking using Kalman filter must be useful there.  

As Kalman filter algorithm predict the next position of any mobile object so it can be 

used to detect the object position which is invisible for a certain time. 

This work can be extended to track multiple moving objects. We also planning to 

track our own vehicle with respect to other vehicle to avoid major accidents. Car collision 

avoidance is very similar to the target tracking problem. We are interested in predicting the 

own car and other object’s future position. The complete system with capabilities of 

detection and tracking can be used for applications domain like security, human computer 

interaction, scene analysis and activity recognition, event detection etc. 
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Appendix  

 

In this section we put the matlab implementation code of our algorithm. We divided our 

implementation into two steps. (1) Image processing section and (2) Kalman filter Apply. 

(1) Image processing section: 

 

%% This code for process the images for object tracking . 

 

clear all;  % free up system memory 

close all;  % removed specified figure 

 

% creat the frames address as a directory 

directory = 'E:\MATLab2013\bin\ALL_TRACKING\Person_trk\person (26-Jul-17 6-

18-32 PM)\'; 

 

% by using this command enter the directory 

cd(directory); 

 

% for get the list of frames 

frame_list=  dir('*jpg'); 

 

%%Make average of background images 

 

N = 30;  %num of frames to use for averaged background 

 

%define image stack for averaging 

image_avg = zeros(480,640,N);  

 

fori = 1:N    
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image_temp = imread(frame_list(i).name); % for reading given image 

image_avg(:,:,i) =image_temp(:,:,1); % use first dimension of the image 

 

end 

 

background_image = (mean(image_avg,3)); % take the average image 

subplot(121); 

imagesc(background_image) 

 

subplot(122); 

imagesc(image_avg(:,:,1)) 

colormap(gray) 

 

%%gaussian filter initialization 

 

hsize = 20; 

sigma = 10; 

gaussian_filter = fspecial('gaussian',hsize, sigma); %create 2D Gaussian filter 

 

subplot(121); 

imagesc(gaussian_filter) 

subplot(122); 

mesh(gaussian_filter) 

colormap(gray) 

 

 

%for making the coordinate locations more visible. 

 

SE = strel('diamond', 7); 
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% initialize the variable that will store the object locations(x,y) 

 

Track_data = zeros(length(frame_list),2); 

 

%% iteratively find the object 

 

fori = 1:length(frame_list)  

 

image_temp = double(imread(frame_list(i).name)); % load the image and convert it 

into double for computation.  

image = image_temp(:,:,1); % reduce image in first dimension 

 

subplot(221); 

imagesc(image); 

title('Original'); 

 

    %subtract background from the image 

subtract_image = (image - background_image); 

subplot(222); 

imagesc(subtract_image); 

title('Background subtracted'); 

 

    %gaussian filtering for image 

gaussian_image = filter2(gaussian_filter,subtract_image,'same');      

subplot(223);imagesc(gaussian_image); 

title('Gaussian filter smoothed'); 

 

    %threshold the image based on histogram 

subplot(224); 

hist(gaussian_image(:)); % create histogram 

threshold_image = (gaussian_image< -60); 
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subplot(224); 

imagesc(threshold_image); 

title('Thresholded'); 

 

 

    % Tracking object and finding center of the object 

 

    [x,y] = find (threshold_image); % find the nonzero value of threshold image  

 

if ~isempty(x) 

 

Track_data(i,:) = ceil([mean(x) mean(y)]+1); % ceiling to avoid zero indices 

 

else 

 

Track_data(i,:) =1; 

 

end 

 

 

    % make binary image with single coordinate of object 

 

object_image = zeros(size(threshold_image));  % crate array with zeros 

object_image(Track_data(i,1),Track_data(i,2)) = 1;  % make the object centroid is 1 

 

 

object_image = imdilate(object_image, SE);  % to make more visible centroid  

subplot(224); 

imagesc(threshold_image + object_image);  % show object with centroid 

title('thresholded and point extracted'); 
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pause(0.0001) 

end 

 

 

%save the coordinates value 

save('Track_data_store.mat', 'Track_data'); 

 

 

(2) Kalman filter  application : 

 

%%This code is for applying kalman filter. 

 

clear all;  %free up system memory 

close all; 

clc;  

 

% creat the frames address as a directory 

directory = 'E:\MATLab2013\bin\ALL_TRACKING\Person_trk\person (26-Jul-17 6-18-32 

PM)\'; 

 

%by using this command enter the directory 

cd(directory); 
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% for get the list of frames 

frame_list=  dir('*jpg'); 

 

% for load tracking data 

load('Track_data_store.mat'); 

 

%% define variables for kalman filter 

 

dt = 1;  % sampling rate 

 

Starting_frame = 10; % starting frame 

 

u = .005;  % define acceleration magnitude 

 

Q = [Track_data(Starting_frame,1); Track_data(Starting_frame,2); 0; 0]; % initized-

[positionX; positionY; velocityX; velocityY] of the object 

 

Q_estimate = Q;  % estimate of initial location estimation of where the object is. 

 

Accel_noise_mag = .1; % process noise 

 

noise_x = 1;  % measurement noise(x axis). 

noise_y = 1;  % measurement noise(y axis). 
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Ez = [noise_x 0; 0 noise_y]; 

 

Ex = [dt^4/4 0 dt^3/2 0; ... 

      0 dt^4/4 0 dt^3/2; ... 

dt^3/2 0 dt^2 0; ... 

      0 dt^3/2 0 dt^2].*Accel_noise_mag^2; % convert the process noise into covariance 

matrice 

 

P = Ex;  % estimate of initial object position variance 

 

%% Define update equations in 2-D 

 

A = [1 0 dt 0; 0 1 0 dt; 0 0 1 0; 0 0 0 1]; % state update matrice 

B = [(dt^2/2); (dt^2/2); dt; dt]; 

C = [1 0 0 0; 0 1 0 0];  % this is measurement function C, that apply to the state estimate Q 

to get expect next measurement 

 

 

%%Initialize result variables 

 

Q_loc = []; % actual object motion path 

vel = [];  % actual object velocity 
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Q_location_measurement = []; % the object path extracted by the tracking algorithm 

 

 

%% Initize estimation variables 

 

Q_location_estimate = []; % position estimate 

velocity_estimate = []; % velocity estimate 

P_estimate = P; 

predic_state = []; 

predic_var = []; 

 

r = 15; % define radius for the plotting circle 

j=0:.01:2*pi; % for make the plotting circle 

 

 

for t = Starting_frame:length(frame_list) 

 

    % loading image 

img_tmp = double(imread(frame_list(t).name)); 

img = img_tmp(:,:,1); 

subplot(121);imagesc(img); 

axis off 
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title('Raw Video'); 

 

    % Load the given tracking 

 

Q_location_measurement(:,t) = [ Track_data(t,1); Track_data(t,2)];  %measurement value 

from image processing  

 

 

    %% Applying of kalman filter    

 

    % Predict next state of the object with the last state and predicted motion. 

Q_estimate = A * Q_estimate + B * u; 

predic_state = [predic_state; Q_estimate(1)] ;  

 

    % Predict next covariance 

    P = A * P * A' + Ex; 

predic_var = [predic_var; P] ; 

 

    % Kalman gain 

    K = P*C'*inv(C*P*C'+Ez);% P=P(predict),Ez=measurement noise covarience 

 

    % Update the state estimate. 
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if ~isnan(Q_location_measurement(:,t))  % Not a number(not zero)check 

 

Q_estimate = Q_estimate + K * (Q_location_measurement(:,t) - C * Q_estimate); %Updated 

real position 

 

end 

 

 

    % Update error covariance estimation. 

    P =  (eye(4)-K*C)*P; 

 

    % Store data 

Q_location_estimate = [Q_location_estimate; Q_estimate(1:2)]; 

velocity_estimate = [velocity_estimate; Q_estimate(3:4)]; 

 

 

    % Plot the images with the tracking 

subplot(122); 

imagesc(img); 

axis off 

colormap(gray); 

 

hold on; 
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plot(r*sin(j)+Q_estimate(2),r*cos(j)+Q_estimate(1),'.r'); % The kalman filtered tracking 

 

    %plot(r*sin(j)+Q_location_measurement(2,t),r*cos(j)+Q_location_measurement(1,t),'.g'); 

% The measurement tracking 

 

hold off; 

 

title('Object Tracked'); 

 

pause(0.0001) 

end 

 

for t = 1:length(frame_list) 

 

hold on; 

 

plot(Track_data(:,2),Track_data(:,1),'.b'); 

 

hold off 

 

end 
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figure; 

plot(Track_data(:,2),Track_data(:,1),'.b'); 

xlabel('X-Axis'); 

ylabel('Y-Axis'); 

title(' Object traveling path') [15]. 
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