

EAST WEST UNIVERSITY

Automated Toll Collection
System

 Submitted By

Md. Jahidul Islam
ID: 2012-2-60-024

Dewan Mofasser Hossain
ID: 2012-3-60-001

Supervised By

Dr. Anisur Rahman
Assistant Professor

Department of Computer Science & Engineering
East West University

The project has been submitted to the Department of the Computer Science &
Engineering at East West University in the partial fulfillment of the requirement
for the degree of Bachelor of Science in Computer Science and Engineering.

August, 2017

i

Declarations

The project has been submitted to the Department of the Computer Science &
Engineering, East West University in the partial fulfillment of the requirement for
the degree of Bachelor of Science in Computer Science & Engineering. We
hereby, declare that this project has not been submitted elsewhere for the
requirement of any degree or diploma or any other purposes.

Signature of the students

…………………………..
(Md. Jahidul Islam)
(ID: 2012-2-60-024)

…………………………….
(Dewan Mofasser Hossain)
(ID: 2012-3-60-001)

ii

Letter of Acceptance

This project is entitled “Automated Toll Collection System” submitted by: Md.
Jahidul Islam ID: 2012-2-60-024 and Dewan Mofasser Hossain ID: 2012-3-60-001
to the department of Computer Science & Engineering, East West University,
Dhaka, Bangladesh is accepted as satisfactory for partial fulfillment of the
requirement for the degree of Bachelor of Science in Computer Science &
Engineering on August 2017.

Supervisor

………………………………………….
Dr. Anisur Rahman
Assistant Professor
Department of Computer Science & Engineering
East West University, Dhaka, Bangladesh.

Chairperson

………………………………………….
Dr. Md. Mozammel Huq Azad Khan
Chairperson and Professor
Department of Computer Science & Engineering
East West University, Dhaka, Bangladesh.

iii

Abstract

Due to the expansion of the vehicle transportation system, Jam on toll collection
booth is common nowadays & become a serious problem in recent years. Because
of increase lots of vehicle and toll are collected by human, lots of time waste is
occurring here, so it is essential to design & implement a modern system, which
can monitor & collect toll from these vehicles automatically. A system that is able
to sense the vehicle and collect toll from the vehicle automatically. So, human toll
collector is not needed here and vehicle don’t need to waste time by waiting on toll
booth because it will collect toll faster than human toll collector.

 In our project, we have showed it by interfacing stepper motor, sonar sensor
and Arduino Uno microcontroller. When a vehicle arrives, if the car owner has
registered RFID card and sufficient balance on his RFID card, he just need to
punch it on RFID sensor, the other work will be done by our system automatically
like deduct actual toll amount from RFID balance. Also, there will be two sonar
sensor to sense the arriving and leaving of the car. So, it will bring automation on
barrier which have made by stepper motor. When a car arrives to the toll booth, the
first sonar sensor will sense that, car have arrived and sensor will wait for the car to
punch RFID card on RFID sensor and start counting the time and if the car owner
don’t punch RFID card on RFID sensor because of haven’t any registered RFID
card or haven’t sufficient amount of balance on RFID card or any other reason,
system have Buzzer that will make a loud sound of alarm to make the car owner
alert to punch RFID card or go left for pay manually and a message will show on
LCD display named Please Go Left and left sign for the better understand of the
car owner, Then it have to go for manual pay and pay the amount of toll with some
amount of fine. But, if the car owner has registered RFID card and sufficient
amount of balance and punch on RFID sensor, the barrier will rise up by 90
degrees and wait for the car to go and the second sonar sensor will sense the
leaving of the car and when it passes away the motor barrier will go down by 90
degrees.

Actually, the rise and down of stepper motor barrier will also be automated.
So, any human operator isn’t needed here to operate the stepper motor barrier as
well as all the system will be automated and reduce time waste on toll booth.

iv

Acknowledgement

First of all, we would like to thank almighty Allah for giving us strength, patience
and knowledge to complete this project work.

Our most heartfelt gratitude goes to our beloved parents for their endless
support, continuous inspiration, great contribution and perfect guidance from the
beginning to end.

We would like to express our sincere gratitude to our supervisor Dr. Anisur
Rahman for the continuous support, for his patience, motivation, and immense
knowledge. His guidance helped us in all the time of our work. We could not have
imagined having a better supervisor and mentor for this project.

We would like to express our sincere gratefulness to the faculty members of
the Department of Computer Science and Engineering (CSE), East West
University, Bangladesh for their friendly attitude and enthusiastic support that has
given us and helped us with their feedback.

In addition, we would like to thank our friends and seniors for their
motivation, stimulation, feedback, cooperation and of course friendship.

v

TABLE OF CONTENTS

Title Page no

Declaration
Letter of Acceptance
Abstract
Acknowledgement
Table of Contents

Chapter 01
Introduction

i

 ii
 iii
 iv
 v-viii

 01-04

1

Introduction

01

1.1 Motivation 02
1.2 Objective 03
1.3
1.4

Contribution
Outline

 04
04

Chapter 02
Background

05-08

2.1
2.2

What is Arduino?
Why Arduino?

05
06

2.3
2.4
2.5
2.6
2.7

What can we do with Arduino?
What We Need for a Working System?
Installing the Software
Arduino Programming Language
Common Coding Errors

 07
07
07
08
08

Chapter 03
Description of the Hardware System

9-34

3.1
3.2

Arduino Uno
RFID (MRC522) sensor and card

9

16
3.3
3.4
3.5
3.6
3.7

Servo Motor
LCD Display 16x2
IIC/I2C Serial Interface Module
Sonar Sensor
Buzzer

 22
25
27
28
30

vi

Chapter 04
Description of the Software System

 35-44

4.1 Introduction 35
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Structure
Variable Declaration
Arithmetic Operator
Compound Operator
Boolean Operator
pinMode(pin,mode)
digitalWrite(pin,value)
delay(ms)
Serial.begin(speed)
Serial.println(val)

 36
37
37
38
39
40
41
42
42
43

Chapter 05
Conclusion

45-46

5.1 Future Work

46

References

Appendix
Code

 47-48

49-54

vii

List of Figures:

 Fig 1.1 Toll collection booth at kanchpur meghna

bridges and jam on toll collection booth

 03

 Fig 3.1
 Fig 3.2

Arduino Uno
RFID-RC522

 11
17

 Fig 3.3 Simplified MFRC522 Block diagram 20
 Fig 3.4 RFID tag 1 21
 Fig 3.5 RFID tag 2 21
 Fig 3.6 Servo motor 22
 Fig 3.7 Servo motor Dimensions and specifications 23
 Fig 3.8 Pinout Diagram 23
 Fig 3.9 16x2 LCD Display 25
 Fig 3.10 Pin Diagram 26
 Fig 3.11 Schematic diagram of Arduino Uno & LCD

Display

 27

 Fig 3.12 IIC/I2C Serial Interface Module 28
 Fig 3.13 Sonar Sensor 29
 Fig 3.14 Buzzer 30
 Fig 3.15 Output 1 31
 Fig 3.16 Output 2 31
 Fig 3.17 Output 3 31
 Fig 3.18 Output 4 31
 Fig 3.19 Hardware Connections 32
 Fig 3.20
 Fig 3.21

Schematic Diagram
Prototype of the toll system

 33
34

 Fig 4.1 Output of serial monitor 1 44
 Fig 4.2 Output of serial monitor 2 44

viii

 List of Tables:

Table 1.1 Yearly Bi-directional Flow Variation on Meghna-Gomoti

Bridge, 2006-2014

 02

1

Chapter 1

Introduction

Since Bangladesh is developing day by day, its road and transport system is also developing and

as a result, the number of vehicle in Bangladesh is increasing rapidly. The bearing of human and

product through vehicle is also raising because people are now using vehicles for many purposes

like travels, business etc. as affordable, comfortable and use road for bearing business product

are also very popular for its low cost. As the number of vehicles in Bangladesh is raising day by

day, the pressure on toll collection booth is also raising. It is a common matter of huge jam on

toll collection booth nowadays. Because, toll is collected by manually and it waste some time, as

a result our valuable time are lost and it hampers the productivity of our country. So, we have

developed a system where toll collection will be automated and the car just have to have a

registered RFID card and sufficient amount on his balance. When a car arrives the first sonar

sensor will notice it and if it has no RFID, the buzzer will give alarm and LCD will show a

message to go left for manual pay. But, if it has valid RFID card and scan on RFID sensor, it will

deduct toll amount and allow this car to go by open barrier created with stepper motor and

second sonar sensor will notice the left of that car and close the barrier. To achieve this purpose,

the system is controlled by a micro controller which is Arduino Uno R3. Managing toll booths is

a very complicated task but using our system that automates the entire toll collection process of

toll booth, it will reduce the consumption of time.

2

1.1 Motivation

The uses of vehicles in Bangladesh are increasing day by day because of the affordable cost on

transport; so, people are more frequently uses vehicle for travel and business purpose. But, the

management of this huge number of car on toll booth is very challenging for human toll

collector. He has to stop the car, collect toll and let the car to go which is very much time

consuming and create jam if the number of car in toll booth is huge. What if a system can

provide toll collection in a fast way where any human toll collector don't needed.

Year Yearly Volume

2006 3,210,410

2007 4,313,837

2008 4,732,949

2009 5,632,798

2010 5,915,501

2011 6,045,819

2012 6,239,174

2013 6,464,564

2014 7,018,983

Table 1.1: Yearly Bi-directional Flow Variation on Meghna-Gomoti Bridge, 2006-2014 [19]

For sample, if we see the above table, we can see the yearly Bi-directional Flow

Variation of year 2006-2014 on Meghna-Gomoti Bridge, one of the major Bridge situated in

3

Dhaka Chittagong Highway, we can see that the load of vehicles is raising year by year, as a

result load on toll collection booth also be raised in recent years and if we still remain on human-

based toll collection system, traffic problem on toll collection booth will not reduce.

So, we can introduce automated toll collection system where don't need any human toll

collector. we can use an automated system that can collect toll by RFID card which will be

previously recharged and the barrier also be automated. There have RFID sensor, which will

sense the RFID card, deduct toll and let the car to go. The rise of vehicle is concern for us and

we can introduce this system to reduce this problem.

Figure 1.1: Toll collection booth at kanchpur meghna bridges [18] and jam on toll collection

booth. [20]

1.2 Objectives

The main objective of our project is to bring automation on toll collection both. It will collect

information from RFID card user and match with stored data. Then if match information it will

deduct toll money from that user and allow the car to go away. In Bangladesh, this system hasn't

introduced yet. If it can be implemented it will save time and keep the road less busy.

4

1.3 Contribution

We have used Arduino Uno R3 micro controller in this project. This micro controller is

interfacing with computer and its instruction is written on Arduino IDE using C programming

language. In our work we showed that how toll collection both can be automated and take toll

from car using RFID sensor without human to reduce the jam. In our system, when a car come

the RFID sensor mark the car and when it punches RFID card, toll money are deduct and stepper

motor rise up the barrier and another sonar sensor sense when it go away and down the barrier.

1.4 Outline

Chapter 1: We have discussed about our motivation to do this work, which is our objective and

the contribution we have made.

Chapter 2: Brief discussion of the backgrounds where we discuss what types of software,

microcontroller, programming language we implement in our project.

Chapter 3: Briefly describes the hardware parts of our system that we have used.

Chapter 4: Describes the software parts of our system. The code we wrote to build this system

have described part by part here.

Chapter 5: Concludes the work and future plan, what can be improve in future are written here

and the summarization of our work.

5

Chapter 2

Background

2.1 What is Arduino?

Arduino is an open-source electronics platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a

Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing

something online. We can tell our board what to do by sending a set of instructions to the

microcontroller on the board. To do so we use the Arduino programming language (based

on Wiring), and the Arduino Software (IDE), based on Processing.[1]

Over the years Arduino has been the brain of thousands of projects, from everyday

objects to complex scientific instruments. A worldwide community of makers - students,

hobbyists, artists, programmers, and professionals - has gathered around this open-source

platform, their contributions have added up to an incredible amount of accessible knowledge that

can be of great help to novices and experts alike.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool for fast

prototyping, aimed at students without a background in electronics and programming. As soon as

it reached a wider community, the Arduino board started changing to adapt to new needs and

challenges, differentiating its offer from simple 8-bit boards to products for IoT applications,

wearable, 3D printing, and embedded environments. All Arduino boards are completely open-

source, empowering users to build them independently and eventually adapt them to their

6

particular needs. The software, too, is open-source, and it is growing through the contributions of

users worldwide.

2.2 Why Arduino?

Thanks to its simple and accessible user experience, Arduino has been used in thousands of

different projects and applications. The Arduino software is easy-to-use for beginners, yet

flexible enough for advanced users. It runs on Mac, Windows, and Linux. Teachers and students

use it to build low cost scientific instruments, to prove chemistry and physics principles, or to get

started with programming and robotics. Designers and architects build interactive prototypes,

musicians and artists use it for installations and to experiment with new musical instruments.

Makers, of course, use it to build many of the projects exhibited at the Maker Faire, for example.

Arduino is a key tool to learn new things. Anyone - children, hobbyists, artists, programmers -

can start tinkering just following the step by step instructions of a kit, or sharing ideas online

with other members of the Arduino community.

 It is an open-source project, software/hardware is extremely accessible and very flexible

to be customized and extended

 It is flexible, offers a variety of digital and analog inputs, SPI and serial interface and

digital and PWM outputs

 It is easy to use, connects to computer via USB and communicates using standard serial

protocol, runs in standalone mode and as interface connected to PC/Macintosh

computers.

7

2.3 What can we do with Arduino?

Arduino is a great tool for developing interactive objects, taking inputs from a variety of

switches or sensors and controlling a variety of lights, motors and other outputs. Arduino

projects can be stand-alone or they can be connected to a computer using USB. The Arduino will

be seen by the computer as a standard serial interface. There are serial communication APIs on

most programming languages so interfacing Arduino with a software program running on the

computer should be pretty straightforward.

2.4 What We Need for a Working System?

1. Arduino Uno board

2. USB programming cable (A to B)

3. 9V battery or external power supply (for stand-alone operation)

4. Solderless breadboard for external circuits, and 22 g solid wire for connections

5. Host PC running the Arduino development environment. Versions exist for Windows, Mac

and Linux.

2.5 Installing the Software

Follow the instructions on the Getting Started section of the Arduino web site,

http://arduino.cc/en/Guide/HomePage. Go all the way through the steps to where we see the pin

13 LED blinking. This is the indication that we have all software and drivers successfully

installed and can start exploring with our own programs.

8

2.6 Arduino Programming Language

The Arduino runs a simplified version of the C programming language, with some extensions for

access the hardware. In this guide, we will cover the subset of the programming language that is

most useful to the novice Arduino designer. For more information on the Arduino language, see

the Language Reference section of the Arduino web site,
http://arduino.cc/en/Reference/HomePage.

All Arduino instructions are one line. The board can hold a program hundreds of lines

long and has space for about 1,000 two-byte variables. The Arduino executes programs at about

300,000 source code lines per sec.

2.7 Common Coding Errors

By writing code we face some common coding errors as like forgetting the semi-colon at the end

of a statement, misspelling a command, forgetting opening or closing brackets. At that moment

we face coding errors in our program so we must have sincere about this issues while coding.

9

Chapter 3

Description of Hardware System

3.1 Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz

ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. [2]

The origin of the Arduino project started at the Interaction Design Institute Ivrea (IDII)

in Ivrea, Italy. At that time, the students used a BASIC Stamp microcontroller at a cost of $100, a

considerable expense for many students. In 2003 Hernando Barragán created the development

platform Wiring as a Master's thesis project at IDII, under the supervision of Massimo Banzi and

Casey Reas, who are known for work on the Processing language. The project goal was to create

simple, low cost tools for creating digital projects by non-engineers. The Wiring platform

consisted of a printed circuit board (PCB) with an ATmega168 microcontroller, an IDE based on

Processing and library functions to easily program the microcontroller.[3]

The first Arduino was introduced in 2005, based on 8-bit Atmel AVR, aiming to provide

a low cost, easy way for novices and professionals to create devices that interact with their

environment using sensors and actuators. Common examples of such devices intended for

beginner hobbyists include simple robots, thermo-stats and motion detectors.

10

An Arduino board consists of an Atmel 8-, 16- or 32-bit AVR microcontroller (although

since 2015 other makers' microcontrollers have been used) with complementary components that

facilitate programming and incorporation into other circuits. An important aspect of the Arduino

is its standard connectors, which let users connect the CPU board to a variety of interchangeable

add-on modules termed shields. Some shields communicate with the Arduino board directly over

various pins, but many shields are individually addressable via an I²C serial bus—so many

shields can be stacked and used in parallel. Before 2015, Official Arduinos had used the Atmel

mega AVR series of chips, specifically the ATmega8, ATmega168, ATmega328, ATmega1280,

and ATmega2560. In 2015, units by other producers were added. A handful of other processors

have also been used by Arduino compatible devices. Most boards include a 5 V linear regulator

and a 16 MHz crystal oscillator (or ceramic resonator in some variants), although some designs

such as the Lily Pad run at 8 MHz and dispense with the on-board voltage regulator due to

specific form-factor restrictions. An Arduino's microcontroller is also pre-programmed with a

boot loader that simplifies uploading of programs to the on-chip flash memory, compared with

other devices that typically need an external chip programmer. This makes using an Arduino

more straightforward by allowing the use of an ordinary computer as the programmer. Currently,

opt boot boot loader is the default boot loader installed on Arduino UNO.

At a conceptual level, when using the Arduino integrated development environment, all

boards are programmed over a serial connection. Its implementation varies with the hardware

version. Some serial Arduino boards contain a level shifter circuit to convert between RS-232

logic levels and transistor–transistor logic (TTL) level signals. Current Arduino boards are

programmed via Universal Serial Bus (USB), implemented using USB-to-serial adapter chips

such as the FTDI FT232. Some boards, such as later-model Uno boards, substitute the FTDI chip

11

with a separate AVR chip containing USB-to-serial firmware, which is reprogrammable via its

own ICSP header. Other variants, such as the Arduino Mini and the unofficial Boarduino, use a

detachable USB-to-serial adapter board or cable, Bluetooth or other methods, when used with

traditional microcontroller tools instead of the Arduino IDE, standard AVR in-system

programming (ISP) programming is used.

Arduino and Arduino-compatible boards use printed circuit expansion boards called

shields, which plug into the normally supplied Arduino pin headers. Shields can provide motor

controls for 3D printing and other applications, Global Positioning System (GPS), Ethernet,

liquid crystal display (LCD), or bread boarding (prototyping). Several shields can also be made

do it yourself (DIY).

Figure 3.1: Arduino Uno

12

Technical Specification

 Microcontroller ATmega328

 Operating Voltage 5V

 Input Voltage (recommended) 7-12V

 Input Voltage (limits) 6-20V

 Digital I/O Pins 14 (of which 6 provide PWM output)

 Analog Input Pins 6

 DC Current per I/O Pin 40 mA

 DC Current for 3.3V Pin 50 mA

 Flash Memory 32 KB of which 0.5 KB used by bootloader

 SRAM 2 KB

 EEPROM 1 KB

 Clock Speed 16 MHz

The Arduino Uno can be powered via the USB connection or with an external power supply. The

power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or

battery. The adapter can be connected by plugging a 2.1mm centre-positive plug into the board's

power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER

connector. The board can operate on an external supply of 6 to 20 volts. If supplied with less

than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If

using more than 12V, the voltage regulator may overheat and damage the board. The

recommended range is 7 to 12 volts.

13

The power pins are as follows

 VIN. The input voltage to the Arduino board when it's using an external power source (as

opposed to 5 volts from the USB connection or other regulated power source). You can

supply voltage through this pin, or, if supplying voltage via the power jack, access it

through this pin.

 5V. The regulated power supply used to power the microcontroller and other components

on the board. This can come either from VIN via an on-board regulator, or be supplied by

USB or another regulated 5V supply.

 3V3. A 3.3-volt supply generated by the on-board regulator. Maximum current draw is 50

mA.

 GND. Ground pins.

Memory

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the

boot loader; It has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written

with the EEPROM Library.

Input & Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(),

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or

receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of

20-50 kOhms. In addition, some pins have specialized functions:

14

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data.

These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL

Serial chip .

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a

low value, a rising or falling edge, or a change in value. See the attachInterrupt() function

for details.

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication, which, although provided by the underlying hardware, is not currently

included in the Arduino language.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off. The Uno has 6 analog inputs, each of

which provide 10 bits of resolution (i.e. 1024 different values). By default they measure

from ground to 5 volts, though is it possible to change the upper end of their range using

the AREF pin and the analogReference() function. Additionally, some pins have

specialized functionality:

 I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with analogReference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

15

Arduino LEDs

Likewise, the Arduino has four LEDs: L, RX, TX, and ON. On the UNO, three are in the

middle and one is to the right.

 ON LED - this LED will shine green whenever the Arduino is powered. Always check

this LED if Arduino is not acting right, if its flickering or off then check the power

supply.

 RX and TX LEDs - these are like the 'send' and 'receive' LEDs on our cable modem.

They blink whenever information is sent from or to the Arduino through the USB

connection. The TX LED lights up yellow whenever data is sent from the Arduino to

the computer USB port. The RX LED lights up yellow whenever data is sent to the

Arduino from the computer USB port.

 L LED - this is the one LED that we can control. The ON, RX and TX LEDs all light up

automatically no matter what. The L LED, however, is connected to the Arduino main

chip and turn it on or off before start writing code.

Communication

The Arduino Uno has a number of facilities for communicating with a computer, another

Arduino, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial

communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the

board channels this serial communication over USB and appears as a virtual com port to

software on the computer. The '8U2 firmware uses the standard USB COM drivers, and no

external driver is needed. However, on Windows, an *.inf file is required. The Arduino software

16

includes a serial monitor which allows simple textual data to be sent to and from the Arduino

board. The RX and TX LEDs on the board will flash when data is being transmitted via the

USB-to serial chip and USB connection to the computer (but not for serial communication on

pins 0 and 1). A Software Serial library allows for serial communication on any of the Uno's

digital pins. The ATmega328 also support I2C (TWI) and SPI communication. The Arduino

software includes a Wire library to simplify use of the I2C bus; see the documentation for

details. To use the SPI communication, please see the ATmega328 datasheet.

The Arduino IDE (integrated development environment) supports the languages C and

C++ using special rules to organize code. The Arduino IDE supplies a software library called

Wiring from the Wiring project, which provides many common input and output procedures. A

typical Arduino C/C++ sketch consist of two functions that are compiled.

3.2 RFID (MRC522) sensor and card

A radio frequency identification reader (RFID reader) is a device used to gather information

from an RFID tag, which is used to track individual objects. Radio waves are used to transfer

data from the tag to a reader. RFID is a technology similar in theory to bar codes. However, the

RFID tag does not have to be scanned directly, nor does it require line-of-sight to a reader. The

RFID tag it must be within the range of an RFID reader, which ranges from 3 to 300 feet, in

order to be read. RFID technology allows several items to be quickly scanned and enables fast

identification of a particular product, even when it is surrounded by several other items. [4,5]

In 1945, Léon Theremin invented an espionage tool for the Soviet Union which

retransmitted incident radio waves with the audio information. Sound waves vibrated

a diaphragm which slightly altered the shape of the resonator, which modulated the reflected

17

radio frequency. Even though this device was a covert listening device, not an identification tag,

it is considered to be a predecessor of RFID, because it was likewise passive, being energized

and activated by waves from an outside source.[6]

MF RC522 is used in highly integrated 13.56MHz contactless communication card chip

to read and write, of NXP for “three” and the application launched a low voltage, low cost, small

size, non-contact card chips to read and write, intelligent instruments and portable handheld

devices developed better. The MF RC522 use of advanced modulation and demodulation

concept completely integrated in the 13.56MHz all kinds of passive contactless communication

methods and protocols. 14443A compatible transponder signal. The digital part handles the

ISO14443A frames and error detection. In addition, support Quick CRYPTO1 encryption

algorithm, the term verification MIFARE series. MFRC522 support MIFARE series of high-

speed non-contact communication, two-way data transfer rates up to 424kbit / s.As 13.56MHz

highly integrated card reader series chip new family, the MF RC522 MF RC500 MF RC530

there are many similarities, but also have many of the characteristics and differences.

Communication between it and the host SPI mode, helps to reduce the connection, reduce PCB

board volume and reduce costs.

Figure 3.2: RFID-RC522

18

Features:

 Highly integrated analog circuitry to demodulate and decode responses

 Buffered output drivers to connect an antenna with minimum number of external

components

 Supports ISO/IEC 14443A / MIFARE®

 Typical operating distance in Reader/Writer mode for communication to a

 ISO/IEC 14443A / MIFARE® up to 50 mm depending on the antenna size and tuning

 Supports MIFARE® Classic encryption in Reader/Writer mode

 Supports ISO/IEC 14443A higher transfer speed communication up to 848 kbit/s

 Support of the MFIN / MFOUT

 Additional power supply to directly supply the smart card IC connected via MFIN /

MFOUT

 Supported host interfaces

 SPI interface up to 10 Mbit/s

 I2C interface up to 400 kbit/s in Fast mode, up to 3400 kbit/s in High-speed mode

 serial UART in different transfer speeds up to 1228.8 kbit/s, framing according to

the RS232 interface with voltage levels according pad voltage supply

 Comfortable 64 byte send and receive FIFO-buffer

 Flexible interrupt modes

 Hard reset with low power function

 Power-down mode per software

19

 Programmable timer

 Internal oscillator to connect 27.12 MHz quartz

 2.5 - 3.3 V power supply

 CRC Co-processor

 Free programmable I/O pins

 Internal self-test

Specifications:

 Module Name: Rfid-RC522

 Working current：13—26mA/ DC 3.3V

 Standby current：10-13mA/DC 3.3V

 sleeping current：<80uA

 peak current：<30mA

 Working frequency：13.56MHz

 Card reading distance ：0～60mm（mifare1 card）

 Protocol：SPI

 data communication speed：Maximum 10Mbit/s

 Card types supported：mifare1 S50、mifare1 S70、mifare UltraLight、mifarePro、

mifareDesfire

 Dimension：40mm×60mm

 Environment

 Working temperature：-20—80 degree

20

 Storage temperature：-40—85 degree

 Humidity：relevant humidity 5%—95%

 Max SPI speed: 10Mbit/s

Block Diagram

The Analog interface handles the modulation and demodulation of the analog signals. The

contactless UART handles the protocol requirements for the communication schemes in co-

operation with the host. The comfortable FIFO buffer allows a fast and convenient data transfer

from the host to the contactless UART and vice versa. Various host interfaces are implemented

to fulfil different customer requirements.

Fig 3.3: Simplified MFRC522 Block diagram.

21

RFID Card

RFID tagging is an ID system that uses small radio frequency identification devices for

identification and tracking purposes. An RFID tagging system includes the tag itself, a read/write

device, and a host system application for data collection, processing, and transmission. An RFID

tag (sometimes called an RFID transponder) consists of a chip , some memory and an antenna .

Figure 3.4: RFID Tag 1

Every system has to start with selecting an RFID tag that will perform well given your

reading requirements, size constraints, and application type. A tag consists of two parts: the

chipset and antenna. Normally, the larger the antenna the better range you will get. There are a

variety of chipsets and antenna designs which are designed to perform in all types of

applications.

Fig 3.5: RFID tag 2

22

3.3 Servo Motor

A servomotor is a rotary actuator or linear actuator that allows for precise control of angular or

linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor for

position feedback. It also requires a relatively sophisticated controller, often a dedicated module

designed specifically for use with servomotors. [7,8]

Servomotors are not a specific class of motor although the term servomotor is often used

to refer to a motor suitable for use in a closed-loop control system. Servomotors are used in

applications such as robotics, CNC machinery or automated manufacturing.

Fig 3.6: Servo motor.

Servos are controlled by sending an electrical pulse of variable width, or pulse width

modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and

a repetition rate. A servo motor can usually only turn 90° in either direction for a total of 180°

movements. The motor's neutral position is defined as the position where the servo has the same

amount of potential rotation in the both the clockwise or counter-clockwise direction.

The PWM sent to the motor determines position of the shaft, and based on the duration

of the pulse sent via the control wire; the rotor will turn to the desired position. The servo motor

23

expects to see a pulse every 20 milliseconds (ms) and the length of the pulse will determine how

far the motor turns. For example, a 1.5ms pulse will make the motor turn to the 90° position.

Shorter than 1.5ms moves it in the counter clockwise direction toward the 0° position, and any

longer than 1.5ms will turn the servo in a clockwise direction toward the 180° position.

Fig 3.7: Servo motor Dimensions and specifications

Tiny and lightweight with high output power. Servo can rotate approximately 180

degrees (90 in each direction), and works just like the standard kinds but smaller. You can use

any servo code, hardware or library to control these servos. Good for beginners who want to

make stuff move without building a motor controller with feedback & gear box, especially since

it will fit in small places. It comes with a 3 horns (arms) and hardware.

Fig 3.8: Pinout Diagram

24

Position "0" (1.5 ms pulse) is middle, "90" (~2ms pulse) is middle, is all the way to the right, "-

90" (~1ms pulse) is all the way to the left.

Types of Servo Motors

There are two types of servo motors - AC and DC. AC servo can handle higher current surges

and tend to be used in industrial machinery. DC servos are not designed for high current surges

and are usually better suited for smaller applications. Generally speaking, DC motors are less

expensive than their AC counterparts. These are also servo motors that have been built

specifically for continuous rotation, making it an easy way to get your robot moving. They

feature two ball bearings on the output shaft for reduced friction and easy access to the rest-point

adjustment potentiometer.

Specifications

 Weight: 9 g

 Dimension: 22.2 x 11.8 x 31 mm approx.

 Stall torque: 1.8 kgf·cm

 Operating speed: 0.1 s/60 degree

 Operating voltage: 4.8 V (~5V)

 Dead band width: 10 μs

 Temperature range: 0 ºC – 55 ºC

25

Servo Motor Applications

Servos are used in radio-controlled airplanes to position control surfaces like elevators, rudders,

walking a robot, or operating grippers. Servo motors are small, have built-in control circuitry and

have good power for their size.

3.4 LCD Display 16x2

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical

device that uses the light-modulating properties of liquid crystals. Liquid crystals do not emit

light directly, instead using a backlight or reflector to produce images in color

or monochrome. LCDs are available to display arbitrary images (as in a general-purpose

computer display) or fixed images with low information content, which can be displayed or

hidden, such as preset words, digits, and 7-segment displays, as in a digital clock. They use the

same basic technology, except that arbitrary images are made up of a large number of

small pixels, while other displays have larger elements.[8]

This example sketch prints "Hello World!" to the LCD and shows the time in seconds since the

Arduino was reset:

Figure 3.9: 16x2 LCD Display

26

Figure 3.10: Pin Diagram

Pin No Symbol Level Description

1 VSS 0V Ground

2 VDD 5V Supply Voltage for logic

3 VO (Variable) Operating voltage for LCD

4 RS H/L H: DATA,

L: Instruction code

5 R/W H/L H: Read(MPU?Module)

L: Write(MPU?Module)

6 E H,H->L Chip enable signal

7 DB0 H/L Data bus line

8 DB1 H/L Data bus line

9 DB2 H/L Data bus line

10 DB3 H/L Data bus line

11 DB4 H/L Data bus line

12 DB5 H/L Data bus line

13 DB6 H/L Data bus line

14 DB7 H/L Data bus line

15 A 5V LED +

16 K 0V LED-

27

Figure 3.11: Schematic diagram of Arduino Uno & LCD Display

 3.5 IIC/I2C Serial Interface Module

This is a RoHS compliant I2C Serial LCD Daughter board that can be connected to a

standard HD44780compatible 16x2 or 20x4 Character Display Module that supports 4-bit

mode. All Character Modules sold on our site support 4-bit mode, and nearly all commercially

available 16x2 and 20x4 line character modules support it too. [9]

This board has a PCF8574 I2C chip that converts I2C serial data to parallel data for the

LCD display. There are many examples on internet for using this board with Arduino. Do a

search for "Arduino LCD PCF8574". The I2C address is 0x3F by default, but this can be

changed via 3 solder jumpers provided on the board.

28

This allows up to 3 LCD displays to be controlled via a single I2C bus (giving each one its own

address).

 5V power supply

 Serial I2C control of LCD display using PCF8574

 Backlight can be enabled or disabled via a jumper on the board

 Contrast control via a potentiometer

 Can have 8 modules on a single I2C bus (change address via solder jumpers) address,

allowing

 Size：41.6mm x 19.2mm

Figure 3.12: IIC/I2C Serial Interface Module

These serial interface modules simplify connecting an Arduino to a 16x2 Liquid Crystal

display using only 4 wires.

3.6 Sonar Sensor

This is the HC-SR04 ultrasonic ranging sensor. This economical sensor provides 2cm to 400cm

of non-contact measurement functionality with a ranging accuracy that can reach up to 3mm.

Each HC-SR04 module includes an ultrasonic transmitter, a receiver and a control circuit.

[11,12]

29

There are only four pins that you need to worry about on the HC-SR04: VCC (Power), Trig

(Trigger), Echo (Receive), and GND (Ground). Ultrasonic ranging module HC - SR04 provides

2cm - 400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The

modules include ultrasonic transmitters, receiver and control circuit. The basic principle of work:

 Using IO trigger for at least 10us high level signal,

 The Module automatically sends eight 40 kHz and detect whether there is a

pulse signal back.

 IF the signal back, through high level, time of high output IO duration is

the time from sending ultrasonic to returning.

Test distance = (high level time×velocity of sound (340M/S) / 2

Pin configuration of sonar sensor:

 5V Supply

 Trigger Pulse Input

 Echo Pulse Output

 0V Ground

Figure 3.13: Sonar sensor

30

3.7 Buzzer

A buzzer or beeper is an audio signaling device which maybe mechanical, electromechanical,

or piezoelectric. Typical uses of buzzers and beepers include alarm devices, timers, and

confirmation of user input such as a mouse click or keystroke.[13]

Buzzer is an integrated structure of electronic transducers, DC power supply, widely used

in computers, printers, copiers, alarms, electronic toys, automotive electronic equipment,

telephones, timers and other electronic products for sound devices. Active buzzer 5V Rated

power can be directly connected to a continuous sound, this section dedicated sensor expansion

module and the board in combination, can complete a simple circuit design, to "plug and play."

Pin configuration of buzzer:

1. VCC

2. Input

3. Ground

Figure 3.14: Buzzer

31

LCD 16x2 Output:

Figure 3.15: Output 1

Figure 3.16: Output 2

Figure 3.17: Output 3

Figure 3.18: Output 4

32

Hardware Connections:

To create this hardware connection we use Fritzing software and by the by we also create its

schematic diagram using the same software in the next figure.We add all the sensor’s that we use

in our project .We use one arduino,one RFID RC 522,one servo motor, two ultrasonic for

different purpose of use,one buzzer , one lcd 16x2 display,one breadboard and LED’s . We all

connect them by wire and designed our hardware connection.

Figure 3.19: Hardware Connections.

33

Schematic Diagram :

Figure 3.20: Schematic Diagram.

34

Prototype of the Toll System:

This image is captured by the side view of the prototype. Black and white colors is the road sign.

We create our prototype by one-way road and manual toll payed booth is build left side of the

design. All the sensors are put in this prototype by our system design. First we use ultrasonic no.

one for counting wait time and the use RFID sensor for detect the user or car who has genuine

RFID card access. Third one is the LCD display for that user can see the message of his or her

next step. Left side is the manual portion of paid money if balance is low or any other problem

occurred. There are two red and green lights for the indicator. Last two part is servo barrier and

ultrasonic no. two which detect that the vehicles is gone or not.

Figure 3.21: Prototype of the toll system.

35

Chapter 4

Description of The Software System

4.1 Introduction

In our project, we have used programming reference for the command structure and the basic

syntax of the Arduino microcontroller and continues to describe the syntax of the most common

elements of the languages and illustrates their usage with examples and code fragments which

includes many functions of the core library of sample schematics and started programs. Written

with the basic structure of Arduino’s C & C++ derived programming language.

We have used Arduino Uno R3 which can be programmed using the Arduino’s Desktop

IDE software for offline use which can be downloaded from their website which supports

Operating Systems of Windows, Mac OS X, Linux and Portable IDE (for Windows and Linux

only), although Online IDE is available for use with internet connection. We have to select

"Arduino Uno w/ATmega328" from the Tools > Board menu (microcontroller on our board).

This ATmega328 on our used Arduino Uno R3 microcontroller comes with pre-burned with a

boot-loader that allows us to upload new code to it without the use of an external hardware

programmer.

36

4.2 Structure

The Arduino Language’s basic structure is very simple and contains at least two parts or

function. This functions enclose blocks of statements. This two function is setup() and loop()

function.

Void setup()

{

statements ;

}

Void loop()

{

statements ;

}

The both setup() and loop() function is required for the program to run.

Where setup() function contains preparation statements of the program and it contains

declaration of variables . At the beginning of the program this function is run and for once after

each power up or reset of the Arduino board and it is used to set pinMode or initialize the serial

communication. This function initializes and sets the initial values.

The loop() function contains execution statements of the program and after run the

setup() function, the loop() function is run and it contains the code which will be executed

continuously like reading input, triggering output etc. This function allowing our program to

change and respond and to actively control the Arduino board. Actually loop() function is the

core of all the Arduino program and it does the bulk of the work.

37

4.3 Variable Declaration

Variable is used for naming and storing a value for use it later by the program. Before use

variables, we need to declare this variables that means defining its type and optionally assign its

initial value.

This declaration needs only once at a time in a program but later value can be changed

using arithmetic and others assignments. It can be declare in any location throughout the

program. [14]

Some Variable types are:

 int

 char

 float

 double

 byte

 unsigned int

 long

 unsigned long

Example:

int scanVariable = 4; //initialize the scan Variable as integer value 4

4.4 Arithmetic Operator

By using Arithmetic Operators, we can perform addition, subtraction, multiplication and division

of operands. We also get remainder and the results are saved into variables using assignment

operator.

38

Arithmetic Operators are:

 Assignment Operator (=)

 Addition Operator (+)

 Subtraction Operator (-)

 Multiplication Operator (*)

 Division Operator (/)

 Modulo Operator (%)

Examples:

x = a + 7;

y = b – 5;

z = c * 3;

m = d / 6;

n = e % 5;

4.5 Compound Operator

By using Compound Operators, we can perform increment, decrement, compound addition,

compound subtraction, compound multiplication, compound division, compound modulo,

compound bitwise AND, compound bitwise OR etc. Actually this operator combines arithmetic

operation with variable assignment and most commonly used on loop operations.

Arithmetic Operators are:

 Increment Operator (++)

 Decrement Operator (--)

 Compound Addition (+=)

39

 Compound Subtraction (-=)

 Compound Multiplication (*=)

 Compound Division (/=)

 Compound Modulo (%=)

 Compound Bitwise AND (&=)

 Compound Bitwise OR (|=)

Examples:

a++; // increment a by 1

b--; // decrement b by 1

c += x; // increment c by +x

d -= y; // decrement d by -y

x *= y; // multiple x by y and save to x

x /= y; //divide x by y and save to x

4.6 Boolean Operator

By using Boolean Operator, we can compare two expressions and get Boolean value and it return

a Boolean value of 0 or 1. If the value is TRUE, it returns 1 and if the value is FALSE, it returns

0. This operators are frequently used inside the condition of an if statement.

Boolean Operators are:

 Logical AND (&&)

 Logical OR (||)

 Logical Not (!)

40

Examples:

if(x>2 && x<9) { … } // if only both expression are true, it will return TRUE

if(x>2 || y>2) { … } // if any expression is true, it will return TRUE

if(!x) { … } // if operand is false, it will return TRUE

4.7 pinMode(pin,mode)

Digital I/O function pinMode are used in void setup() to configure the specified pin to behave

either as an INPUT or as an OUTPUT.

Its syntax is pinMode(pin, mode), here, the two parameters here pin’s value will be the

number of pin whose mode we wish to set and mode’s value will be INPUT, OUTPUT or

INPUT_PULLUP and this function will not return anything.[15]

Example:

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

41

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

4.8 digitalWrite(pin, Value)

digitalWrite() function writes a HIGH or LOW value to a specified digital pin and this pin can be

specified as a variable or constant. Its syntax is written as digitalWrite(pin, value), where the

parameter pin is for the pin number and value can be either HIGH or LOW.[16]

Example:

int ledPin = 13; // LED connected to digital pin 13

void setup(

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(1000); // waits for a second

}

In this code, sets pin 13 to HIGH, makes a one-second-long delay, and sets the pin back to LOW.

42

4.9 Delay(ms)

The Delay() function actually pauses the program for the millisecond amount of time. Its syntax

is written as delay(ms). Its parameter is ms means millisecond is the value of number of

milliseconds to pause. there are 1000 millisecond in a second.

Example:

 delay(1000); // pause for 1 second (1000 millisecond)

4.10 Serial.begin(speed)

Serial.begin() function is used to open serial port and set the data rate in bits per second (baud)

for serial data transmission. The typical baud rate for communicating with the computer is 9600

although other speeds are supported like 300, 600, 1200, 2400, 480014400, 19200, 28800,

38400, 57600, or 115200 etc. When using serial communication, digital pins 0(RX) and 1(TX)

cannot be used at the same time.

Its Syntax is Serial.begin(speed). speed parameter is value in bits per second (baud).

Optional config parameter can be used for set data, parity, and stop bits.

Example:

void setup() {

Serial.begin(9600); // open serial port and sets data rate to 9600 bps

}

43

4.11 Serial.printIn(val)

Serial.println() function is used to print data to the serial port as human readable ASCII text

followed by a carriage return character and a newline character. This command takes the same

forms as Serial.print() but it is easier for reading data serial monitor.

Its syntax is written as Serial.println(val), where the parameter val can be the value to

print of any data type. Optional parameter format can be used for specify the number base for

integer data types and number of decimal places for floating point types. [17]

Example:

int analogValue = 0; // variable to hold the analog value

void setup() {

 Serial.begin(9600); // open the serial port at 9600 bps

}

void loop() {

 analogValue = analogRead(0); // read the analog input on pin 0

 // print it out in many formats

 Serial.println(analogValue); // print as an ASCII-encoded decimal

 Serial.println(analogValue, DEC); // print as an ASCII-encoded decimal

 Serial.println(analogValue, HEX); // print as an ASCII-encoded hexadecimal

 Serial.println(analogValue, OCT); // print as an ASCII-encoded octal

Serial.println(analogValue, BIN); // print as an ASCII-encoded binary

 delay(10); // delay 10 milliseconds before the next reading

}

44

Serial monitor Output:

Figure 4.1: Output of serial monitor 1

Figure 4.2: Output of serial monitor 2

45

Chapter 5

Conclusion

We have successfully implemented our method on the proposed automated toll collection

system. Our toll collection system is very fast and efficient mode for collection toll. This saves a

lot of time since vehicles passing through the toll system do not stop to pay toll and the payment

automatically takes place from the account of the vehicle. It is observed that there is reduction in

the number of accident caused near the toll plazas due to considerable decrement in congestion

around toll system. Since the vehicles do not stop at the toll facility. This has reduced the

congestion of the toll system nicely.

This toll collection system is mainly based on RFID, a design scheme is given hardware

section. The whole system is developed to faster the toll collection system and ensure security in

highways and bridges. Usage of RFID technology ensures the system as a secure system as RFID

holds a unique identification number and there is no chance of cloning. It is low cost, high

security, far communication and efficiency, etc. This toll collection system using RFID is an

effective measure to reduce management costs and fees, at the same time, greatly reduce noise

and pollutant emission of toll station. In the design of the proposed toll system, real life toll

collection, anti-theft or without any RIFD card user car is caught automatically at the toll booth

so this system has been designed. This system of collecting tolls is ecofriendly and also results in

increased toll lane capacity. Also an anti-theft solution system module which prevents passing of

any defaulter vehicle is implemented, thus assuring security on the roadways. On the whole, the

system is hassle free and user friendly.

46

5.1 Future Work

In our Future improvement we use high speed image capture camera so that any car can’t bypass

our system or doing any unethical activity on road. We also try to make our system more

accurate. Also we will be probably implementing the real time database which is connect with

government created roads and highway database server. When people will frequently use RFID,

then we can add a feature like if a car hasn’t sufficient balance on its account, he can use it but

the toll money will deduct from his next recharge, so the necessity of our manual toll booth will

no longer available in future.

47

References

1) https://www.arduino.cc/en/Guide/Introduction

2) https://www.arduino.cc

3) https://en.wikipedia.org/wiki/Arduino#History

4) https://playground.arduino.cc/Learning/MFRC522

5) https://www.techopedia.com/definition/26992/radio-frequency-identification-reader-rfid-

reader

6) https://en.wikipedia.org/wiki/Radio-frequency_identification#History

7) https://www.google.com.bd/#q=servo+motor+datasheet

8) http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

9) https://www.arduino.cc/en/Tutorial/HelloWorld

10) http://modtronix.com/mod-lcdi2c-bb1.html

11) https://www.sparkfun.com/products/13959

12) www.micropik.com/PDF/HCSR04.pdf

13) https://en.wikipedia.org/wiki/Buzzer

14) https://www.arduino.cc/en/Reference/VariableDeclaration

48

15) https://www.arduino.cc/en/Reference/PinMode

16) https://www.arduino.cc/en/Reference/DigitalWrite

17) https://www.arduino.cc/en/Serial/Println

18) http://bdnews24.com/bangladesh/2017/06/21/gridlocks-on-kanchpur-meghna-bridges-

feared-during-eid-travel

19) https://espace.curtin.edu.au/bitstream/handle/20.500.11937/52601/251220.pdf?sequence=

2&isAllowed=y

20) http://www.bdwave24.com/?p=1884

49

Appendix

Code

#include <SPI.h>
#include <MFRC522.h>
#include <Servo.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <Ultrasonic.h>

Ultrasonic ultrasonic(7,8);
Ultrasonic ultrasonic0(2,4);
LiquidCrystal_I2C lcd(0x3F,16,2); // set the LCD address to 0x3F for
a 16 chars and 2 line display
#define SS_PIN 10
#define RST_PIN 9
#define Red_Btn 5
#define Green_Btn 6
#define roadwidth 5
#define alarm A1

MFRC522 rfid(SS_PIN, RST_PIN); // Instance of the class

MFRC522::MIFARE_Key key;
Servo myservo;
int pos = 0;
int waittime = 0;
int codeswitch = 99;
// Init array that will store new NUID
byte nuidPICC[4];
int rfidarray[] = {134,45,209,88,102,149,180,88,182,85,176,88};
int taka[] = {300,0,450};
int personidentifier;

void setup() {
Serial.begin(9600);
pinMode(Green_Btn, OUTPUT);
pinMode(Red_Btn, OUTPUT);
lcd.init(); // initialize the lcd
SPI.begin(); // Init SPI bus
rfid.PCD_Init(); // Init MFRC522
myservo.attach(3);
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}

50

Serial.println(F("This code scan the MIFARE Classsic NUID."));
Serial.print(F("Using the following key:"));
printHex(key.keyByte, MFRC522::MF_KEY_SIZE);
}

void loop() {
if(codeswitch == 99)
{
digitalWrite(Red_Btn, HIGH);
Serial.println("step=99");
if(ultrasonic0.distanceRead()<roadwidth)
{
if(waittime>=10)
{ lcd.clear();
lcd.backlight();
lcd.setCursor(0,0);
lcd.print("Please Go Left ^");
lcd.setCursor(0,1);
lcd.print("_______________|");
while(ultrasonic0.distanceRead()<roadwidth){
tone(alarm,2000,500); //tone(pin, frequency, duration)
delay(1000);
Serial.println("Inside loop");
}
noTone(alarm);
waittime = 0;
lcd.clear();
}
else{
waittime = waittime + 1;
Serial.println("waittime = ");
Serial.println(waittime);
delay(1000);
codeswitch = 0;
}
}
}
if(codeswitch == 0)
{
//delay(200);
Serial.println("step=0");
digitalWrite(Red_Btn, HIGH);
lcd.backlight();
lcd.setCursor(0,0);
lcd.print("------STOP------");
// Look for new cards
if (! rfid.PICC_IsNewCardPresent()){
codeswitch = 99;
return;
}

// Verify if the NUID has been readed

51

if (! rfid.PICC_ReadCardSerial())
return;

Serial.print(F("PICC type: "));
MFRC522::PICC_Type piccType = rfid.PICC_GetType(rfid.uid.sak);
Serial.println(rfid.PICC_GetTypeName(piccType));

// Check is the PICC of Classic MIFARE type
if (piccType != MFRC522::PICC_TYPE_MIFARE_MINI &&
piccType != MFRC522::PICC_TYPE_MIFARE_1K &&
piccType != MFRC522::PICC_TYPE_MIFARE_4K) {
Serial.println(F("Your tag is not of type MIFARE Classic."));
return;
}

if (rfid.uid.uidByte[0] != nuidPICC[0] ||
rfid.uid.uidByte[1] != nuidPICC[1] ||
rfid.uid.uidByte[2] != nuidPICC[2] ||
rfid.uid.uidByte[3] != nuidPICC[3]) {
Serial.println("---");
Serial.println(rfid.uid.uidByte[0]);
Serial.println(rfid.uid.uidByte[1]);
Serial.println(rfid.uid.uidByte[2]);
Serial.println(rfid.uid.uidByte[3]);
Serial.println("---");
int j = 0;
for (byte i = 0; i < 12 ; i++) { // 12 mean 3 Id 4 + 4 + 4
Serial.print("I = ");
Serial.println(i);
if(rfid.uid.uidByte[j] == rfidarray[i] && rfid.uid.uidByte[j+1] ==
rfidarray[i+1] && rfid.uid.uidByte[j+2] == rfidarray[i+2] &&
rfid.uid.uidByte[j+3] == rfidarray[i+3])
{
if(i==0){
personidentifier = 0;
}
else{
personidentifier = i/4;
}
if(taka[personidentifier]>49){
taka[personidentifier] = taka[personidentifier] - 50;
lcd.clear();
lcd.backlight();
lcd.setCursor(2,0);
lcd.print("Person No:=>");
lcd.print(personidentifier+1);
lcd.setCursor(2,1);
lcd.print("Balance:=");
lcd.print(taka[personidentifier]);
delay(3000);
codeswitch = 1;
lcd.clear();

52

lcd.backlight();
lcd.setCursor(3,0);
lcd.print("Please Go");
digitalWrite(Green_Btn, HIGH);
digitalWrite(Red_Btn, LOW);
for (pos = 0; pos <= 90; pos += 1) { // goes from 0 degrees to 90
degrees
// in steps of 1 degree
myservo.write(pos); // tell servo to go to position in
variable 'pos'
delay(15); // waits 15ms for the servo to reach
the position
}
}
else{
lcd.clear();
lcd.backlight();
lcd.setCursor(2,0);
lcd.print("Balance Low");
lcd.setCursor(2,1);
lcd.print("Please Go Left");
delay(4000);
lcd.clear();
waittime = 0;
}

// Store NUID into nuidPICC array
for (byte i = 0; i < 4; i++) {
nuidPICC[i] = rfid.uid.uidByte[i];
}

Serial.println(F("The NUID tag is:"));
Serial.print(F("In hex: "));
printHex(rfid.uid.uidByte, rfid.uid.size);
Serial.println();
Serial.print(F("In dec: "));
printDec(rfid.uid.uidByte, rfid.uid.size);
Serial.println();
}
else{
i = i+3;
}
}
}
else
{
lcd.clear();
Serial.println(F("Card read previously."));
lcd.backlight();
lcd.setCursor(3,0);
lcd.print("Card Read");
lcd.setCursor(3,1);

53

lcd.print("Previously.");
delay(1000);
// clear the screen
lcd.clear();
}
Serial.println(codeswitch);
// Halt PICC
rfid.PICC_HaltA();

// Stop encryption on PCD
rfid.PCD_StopCrypto1();
}
else if(codeswitch == 1)
{
waittime = 0;
delay(300);
Serial.println("step=1");
Serial.println(ultrasonic.distanceRead());
if(ultrasonic.distanceRead()<roadwidth)
{
codeswitch = 2;
}
}
else if(codeswitch == 2)
{
delay(100);
Serial.println("step=2");
Serial.println(ultrasonic.distanceRead());
delay(100);
if(ultrasonic.distanceRead()>roadwidth)
{
digitalWrite(Green_Btn, LOW);
digitalWrite(Red_Btn, HIGH);
lcd.backlight();
lcd.setCursor(0,0);
lcd.print("------STOP------");
for (pos = 90; pos >= 0; pos -= 1) { // goes from 90 degrees to 0
degrees
myservo.write(pos); // tell servo to go to position in
variable 'pos'
delay(15); // waits 15ms for the servo to reach
the position
}
codeswitch = 99;
}
}
}
/**
* Helper routine to dump a byte array as hex values to Serial.
*/
void printHex(byte *buffer, byte bufferSize) {
for (byte i = 0; i < bufferSize; i++) {

54

Serial.print(buffer[i] < 0x10 ? " 0" : " ");
Serial.print(buffer[i], HEX);
}
}
/**
* Helper routine to dump a byte array as dec values to Serial.
*/
void printDec(byte *buffer, byte bufferSize) {
for (byte i = 0; i < bufferSize; i++) {
Serial.print(buffer[i] < 0x10 ? " 0" : " ");
Serial.print(buffer[i], DEC);
}
}

	1.Project-Report-Cover-Page
	2.U Index
	3. MainBody

