
SPIN Based Verification Of Service
Composition And Compensation

Nusrat Jahan Eka

2013-1-60-013

Tasneem Jannat Sultan

2013-1-60-027

Nuzat Nawal

2013-1-60-046

A thesis submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering
East West University

Dhaka-1212, Bangladesh

April, 2017

Declaration

We, hereby, declare that the work presented in this thesis is the outcome of the inves-

tigation performed by us under the supervision of Dr. Shamim H. Ripon , Associate

Professor , Department of Computer Science and engineering, East West University. We

also declare that no part of this thesis has been or is being submitted elsewhere for the

award of any degree or diploma.

Signature

. .

(Nusrat Jahan Eka)

(ID: 2013-1-60-013)

Signature

. .

(Tasneem Jannat Sultan)

(ID: 2013-1-60-027)

Signature

. .

(Nuzat Nawal)

(ID: 2013-1-60-046)

i

Letter of Acceptance

This thesis entitled ”SPIN Based Verification Of Service Composition And Compen-

sation” submitted by Nusrat Jahan Eka (ID:2013-1-60-013), Tasneem Jannat Sultan

(ID:2013-1-60-027) And Nuzat Nawal (ID:2013-1-60-046), to the Department of Com-

puter Science and Engineering, East West University, Dhaka, Bangladesh is accepted by

the department in partial fulfillment of requirements for Award of the degree of Bachelor

of Science in Computer Science and Engineering on Aril, 2017.

Supervisor

. .

(Dr. Shamim H. Ripon)

Associate Professor, Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

Chairperson

. .

(Dr. Ahmed Wasif Reza)

Chairperson (Acting) and Associate Professor

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

ii

Abstract

In a web service, there occur business transactions. Sometimes there may occur some

sorts of difficulties in the terms of transactions. To provide a good web service, it’s

composition needs to get verified and those difficulties need to get handled. And so our

motivation is to verify composition and compensation of the web service. We have used

car broker web service as our composition to verify and compensate the web service to

provide a good web service. And so we have composed and compensated this service and

verified this through the LTL verifications using PROMELA language in SPIN tool.

iii

Acknowledgments

First of all thanks to ALMIGHTY ALLAH for the uncountable blessings on us. We

would like to express our deepest gratitude to our supervisor, Dr. Shamim H. Ripon, for

his excellent guidance, caring, patience. He was consistently there to help and to guide

us, whenever we ran into a trouble spot or had a question about our work. It would have

been tough to complete the work without his guidance.

We would like to express our gratitude to the faculty members of the Department of

Computer Science and Engineering (CSE), East West University for giving us valuable

feedbacks and supporting us throughout the process.

Finally, we must express our very profound gratitude to our families and friends who

provided us continuous encouragement and supported us through thick and thin.

Nusrat Jahan Eka

April, 2017

Tasneem Jannat Sultan

April, 2017

Nuzat Nawal

April, 2017

iv

Table of Contents

Declaration of Authorship i

Letter of Acceptance ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Contribution . 2

1.4 Outline . 3

Chapter 2 Background 4

2.1 Service Composition . 4

2.1.1 Orchestration . 4

2.1.2 Choreography . 4

v

Table of Contents vi

2.2 Compensation . 5

2.3 SPIN . 5

2.3.1 Promela . 6

2.3.2 mtype Declaration . 6

2.3.3 Channel Declaration . 7

2.3.4 Process . 7

2.3.5 Message passing . 8

2.3.6 Control flow constructs . 9

2.3.7 Selection . 9

2.3.8 Repetition . 10

2.3.9 Unconditional Jump . 10

2.3.10 Assertions . 11

2.3.11 Active Proctype . 12

2.4 Linear Temporal Logic (LTL) . 12

Chapter 3 Web Service Composition 15

3.1 Introduction . 15

3.2 Car Broker Web Service . 15

3.3 Buyer . 16

3.4 Broker . 16

3.5 Supplier . 18

3.6 Loan Center . 18

Chapter 4 Compensation Composition 22

4.1 Compensation . 22

4.2 Web Service Compensation . 22

4.3 Compensations of Processes . 23

Table of Contents vii

Chapter 5 Modeling in SPIN 25

5.1 Declaration of mtype . 25

5.2 Channel Declaration . 27

5.3 Boolean types Representation . 29

5.4 Process Creation . 30

5.5 Model Representation . 31

5.6 Auotmata View . 40

5.6.1 BUYER . 40

5.6.1.1 Automata View of BUYER 41

5.6.2 BROKER . 41

5.6.2.1 Automata View of broker 43

5.6.3 SUPPLIER . 43

5.6.3.1 Automata View of Supplier 43

5.6.4 LOAN CENTER . 43

5.6.4.1 Automata View of loan Center 46

Chapter 6 Verification 48

6.1 Verification . 48

6.1.1 LTL Verification . 48

6.1.1.1 Safety . 48

6.1.1.2 Liveness: . 49

Chapter 7 Conclusion 50

7.1 Summary . 50

Bibliography 50

Appendix A PROMELA ENCODING 52

List of Figures

2.1 An web service composition . 5

2.2 An web service composition . 13

3.1 Architectural view of Buyer . 17

3.2 Architectural view of Broker . 17

3.3 Architectural view of supplier . 19

3.4 Architectural view of loan center . 19

3.5 Architectural view of Car Broker Web Service 20

3.6 Sequential chart without compensation . 21

4.1 Sequential chart of handling compensation 24

5.1 Simulation result of car broker web service 39

5.2 Automata view of Buyer . 42

5.3 Automata view of Broker . 44

5.4 Automata view of Supplier . 45

5.5 Automata view of Loan Center . 47

viii

Chapter 1

Introduction

1.1 Introduction

Web service plays an important role in business management in these days. Many busi-

ness companies run their company by using web service. It is important to verify a web

service in order to provide a good web service. A good web service means, every process

inside the service is working properly or if there are any faulty in the transactions, then

those should be handled. When multiple partners are involved in a web service then it

becomes composite web service or we can say web service composition. In a web service,

there business transaction occurs. Sometimes in business transaction, there can arise any

faulty in any stage of transactions. In usual database transaction, a rollback mechanism

is used to handle faulty in order to provide atomicity to a transaction. It takes lot of

times to fulfill the transaction if this kind of problem happens; it calls Long Run Trans-

action (LRT). Sometimes it is not possible to roll back the total transaction. It is both

difficult and critical while multiple partners are involved in their interactive nature. LRT

also not able to handle in which point the fault has occurred, i.e. sent message cannot be

unsent in this case separate mechanism can be used to handle this. Possible solution of

this problem may be that system designer can provide a mechanism to compensate the

action that cannot be undone automatically [1]. SPIN is a powerful model checker that

verifies the correctness of distributed communication models. This project represents a

SPIN based formal verification approach of a web service composition and compensation.

1

Chapter 1. Introduction 2

1.2 Motivation

In web service composition existing techniques for creating business procedure are not

good enough to handle errors while each service transfers data in between cross organi-

zational opponents. Since all this methods are not flexible enough to handle the errors

of the technical transactions of that web services. For solving this problem, compensa-

tion mechanism has a good impact on web service composition. We choose car broker

web service as an example to our verification. We have simulated our model that has

been represented by a simulation tool named ”SPIN”. Its basic is model checking and

our purpose is to check whether our model is working properly or not. We have used

compensation mechanism on our web service composition and then we have also tried to

verify the overall model.

• Analyze and verify

– The composition of web service.

– Compensation mechanism.

• Verify correctness of the model.

1.3 Contribution

We have made the following contributions in this project:

1. We have analyzed the feature of Car Broker web service by using SPIN tool in

PROMELA language. Here, we identified various components of car broker web

service.

2. Several negative possibilities can occur in the transaction of web service. So in this

case, we have used compensation mechanism to solve this problem.

Chapter 1. Introduction 3

3. Finally we have used Linear Temporal Logic (LTL) property *where safety and

liveness property is used* to verify our implementation.

1.4 Outline

• Chapter 1: Basically chapter I is an introductory part.

• Chapter 2: In chapter II named Background and there is an explanation of service

composition and its types in which our service composition works. There is also an

brief explanation of ’SPIN’ tool which specifies how to work with SPIN. There are

also some descriptions about ’PROMELA’. After that, we have discussed a general

description of LTL (linear temporal logic) property and web service composition.

• Chapter 3: In chapter III there is an overview of our Car Broker System in service

composition model that how it works with message sequence chart.

• Chapter 4: In chapter IV there is a compensation overview of our Car Broker

System model and how the compensation mechanism works, shown in the sequence

chart.

• Chapter 5: In chapter V we have simulated and modeled our web service in SPIN

tool and have encoded our web service (Car Broker Web Service) into PROMELA

language.

• Chapter 6: In chapter VI verification of the Car Broker Web Service and shows its

correctness using LTL (linear temporal logic) with safety and liveliness property.

property.

• Chapter 7: In chapter VII we have concluded our whole work with a short summary.

Chapter 2

Background

2.1 Service Composition

Web service is an emerging technology of building complex in distributed system. It

is focusing on interoperability, support of efficient integration of distributed processes.

Different services provided by different organization, perform basic activities that com-

bined in suitable ways, allow for the definition of different complex business process[2].

Web service supports the interaction among different partners by providing a model of

synchronous or asynchronous exchange of message. There are two key aspects in web

service composition those are Choreography, Orchestration.

2.1.1 Orchestration

Orchestration means executable Process. Orchestration describes how web services inter-

act with each other, including the business logic and execution order of the interactions.

WS BPEL is one of the languages which executes on an orchestration engine.

2.1.2 Choreography

Choreography describes externally observable interactions between web services. It de-

scribes multi party contacts. Our Car broker web service follows the Choreography

mechanism. It tracks the sequence of messages that may involve multiple parties and

multiple sources, including customers, suppliers, and partners. It typically associated

4

Chapter 2. Background 5

with the public message exchanges that occur between multiple web services, rather than

a specific business process that is executed by a single party.

Figure 2.1: Web Service Composition(Orchestration and Choreography).

2.2 Compensation

In Car broker web service several errors can occur during message passing. For example,

supplier can send negative quotation to broker if there is not any suitable quotation or

supplier may send ordernack message to broker if there is any difficulty to deliver the

car.

To handle these kinds of errors, we have used compensation mechanism, where if one

process sends any negative response to another then other processes will be informed

about that response.

2.3 SPIN

SPIN is a simple PROMELA interpreter where the tool is used to verify the correctness of

software model. PROMELA as a modeling language and SPIN is a tool for analyzing the

model system specified in PROMELA. The tool can be used for the formal verification

of multi-threaded software applications. SPIN is design for various distributed system

Chapter 2. Background 6

like data communication protocol, multi-thread code, client server protocol, network

application etc. SPIN can use the entire check of high-level models of concurrent system.

It also executes parallel processes. The state of different properties can be checked by

this tool. It can use in two basic modes: as a simulator and as a verifier[3]. In simulation

mode, SPIN uses to get a quick impression behavior type, which is captured in the system

model. Verifier means correctness of detail model of the system under validation. SPIN

can be used as a full LTL model checking system, supporting all correctness requirements

expressible in linear time temporal logic. It can also be used to check safety and liveness

properties. If there any violation, it produces an error trace.

2.3.1 Promela

Promela means Process Meta Language which provides a way for making abstraction of

distributed system. During simulations and verifications SPIN checks for the absence

of deadlocks, unspecified receptions, and not executable code[4]. It is a verification

modeling language where each model of the environment can be verified with spin .

PROMELA program consists of processes,message,channels,and variables. PROMELA

processes behave like real processes where each process is a global object. Message

channels and variables can be declared either globally or locally within a process.

2.3.2 mtype Declaration

The introduction of symbolic names can be specified by mtype declaration. In

PROMELA language, there can be multiple mtype declaration. If multiple declarations

are given, they are equivalent to a single mtype declaration that contains the concatena-

tion of all separate lists of symbolic names.

mtype = { ack, nak, order }

is functionally equivalent to the sequence of macro definitions:

Chapter 2. Background 7

#define ack 5

#define nak 4

#define order 2

This data type can be used inside channel declarations, for specifying the type of

message fields.

2.3.3 Channel Declaration

Channels are used to transfer messages between active processes. Channels are declared

using the keyword ’chan’, either locally or globally, much like integer variables. The

keyword ’chan’ can be followed by one or more names, the syntax is-

chan pname=[2] of {mtype,bool}%

In this case the channel is named pname which is an array of two elements.

2.3.4 Process

In PROMELA, each process is represented by ’proctype’, where it refers process type.

The state of a variable or of a message channel can only be changed or inspected by

processes.

proctype sender()

{

byte state;

state = 3;

}

In this example, the process type consists of a name which is ’sender’. New processes can

be spawned using the ’run’ statement, which takes an argument consisting of the name

of a ’proctype’, from which a process is then instantiated. The ’run’ operator can be used

Chapter 2. Background 8

in the body of the ’proctype’ definitions, not only in the initial process. This allows for

dynamic creation of processes in PROMELA.

2.3.5 Message passing

Message channels are used to model the transfer of data from one process to another.

Message channels are declared by,

chan sender = [2] of {mtype, bit, short, chan};

chan receiver = [0] of {byte};

chan Channel;

In this example, the sender channel can store up to two messages in the channel; the

message type is indicated between the braces, in this case each message consists of 4

parts.

chan producer = [5] of {short}

This declares a buffered channel that can store up to five messages of type short (it’s

capacity is 5). The statement:

sender ! ack;

sends the value of the expression ack to the channel named ’sender’, that is, it appends

the value to the tail of the channel. The statement:

receiver ? msg;

Receives the message, retrieves it from the head of the channel, and stores it in the

variable msg. The channels pass messages in first-in-first-out order. A rendezvous port

can be declared as a message channel with the store length of zero. For example, the

following:

chan port = [0] of {byte}

Chapter 2. Background 9

It defines a rendezvous port that can pass messages of type byte. Message interactions

via such rendezvous ports are by definition synchronous, i.e. sender or receiver (the one

that arrives first at the channel) will block for the contender that arrives second (receiver

or sender). When a buffered channel has been filled to its capacity (sending is ”capacity”

number of outputs ahead of receiving inputs), the default behavior of the channel is to

become synchronous, and the sender will block on the next sending. Observe that there is

no common message buffer shared between channels. Increasing complexity, as compared

to using a channel as unidirectional and point to point, it is possible to share channels

between multiple receivers or multiple senders, and to merge independent data-streams

into a single shared channel. From this follows that a single channel may also be used

for bidirectional communication.

2.3.6 Control flow constructs

There are three control flows constructed in PROMELA. They are the case selection, the

repetition and the unconditional jump.

2.3.7 Selection

In selection part, it can choose any of statement depending on the condition. Here we

consider two values, ’a’ and ’b’ give a simple introduction of selection part.

if

:: (a > b) -> option1

:: (a < b) -> option2

:: else break;

fi

The selection structure contains two execution sequences, each preceded by a double

colon. Here only one sequence will go to be executed based on the condition. A sequence

Chapter 2. Background 10

can be selected only if its first statement is executable. The first statement after double

colon is called guard statement. This guard statement determines whether the execution

sequence that follows is selectable for execution or not. If not all guards are executable,

then the process will block until one of them is selected. In the example above, the guards

are mutually exclusive, but they need not be. If more than one guard is executable, one

of the corresponding sequences is selected non-deterministically.

2.3.8 Repetition

Repetition (loop) a logical extension of the selection structure is the repetition structure.

For example:

do

:: count = count + 1

:: count = count-1

od

Only one option can be selected at a time in the structure of repetition in PROMELA.

After the option completes, the execution of the structure is repeated. Break statement is

used here to terminate the instruction that immediately follows the repetition structure.

2.3.9 Unconditional Jump

Unconditional jump is the another way to break a loop and that is the ’goto’ statement.

For example, one can modify the example above as follows:

L1: do

:: c = a+b

:: c = a*b

:: (count == 0) -> goto L1

od

Chapter 2. Background 11

skip;

The ’goto’ statement in this example, jumps to a label named done. A label can only

appear before a statement. To jump at the end of the program, for example, a dummy

statement ’skip’ is useful: it is a place-holder that is always executable and has no effect.

In case selection the simplest construct is the selection structure. Using the relative

values of two variables ’p’ and ’q’, for example, one can write:

if

:: (p == q) -> option1

:: (p != q) -> option2

fi

The selection structure contains two execution sequences, each preceded by a double

colon. One sequence from the list will be executed. A sequence can be selected only

if its first statement is executable. The first statement of a control sequence is called

a guard. In the example above, the guards are mutually exclusive, but they need not

be. If more than one guard is executable, one of the corresponding sequences is selected

non-deterministically. If all guards are not executable, the process will block until one of

them can be selected.

2.3.10 Assertions

An important statement is constructed in PROMELA that needs a little explanation is

the ’assert’ statement. Statements of the form:

assert(any_boolean_condition)

that’s always executable. If a Boolean condition specified holds the statement, has no

effect. If, however, the condition does not necessarily hold, the statement will produce

an error during verifications with Spin.

Chapter 2. Background 12

2.3.11 Active Proctype

The active keyword can be prefixed to any ’proctype’ definition. If the keyword is present,

an instance of that ’proctype’ will be active in the initial system state. Multiple instan-

tiations of that ’proctype’ can be specified with an optional array suffix of the keyword.

Example:

active proctype sender() { ... }

active [2] proctype receiver() { ... }

2.4 Linear Temporal Logic (LTL)

SPIN is a tool which verifies the correctness of the system expressed in LTL (linear

temporal logic). SPIN performs the conversion to Bchi automata mechanically based on a

simple on-the-fly construction [5]. The automata that are generated formally accept only

those (infinite) system executions that satisfy the corresponding LTL formula. In LTL

we can find out different types of properties such as safety property, liveliness property

etc, which helps to check the model properly. As noted briefly above, we use correctness

requirements to formalize system behaviors that are claimed to be impossible, i.e., to

formalize the potential violation of correct system behavior. Each positive LTL formula

can, of course, be turned into a negative one, and vice versa, by prefixing it with a

logical negation operator. A formula of LTL is built from atomic propositions and from

operators that include the operators of the propositional calculus as well as temporal

operators. The temporal operators are as shown in Table 2.1.

The easiest way to specify an LTL property is to specify it inline. The formula is

specified globally with the following syntax:

ltl [name] ’{’ formula ’}’

The name is optional, but can be useful when specifying multiple formulae. (Each

such formula follows the same basic format.) The formula has the grammar outlined

Chapter 2. Background 13

Figure 2.2: LTL Formula.

above, with some extensions. First, white space (newlines, spaces, tabs) can be used

anywhere to separate operands and operators. Second, the names of operators can either

be abbreviated with the symbols shown above, or spelled out in full as always, eventually,

until, implies, and equivalent. [6]. The following two are equivalent:

ltl p1 { []<> p }

ltl p2 { always eventually p }

The properties stated in this way are taken as positive properties that must be satisfied

by the model. The model checker will perform an automatic negation of the formula

to find counter-examples. Another improvement in the specification of LTL formula

in Spin version 6 and later is that the inline LTL formula can contain any propositional

state formula, i.e., it is not restricted to the lower-case propositional symbols from before,

where each propositional symbol has to be defined in macro definitions. This means that

we can write:

ltl p3 { eventually (a > b) implies len(q) == 0 }

Spin can translate LTL formulae into PROMELA, ’never’ claims with command line op-

tion -f. The ’never’ claims it is generated to encode the Buchi acceptance conditions from

the LTL formula. Formally, any omega-run that satisfies the LTL formula is guaranteed

to correspond to an accepting run of the never claim. The operands of an LTL formula

Chapter 2. Background 14

are often one-character symbols, such as p , q , r , but they can also be symbolic names,

provided that they start with a lowercase character, to avoid confusion with some of the

temporal operators which are in uppercase. The names or symbols must be defined to

represent Boolean expressions on global variables from the model. The names or symbols

are normally defined with macro definitions.

Chapter 3

Web Service Composition

3.1 Introduction

Web services are self-describing and platform-independent applications that can be in-

voked over the Web. Web Service technology provides a platform so that we can develop

distributed service. Composition of web services has received much interest to support

business-to-business or enterprise application integration. Web service is defined as self-

contained, modular units of application logic, which provide business functionality to

other applications via an Internet connection. In many cases, a single service is not suf-

ficient to respond to the user’s request and often services should be combined through

services composition to achieve a specific goal[7]. Web services support the interaction

of business partners and their processes by providing a stateless model of ”atomic” syn-

chronous or asynchronous message exchanges. These ”atomic” message exchanges can be

composed into longer business interactions by providing message exchange protocols that

shows the mutually visible message exchange behavior of each of the partners involved.

The issue of how web services are to be described can be resolved in various ways.

3.2 Car Broker Web Service

We have chosen Car Broker Web Service as an example to our verification. In the car

broker web service, the broker negotiates with supplier for car purchase for customer or

buyer and arranges loan. The main web service, broker uses two separate partners. A

15

Chapter 3. Web Service Composition 16

supplier to find suitable quotation for buyer then delivers car to broker according to the

order and a loan-center to arrange loan. In this model the buyer starts the process

by sending an order message to broker for a car. Broker then sends a request message

for a suitable quotation of that car model to supplier. Broker receives the quotes from

supplier and after that, Broker simultaneously sends quotes to buyer, buyer acknowledges

about that quote and then broker sends request for loan message to loan-center. Loan-

center receives that and sends loan reply to broker. Then broker sends this loan reply

to buyer. Buyer receives and confirm for the car order to broker. Broker then sends an

order message to supplier. Supplier sends an order acknowledgement message to broker.

Broker sends a deliver message to buyer and buyer sends received car message to broker.

Then finally broker will send this received message to supplier and to loan-center. So,

we can say that all transactions have been successfully done.

3.3 Buyer

Buyer is a person who intends to buy a product from online. In this system at first buyer

gives an order to broker to purchase a car. In according to the order, buyer receives a

suitable quote from broker. The buyer can either accept or reject the quote. If buyer

sends an acknowledgement then broker will send loan reply message to buyer. Then

buyer finally confirms for the car and broker sends a deliver message and buyer will send

a received message to broker which means buyer got that ordered car successfully. Fig

3.1 shows the architectural view of buyer.

3.4 Broker

Broker leads an important part, because broker communicates with all other processes.

After receiving the order from the buyer, broker requests supplier for available quotes.

Then broker sends this quote message from supplier to buyer. Then broker receives an

Chapter 3. Web Service Composition 17

Figure 3.1: Architectural view of Buyer.

Figure 3.2: Architectural view of Broker.

Chapter 3. Web Service Composition 18

acknowledgement message from buyer and sends a request for loan message to loan-center.

Broker receives loan reply from loan-center and sends this loan reply message to buyer.

Then broker gets a final confirmation message from buyer. Then broker sends an order

message to supplier for that car. Then broker receives an order acknowledgement message

from supplier for the ordered car. Then broker sends a deliver message to buyer. Then

broker receives a received message from buyer. Then broker sends this received message

to supplier and to loan-center, which means buyer got that ordered car successfully. Fig

3.2 shows the architectural view of broker.

3.5 Supplier

Supplier receives a request for quote message from broker and sends quote reply message

to broker. Then supplier receives an order message for that car from broker. Then sup-

plier sends an order acknowledgement message to broker. Then finally supplier receives a

received message from broker, which means buyer got that ordered car successfully. Fig

3.3 shows the architectural view of Supplier and Fig 3.4 shows the architectural view of

loan center.

3.6 Loan Center

Loan Center is assumed as a lender web service that offers loans to online buyers via

broker. Loan-center receives a request for loan message from broker. Then loan-center

sends loan reply to broker. After that, loan-center receives a received message from bro-

ker, which means buyer got that ordered car successfully. Fig 3.5 shows the architectural

view of Car broker and Fig 3.6 shows the Sequential chart without compensation.

Chapter 3. Web Service Composition 19

Figure 3.3: Architectural view of sup.

Figure 3.4: Architectural view of loan center.

Chapter 3. Web Service Composition 20

Figure 3.5: Architectural view of Car broker Web Service.

Chapter 3. Web Service Composition 21

Figure 3.6: Sequential chart without compensation

Chapter 4

Compensation Composition

4.1 Compensation

Business transaction typically means coordination and interaction between multiple part-

ners. This transaction involves hierarchies of active. Business transaction needs to deal

with faulty or complications or difficulties that can arise in any stage of the transaction.

A rollback mechanism is used to handle those problems in order to provide automaticity

to a transaction. However, some transaction requires long period to complete. It’s called

LONG RUNNING TRANSACTION (LRT), sometimes rollback is not always possible

.LRs are usually interactive that communicates with several activities. Handling faulty

where multiple partners are involved is both difficult and critical. Due to their interactive

nature, LRTs are not able to be check pointed, e.g. a sent message cannot be unsent. In

such case, a separate mechanism i.e. is required to handle faulty. A possible solution of

the problem would be that the system designer could provide a mechanism to compensate

the action that cannot be undone automatically[8]

4.2 Web Service Compensation

In any stage of transactions, any type of difficulties can occur. For these circumstances,

we used compensation mechanism to handle these kinds of situations. To ensure that all

positive or negative messages which are sent, are have transmitted accurately to those

particular channels in processes through Boolean variables. If there any type of difficulties

22

Chapter 4. Compensation Composition 23

occurs then, those assigned true Boolean variables will be false. Then by checking these

Boolean variables at each transaction, particular message will be sent to complete the

service.

4.3 Compensations of Processes

In the part of buyer’s compensation, two cases will occur. First, when buyer gets

suitable or positive quote message which was sent by broker from supplier after requesting,

then buyer can cancel the order, if buyer wants to. If buyer wants to cancel the order,

buyer will send cancel order message to broker. After receiving this, broker will send this

cancel order message to supplier. Second, when buyer gets positive loan message which

was sent by broker from loan-center after requesting, then buyer can cancel the order, if

buyer wants to. If buyer wants to cancel the order, buyer will send cancel order message

to broker. After receiving this, broker will send this cancel order message to supplier

and to loan-center. In the part of supplier’s compensation, two cases will occur. First,

when supplier gets request for quote message from broker, supplier can give negative

quote message to broker, if supplier fails to give suitable quotation. If supplier fails to

give suitable quotation, broker will send this message to buyer. After receiving this, buyer

will send the cancel order message to broker. Then broker will send this cancel order

message to supplier. Second, after supplier gets the order message from broker, supplier

may fail to deliver the car, if there is any difficulty. If supplier fails to deliver the ordered

car, supplier will send message, after receiving message broker will send negative deliver

message to buyer. After receiving this message, buyer will send cancel order message to

broker. Then broker will send this cancel order message to supplier and to loan-center. In

the part of loan-center’s compensation, one case will occur. When loan-center gets the

request message from broker after a confirmation from buyer, loan-center may not give

loan or may give negative loan message to broker. If loan-center sends no loan message

Chapter 4. Compensation Composition 24

to broker, broker will send this message to buyer. After receiving this message, buyer

will send cancel order message to broker. Then broker will send this message to supplier

and to loan-center.

Figure 4.1: Sequential chart of handling compensation

Chapter 5

Modeling in SPIN

In this section we designed a model in SPIN tool using PROMELA language which

logically represents the message based interactions among the processes to explain web

service choreography. Each section of the model contains one process that runs parallel.

This model consists of a buyer, broker, supplier and loan-center processes. When

buyer orders, it contacts with broker. The broker system communicates with other

systems; suppler and loan-center and collects information through message passing

communication and sends due responses to the buyer. Any negative response can occur

at any time, because there can occur any sort of difficulties in any system. And so, we

have used compensation to solve these kinds of scenarios.

5.1 Declaration of mtype

In PROMELA ”mtype” declaration allows for the introduction of symbolic names for

constant values. In this model we use this mtype variable to specify message passing

through channel. Corresponding individual name for each message are represented by

this data type.

mtype={order , ack , quote , r fq , r loan , suporder , orderack , d e l i v e r ,

r ece ived , confirm , neg quote , loan pos , loan neg , cance lo rder ,

ordernack , de l i v e rneg , cance lo rder1 , cance l o rde r2 }

Firstly, buyer will send an order message to broker. broker receives order message

25

Chapter 5. Modeling in SPIN 26

and sends rfq message to supplier for quotation.Supplier receives rfq message and

sends quote confirmation message to broker which can be positive or negative (quote or

neg quote). broker receives quote confirmation message and sends this to buyer. buyer

sends an ack message to broker to confirm. broker receives this message and sends rloan

message to loan-center. loan center receives this message and sends loanrply confirmation

message to broker which can be positive or negative (loan pos or loan neg). broker sends

this message to buyer. buyer receives this and will send confirmation message to broker

which can be positive or negative (confirm or cancelorder1). broker receives this message

and sends suporder message to supplier. supplier will send a suplyrorder confirmation

message to broker which can be positive or negative (orderack or ordernack). broker

receives this message and sends deliver confirmation message to buyer which can be

positive or negative (deliver or deliverneg).

We have used compensation mechanism to handle difficulties in transactions, when

there happens. There can be happen some sort of difficulties in transactions. Some

of them are written below: After receiving rfq message from broker, if supplier sends

quote confirmation message to broker which is negative (neg quote). broker receives this

neg quote message and sends this to buyer.buyer sends a cancelorder message to broker to

cancel the order. broker receives this message and sends this cancel message to supplier.

Even after, broker sends positive quotation (quote) message from supplier to buyer, buyer

can cancel the order, and then broker will send cancel message (cancelorder) to supplier.

Even after sending positive loanrply confirmation message (loan pos) to buyer, buyer may

send a cancelorder message to broker. Then, in terms of canceling the order progress,

broker will send this cancelorder message to supplier and loan-center. Even, loan center

might be unable to give loan, so loan-center will send negative loanrply confirmation

message (loan neg) to broker. Then broker will send this message to buyer. And so,

buyer will cancel the order by sending cancelorder message to broker. After receiving

this, broker will send this cancelorder message to supplier and to loan-center. Even, there

Chapter 5. Modeling in SPIN 27

might occur any faulty about supplying the car. Before that, all other transactions were

successfully done, but supplier may not be able to supply the ordered car. So, supplier

sends a negative suplyrorder confirmation (ordernack) to broker. Then broker sends a

negative deliver confirmation message (deliverneg) to buyer. After receiving this, buyer

will send a cancelorder message to broker. Then broker will send this cancelorder mes-

sage to supplier and to loan-center. Even, loan-center might be unable to give loan, so

loan-center will send negative loanrply confirmation message (loan neg) to broker. Then

broker will send this message to buyer. And so, buyer will cancel the order by sending

cancelorder message to broker. After receiving this, broker will send this cancelorder mes-

sage to supplier and to loan center. Even, there might occur any faulty about supplying

the car. Before that, all other transactions were successfully done, but supplier may not

be able to supply the ordered car. So, supplier sends a negative suplyrorder confirmation

(ordernack) to broker. Then broker sends a negative deliver confirmation message (de-

liverneg) to buyer. After receiving this, buyer will send a cancelorder message to broker.

Then broker will send this cancelorder message to supplier and to loancenter.

5.2 Channel Declaration

Message channels are used to model the exchange of data between processes. We have

used one type of channel for regular message transaction including messages for com-

pensations. Channel declaration have to be global, otherwise message’s data cannot be

received. Each channel contains data length and in this model we have used message type

and Boolean type. Message type data named ”mtype” contains information between

two services and Boolean type contains confirmation data that has been confirmed by

most recent previous transaction among two services.

chan buyer broker1 =[2] o f {mtype , bool } ;

chan buyer broker3 =[2] o f {mtype , bool } ;

Chapter 5. Modeling in SPIN 28

chan buyer broker4 =[2] o f {mtype , bool } ;

chan buyer broker5 =[2] o f {mtype , bool } ;

chan buyer broker6 =[2] o f {mtype , bool } ;

chan buyer broker7 =[2] o f {mtype , bool } ;

chan buyer broker8 =[2] o f {mtype , bool } ;

chan buyer broker9 =[2] o f {mtype , bool } ;

chan buyer broker10 =[2] o f {mtype , bool } ;

chan broker buyer2 =[2] o f {mtype , bool } ;

chan broker buyer1 =[2] o f {mtype , bool } ;

chan broker buyer3 =[2] o f {mtype , bool } ;

chan broker buyer4 =[2] o f {mtype , bool } ;

chan broker buyer5 =[2] o f {mtype , bool } ;

chan broker buyer6 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 1 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 2 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 3 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 4 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 5 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 6 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 7 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 8 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 9 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 1 0 =[2] o f {mtype , bool } ;

chan b r o k e r s u p p l i e r 1 1 =[2] o f {mtype , bool } ;

chan s u p p l i e r b r o k e r 1 =[2] o f {mtype , bool } ;

chan b r o k e r l o a n s t a r 1 =[2] o f {mtype , bool } ;

chan b r o k e r l o a n s t a r 2 =[2] o f {mtype , bool } ;

Chapter 5. Modeling in SPIN 29

chan b r o k e r l o a n s t a r 3 =[2] o f {mtype , bool } ;

chan b r o k e r l o a n s t a r 4 =[2] o f {mtype , bool } ;

chan b r o k e r l o a n s t a r 5 =[2] o f {mtype , bool } ;

chan b r o k e r l o a n s t a r 6 =[2] o f {mtype , bool } ;

chan l o a n s t a r b r o k e r 1 =[2] o f {mtype , bool } ;

5.3 Boolean types Representation

Since Boolean type represents only true or false value, that’s why we use this property

for checking the data type whether the most recent message transaction is occurred or

not. Each service transaction message contains one confirmation towards next service.

We have initialized some Boolean values by true and some are by false. We considered

the fact that, negative occurrences will not be initialized by true, but only when it will

occur, then it will be true.

bool buyerorder_confirmation=true,confirmation=true;

bool quote_confirmation=true,quote_confirmationbyr=true;

bool ack_confirmation=true,loanreq_confirmation=true;

bool brokerorder_confirmation=true;

bool suplyrorder_confirmation=true,deliver_confirmation=true;

bool loanrply_confirmation=true;

bool loanrply_confirmationbyr=true;

bool cancelorder_confirmationbyr=true;

bool cancelorder_confirmationbrk=true;

bool deliverneg_confirmation=true;

bool cancelorder1_confirmation=true;

bool ok_confirmation=true;

Chapter 5. Modeling in SPIN 30

5.4 Process Creation

In PROMELA each process is represented by ”proctype”. It refers to the process

type and it is used for declaring process behavior. A process type consists of a name and

a body whether it has any parameters or not. Process can be created at any portion

in the execution and it starts executing after run statement. Also it executes by active

processes where processes need not any run statement. In our model we have used four

processes and these are buyer, broker, supplier, loan-center. Each process has its own

methods for checking the overall service. A sample process that has been used in our

model is given below:

active proctype loanstar()

{

L5: do::

broker_loanstar1?rloan(loanreq_confirmation);

/*reqest for loan after quote pos & buyer ok_cnfrm*/

if

::loanrply_confirmation==true->

broker_loanstar1!loan_pos(loanrply_confirmation); /*loan pos to broker*/

::loanrply_confirmation==false->

loanstar_broker1!loan_neg(loanrply_confirmation);->

broker_loanstar2?cancelorder(loanrply_confirmationbyr);

->goto L5/*loan neg to broker so buyer canceled*/

fi;

/*when loan positive*/

if

::loanrply_confirmation==true->

broker_loanstar5?received(confirmation);

Chapter 5. Modeling in SPIN 31

->goto L5 /*car received*/

::ok_confirmation==false->

broker_loanstar6?cancelorder1(cancelorder1_confirmation);

->goto L5 /*loan pos but buyer canceled*/

::suplyrorder_confirmation==false->

broker_loanstar4?cancelorder1(cancelorder1_confirmation);

->goto L5 /*supplier ordernack (no car) buyer canceled*/

fi;

od;

}

5.5 Model Representation

To encoding our model in SPIN, we can represent the whole transaction method in one

section including compensation mechanism. In buyer process, buyer only communicates

with broker. buyer gives order to broker

buyer_broker1! order(buyerorder_confirmation);

and receives quote reply from broker.

::quote_confirmationbyr==true->broker_buyer2?quote(quote_confirmationbyr);

/* receive quote from broker */

::quote_confirmationbyr==true-> buyer_broker1!ack(ack_confirmation);

/* buyer send ack to broker */

After sending acknowledgement message to broker, buyer receives loan reply from

broker.

::loanrply_confirmation==true->

Chapter 5. Modeling in SPIN 32

broker_buyer6?loan_pos(loanrply_confirmation);->goto L8

After receiving positive quotation and loan, buyer finally confirms for the car and

sends a confirm message to broker.

::loanrply_confirmation==true-> buyer_broker9!confirm(ok_confirmation)

;->goto L11

At last, buyer receives a deliver message from broker and sends a received message

to broker.

::suplyrorder_confirmation==true->broker_buyer1?deliver(deliver_confirmation)

;-> buyer_broker6!received(confirmation);->goto L1;

buyer will cancel the order for three reasons, when quote is negative or loan is negative

or supply order confirmation is false

::quote_confirmationbyr==false->broker_buyer3?

neg_quote(quote_confirmationbyr)

;->buyer_broker5!cancelorder1(cancelorder1_confirmation)

;->goto L1

::loanrply_confirmation==false->broker_buyer4?loan_neg

(loanrply_confirmationbyr)

;->buyer_broker3!cancelorder(cancelorder_confirmationbyr)

;->goto L1

::suplyrorder_confirmation==false->broker_buyer5?deliverneg

(deliverneg_confirmation)

;->buyer_broker4!cancelorder1(cancelorder1_confirmation)

;->goto L1

Chapter 5. Modeling in SPIN 33

Even after receiving positive quotation message or positive loan message buyer can

cancel the order, if wants to. buyer receives positive quote but can cancel the order -

::quote_confirmationbyr==true->broker_buyer2?quote(quote_confirmationbyr);

::ack_confirmation==false->buyer_broker8!cancelorder1

(cancelorder1_confirmation)

;->goto L1 /*quote pos but buyer canceled*/

buyer receives positive loan reply but can cancel the order-

::loanrply_confirmation==true->broker_buyer6?loan_pos(loanrply_confirmation)

;->goto L8

::ok_confirmation==false->buyer_broker10!cancelorder1

(cancelorder1_confirmation);->goto L1

In broker process, it communicates with all processes and passes messages of these

processes among them. broker receives order message from buyer.

buyer_broker1?order(buyerorder_confirmation);

::buyerorder_confirmation==true->broker_supplier1!rfq(confirmation);

/* broker send rfq to supplier*/

broker gets quotation reply from supplier that can be positive or negative.

::quote_confirmation==true->broker_supplier2?quote(quote_confirmation)

;->broker_buyer2!quote(quote_confirmationbyr);

::quote_confirmation==false->broker_supplier3?neg_quote(quote_confirmation);

If broker gets acknowledgement message then requests for loan to loan-center

buyer_broker1?ack(ack_confirmation); /*ack sent after quote sent*/

::ack_confirmation==true->broker_loanstar1!rloan(loanreq_confirmation);

Chapter 5. Modeling in SPIN 34

broker will receive loan reply from loan-center which can be positive or negative and

will send loan reply to buyer.

::loanrply_confirmation==true->broker_loanstar1?loan_pos

(loanrply_confirmation);->broker_buyer6!loan_pos

(loanrply_confirmation);->goto L2

::loanrply_confirmation==false->loanstar_broker1?loan_neg

(loanrply_confirmation)

;->broker_buyer4!loan_neg(loanrply_confirmationbyr);

If broker gets confirmation from buyer after sending positive loan, then orders car to

supplier.

::ok_confirmation==true->buyer_broker9?confirm(ok_confirmation)

;->broker_supplier1!suporder(brokerorder_confirmation)

;->goto L12

broker gets an order confirmation from supplier which can be positive or negative If

broker gets positive order confirmation, then sends deliver message to buyer.

::suplyrorder_confirmation==true->broker_supplier2?orderack

(suplyrorder_confirmation);->broker_buyer1!

deliver(deliver_confirmation);->buyer_broker6?received(confirmation)

;->broker_supplier8!received(confirmation)

;->broker_loanstar5!received(confirmation);->goto L4

Then broker receives a received confirmation message from buyer and sends it to

supplier and to loan-center. All these messages were sent from broker to others, when

Chapter 5. Modeling in SPIN 35

broker received positive messages from others. We have used compensation mechanism

and how broker handles compensation, is given below: If supplier sends negative quota-

tion, broker sends this to buyer and buyer will cancel the order and broker will send this

cancel message to supplier.

::quote_confirmation==false-> broker_supplier3?neg_quote(quote_confirmation)

;->broker_buyer3!neg_quote(quote_confirmationbyr)

;->buyer_broker5?cancelorder1(cancelorder1_confirmation)

;->broker_supplier6!cancelorder1(cancelorder1_confirmation)

;->goto L4

Even after sending positive quotation buyer can cancel order, then broker will send cancel

message to supplier.

::ack_confirmation==false->buyer_broker8?cancelorder1

(cancelorder1_confirmation);->broker_supplier9!cancelorder

(cancelorder_confirmationbrk);->goto L4

If loan-center cannot give loan, after sending this to buyer, broker will get cancel order

from buyer. Then broker will send this cancel message to supplier and to loan-center.

::loanrply_confirmation==false->buyer_broker3?

cancelorder(cancelorder_confirmationbyr);->broker_supplier4!cancelorder

(cancelorder_confirmationbrk)

;-> broker_loanstar2!cancelorder(cancelorder_confirmationbyr)

;->goto L4

Even after sending positive loan to buyer, buyer can cancel order. Then after receiving

cancel order message, broker will send this cancel order message to supplier and to loan-

center.

Chapter 5. Modeling in SPIN 36

::ok_confirmation==false->buyer_broker10?cancelorder1

(cancelorder1_confirmation)

;->broker_supplier11!cancelorder1(cancelorder1_confirmation)

;-> broker_loanstar6!cancelorder1(cancelorder1_confirmation)

;->goto L4 /*loan pos but buyer canceled order*/

If for some reason supplier fails to send car, broker gets an ordernack confirmation

from supplier. broker informs buyer and buyer will send cancel order message. Then

broker will send this cancel message to supplier and to loan-center.

::suplyrorder_confirmation==false->

supplier_broker1?ordernack(suplyrorder_confirmation)

;->broker_buyer5!deliverneg(deliverneg_confirmation)

;->buyer_broker4?cancelorder1(cancelorder1_confirmation)

;->broker_supplier7!cancelorder1(cancelorder1_confirmation)

;->broker_loanstar4!cancelorder1(cancelorder1_confirmation);->goto L4

In supplier process, it only communicates with broker. supplier gets request message

from broker, then sends quotation reply to broker.

broker_supplier1?rfq(confirmation); /*request for quotation*/

::quote_confirmation==true->broker_supplier2!quote(quote_confirmation);

::quote_confirmation==false->broker_supplier3!neg_quote(quote_confirmation)

;->broker_supplier6?cancelorder1(cancelorder1_confirmation);->goto L6

After sending positive quotation, supplier gets an order message for car from broker.

Then supplier sends supply order confirmation message to broker. If supplier can supply

the car then receives a received message from broker.

::ok_confirmation==true->broker_supplier1?suporder(brokerorder_confirmation)

;->goto L7

Chapter 5. Modeling in SPIN 37

::brokerorder_confirmation==true->

broker_supplier2!orderack(suplyrorder_confirmation)

;->broker_supplier8?received(confirmation);->goto L6

supplier may receive cancel order message, even after giving the positive quotation to

broker. If buyer wants to cancel the order even after getting the positive quotation, so

supplier will get a cancel order message from broker.

::ack_confirmation==false->broker_supplier9?cancelorder

(cancelorder_confirmationbrk);->goto L6

Even after, other transactions are positive,before the order of car from broker, supply

may get a cancel order message from broker.

::ok_confirmation==false->broker_supplier11?cancelorder1

(cancelorder1_confirmation);->goto L6

After sending positive quotation, for other difficulty, supplier may get a cancel order

message from broker.

::loanrply_confirmation==false->broker_supplier4?

cancelorder(cancelorder_confirmationbrk);->goto L6

If there are some difficulties in transactions of supplier and so we have used compen-

sation mechanism in supplier process. After getting the request message for quotation,

supplier may give negative quotation to broker and so will receive a cancel order message

from broker.

::quote_confirmation==false->broker_supplier3!neg_quote(quote_confirmation)

;->broker_supplier6?cancelorder1(cancelorder1_confirmation);->goto L6

Chapter 5. Modeling in SPIN 38

After getting order message from broker, supplier may send ordernack message to

broker and so will get a cancel order message from broker.

::suplyrorder_confirmation==false->supplier_broker1!ordernack

(suplyrorder_confirmation)

;->broker_supplier7?cancelorder1(cancelorder1_confirmation);-> goto L6

In the loan-center process, loan-center only communicates with broker. loan-center

gets request for loan from broker and sends loan reply to broker.

broker_loanstar1?rloan(loanreq_confirmation);

::loanrply_confirmation==true->broker_loanstar1!loan_pos

(loanrply_confirmation);

::loanrply_confirmation==false->loanstar_broker1!loan_neg

(loanrply_confirmation)

;->broker_loanstar2?cancelorder(loanrply_confirmationbyr);->goto L5

If loan-center has given loan then it will receive a received message from broker.

::loanrply_confirmation==true->broker_loanstar5?received(confirmation);

Even after giving loan, loan may receive a cancel order message from broker.

::ok_confirmation==false-> broker_loanstar6?cancelorder1

(cancelorder1_confirmation);->goto L5

There might happen some difficulties in the transactions of loan-center and broker,

and so we have used compensation mechanism. If loan-center cannot give loan then it

will send negative loan reply and broker will send a cancel order message.

::loanreq_confirmation==false->loanstar_broker1!loan_neg

(loanrply_confirmation)

;->broker_loanstar2?cancelorder(loanrply_confirmationbyr);

Chapter 5. Modeling in SPIN 39

Figure 5.1: Simulation result of car broker web service

Chapter 5. Modeling in SPIN 40

5.6 Auotmata View

Automata view refers, the study of the mathematical properties and its visualization that

recognizes strings containing an even or odd number to symbolize the transaction of one

state or event to another. It is a representation of state diagram which indicates all the

transactions in a process. Our model consists of four independent processes buyer, broker,

supplier, loan-center named as loanstar. Each automata view includes the compensation

mechanism, because we have used compensation mechanism in each process of its.

5.6.1 BUYER

Buyer is a person who intends to buy a product from online. In this system at first buyer

gives an order to broker to purchase a car. In according to the order, buyer receives a

suitable quote from broker. The buyer can either accept or reject the quote. If buyer

sends an acknowledgment then broker will send loan reply message to buyer. Then buyer

finally confirms for the car and broker sends a deliver message and buyer will send a

received message to broker which means buyer got that ordered car successfully. When

buyer gets suitable or positive quote message which was sent by broker from supplier,

then buyer can cancel the order, if buyer wants to. If buyer wants to cancel the order,

buyer will send cancel order message to broker. After receiving this, broker will send this

cancel order message to supplier. When buyer gets positive loan message which was sent

by broker from loan-center after requesting, then buyer can cancel the order, if buyer

wants to. If buyer wants to cancel the order, buyer will send cancel order message to

broker. After receiving this, broker will send this cancel order message to supplier and

to loan-center. Buyer will cancel the order, if gets negative quote or negative loan or

negative deliver message.

Chapter 5. Modeling in SPIN 41

5.6.1.1 Automata View of BUYER

Figure 5.2 shows the Automata View of Buyer.

5.6.2 BROKER

Broker leads an important part, because broker communicates with all other processes.

After receiving the order from the buyer, broker requests supplier for available quotes.

Then broker sends this quote message from supplier to buyer. Then broker receives an

acknowledgment message from buyer and sends a request for loan message to loan-center.

Broker receives loan reply from loan-center and sends this loan reply message to buyer.

Then broker gets a final confirmation message from buyer. Then broker sends an order

message to supplier for that car. Then broker receives an order acknowledgment message

from supplier for the ordered car. Then broker sends a deliver message to buyer. Then

broker receives a received message from buyer. Then broker sends this received message

to supplier and to loan-center, which means buyer got that ordered car successfully.

How broker handles compensation is written below: If supplier sends negative quotation,

broker sends this to buyer and buyer will cancel the order and broker will send this cancel

message to supplier. Even after sending positive quotation buyer can cancel order, then

broker will send cancel message to supplier. If loan-center cannot give loan, after sending

this to buyer, broker will get cancel order from buyer. Then broker will send this cancel

message to supplier and to loan-center. Even after sending positive loan to buyer, buyer

can cancel order. Then after receiving cancel order message, broker will send this cancel

order message to supplier and to loan-center. If for some reason supplier fails to send car,

broker gets an ordernack confirmation from supplier and broker informs buyer and buyer

will send cancel order message. Then broker will send this cancel message to supplier

and to loan-center.

Chapter 5. Modeling in SPIN 42

Figure 5.2: Automata view of Buyer

Chapter 5. Modeling in SPIN 43

5.6.2.1 Automata View of broker

Figure 5.3 shows the Automata View of Broker.

5.6.3 SUPPLIER

Supplier receives a request for quote message from broker and sends quote reply message

to broker. Then supplier receives an order message for that car from broker. Then sup-

plier sends an order acknowledgement message to broker. Then finally supplier receives

a received message from broker, which means buyer got that ordered car successfully.

When supplier gets request for quote message from broker, supplier can give negative

quote message to broker, if supplier fails to give suitable quotation. If supplier fails to

give suitable quotation, broker will send this message to buyer. After receiving this,

buyer will send the cancel order message to broker. Then broker will send this cancel

order message to supplier. After supplier gets the order message from broker, supplier

may fail to deliver the car, if there is any difficulty. If supplier fails to deliver the ordered

car, supplier will send message, after receiving message broker will send negative deliver

message to buyer. After receiving this message, buyer will send cancel order message to

broker. Then broker will send this cancel order message to supplier and to loan-center.

5.6.3.1 Automata View of Supplier

Figure 5.4 shows the Automata View of Supplier.

5.6.4 LOAN CENTER

Loan Center is assumed as a lender web service that offers loans to online buyers via

broker. Loan-center receives a request for loan message from broker. Then loan-center

sends loan reply to broker. After that, loan-center receives a received message from

broker, which means buyer got that ordered car successfully. When loan-center gets the

Chapter 5. Modeling in SPIN 44

Figure 5.3: Automata view of Broker

Chapter 5. Modeling in SPIN 45

supplier S34

S8

broker_supplier1?rfq,confirmation

S3

((confirmation==1))

S5

((confirmation==0))

S22

broker_supplier2!quote,quote_confirmation

S6

broker_supplier3!neg_quote,quote_confirmation

S11

((ok_confirmation==1))

S14

((ok_confirmation==0))

S17

((ack_confirmation==0))

S20

((loanrply_confirmation==0))

broker_supplier6?cancelorder1,cancelorder1_confirmation

S32

broker_supplier1?suporder,brokerorder_confirmation

broker_supplier11?cancelorder1,cancelorder1_confirmation broker_supplier9?cancelorder,cancelorder_confirmationbrk broker_supplier4?cancelorder,cancelorder_confirmationbrk

S25

((brokerorder_confirmation==1))

S29

((suplyrorder_confirmation==0))

S26

broker_supplier2!orderack,suplyrorder_confirmation

S30

supplier_broker1!ordernack,suplyrorder_confirmation

broker_supplier8?received,confirmation broker_supplier7?cancelorder1,cancelorder1_confirmation

Figure 5.4: Automata view of Supplier

Chapter 5. Modeling in SPIN 46

request message from broker after a confirmation from buyer, loan-center may not give

loan or may give negative loan message to broker. If loan-center sends no loan message

to broker, broker will send this message to buyer. After receiving this message, buyer

will send cancel order message to broker. Then broker will send this message to supplier

and to loan-center.

5.6.4.1 Automata View of loan Center

Figure 5.5 shows the Automata View of Loan Center.

Chapter 5. Modeling in SPIN 47

loanstar S21

S8

broker_loanstar1?rloan,loanreq_confirmation

S3

((loanreq_confirmation==1))

S5

((loanreq_confirmation==0))

S19

broker_loanstar1!loan_pos,loanrply_confirmation

S6

loanstar_broker1!loan_neg,loanrply_confirmation

S11

((loanrply_confirmation==1))

S14

((ok_confirmation==0))

S17

((suplyrorder_confirmation==0))

broker_loanstar2?cancelorder,loanrply_confirmationbyr

broker_loanstar5?received,confirmation broker_loanstar6?cancelorder1,cancelorder1_confirmationbroker_loanstar4?cancelorder1,cancelorder1_confirmation

Figure 5.5: Automata view of Loan Center

Chapter 6

Verification

6.1 Verification

In verification model, SPIN allows checking whether an execution of a system satisfies

or violates the correctness of the system. We use PROMELA as the formal specification

language. We define our requirement as LTL (Linear Temporal Logic) formula. In the

following sections, all the formula and related definitions are coded in PROMELA.

6.1.1 LTL Verification

LTL refers linear temporal logic. LTL formulas are evaluated on sequences of states

(linear). Several model-checking tools use LTL as a property specification language. The

model checker SPIN is a prominent example of such an automated verification tool. LTL

has a lot of property for checking the model. so we have used choose safety and liveness

property for verify our model.

6.1.1.1 Safety

For measuring the correctness of this composition we can perform a comprehensive ver-

ification with spin to prove some safety properties. In this properties check the loan

reply confirmation and buyer confirmation and receive supply order confirmation. This

property definite below- It is always true that if the loan reply confirmation and buyer

confirmation become true then it implies that supply order confirmation will be true.

48

Chapter 6. Verification 49

the LTL representation are given below-

Ltl p{[]((loanrply_confirmation==true) &&(ok_confirmation==true))->

((suplyrorder_confirmation==true))}

we have written some ltl code to check whether this logic is logic is working on overall

code or not.

6.1.1.2 Liveness:

LTL liveness property refers that in the future in any time comething good will happen.

so for checking this we have used a simple LTL . The formal representation of testing this

property are described below- if the ok confirmation and loan reply confirmation become

true then eventually the receive confirmation from buyer. here the LTL representation

of checking the liveness property -

ltl p{(ok_confirmation==true) && (suplyrorder_confirmation==true)

->(<>(confirmation==true))}

Chapter 7

Conclusion

7.1 Summary

In a web service, there occur business transactions. Sometimes there may occur any sorts

of difficulties or complications in the terms of transactions. To provide a good web service

to the customers, its composition needs to get verified and those complications are needed

to get handled. And so our motivation was to verify composition and compensation of

the web service. We have used car broker web service as our example in SPIN to verify

this model’s composition and to use compensation mechanism to provide a good web

service model.

50

Bibliography

[1] S. H. Ripon, Process Algebraic Support for Web Service Composition.

[2] M. P. Raman Kazhamiakin, “A case study on web service.”

[3] M. Ben-Ari, Principles of the Spin Model Checker, ISBN: 1846287693, 9781846287695.

[4] S. M. Shamim Ripon and K. M. I. ud Din, “Verification of a security adaptive protocol

suite using spin.”

[5] A. Y. Y. R. Shamim H Ripon, Syed Fahin Ahmed and K. M. Imtiaz-UD-Din., “Formal

analysis of a ranked neighbour manet protocol suite,” 2014.

[6] “Linear temporal logic,” www.cs.colostate.edu/ france/CS614/Slides/Ch5-

Summary.pdf.

[7] P. Maggi and R. Sisto, “Using spin to verify security properties of cryptographic

protocols.”

[8] P. S. Ryan, “Modelling and analysis of security protocols, addison-wesley, harlow,

england,” 2001.

51

Appendix A

PROMELA ENCODING

mtype={order,ack,quote,rfq,rloan,suporder,orderack,deliver,received,confirm,

neg_quote,loan_pos,loan_neg,cancelorder,ordernack,deliverneg,

cancelorder1,cancelorder2}

chan buyer_broker1 =[2] of {mtype,bool};

chan buyer_broker3=[2] of {mtype,bool};

chan buyer_broker4=[2] of {mtype,bool};

chan buyer_broker5=[2] of {mtype,bool};

chan buyer_broker6=[2] of {mtype,bool};

chan buyer_broker7=[2] of {mtype,bool};

chan buyer_broker8=[2] of {mtype,bool};

chan buyer_broker9=[2] of {mtype,bool};

chan buyer_broker10=[2] of {mtype,bool};

chan broker_buyer2=[2] of {mtype,bool};

chan broker_buyer1=[2] of {mtype,bool};

chan broker_buyer3=[2] of {mtype,bool};

chan broker_buyer4=[2] of {mtype,bool};

chan broker_buyer5=[2] of {mtype,bool};

chan broker_buyer6=[2] of {mtype,bool};

chan broker_supplier1=[2] of {mtype,bool};

52

PROMELA ENCODING 53

chan broker_supplier2=[2] of {mtype,bool};

chan broker_supplier3=[2] of {mtype,bool};

chan broker_supplier4=[2] of {mtype,bool};

chan broker_supplier5=[2] of {mtype,bool};

chan broker_supplier6=[2] of {mtype,bool};

chan broker_supplier7=[2] of {mtype,bool};

chan broker_supplier8=[2] of {mtype,bool};

chan broker_supplier9=[2] of {mtype,bool};

chan broker_supplier10=[2] of {mtype,bool};

chan broker_supplier11=[2] of {mtype,bool};

chan supplier_broker1=[2] of {mtype,bool};

chan broker_loanstar1=[2] of {mtype,bool};

chan broker_loanstar2=[2] of {mtype,bool};

chan broker_loanstar3=[2] of {mtype,bool};

chan broker_loanstar4=[2] of {mtype,bool};

chan broker_loanstar5=[2] of {mtype,bool};

chan broker_loanstar6=[2] of {mtype,bool};

chan loanstar_broker1=[2] of {mtype,bool};

bool buyerorder_confirmation=true,confirmation=true;

bool quote_confirmation=true,quote_confirmationbyr=true;

bool ack_confirmation=true,loanreq_confirmation=true;

bool brokerorder_confirmation=true;

bool suplyrorder_confirmation=true,deliver_confirmation=true;

bool loanrply_confirmation=true;

bool loanrply_confirmationbyr=true;

bool cancelorder_confirmationbyr=true;

bool cancelorder_confirmationbrk=true;

PROMELA ENCODING 54

bool deliverneg_confirmation=true;

bool cancelorder1_confirmation=true;

bool ok_confirmation=true;

active proctype buyer()

{

L1: do::

buyer_broker1! order(buyerorder_confirmation);

if

::quote_confirmationbyr==true->broker_buyer2?quote(quote_confirmationbyr);

::quote_confirmationbyr==false->broker_buyer3?neg_quote(quote_confirmationbyr)

;->buyer_broker5!cancelorder1(cancelorder1_confirmation);->goto L1

fi;

if

::quote_confirmationbyr==true->buyer_broker1!ack(ack_confirmation);

::ack_confirmation==false->buyer_broker8!cancelorder1

(cancelorder1_confirmation);->goto L1

fi;

if

::loanrply_confirmation==true->broker_buyer6?loan_pos(loanrply_confirmation)

;->goto L8

::loanrply_confirmation==false->broker_buyer4?loan_neg

(loanrply_confirmationbyr)

;->buyer_broker3!cancelorder(cancelorder_confirmationbyr)

;->goto L1

fi;

PROMELA ENCODING 55

L8 : if

::loanrply_confirmation==true->buyer_broker9!confirm(ok_confirmation)

;->goto L11

::ok_confirmation==false-> buyer_broker10!cancelorder1

(cancelorder1_confirmation);->goto L1

fi;

L11 : if

::suplyrorder_confirmation==true->broker_buyer1?deliver(deliver_confirmation)

;->buyer_broker6!received(confirmation);->goto L1;

::suplyrorder_confirmation==false-> broker_buyer5?deliverneg

(deliverneg_confirmation)

;->buyer_broker4!cancelorder1(cancelorder1_confirmation);->goto L1

fi;

od;

}

active proctype broker()

{

L4:do::

buyer_broker1?order(buyerorder_confirmation);

if

::buyerorder_confirmation==true-> broker_supplier1!rfq(confirmation);

fi;

PROMELA ENCODING 56

if

::quote_confirmation==true->broker_supplier2?quote(quote_confirmation)

;->broker_buyer2!quote(quote_confirmationbyr);

::quote_confirmation==false->broker_supplier3?neg_quote(quote_confirmation)

;->broker_buyer3!neg_quote(quote_confirmationbyr)

;->buyer_broker5?cancelorder1(cancelorder1_confirmation)

;->broker_supplier6!cancelorder1(cancelorder1_confirmation);->goto L4

fi;

buyer_broker1?ack(ack_confirmation);

::ack_confirmation==true-> broker_loanstar1!rloan(loanreq_confirmation);

::ack_confirmation==false-> buyer_broker8?cancelorder1

(cancelorder1_confirmation)

;->broker_supplier9!cancelorder(cancelorder_confirmationbrk);->goto L4

fi;

if

::loanrply_confirmation==true->broker_loanstar1?loan_pos

(loanrply_confirmation)

;-> broker_buyer6!loan_pos(loanrply_confirmation);->goto L2

::loanrply_confirmation==false-> loanstar_broker1?loan_neg

(loanrply_confirmation)

;->broker_buyer4!loan_neg(loanrply_confirmationbyr);

fi;

if

::loanrply_confirmation==false-> buyer_broker3?cancelorder

(cancelorder_confirmationbyr)

PROMELA ENCODING 57

;->broker_supplier4!cancelorder(cancelorder_confirmationbrk)

; ->broker_loanstar2!cancelorder(cancelorder_confirmationbyr);->goto L4

fi;

L2 : if

::ok_confirmation==true->buyer_broker9?confirm(ok_confirmation)

;->broker_supplier1!suporder(brokerorder_confirmation);->goto L12

fi;

L12 : if

::brokerorder_confirmation==true->goto L9

fi;

/*when car is ordered and reply from supplier*/

L9 : if

::suplyrorder_confirmation== true->broker_supplier2?orderack

(suplyrorder_confirmation)

;->broker_buyer1!deliver(deliver_confirmation)

;->buyer_broker6?received(confirmation)

;->broker_supplier8!received(confirmation)

;->broker_loanstar5!received(confirmation)

;->goto L4

::suplyrorder_confirmation==false-> supplier_broker1?ordernack

(suplyrorder_confirmation)

;-> broker_buyer5!deliverneg(deliverneg_confirmation)

;-> buyer_broker4?cancelorder1(cancelorder1_confirmation)

;->broker_supplier7!cancelorder1(cancelorder1_confirmation)

;->broker_loanstar4!cancelorder1(cancelorder1_confirmation);->goto L4

fi;

PROMELA ENCODING 58

od;

}

active proctype supplier()

{

L6: do::

broker_supplier1?rfq(confirmation); /*request for quotation*/

if

::quote_confirmation==true-> broker_supplier2!quote(quote_confirmation);

::quote_confirmation==false-> broker_supplier3!neg_quote(quote_confirmation)

;->broker_supplier6?cancelorder1(cancelorder1_confirmation); ->goto L6

fi;

/*when quote pos*/

if

::ok_confirmation==true->broker_supplier1?suporder(brokerorder_confirmation)

;->goto L7

::ok_confirmation==false->broker_supplier11?

cancelorder1(cancelorder1_confirmation);->goto L6

::ack_confirmation==false->broker_supplier9?

cancelorder(cancelorder_confirmationbrk);->goto L6

::loanrply_confirmation==false->broker_supplier4?

cancelorder(cancelorder_confirmationbrk);->goto L6

fi;

/*when supplier got order for car*/

PROMELA ENCODING 59

L7 : if

::brokerorder_confirmation==true-> broker_supplier2!orderack

(suplyrorder_confirmation)

;->broker_supplier8?received(confirmation);->goto L6

::suplyrorder_confirmation==false-> supplier_broker1!ordernack

(suplyrorder_confirmation)

;->broker_supplier7?cancelorder1(cancelorder1_confirmation);->goto L6

fi;

od;

}

active proctype loanstar()

{

L5:do::

broker_loanstar1?rloan(loanreq_confirmation);

if

::loanrply_confirmation==true->broker_loanstar1!loan_pos

(loanrply_confirmation);

::loanrply_confirmation==false-> loanstar_broker1!loan_neg

(loanrply_confirmation)

;->broker_loanstar2?cancelorder(loanrply_confirmationbyr);->goto L5

fi;

/*when loan positive*/

if

::loanrply_confirmation==true->broker_loanstar5?received(confirmation)

;->goto L5

::ok_confirmation==false-> broker_loanstar6?cancelorder1

(cancelorder1_confirmation);->goto L5

PROMELA ENCODING 60

::suplyrorder_confirmation==false-> broker_loanstar4?

cancelorder1(cancelorder1_confirmation);->goto L5

fi;

od;

}

ltl p{((loanrply_confirmation==true)&&(ok_confirmation==true))

-> (<>(suplyrorder_confirmation==true))}

ltl p{[](ok_confirmation==true) && (suplyrorder_confirmation==true)

->((confirmation==true))}

ltl p{[](suplyrorder_confirmation==false)->((cancelorder1_confirmation==true))}

