
Weather Phenomenon Prediction Using

Semantic Web

Submitted by:

Raktim Kumar Roy

ID: 2015-02-96-005

Spring 2017

Supervised by:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of Computer Science and Engineering

East West University

The project has been submitted to the Department of Computer Science and

Engineering at East West University in the partial fulfillment of the

requirement for the degree of Masters in Computer Science and Engineering.

East West University

Dept. of Computer Science and Engineering

 Spring 2017

i

Declaration

The project has been submitted to the department of computer science and engineering at

East West University in the partial fulfillment of the requirement for the degree of

Masters in Computer Science and Engineering performed by me under supervision of Dr.

Mohammad Rezwanul Huq, Assistant Professor, Dept. of CSE at East West University.

This is also need to certify that, the project work under the course ‘Master’s Project (CSE

597)’

I, hereby declare that this project has not submitted elsewhere for the requirement of any

degree or diploma or any other purpose.

Signature of the Candidate

 Raktim Kumar Roy

ii

Letter of Acceptance

This project is entitled “Weather Phenomenon prediction Using Semantic Web

Technology” submitted by Raktim Kumar Roy ID: 2015-02-96-005 to the Department of

CSE, East West University, Dhaka-1212, is accepted by the Department for the partial

fulfillment of requirements for the degree of MS in CSE April, 2017

Board of Examiners:

Supervisor:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of Computer Science & Engineering

East West University

Dhaka, Bangladesh

Chairperson:

Dr. Ahmed Wasif Reza

Associate Professor and Chairperson (acting)

Department of Computer Science & Engineering

East West University

Dhaka, Bangladesh

iii

Acknowledgement

I would like to pay our gratitude to the Almighty God who creates me with not only the

ability to build up this Project but also give me power of patient.

I am obliged and thankful to my project supervisor Dr. Mohammad Rezwanul Huq,

Assistant Professor, Department of Computer Science and Engineering, East West

University for his continuous encouragement, motivation and professional guideline

during the work of the project which has proven to be an integral part of it. Without his

valuable support and guild line, this project could not elevate up this level of

development from my point of view.

I would like to thank all the faculty members, Dept. of CSE, East West University for

their valuable time spend in requirement analysis and evaluation of the project work.

I would like to express our sincere cordial gratitude to the people those who have

supported me directly, purveyed mental encouragement, evaluated and criticized my

work in several phases during the development of this project and for preparing the

dissertation indirectly.

 Raktim Kumar Roy

iv

Abstract

Weather phenomenon analysis is the application of current technology and science

to predict the accurate weather condition for planning our day to day activities.

Weather attribute such as temperature, precipitation, wind speed are affected in

agriculture, air traffic, marine, forestry, severe weather alerts and advisories,

military applications and utility companies. However the process of weather

phenomenon is one of the complex areas in meteorology. As weather information

is collected from various systems with different formats and parameters. Such type

of data is lying in different sources and in heterogeneous format, which are

challenging to be integrated in one platform into the knowledge domain. Hence the

data source need to be aligned in order to facilitate the smooth integration and to

achieve this would involve various processing. There is a need to accomplish

unified integration of heterogeneous environments (data sources) and to provide

worldwide access to the system. The heterogeneity issues needs to be minimized to

arrive a common understanding and decision making by various agencies, research

institutions and application areas.

In this paper I focus on a novel framework which is proposed for integrating

heterogeneous data sources in a single platform, using semantic web techniques.

Here I build a ontology which has been developed for aligning, consisting of all

possible concepts, attributes and relations for weather phenomenon domain to

provide knowledge using semantic relations.

v

Table of Content

Declaration ………………………………………………………………. i

Letter of Acceptance ……………………………………………………. ii
Acknowledgement ………………………………………………………. iii
Abstract …………………………………………………………………. iv

Table of Content ………………………………………………………… v

Chapter 1: INTRODUCTION
1.1 Background Study ………………………………………………………….. 2
1.2 Problem Statement …………………………………………………………. 3

Chapter 2: Related Work
2.1 Foundations ………………………………………………………………… 6
 2.1.1 Semantic web…………………………………………………………... 6
 2.1.2 Ontology ………………………………………………………………. 6
 2.1.3 Web ontology language ……………………………………………….. 8
2.2 Ontology based data access ………………………………………………… 13
2.3 Relational database H2 ……………………………………………………... 15
2.4 Relational database vs Resource description framework ………………. 15

Chapter 3: Weather data source
3.1 Weather information ……………………………………………………….. 18
3.2 Service data ………………………………………………………………… 18
3.3 Google search engine……………………………………………………….. 19

Chapter 4: Methodology
4.1 Proposed System Architecture ……………………………………………... 21
4.2 Development of ontology …………………………………………………... 22
4.3 The ontology development approaches…………………………………….. 23
 4.3.1 Ontology development process and life cycle ………………………… 25
 4.3.2 The methodology approach ……………………………………………. 26
4.4 Methodology proposes the use of four taxonomic relations ……………… 28
4.5 Architecture of open database access………………………………………. 32

vi

Chapter 5: Implementation
5.1 Convention ………………………………………………………………..... 35
5.2 Create ontology in protégé …………………………………………………. 36
 5.2.1 Top-level concept ……………………………………………………… 37
 5.2.2 Sub-concept Information ………………………………………………. 38
 5.2.3 Object property ………………………………………………………... 39
 5.2.4 Data property ………………………………………………………….. 40
 5.2.5 Individuals Information………………………………………………… 42
5.3 H2 database ………………………………………………………………… 44
5.4 Ontop mapping tools ……………………………………………………….. 48
5.5 Sparql………………………………………………………………………. 51

Chapter 6: Conclusion
6.1 Summary …………………………………………………………………… 53
6.2 Limitation …………………………………………………………………... 53
6.3 Future work ………………………………………………………………… 54

Appendix A1 Table …………………………………………………………… 55
Appendix A2 Figure …………………………………………………………... 59
References …………………………………………………………………….. 64

1

Chapter 1

Introduction

2

1.1 Background Study

Bangladesh is one of the largest deltas in the world which is highly vulnerable to natural

disasters because of it flat low-lying plain land made up of alluvial soil having small

hilly area in the northeast and southeast regions. The great Himalayan Range is to the

north and the vast Bay of Bengal is on the south. Due to geo-location Bangladesh face

different types of natural disasters. The most common natural disasters in Bangladesh

which includes cyclones and associated storm surge, flood, flash flood, severe

thunderstorm, Tornado, heavy rainfall, heat wave, cold wave, dense fog etc. Such type’s

natural hazards may cause huge life loss, damage of properties or demolish the

agriculture product. These methods are having drawbacks about the weather attribute

which are related to the natural disasters.

Weather phenomenon is a kind of prominent application for various sectors such as

agriculture, aviation, military, power industries, forestry, and general public.

Agriculturalists require this information to plan their planting and harvesting the crops in

the safest way. Aviation sector would require the local weather information to schedule

or operate their carriers. Weather forecasting enables us to take precautionary measures

in our day to day life, from incidental climate change.

Various websites are providing weather information. Such as Bangladesh Metrological

Department, AccuWeather, Open weather map and so on. The format of data, naming

convention, measurement units are different for each of the weather systems [Kalra G et

al., 2005]. To establish uniformity in terminology and interoperability of data,

heterogeneity of data should be minimized by representing data in a common format like

XML or RDF.

To utilize the weather information effectively semantic interoperability between different

weather systems needs to be addressed. Information technologies are under

extraordinarily rapid progress, and a number of them have not been applied to

environmental management yet. Semantic web technology addresses this issue by

providing solution through ontologies [Berners-Lee T et al., 2001]. Ontology

 [Noy NFetal., 2001] which provides a convenient vocabulary to represent meaningful

specification of data and ontology mapping is the methodology provided for achieving

semantic interoperability which is the capability of different information systems to

communicate information consistent with the intended meaning of the encoded

information.

In this paper I build a ontology on the weather phenomenon domain. Which show how

different weather attribute and their phenomenon are related to different weather

condition? Building ontology is a very difficult task. Various people build ontology in

different way to give meaning to their respective domain. For proper validation an expert

3

opinion is required to determine the dataset on a particular domain. To build this project I

had take the help of the thesis paper that had been build on “Weather Ontology for

Predictive Control in Smart Homes published by Paul Staroch”[1]. The weather

attribute which are associated with the weather conditions are taken from various weather

related Web Sites. Here I focus on the semantic web technologies in the developed for the

domain of weather phenomenon. The main goal of my project is to build the weather

phenomenon using ontology based on Web Ontology Language (OWL) which provides a

convenient vocabulary abstracting from specific aspects related to the data sources. And

it is connected to the underlying relational databases using R2RML mappings. Here I am

using H2 Console database which is a relational database management system written in

Java. Then data set is mapped according to the vocabulary of my domain concept using

an open-source Ontology Based Data Access system (OBDA). Then the ontology is

queried in SPARQL(Protocol and RDF Query Language), the OBDA system exploits the

mappings to retrieve elements from the data sources and construct the answers expected

by the user define.

1.2 Problem Statement

The aim of this project is the development of a data model for weather data which will be

utilized in the detecting weather attributes for the related weather condition. Apart from

the detecting weather attributes, this model covers previous weather data to determine the

max and min temperature, humidity, wind speed, precipitation for a period of days

according to the Bangladesh weather data History. Here I am choosing ontology based

techniques rather than relational database because huge amount of weather data is very

difficult to manage in relational database. In relational every table shares at least one field

with another table in one-to-one, one-to-many or many-to-many relationships. To build

up a relation to each table is very complex task and time consuming. In huge data set

query also become so complex to get accurate result. On the other hand ontology is so

powerful to manage the huge data set. Ontology provides the convenient meaning to each

data set. We can also easily access the heterogeneous schema, data formats

simultaneously and also have other benefit as well. For that reason I have choose

Ontology based technique rather than relational database. The main goal of this project to

identify the weather attributes for the certain weather condition. Below I give the list of

weather condition that I worked on this project.

1. Cyclone.

2. Thunderstorm

3. Foggy weather

4. Hail precipitation

5. Very humid weather.

6. Drizzle rain.

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Java_%28programming_language%29

4

7. Weather condition winter season.

8. Max, Min Temperature for period of days.

We begin with the Introduction and problem statement of the project that I work on. We

then describe the related work about the semantic technologies, ontology, OWL,

relational database and open database access in chapter 2. In chapter 3 we describe the

weather data source which represent about the data source where we collected the

weather data. In chapter 4 we describe the methodology of system architecture,

methodology of development ontology and the life cycle of ontology. In chapter 5

describes the whole implementation process of this project. Chapter 6 describes the

conclusion and future work.

5

Chapter 2

Related work

6

The first part of this chapter covers the foundations the work of this project builds upon.

It focuses on basic part that gives introductions into all relevant topics, e.g. ontologies

and associated modeling languages such as RDF, RDFS, and OWL. Furthermore, it

discusses the basic concept of weather attribute that are connected to the weather

condition uses a knowledge base built upon a set of ontologies.

The second part is about the existing work regarding weather data applied to determine

the weather conditions. Additionally in this chapter I try to elaborately discus the

different part of semantic technology that is related to this project.

2.1 Foundations

This chapter presents the foundations the work in this thesis builds upon: Semantic Web,

Ontology, OWL,RDF, RDFS, Reasoning, Ontop Mapping and Relational database.

2.1.1 Semantic Web

Semantic Web extends the web with machine interpretable meaning, thus establishing

data integration and sharing, and interoperability amongst interconnected machines[11].

The semantic web concept is based on the Resource Description Framework (RDF)

which enables linking and merging of relations between entities from multiple resources

in the web via Internationalized Resource Identifiers (IRI). RDF Schema (RDFS) and

ontologies provide vocabulary for modeling and describing RDF data. Using semantic

technologies we can manipulate the heterogeneous data formats and brings them in single

platform. It brings a new era to access the data that are in different schema or formats.

2.1.2 Ontology

In computer science, ontology represents knowledge as a set of concepts in a certain

domain and relationships between pairs of concepts [10]. The basic elements of

ontologies – concepts, properties, and relations – comprise a shared vocabulary which

can be used to model a certain domain. Each object that is mapped into an ontology is

represented by an individual (also known as object). Individuals of the same type can be

defined to be instances of concepts (also called classes). Both classes and individuals can

have attributes that specify their characteristics and properties. Two arbitrary classes or

individuals can be related to each other via a relation. Furthermore, ontologies may

contain function terms (structures formed from relations that can be used in place of

terms in statements), restrictions (descriptions of what must be true for additional

knowledge to be accepted), rules (statements in if-then notation that describe logical

7

inferences that can be drawn), axioms (core knowledge of the ontology that is known to

be true), and events (changes to attributes or relations).

 SubClass
 SubClass

 Studies Teaches

Figure 2.1: Example of a simple ontological model based on University

Figure 2.1 illustrates the aforementioned elements in a simple ontology based on

University. People, Student, Lecturer and Module are concepts. People are a superClass

and Student and Lecturer is a Subclass of People. SubClass of is a property that defines

one concept to be a sub-concept of another concept (i.e. B is subclass of A states that

every instance of B is also an instance of A). Student is connected to the Module class by

the object properties Studies and the Lecturer is connected to the Module class by the

object properties Teaches. Module Class has two Individuals CSModule and

MathModule.

This model states the following facts: Student Studies CSModule and MathModule and

Lecturer Teaches the CSModule and MathModule.

An important feature of an ontology is the support of automatic reasoning to deduce facts

that are not explicitly stated in the data model from the given information. In order to

make Reasoning possible, the semantics of data models in ontologies (including OWL)

are often based on Description Logics . These are a family of logics consisting of

decidable parts of first-order predicate logic. After the Reasoning the ontology it will

infer that Student connect the CSModule and MathModule by the object Property

People

Student Lecturer

Module

CSMODULE MATHMODULE

8

Studies. And Lecturer connects the CSModule and MathModule by the object Property

Teaches.

 Studies

 Studies

Figure 2.2: illustrates the fact of Student after reasoning.

Another core principle of a ontology is reusability. In order to share knowledge across

various systems and to ensure interoperability of these systems, ontologies are often

reused within other ontologies. Besides the simplification of knowledge exchange,

ontology reuse tries to avoid duplicate work and reduces the work that is necessary to

create a new ontology for a domain.

 Many standards such as RDF, RDFS, or OWL have been published in the context of the

W3C Semantic Web Activity by the World Wide Web Consortium (W3C). The Semantic

Web is an approach to enrich the World Wide Web with machine-interpretable metadata

using the technologies described in this section in order to allow better interoperability

between Web pages and to ease knowledge sharing.

2.1.3 Web Ontology Language (OWL)

The Resource Description Framework (RDF) is a standard model for knowledge

representation. It is specified in a set of recommendations by the World Wide Web

Consortium (W3C).

In RDF, the term resources is used for instances. Each resource can have an arbitrary

number of properties, i.e. attributes that associate literate values (e.g. numerical values,

strings) to the resource or relations that link this resource to other resources. Resources

and properties are expressed using statements (triples) which consist of three parts that

are called subject, predicate, and object. To identify resources and properties, RDF uses

URIs (Unified Resource Identifiers). In case a resource does not have an identifier, it is a

blank node.

Student

MathModule

CSModule

9

. isaSonOf

 has Age

 hasEmail

Figure 2.3: Example of a simple RDF model.

Figure 2.3 depicts a simple example for a piece of knowledge that John isaSonOf Mary

here isaSonOf is a object Property which gives the relation between john and Mary. John

has two data property hasAge and hasEmail which link two literal values to the resource:

hasAge value of 18^^xsd:int and hasEmail john@gmail.com^^xsd:string type xsd:int

and xsd:string of both literals is defined in XML Schema , one of the several XML

schema languages available that define the structure of XML documents (Extensible

Markup Language).

The complete URI of John is http://example.org/Jhon# and the URI of

http://example.org/Jhon#. As in XML, substrings at the beginning of URIs may be

replaced by prefixes to avoid frequent recurrences of the same strings. The part of the

URIs replaced by the prefix is called a namespace which is used to group URIs for

elements from the same source together; e.g. all concepts, properties, and individuals

defined by weather phenomenon prediction have identifiers in the same namespace. For

expressing the data that is represented by an RDF model, several serialization formats are

available. The RDF recommendation is based on RDF/XML which maps the RDF model

to

John Mary

18^^xsd:int john@gmail.co

m^^xsd:string

<?xml version="1.0"?>

<rdf:RDF xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:fam="http://example.org/Familyr#">

<rdf:Description rdf:about=" http://example.org/Family #John">

< fam:hasAge

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

18

</ fam:hasAge >

< fam:hasEmail

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

John@gmail.com

</ fam:hasEmail >

<fam:isSonOf rdf:resource="http://example.org/ Family #Mary" />

</rdf:Description>

</rdf:RDF>

mailto:john@gmail.com%5e%5exsd:string
http://example.org/Jhon
http://example.org/Jhon

10

Listing 2.1: RDF example from Figure 2.3 encoded in RDF/XML syntax.

Listing 2.2: RDF example from Figure 2.3 encoded in Turtle syntax.

an XML document . The representation of the above example in RDF/XML can be seen

in Listing 2.1. As RDF/XML is a rather verbose format which may be difficult to read for

humans, the N3 (Notation3) representation for RDF is available which was developed

with human-readability in mind. Notation3 incorporates some syntax features that go

beyond the expressive power of RDF. A subset of Notation3 named Turtle (Terse RDF

Triple Language) is available that is limited to the features required to map RDF models

.Listing 2.2 shows the above example in Turtle syntax.

RDF schema (RDFS) is a recommendation by the W3C that builds upon RDF. It

introduces a set of concepts and properties adding features that go beyond the expressive

power of RDF. All things described by RDF are instances of rdfs:Resource. Concepts –

which are introduced by RDFS – are instances of rdfs:Class, and properties are instances

of rdfs: Property. Other concepts introduced by RDFS are rdfs:Literal, rdfs:Datatype, and

rdfs:XMLLiteral.

 rdf:type
 rdf:type

 rdf:type rdfs:type domain rdf:type rdfs:type Range rdf:type

 geo:hasLocation

rdfs:Class

Wea:WeatherAttribute Geo:Location

Wea:Temperature geo:Bangladesh

18.2^^xsd:float

Rdfs:Property

PREFIX fam:: <http://example.org/Family#> .

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .

fam:John fam:hasAge "18"^^xsd:int ;

fam:John fam:hasEmail "John@gmail.com"^^xsd:int ;

fam:John fam:isSonOf fam:Mary .

11

wea:hasTempValue

Figure 2.4: Example of a simple RDFS model.

The property rdfs:domain states that any resource that has a given property is an instance

of one or more classes; the property rdfs:range states that the value of a property is an

instance of one or more classes. rdf:type (often abbreviated with a) is used to state that a

resource is an instance of a class. Using the property rdfs:subClassOf, hierarchies of

classes can be constructed: C1 rdfs:subClassOf C2 states that any instance of C2 is also

an instance of C1. rdfs:subPropertyOf is an equivalent that is used for declaring

hierarchies of properties. Other properties defined by RDFS are rdfs:label and

rdfs:comment.

Figure 2.3 shows the enriched by some elements that are introduced by RDFS. The data

model introduces two classes, weather:WeatherAttribute and geo:Location.

weather:Temperature and geo:Bangladesh are instances of weather: Weather Attribute

and geo:Location, respectively. geo:hasLocation is a property with domain

weather:Weather Attribute and range geo:Location.

RDFS comes with reasoning support e.g. in the above example, the statements can be

removed without loss of knowledge.

A reasoner can deduce them from these statements:

Many of the concepts and properties defined by RDFS are included in the Web Ontology

Language (OWL), a more expressive ontology language than RDFS which is based on

RDF and RDFS. OWL is developed by the OWL Working Group of the W3C. OWL was

first published in July 2002 as a working draft and became a W3C recommendation in

February 2004 ; the first working draft of OWL 2 was released in March 2009 and the

W3C recommendation of OWL 2 in October 2009 with a second edition being finally

wea:Temperature rdf:type wea:WeatherAttribute .

geo:Bangladesh rdf:type geo:Location .

weather:Temperature geo:hasLocation geo:Bangladesh .

geo:hasLocation rdfs:domain weather:WeatherAttribute .

geo:hasLocation rdfs:range geo:Location .

12

released in December 2012. OWL 2 remains fully compatible to OWL, i.e. all OWL 1

ontologies are OWL 2 ontologies as well, with unchanged semantics.

Compared to RDFS, OWL introduces the following elements (among others which are

omitted here):

1. Properties are instances of owl:ObjectProperty, owl:DatatypeProperty, or both;

the property is termed object property or datatype property, respectively. An

object property links an individual to another individual while a datatype property

links an individual to a literal value.

2. The property owl:equivalentClass is used to state that two classes are equivalent

while owl:allDisjointClasses states that there is no individual that is an instance of

more than one class from the defined set of classes.

3. Some ontology languages include a Unique Name Assumption which states that

two different names always refer to different entities in the world. OWL does not

make this assumption, but provides the properties owl:sameAs and

owl:differentFrom that are used to explicitly state that two individuals are the

same individual or that two individuals can never be the same individual.

4. The properties owl:intersectionOf, owl:unionOf, and owl:complementOf can be

used to describe complex classes in a notation borrowed from set theory, e.g. if

there are two classes, Man and Woman, the class Person can be defined as the

class union of them (if no other classes exist).

5. Using one of the properties owl:allValuesFrom, owl:someValuesFrom, and owl:

hasValue, a class can be defined based on the values or classes of their properties.

6. The cardinality of properties per class can be limited using the properties

owl:minCardinality, owl:maxCardinality, and owl:cardinality

7. Properties can have various characteristics: A property can be an inverse property

of another property (owl:inverseOf) and two properties can be disjoint

(owl:property DisjointWith). A property can be reflexive (i.e. it relates everything

to itself, owl:ReflexiveProperty), irreflexive (no individual can be related to itself,

owl:IrreflexiveProperty), functional (every individual can be linked to at most one

other individual, owl:FunctionalProperty), or inverse functional (the inverse

property is functional, owl:InverseFunctionalProperty).

13

Reasoning: Reasoning in OWL respects the Open World Assumption. If some statement

cannot be inferred, it is not allowed to assume that this statement is false. Hence,

reasoning in OWL is monotonic: Adding more information to a model cannot cause

anything to become false that has previously known to be true, and vice versa. Queries on

RDF, RDFS, and OWL models are often performed using SPARQL, a query language for

RDF . Listing 2.3 shows an example for the use of SPARQL to query all temperature

values known for Bangladesh in the RDFS model depicted in Figure 2.5. SWRL is a

language for OWL which is used to express rules. SWRL can be used to define relations

that may be difficult or impossible to define using OWL alone, e.g. due to the Open

World Assumption. OWL ontologies are often designed using semantic editors like

Protégé. Common reasoners for OWL include Pellet, RacerPro , FaCT++ , and HermiT.

Figure 2.5: List of Reasoner implemented in Protégé

Listing 2.3: SPARQL code to query all known temperature values in the model from

 Figure 2.4

2.2 Ontology-Based Data Access

@prefix weather: <http://example.org/weather#>

@prefix geo: <http://example.org/geo#>

SELECT ?temperature

WHERE {

?state a weather:WeatherAttribute.

?state geo:Location geo:Bangladesh.

?state weather:hasTemperatureValue ?temperature.
}

14

Over the past 20 years we have moved from a world where most companies had one all-

knowing self-contained central database to a world where companies buy and sell their

data, interact with several data sources, and analyze patterns and statistics coming from

all of them. The challenge is shifting from obtaining information to finding the right

information. It has always been the case that information is power but today attention

rather than information becomes the scarce resource, and those who can distinguish

valuable information from background clutter gain power. To separate the wheat from the

chaff, the companies need a comprehensive understanding of their data and the ability to

cope with diversity in the data.

Since the mid 2000s, Ontology-Based Data Access (OBDA) has become a popular

approach to tackling this problem. In OBDA, a conceptual layer is given in the form of an

ontology that defines a shared vocabulary, models the domain, hides the structure of the

data sources, and can enrich incomplete data with background knowledge. Then, queries

are posed over this high-level conceptual view, and the users no longer need an

understanding of the data sources, the relation between them, or the encoding of the data.

Queries are translated by the OBDA system into queries over potentially very large

(usually relational and federated) data sources. The ontology is connected to the data

sources through a declarative specification given in terms of mappings that relate

symbols in the ontology (classes and properties) to (SQL) views over data. The W3C

standard R2RML was created with the goal of providing a language for the specification

of mappings in the OBDA setting. The ontology together with the mappings exposes a

virtual RDF graph, which can be queried using SPARQL, the standard query language in

the Semantic Web community. These virtual RDF graphs can be materialized, generating

RDF triples that can be used with RDF triple stores, or alternatively they can be kept

virtual and queried only during query execution.

Here we show the Example for (Hospital Database)[7]. We consider a hospital database

with a single table tbl_patient that contains information about lung cancer patients. The

table has 4 attributes: the patient identifier (pid), his/her name, the type of cancer (tumor)

and its stage. The lung cancer can be of two types: Non-Small Cell Lung Carcinoma

(NSCLC) and Small Cell Lung Carcinoma (SCLC), which are encoded in the table by a

boolean value type as follows: – false for NSCLC and true for SCLC. The stage of the

cancer is encoded by a positive integer value stage as follows: – 1–6 for NSCLC stages I,

II, III, IIIa, IIIb and IV, – 7–8 for SCLC stages Limited and Extensive. Finally, our

sample table contains the following data: pid name type stage

pid name type Stage

1 Mary false 4

2 John True 7

Suppose we need a simple piece of information from this database: “Give me the names

of patients with a tumor of stage IIIa”. Even this simple query in this tiny database

15

already presents some challenges, since to create the query and to understand and analyze

the results we need to know how the information is encoded in the data. In the following

sections we describe how to use the Ontop system to address this challenge by enhancing

the database with a semantic layer.

2.3 Relational Database H2

H2 is a relational database management system written in Java. It can be embedded in

Java applications or run in the client-server mode[14]. As this database is written in Java,

it can run on many different platforms. The database is developed and tested on Windows

8 and Mac OS X using Java 7, but it also works in many other operating systems and

using other Java runtime environments. All major operating systems (Windows XP,

Windows Vista, Windows 7, Mac OS, Ubuntu,.) are supported.

 A subset of the SQL (Structured Query Language) standard is supported. H2 database

mainly support APIs are SQL and JDBC. However it also supports the PostgreSQL

ODBC driver by acting like a PostgreSQL server. The database can be created both in-

memory tables, as well as disk-based tables. All data are operating in transaction mode.

Locking and multilevel concurrency controls and commit are implemented in H2

database. But no standard API for distributed transactions is implemented. The Security

features of this database are used high level encryption such as SHA-256 and data using

the AES or the Tiny Encryption Algorithm, XTEA. H2 Supports all kind of Operating

System Environment. H2 currently supports three servers: a web server (for the H2

Console), a TCP server (for client/server connections) and an PG server (for PostgreSQL

clients) The servers can be started in different ways, one is using the Server tool. Starting

the server doesn't open a database - databases are opened as soon as a client connects.

2.4 Relational database vs. Resource description

framework (RDF)

WEB

BROWSER

H2

CONSLOE
H2 DATABASE

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/ODBC
https://en.wikipedia.org/wiki/SHA-256
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/XTEA

16

A relational database is a set of tables containing data fitted into predefined categories.

Each table (which is sometimes called a relation) contains one or more data categories in

columns. Each row contains a unique instance of data for the categories defined by the

columns. When you create relationship between one or more table you need to make sure

that number of row and columns should be equal. Every table shares at least one field

with another table in one-to-one, one-to-many or many-to-many relationships. These

relationships allow the database user to access the data in almost an unlimited number of

ways and to combine the tables as building blocks to create complex and very large

databases.

Resource description framework (RDF) on the other hand, is a set of triple concepts that

is expressed as simple subject–predicate–object. A triple is also known as a “statement”

and is the basic “fact” or asserted unit of knowledge in RDF. Multiple statements get

combined together by matching the subjects or objects as “nodes” to one another (the

predicates act as connectors or “edges”). As these node-edge-node triple statements get

aggregated, a network structure emerges, known as the RDF graph. RDF triples can be

applied equally to all structured, semi-structured and unstructured content. By defining

new types and predicates, it is possible to create more expressive vocabularies within

RDF. This expressiveness enables RDF to define controlled vocabularies with exact

semantics. In RDF everything is stored as statements with three pieces of information,

you can add new predicates to the database as much as you want without changing any

schema, and nothing will change except for how far you can reach in terms of complex

query capacity. In other words, it’s easy to grow your database. Following example gives

more clear idea about the RDF.

Figure 2.6: RDF graph

Here “John Smith” is the subject, “livesIn” is predicate and “London” is the object or

property. In RDF/XML, each part is defined by a URI (Uniform Resource Identifier).

Subject and predicate must be URI and object may be URI or literal type. One subject or

object can be connected to other subject or object of RDF graph using Predicate. If one

object is connected to another subject then object must be URI. In this way we can able

connect the huge dataset in the form of subject, predicate and object. And this the main

http://searchoracle.techtarget.com/definition/row

17

advantage of using RDF rather than Relational database. There are several query

languages designed to query RDF databases (triplestores), RDQL, SPARQL, RQL,

SeRQL, Versa, and more. The most popular language of them all is SPARQL, by far,

which could be characterized as being something like a combination of SQL, Turtle, and
a dynamic table of contents. Much like SQL has views and stored procedures,

SPARQL has named graphs, which is itself a resource.

Chapter 3

Weather Data Source

http://en.wikipedia.org/wiki/Named_graph

18

In this chapter aims at compiling a set of weather data elements which are either

necessary for providing useful data on exterior influences to weather phenomenon or

which would add benefit to the data provided. Furthermore, possible sources are

evaluated with respect to their suitability for the given context.

3.1 Weather information

In this project my aim is to determine the weather attribute that are associated with

certain weather condition. In order to identify which attribute is required for the weather

phenomenon ontology, it is necessary to define the scope that shall be covered by the

ontology. When designing an ontology, requirements analysis is often centred around a

set of competency questions. If the ontology is able to provide answers to all of these

competency questions, its requirements are met.

1. What are the factor are associated with thunderstorm?

2. Which type cloud is required to form thunderstorm?

3. Which season does it frequently occurs.

4. What is sea temperature is required to form cyclone.

5. How low pressure is affected the cyclone.

6. What is the dropletSize of the drizzle rain?

3.2 Service data

This section presents the details of a number of popular weather services that are

available over the Internet. In a first step, a number of aspects are identified that are

relevant for the usage of a weather service in the context of weather phenomenon. There

is a tremendous amount of services providing weather data over the Internet. But In

weather phenomenon detection I have only follow few of them. These are

1. Bangladesh meteorology department,

2. AccuWeather and

3. open weather map

from this sites I gather weather information which I implement in the database to predict

the factors related to the specific weather condition.

19

3.3 Google search engine

Most of the information gathers from various weather related web sites that I search in

google search engine. Basically I got the knowledge about the weather attribute which are

related to various weather condition from the Wikipedia. In Wikipedia the factors are

briefly describe for the weather condition that associated for that condition. Portal:

Weather is another web site where I take the information about the attribute.

20

Chapter 4

Methodology

21

4.1 Proposed System Architecture

 The system we proposed in this project is built maintaining four different levels:

1. Ontology is created which stores database metadata information within the basic

ontology structure. Ontology is a formal explicit description of concepts in a

particular domain. Ontological model includes classes, data types, object

properties, data properties, assertions, individual instances of a class and other

semantics. An ontology together with a set of individual instances of classes

constitutes a knowledge base. We propose a knowledge base for the purpose to

analyze weather condition. The Weather phenomenon has different Attribute such

as Temperature, Precipitation, and Humidity. To give them common platform to

manipulated their data. We built an ontology which consists of the hierarchy of

descriptors that describe both the Weather Attribute and Weather Conditions to

describe the relation between them.

2. We have a H2 database that is used as a data source for those descriptor and

attribute values that are fact of occur the Weather Condition. The database

contains three tables-one for storing the data to describe the types of Weather

Condition, and the Second Describe the Month of occurrences and their Duration

and the third tables describe the Weather Attribute and their values. The

descriptors and the attributes built in the ontology are now mapped to their

corresponding values stored in the database. The database-to-ontology mapping is

generally regarded as a case of data integration. The goal of data integration

system is to provide a common interface to various data sources to enable users to

focus on specifying what they want. In our proposed system, the database is the

source schema and the ontology model is the target schema. Therefore, data

integration or data mapping can be described as the problem of creating

correspondences between sets of relational and ontological data. To define the

problem of database and ontology mapping, taking our proposed system into

account, we are given:

22

• An ontology expressed in RDF; the ontology contents is viewed as a set of

triples.

• A relational database instance, whose contents are stored into tuples.

The objective of data mapping is to find mappings and create a set of

correspondences relating ontological data – predicates in the ontology, and the

relational data tuples.

3. Ontop data source manager is used to established connection with H2 database

using JDBC. JDBC is a java database Connectivity is an application programming

interface (API) for the programming language Java, which defines how a client

may access a database.

Figure 4.1: Flow diagram of the proposed system architecture

4. Ontop mapping manager is used where we mapped the data to our ontology. It has

three parts; these are target, mapping id, and source. Target where we can convert

the SQL data to RDF format. It also provides where the data will be mapped.

Source is used where we should retrieve the data. Then SPARQL query is used to

query over the complete ontology to execute the output.

4.2 Development of Ontology

There are numerous methodologies for building ontologies. In the article about their

approach towards ontology design, Noy and McGuinness[2] state three fundamental rules

23

of ontology design. Although the authors only apply them to their own approach, they

hand out advice for many design decisions, regardless of which approach is used for the

design of the ontology:

1) There is no one correct way to model a domain – there are always viable alternatives.

The best solution almost always depends on the application that you have in mind and the

extensions that you anticipate.

2) Ontology development is necessarily an iterative process.

3) Concepts in the ontology should be close to objects (physical or logical) and

relationships in your domain of interest. These are most likely to be nouns (objects) or

verbs (relationships) in sentences that describe your domain.

4.3 The ontology development approaches

• Formality: The ontology design process can reside on an informal level (the

ontology and all artifacts created during development are described using natural

language, in tables, and in diagrams), a formal level (all aspects of the ontology

are described using the logical model of the ontology language the ontology is

intended to be implemented in), or anything in between.

• Level of detail: The level of detail of the description of the design process can

range from giving just an overview to a level describing every step in a very

detailed manner.

• Documentation: One methodology may enforce the creation of documentation

while others may delegate the decisions about how the documentation is

structured and what is documented to the ontology designer. This may lead to

missing, inaccurate, or incomplete documentation.

In their paper Ontology Development 101: A Guide to Creating Your First Ontology [2],

Noy and McGuiness present an informal and rather intuitive approach for building

ontologies from scratch. It is geared towards people without or with little prior

knowledge about how to design ontology and qualifies for demonstrating the essence of

ontologies

The approach is divided into a set of steps:

1. The domain and scope of the ontology are determined. The preferred way for this is to

formulate competency questions the ontology should be able to answer.

24

2. Existing ontologies are considered to be reused to avoid doing work that has already

been done and to simplify interoperability with other ontologies.

3. Important terms in the ontology are enumerated, i.e. a glossary of terms is built.

4. From the glossary in the previous step, all terms that are classes are identified. They

are then related to each other in order to create a class hierarchy.

5. The next step iterates over all classes and tries to identify terms from the glossary

which are properties of the classes.

6. Then, for the properties the ranges of possible values are specified.

7. Finally, instances from the glossary are selected and added to the ontolog

 Ontology not yet completed

Basic Idea

for Ontology

Step 1: Determine domain and scope of the ontology

Step 2: Consider reusing existing ontologies

Step 3: Generate a glossary of terms

Step 6: Define ranges for properties

Step 4:

Define classes and their

hierarchy

Step 5:

Define properties

Step 7: Define instances

Complete

Ontology

25

Figure 4.2: The workflow proposed by Ontology

4.3.1 Ontology development process and life cycle

The ontology development process used by methodology divides the process into the

following activities that need to be performed:

• Planning: This step involves creating a plan regarding which tasks need to be

done and how they are arranged. As methodology already proposes such a plan,

this step is omitted when following methodology to design ontology.

• Specification: The purpose, intended uses, and end-users of the planned ontology

are specified in an Ontologies Requirements Specification Document.

• Knowledge acquisition: Knowledge about the ontology’s domain is acquired.

• Conceptualization: The knowledge previously acquired is conceptualized into a

model that describes the problem that shall be solved by the ontology and how the

ontology is intended to solve it.

• Formalization: This conceptual model is then formalized.

• Integration: As ontologies are built to be reused, as many existing ontologies as

possible are to be integrated into the new ontology.

• Implementation: The ontology is then implemented using a formal language.

• Evaluation: Throughout the process of building the ontology, it is continuously

evaluated in order to ensure it meets the previously specified requirements.

• Documentation: The ontology and all documents belonging to it must be well

documented.

• Maintenance: It may be necessary to apply modifications throughout the lifetime

of the ontology.

26

 States

Activities

 Activities

 Figure 4.3: States and activities in the life cycle of an ontology according methonology

These activities – are arranged into the step of planning that must be performed at the

very beginning of development, a set of stages (consisting of Specification,

conceptualization, formalization, integration, implementation, and maintenance) which

the ontology moves through during its creation, and some activities (knowledge

acquisition, documentation, and evaluation) that are performed throughout the whole

development process in parallel to the stages.

4.3.2 The methodology approach

This section describes methodology as a well-defined approach to perform all activities mentioned
above.

Specification

Planning

Specification

Conceptualizati

on

Formalization
Integratio

n
Implementatio

n

Maintenance

Knowledge Acquisition

Evaluation

Documentation

27

Methodology defines a precise approach for the development of an ontology. It specifies

certain activities that need to be performed, how these activities are performed, and in

which order. Thus, the activity of planning is completed by specifying methodology itself

and the ontology developer are exempted there from. Hence, the first step of developing

ontology from scratch is specification

During specification, an ontology requirements specification document is generated. This

document is written in natural language using a set of intermediate representations or

using competency questions. It should include

• the name and the purpose of the ontology, its scope, its intended uses, and

possible end users,

• a list of functional requirements (describing the intended functionality of the

ontology) and non-functional requirements (describing all intended properties of

the ontology not directly related to its functionality), and

• a list of terms that specifies the scope of the ontology.

Knowledge Acquisition

Most of knowledge acquisition is done simultaneously with the specification phase. It is

one of the most important activities and needs to be performed thoroughly as most other

activities heavily depend on it. Sources of knowledge are experts, books, handbooks,

figures, tables, and even other ontologies. Knowledge is collected using techniques such

as brainstorming, interviews, formal and informal analysis of texts, and knowledge

acquisition tools.

Conceptualization

The state of conceptualization consists of several tasks. Again the tasks are performed in

a sequential manner. However, as methodology uses an evolutionary process model, the

steps are performed numerous times.

Name Synonyms Acronyms Description Type

------- ---------- --------- --------- --------
Table 4.2: Template for the glossary of terms as proposed by methodology of ontology.

28

 is subclass of is subclass of

is subclass of
 is subclass of is subclass of

 Figure 4.4: Example of a concept-classification tree as proposed by methodology.

Task 1: Glossary of Terms At first, a Glossary of Terms is built. This glossary includes

all the relevant terms of the domain (concepts, instances, attributes, relations etc.). It can

be built as a table having the columns name, synonyms, acronyms, description (for a

natural language description of the term), and type (specifying whether the term is a

concept, an instance, an attribute, a relation etc.). Table 4.2 shows a template for the

glossary of terms.

Task 2: Concept Taxonomies Once the glossary of terms contains a sizeable number of

concepts; these ontologies are arranged in one or more taxonomies that define the

concept hierarchy.

4.4 Methodology proposes the use of four taxonomic

relations

1. Subclass-Of: If a concept B is a Subclass-Of a concept A, every instance of B is

also an instance of A.

2. Disjoint-Decomposition: A Disjoint-Decomposition of a concept C is a set of

subclasses of C such that an instance of one of these subclasses can never be a

subclass of another of these subclasses, while an instance of C is not necessarily

an instance of one of its subclasses.

3. Exhaustive-Decomposition: An Exhaustive-Decomposition of a concept C is a

set of subclasses of C such that every instance of C is an instance of at least one of

its subclasses.

4. Partition: A Partition of C is a set of subclasses of C such that every instance of C

is an instance of exactly one of its subclasses.

Woman Man

 Person

Father Parent Mother

29

 The concept taxonomies are visualized in concept-classification trees which are

diagrams that depict the concepts and their taxonomic relations. See Figure 3.9 for

an example of a concept-classification tree. In case the ontology contains a large

number of concepts, the tree may be split into several diagrams in order to keep

the trees clear.

 hasFather
 isMotherOf

 isFatherOf hasMother

 Figure 4.5: Example of a binary relations diagram as proposed by methodology.

Name Instances Relations Class attributes Instance
attributes

------------ ------------- ------------ -------------- --------------

Table 4.3: Template for the concept dictionary as proposed by methodology.

Relation
name

 Source
concept

Target
concept

Maximum
source
cardinality

Inverse
relation

------------ ------------- ------------ -------------- --------------

Table 4.4: Template for the binary relations table as proposed by methodology

Task 8: Constants In this step, the constants table is created that specifies details about

all the constants listed in the glossary of terms. Each constant is specified by its name, its

value type, its value, the measurement unit for numerical constants, and the attributes that

can be inferred using the constant. Table 4.3 shows a template for the constants table.

Person

Father
Mother

30

Task 9: Formal axioms In this task, the ontology designer must determine whether the

ontology contains formal axioms. In case it contains any, these axioms must be defined

precisely in a formal axioms table. For each axiom, this table specifies the name, a

description in natural language, the logical expression that formally describes the axiom

in first-order logic (or the logic the ontology language intended to use is based upon), and

all concepts, attributes, relations, and variables that are referred to in the logical

expression. Table 4.4 presents a template for the formal axioms table.

Axiom
name

Description Expression Referred
concepts

Referred
attributes

Referred
relations

Referred
variables

-------- -------- ------- -------- --------- ---------- -------

Table 4.5: Template for the formal axioms table as proposed by methodology

Instance name Concept name Attribute Value(s)

---------- ------- ----------- ------------

Table 4.6: Template for the instants table as proposed by methodology

Task 10: Rules Similar to the task of identifying and describing formal axioms within the

ontology, in this step the ontology designer must determine whether the ontology

contains any rules. If it contains any, a rules table must be built to precisely describe all

rules and their properties: Their names, their descriptions, expressions in first-order logic,

and all concepts, attributes, relations, and variables involved. In contrast to formal

axioms, the expression of rules always has the form if <conditions> then <consequent>;

hereby <conditions> is a conjunction of atoms while <consequent> is a single atom.

For the rules table, the template for the formal axioms table (see Table 4.5) can be reused.

Task 11: Instances Within an ontology, a set of instances may be predefined. This task

involves listing these individuals, again in tabular manner. The columns of this instances

table are the name of the instance, the name of the concept, and the entire instance’s

attributes together with their respective values. Table 4.6 depicts a template for the

instances table.

Formalization

Formalization is the transition from the informal description of the tables and diagrams in

the previous step of conceptualization into the chosen ontology language, e.g. OWL. As

this is tightly coupled with the implementation of the ontology, this is a task which is

often not performed separately.

31

Integration

As ontologies are built for reuse and the wheel shall not be reinvented during the creation

of a new ontology, the ontology designer searches for existing ontologies. The goal is to

import ontologies that already define terms that are part of the ontology currently being

developed.

Implementation

The task of implementing the ontology in an ontology language requires an environment

that supports the ontologies selected in the integration step. Features that should be

provided by such an environment are

• a lexical and syntactic analyzer to guarantee the absence of lexical and syntactic

errors,

• an editor for adding, modifying, and removing definitions,

• a browser for inspecting the library of ontologies and their definitions,

• a searcher for looking for the most appropriate definitions,

• evaluators for detecting incompleteness, inconsistencies, and redundant

knowledge, and

• an automatic maintainer for managing the inclusion, removal, or modification of

existing definitions. In the case of the Weather Phenomenon ontology, an OWL

ontology is created using Protégé together with the ontop reasoner.

Evaluation

During evaluation, verification takes place whether all artifacts that have yet been created

or updated in the previous steps satisfy the requirements that have been initially defined.

Evaluation is not an activity which is performed at the very end of the development

process; instead, evaluation takes place whenever an artifact (a diagram, a table, or the

implementation of the ontology) is created or updated in order to ensure that mistakes are

found as soon as possible.

The completed ontology must fulfill all functional and non-functional requirements listed

in the ontology requirements specification document. In case of a mismatch, the ontology

traverses the activities of the life cycle (conceptualization, formalization, integration,

implementation, and evaluation) once more.

Documentation

32

During the steps described above, a set of documents is compiled. If generated properly

and accurately, these documents describe every detail of the ontology. Using this

approach, methodology forces the ontology designer to document throughout the

development process. Any problems that come with incomplete or wrong documentation

are avoided. Hence, in methodology, documentation is an activity that is not performed

explicitly. Once the development process has finished, both the ontology and its

documentation are ready to use.

Maintenance

At any time in the future, changes to the ontology may become necessary. A modification

of the ontology’s requirements may be one reason; inaccurateness that occurred during

the ontology development process may be another reason. Whenever a change is

necessary, the ontology again cycles the states of specification, conceptualization,

formalization, integration, and implementation repeatedly until all requirements are met

and all artifacts generated in these states correspond to each other. Knowledge acquisition

and evaluation are also again performed throughout all of these states.

4.5 Architecture of ODBA

The ODBC architecture consists of four components, as described in the following list.

• Application programming interface (API) Calls ODBC functions to connect to

a data source, send and receive data, and disconnect.

• Driver manager Provides information to an application (such as a list of

available data sources), loads drivers dynamically as they are needed, and provides

argument and state transition checking.

• Driver Processes ODBC function calls and manages all exchanges between an

application and a specific relational database. If necessary, the driver may translate

the standard SQL syntax into the native SQL of the target data source.

• Data source Comprises the data and its associated database engine.

Your application uses the ODBC API to connect to a data source, submit SQL

statements, fetch data, and disconnect. A driver manager sits between the application and

the ODBC drivers, decides which driver to load, and manages communications as driver

functions are called. Finally, the drivers implement the functions of the ODBC API for

the particular database. The following drawing shows how these functions interact.

33

Figure 4.6: Architecture of Open database Access

What the ODBC architecture means to your application is that you can access different

ODBC data sources, in different locations, using the same function calls available in the

ODBC API. Once you have working code to access one relational data source, the code is

easily extended to access other data sources.

Application

OBDA

API

ODBA DRIVER MANAGER

ODBA

DRIVER

ODBA

DRIVER

ODBA

DRIVER

ODBA

DRIVER

Data

Source

Data

Source

Data

Source
Data

Source

Calls ODBA API functions

to submit SQL Statement

and retrieve Result

Loads the ODBA Drivers

for applications, passes

request to the driver and

result to the application

Processes ODBA function

calls, submits SQL request

to a specific data source and

to the application

Processes request from driver

and return results to driver

34

Chapter 5

Implementation

35

The previous chapters cover all topics that require discussion before being able to build a

new ontology from scratch: Chapter 1 discusses introduction and Problem Statement of

Chapter 2 describes the Existing Work that are necessary to build this Project and

Chapter 3 give an overflow diagram about the ODBA Architecture; Ontology Workflow

and LifeCycle and System Architecture.

Based on these insights, this chapter describes the process of implementation the Weather

Phenomenon in details. The implementation has been done in a Windows environment.

Protégé version 5.1.0 has been used to build the ontology. H2 database engine is used as

the data source for storing all the attribute values. We have used Fuseki-server as the

SPARQL endpoint. The hierarchy of the ontology is shown in Figure1

 rdf:type

 rdf:subClassOf
 hasSomeValue

 Figure 5.1: Example diagram.

5.1 Conventions

Every ontology should stick to a set of naming conventions that are explicitly stated the

conventions for Weather Phenomenon Analysis are as follows:

Concept Instance

Literal

Sub-Concept

36

• Two concepts, instances and/or properties may not have the same identifier as this

required by OWL and avoids confusion.

• Two identifiers may not use names that only differ in their capitalization. Using

both WEATHER ATTRIBUTE and weather attribute in the name namespace is

possible in OWL, but lead to confusion.

• Identifiers may only consist of upper and lower case ASCII letters (A to Z and a

to z), numerical digits from 0 to 9 and spaces, i.e. all identifiers must match the

regular expression^[A-Z, a-z, 0-9]+$.

• Concepts have an identifier that is in singular case and starts with an upper case

letter. Typically a concept’s identifier is a noun, e.g. Weather Attribute or Weather

Condition.

• Properties have an identifier that starts with a lower case letter and starts with the

prefix has or belongs to, followed by the name of the concept which is the

property’s range. The inverse property of a property having an identifier starting

with has an identifier starting with belongs to, followed by the inverse property’s

range. As an alternative to the prefix belongs to, the prefix is in conjunction with

the suffix of and the inverse property’s domain may be used.

5.2 Create the ontology in Protégé

In this section, we propose a system for developing the knowledge base for weather

phenomenon prediction. We have built an ontology to show the hierarchy of the weather

attribute, time and weather condition and the attributes that have impact on the weather

condition and the relationship between them. Protégé has been used as the ontology

editor. The hierarchy is shown in figure 5.2.

37

 Figure 5.2: Hierarchy for weather phenomenon prediction

Figure 5.3: graphical View of The Hierarch of the Ontology

38

5.2.1 Top-Level Concept

Top-level Concept means the concept that do not have a superclass except owl:Thing. In

this level I have three top-level concepts for the prediction of weather phenomenon. They

are weather attribute, time and weather condition. Figure 5.4 show the top-level concepts

Figure 5.4: Super-Class-classification tree

 5.2.2 Sub-concept information

Sub-concept Weather Attribute

In the ontology, weather elements are represented by concepts that are sub-concepts of

Weather Attribute, e.g. there is a sub-concept Temperature for measurements of

temperature, or Humidity for measurements of relative humidity. Wind for measurement

of Wind Speed. Precipitation for the measurement of the Precipitation Intensity.

39

Figure 5.5: Sub-Concept-classification tree for Weather Attribute

Figure 5.6: Hierarchy of Weather Attribute

Sub-Concept of Time

In the Ontology, Time and Date related information are represented by concepts that are

sub-concepts of Time, e.g. there is a sub-concept Interval to describe the duration related

information and Other sub-concept is Instant which represent the day, Month and Year

related Information.

40

Figure 5.7: Sub-Concept-classification tree for Time.

Sub-Concept of Weather condition

A Weather condition does not have any sub-concepts.

Figure 5.8: Sub-Concept-classification tree for Weather Condition

5.2.3 Object Property

Instances of the concepts are associated to each other with binary relations, which are:

• hasWeatherAttribute and belongsWeatherCondition which connect instances of

Weather Attribute and WeatherCondition. And hasWeatherAttribute inverse of

belongsToCondition. hasWeatherAttribute has domain:WeatherCondition and

range:WeatherAttribute means this object property linked the weather condition

class to weather attribute class.

41

Figure 5.9: Relation between WeatherAttribute and WeatherCondition

• hasTimeAndDate which connects instances of WeatherCondition and Time. This

object has domain: weather condition and range: Time. This means that weather

condition class linked with time class by this property.

Figure 5.10: Relation between WeatherCondition and Time

5.2.4 Data Property

Data Property is used to define the Literal Values which is a granularity of the Concept

tree. Data property connects the individuals to its literal value. There is several data type

to define the value that what type value is it? Figure 5.10 shows the data property. And

Figure 5.11 shows the data type.

42

Figure 5.11: Data property for Individual Humi/68

Figure 5.12: Data type

5.2.5 Individuals

43

Individuals of Temperature

 For all weather elements except Dew point, categories are introduced in order to allow

easy differentiation of weather observations by their respective measurement values. In

case of Temperature, the Individuals differ from each other by the observed temperature

values. The Individuals of Temperature are Temp/1 (for an observed temperature value of

GreaterThan 37°C), Temp/2 (at least 26°C and less than 37 °C), Temp/3 (at least 16°C

and less than 25°C), Temp/4 (at least 1°C and at most 15°C), Temp/5 (LessThan 0°C),

and Temp/6 (Sea Surface temperature Greater than 26°C).

Figure 5.13: Individuals-classification tree for Temperature.

Individuals of Humidity

Humidity is the amount of water vapor present in the air. The value of different humidity

is representing according to their Individuals. The individuals connect to value by date

Property “hasHumiValue” The value are shown in below:

The Individuals of Humidity are Humi/76 (Less than 40 %), Humi/70 (at least 40 % and

less than 50 %), Humi/73 (at least 81 % and less than 89 %), Humi/69 (at least 50 %

and less than 70 %), Humi/68 (at least 71 % and less than 81 %), Humi/67 (Greater

than 90%).

https://en.wikipedia.org/wiki/Water_vapor

44

Figure 5.14: Individuals-classification tree for Humidity.

Individuals of Cloud Cover and Cloud Type

Cloud cover refers to the fraction of the sky obscured by clouds when observed from a

particular location. Okta is the usual unit of measurement of the cloud cover The value of

different Cloud Cover and Cloud Type is representing according to their Individuals. The

individuals connect to value by date Property “hasCloudCover” The value are shown in

below:

The Individuals of Cloud Cover are CloudCover /49 (Clear Sky), CloudCover /50 (Partly

Cloud), CloudCover /51 (Mostly Cloud), CloudCover /52 (OverCast), CloudCover /53 (

UnKnownCloud).

Figure 5.15: Individuals-classification tree for Cloud Cover.

https://en.wikipedia.org/wiki/Sky
https://en.wikipedia.org/wiki/Cloud
https://en.wikipedia.org/wiki/Okta

45

Individuals of Precipitation

water that falls to the ground as rain, snow, etc. Precipitation is measure in Milimeters per

hours. The individuals connect to value by date Property “hasPreciIntensity” The value

are shown in below:

The Individuals of Precipitation are Preci /82 (0 mm/h), Preci /84 (1-5 mm/h), Preci /81

(6-20 mm/h), Preci /80 (21-50 mm/h), Preci /79 (51-100 mm/h), Preci /78 (greater than

100 mm/h)

Figure 5.16: Individuals-classification tree for Precipitation.

5.3 H2 Database

We have used H2 database engine as the data source for storing all the weather related data .

In H2 database I have Created a three table. These are TBL_WEATHERFORECAST,

InTBL_WEATHERCONDITON, TBL_TIMEANDDATE. Description of each the table

is describe in below.

In TBL_WEATHERFORECAST table describe the value of each Sub-concept of the top-

level class of Weather Attribute in the ontology. Sub-concept are Temperature, Wind,

Wind direction, Humidity, Lightning, Precipitation, Solar Radiation, Atmospheric

Pressure.

46

I. Code for creating the tables:

• TBL_WeatherForecast

CREATE TABLE tbl_WeatherForecast(

 ID int not null primary key,

 Concept varchar(40),

 Individuals varchar(40),

 Value varchar(40),

 Type_ID varchar(10)

);

 Code for inserting the data into the tables

• TBL_WeatherForecast

INSERT INTO TBL_ATTRIBUTE

VALUES

(1,‘Temperature’,‘ExtremelyHotTemperature’,‘ GreaterThan37(°C)’, ‘I’),

(2,‘Temperature’,‘HotTemperature’,‘ 26-37(°C)’, ‘I’),

(3,‘Temperature’,‘ ColdTemperature’,‘ 1-15(°C)’, ‘I’),

(102,‘Precipitation’,‘ HeavyRainWithHail’,‘ 21-50 (mm)’, ‘VII’),

Figure 5.17: Table for Weather Attribute.

47

In TBL_WeatherCondition table describe the Status for the concept of

 WeatherCondition.

II. Code for creating the tables:

• TBL_WeatherCondition

CREATE TABLE TBL_WEATHERCONDITION(

 CON_ID int not null primary key,

 Condition varchar(40),

 Type varchar(10),

);

 Code for inserting the data into the tables

• TBL_WeatherCondition

INSERT INTO TBL_WeatherCondition

VALUES

 (empseq.nextval,‘ SevereWeather’, ‘I’),

 (empseq.nextval,‘GoodWeather’, ‘II’),

 (empseq.nextval,‘BadWeather’, ‘III’),

Figure 5.18: Table for Weather Condition

48

In TimeAndDate table describe the Duration and Month for the concept of Time.

III. Code for creating the tables:

• TBL_TIMEANDDATE

CREATE TABLE TBL_TIMEANDDATE(

 ID int not null primary key,

 Month varchar(40),

 hours int,);

• TBL_TIMEANDDATE

INSERT INTO TBL_TIMEANDDATE

VALUES

 (1, ‘January’, 1‘I’),

 (2, ‘February’, 2‘I’),

 (3, ‘March’, 3‘I’),

 (4, ‘April’, 5‘I’),

 (12, ‘December’, 42‘I’),

Figure 5.19: Table for Concept Time.

49

5.4 Ontop Mapping Tools

Ontop Mapping Tools are used to Map the data from H2 Relational Database to Ontology

Hierarchy [4].

In Ontop Mapping tools there are three windows named Data Source Manager, Mapping

Manager, Mapping Assistant-BETA.

The Data source Manager is the first sub-tab of the ontop Mappings tab. using this tab

we will be able to manage data source declarations.

Figure 5.20: Data Source Manager Window

OBDA model will consist of one data source declaration. The source must be a JDBC

data source and you must provide the usual JDBC connection parameters for them:

• The JDBC URL string.

• The database username,

• The database password, and

• The JDBC driver.

Once the information is filled you may use the "Test Connection" button to check that the

system can establish a connection to the database. Make sure the connection is correct

before querying using Sparql.

Mapping Manager
The Mapping Manager is where we will spent most time. Using the Mapping manager we

can create and manage the mappings axioms for our data sources.

https://github.com/ontop/ontop/wiki/ontopOBDAModel#Data_source
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

50

Figure 5.21: Mapping Manager Window

Mapping axioms

An OBDA model must also contain one or more mapping axioms. A mapping axiom

consists of three fields: mappingId, source and target. The mappingId is any string

identifying the axiom, the source is an arbitrary SQL query over the database, and the

target is a triple template that contains value that reference column names mentioned in

the source query. For example, the following is a valid -ontop- mapping:

.

Figure 5.22: Mapping Axioms in triple format

Here in the target, we have mapped the temperature value from the H2 database to the

Sub-concept of temperature in our ontology in the triple formats.

https://github.com/ontop/ontop/wiki/TurtleSyntax
https://github.com/ontop/ontop/wiki/TurtleSyntax

51

Meaning of a mapping axiom

The purpose of the mapping axioms is to convert data in the specified data sources into a

set of ABox assertions/RDF triples. From the figure 5.21 shows that we are converting

Relation database tuples into RDF triples in following way.

Temp/{id} :hasTemperatureValue “49°C”

In this example “Temp/{id}” is a subject , “:hasTemperatureValue” is Predicates and

“49°C” is a object which is a literal value. So we easily convert the Relational database

tuples into a RDF triples.

Creating a new mapping

All mappings are composed by a mappingID, a target and a source.

To create a new mapping for a data source simply click the + Create button.This will

display the following dialog:

Figure 5.23: Mapping Editor

https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

52

5.5 Sparql

After Mapping Completed Sparql is applied to the RDF graph to extract the Information

from Data set according to the user defined query [3]. For Example

Maximum and minimum values

The following example shows a SPARQL query to obtain the maximum temperature value

stored in the ontology; note that the query contains only the necessary triple patterns; any

triple patterns that are not necessary to obtain the desired result are omitted, e.g. it is not

necessary to ensure that ?p is an instance of weather:Temperature as the domain of the

property weather:hasTemperature Value is defined to be weather:Temperature and therefore

an ontop reasoner can infer that ?p must be an instance of weather:Temperature

Figure 5.24: Sparql syntax to indentified Max temperature value.

SELECT (MAX(?t) AS ?t_max)

WHERE { ?p Weather:hasWeatherAttribute ?Temp

?Temp weather:hasTemperatureValue ?v.

}

53

Chapter 6

Conclusion

54

6.1 Summary

This project describes a weather data model based on OWL ontology. Ontology provides

convenient vocabularies to a data source using the techniques of RDF and RDF Schema.

RDF represent the data in the form of “subject” “predicate” and “object" and RDF

schema define the class and object property with classified domain and range. As the

overall goal of this project, weather phenomenon prediction represents a comprehensive

ontological model to determine various weather conditions which are affected by

different weather attributes. It is centered on a set of three top-level concepts,

WeatherAttribue, WeatherCondition and time. WeatherAttribute has some sub-concepts

such as temperature, humidity, precipitation and windspeed. WeatherCondition class is

linked with each element of the WeatherAttribute class by the object property

“hasWeatherAttribute”. And each element of the WeatherAttribute is linked with the

WeatherCondition class by the object property “belongsToCondition” which is inverse of

“hasWeatherAttribute”. Other top-level concept Time has two sub-concepts Interval and

Instant which is linked with WeatherCondition by the object property “hasTimeandDate”.

And each sub-concept has some individuals to represent the data value which is a

granularity of the tree. This data value is mapped to our ontology from the relational

database using the ontop mapping techniques. Ontop mapping tools support the JDBC

drivers to access the ODBA. The key advantage of this mapping procedure is that no

interpretation of data needs to be carried out to be stored as ontology instances. This has

reduced a lot of work, because interpretation of data in existing data sources may cause

some scalability issues with existing legacy applications. Data are fetching from the

relational database in the triple formats. Sparql query is applied on the RDF triplestore to

extract the information based on user defined.

Besides the work on weather phenomenon prediction itself, this project carries out

extensive research regarding methodologies for developing ontologies. This methodology

approaches help me to creating new ontologies from scratch are outlined, their

characteristics are identified, and their suitability for applying them to the domain of

weather phenomenon prediction to validate the ontology.

6.2 Limitation

There may be requirements that ontology is unable to fulfill due to certain limitations.

1. The Open World Assumption. For instance, OWL, which honors the Open World

Assumption, cannot tell the absence of an instance of some concept. This leads to

cases where an ontology fails to answer a competency question such as “Does this

group only consist of women?”; just because the ontology does not contain an

55

individual which is a man, it does not mean that there is no man; the ontology can

only tell that there is no man it knows about.

2. Ontology Building, maintenance, and reuse time consuming activities.

3. Communication between collaborators from different disciplines is difficult.

4. There is no Fixed method to create a ontology which is little bit confusing that

whether building ontology giving the desired answer or not.

5. It is hardly avoidable to run into bugs that manifest themselves in the form of

incomprehensible error messages.

6. Protégé has some issues with performance; the larger the ontology gets, the more

time it takes to map the data from data source. This becomes a major issue for

applications with huge ontology.

7. Response time of Sparql is higher than SQL. Maximum response time of sparql is 10

minutes to query the complex query.

8. In web ontology language it is not possible to define multi values for a functional

property.

9. Reconstructing RDF graph non-trivial.

6.3 Future Work

1. Fuzzy logic, Neural network or Bayesian network technology has been introduce

for numerical weather prediction.

2. More generalized development of the ontology to infer any kind of weather

forecast.

3. We have not exercised the advantage of SPARQL at its best; further work must be

done to handle more complex situations that may involve multiple ontology

assertions.

4. In this project we are unable to work with SWRL to infer axioms. So in future we

have more work on it to better infer axioms.

5. More research on how to determine preferences.

6. Develop a web application to visualizes the infer weather prediction based on user

expectation.

7. Last but most important desired is to implement on Bangladesh Meteorology

Department to predict more accurate weather forecast using this technology.

56

 APPENDIX A

This appendix contains tables and listings that are referenced from other chapters.

A.1 Conceptualization tables for weather phenomenon prediction.

In order to keep the documentation of Weather Phenomenon clear, a set of tables is omitted from
Section 5.2. This section contains these tables in case they are needed for reference

The tables in this section are:

• Concept dictionaries for Weather condition, WeatherAttribute, and Time (Table

A.1); see Section 5.2.1 for details

• The Binary relations table in Table A.2; see Section 5.2.2 for details.

• The Instance attributes table in Table A.3; see Section 5.2.3 for details.

• The Class attributes table in Table A.4, see Section 5.2.4 for details.

Name Instances Relations

Time Instant/1,Instant2,Instant/3,Instant/4,Instant/5,Instant/6,

Instant/7,Instant/9,Instant/10,Instant/11,Instant/12,Insta

nt/13,Instant/14,Instant/15,Interval/1,Interval/2,Interval

/3,Interval/4,Interval/5,Interval/6,Interval/7,Interval/8,I

nterval/9,Interval/10,Interval/11,Interval/12,Interval/14,

Interval/15,

hasTimeAndDate

Weather

Attribute

Temp/1,Temp/2,Temp3,Temp4,Preci/78,preci/79,preci/

80,preci/81,preci/82,Humi/70,,Humi/67,Humi/68,Humi

/71,Radiation/89,Radiation/90,Radiation/91,CloudCove

r/49,CloudCover/50,CloudCover/51,CloudCover/61,Wi

nd/16,Wind/17, Wind/18, Wind/19, Wind/20, Wind/21,

Wind/22,Wind/23,Wind/25,Wind/27,Wind/30,direction

hasWeatherAttribute,

belongsToCondition

57

/32,direction/33,direction/35,direction/38,direction/40,d

irection/41,direction/43,direction/45,Ligthning/94,Ligh

tning/96,Pressure/10,Pressure/11,Pressure/12,Pressure/

14,Pressure/15,Surge/101,

Weather

Condition

WeatherCondition/129,WeatherCondition/130,Weather

Condition/131

hasWeatherAttribute,

belongsToCondition,

hasTimeAndDate

Table A.1: Concept dictionary for Weather condition, Weather Attribute, and Time.

Relation Source Concept Target Concept Inverse Relation

hasWeatherAttribute Weather Condition Weather Attribute belongsToCondition

belongsToCondition Weather Attribute Weather Condition hasWeatherAttribute

hasTimeAndDate WeatherCondition Time ----

Table A.2: Binary relations table.

Data property name Concept name Value type Value range Unit

hasWindSpeed Wind xsd:decimal [0, ∞) mph

hasWDirection WindDirection xsd:string [North,………….West) ---

hasTemperatureValue Temperature xsd:decimal any values allowed °C
hasPreciIntensity Precipitation xsd:decimal [0, ∞) mm/h

hasCloudCover CloudCover xsd:string [Name) ------

hasHumiValue Humidity xsd:decimal [0, 100) Percentage

hasPressureValue Atmospheric
Pressure

xsd:decimal [0, ∞) hpa

hasRadiationValue SolarRadiation xsd:decimal [0, ∞) W/m2

hasDewValue DewPoint xsd:decimal any values allowed
allowed

°C

hasAirMass AirMass xsd:string ---- ---------

hasLightningPresence Lightning xsd:boolean [0,1) -------

hasTunderOccure Thunder xsd:boolean [0,1) -------

hasPeriodOfDuration Interval xsd:dateTime [0, ∞) hours

hasPeriodOfDuration Instant xsd:string (January,…….,December months

Table A.3: Instance Data type table.

Super-Concept Sub-Concept Individual Data property D Data property Value

Weather Attribute
Temperature Temp/1 hasTemperatureValue

˃ 37

Weather Attribute
Temperature Temp/2 hasTemperatureValue

26-37

58

Weather Attribute
Temperature Temp/3 hasTemperatureValue

16-25

Weather Attribute
Temperature Temp/4 hasTemperatureValue

< 0

Weather Attribute
Temperature Temp/5 hasTemperatureValue

1-15

Weather Attribute
SolarRadiation Radiation/89 hasRadiationValue

˃ 750

Weather Attribute SolarRadiation Radiation/90 hasRadiationValue 500 - 750

Weather Attribute SolarRadiation Radiation/91 hasRadiationValue 250 - 499

Weather Attribute SolarRadiation Radiation/92 hasRadiationValue 1 - 249

Weather Attribute SolarRadiation Radiation/93 hasRadiationValue 0

Weather Attribute Precipitation Preci/78 hasPreciIntensity ˃ 100

Weather Attribute Precipitation Preci/79 hasPreciIntensity 51-100

Weather Attribute Precipitation Preci/80 hasPreciIntensity 21-50

Weather Attribute Precipitation Preci/81 hasPreciIntensity 6-20

Weather Attribute Precipitation Preci/82 hasPreciIntensity 0

Weather Attribute Precipitation Preci/84 hasPreciIntensity 1-5

Weather Attribute Wind Wind/16 hasWindSpeed 0

Weather Attribute Wind Wind/17 hasWindSpeed 1-3

Weather Attribute Wind Wind/18 hasWindSpeed 4-7

Weather Attribute Wind Wind/19 hasWindSpeed 8-12

Weather Attribute Wind Wind/20 hasWindSpeed 13-18

Weather Attribute Wind Wind/21 hasWindSpeed 19-24

Weather Attribute Wind Wind/22 hasWindSpeed 25-31

Weather Attribute Wind Wind/23 hasWindSpeed 32-38

Weather Attribute Wind Wind/24 hasWindSpeed 39-46

Weather Attribute Wind Wind/25 hasWindSpeed 47-54

Weather Attribute Wind Wind/26 hasWindSpeed 55-63

Weather Attribute Wind Wind/27 hasWindSpeed 64-72

Weather Attribute Wind Wind/28 hasWindSpeed ˃ 72

Weather Attribute Wind Direction Direction/32 hasWdirection North

Weather Attribute Wind Direction Direction/34 hasWdirection North-NorthEast

Weather Attribute Wind Direction Direction/35 hasWdirection NorthEast

Weather Attribute Wind Direction Direction/36 hasWdirection East-NorthEast

Weather Attribute Wind Direction Direction/37 hasWdirection East

Weather Attribute Wind Direction Direction/38 hasWdirection East-SouthEast

Weather Attribute Wind Direction Direction/39 hasWdirection SouthEast

Weather Attribute Wind Direction Direction/40 hasWdirection South-SouthEast

Weather Attribute Wind Direction Direction/41 hasWdirection South

Weather Attribute Wind Direction Direction/42 hasWdirection South-SouthWest

Weather Attribute Wind Direction Direction/43 hasWdirection SouthWest

Weather Attribute Wind Direction Direction/44 hasWdirection West-SouthWest

Weather Attribute Wind Direction Direction/45 hasWdirection West

Weather Attribute Wind Direction Direction/46 hasWdirection West-NorthWest

Weather Attribute Wind Direction Direction/47 hasWdirection NorthWest

Weather Attribute Wind Direction Direction/48 hasWdirection North-NorthWest

59

Weather Attribute Humidity Humi/67 hasHumiValue ˃ 90

Weather Attribute Humidity Humi/68 hasHumiValue 71- 80

Weather Attribute Humidity Humi/69 hasHumiValue 50-70

Weather Attribute Humidity Humi/70 hasHumiValue 40-49

Weather Attribute Humidity Humi/71 hasHumiValue < 40

Weather Attribute Humidity Humi/71 hasHumiValue 81-89

Weather Attribute Lightning Lightning/94 hasLightningPresenc YES/NO

Weather Attribute Thunder Thunder/96 hasThunderOccuranc YES/NO

Weather Attribute CloudCover Cloud/49 hasCloudCover Clear Sky

Weather Attribute CloudCover Cloud/50 hasCloudCover Partly Cloud

Weather Attribute CloudCover Cloud/51 hasCloudCover Mostly Cloud

Weather Attribute CloudCover Cloud/52 hasCloudCover OverCast

Weather Attribute CloudCover Cloud/53 hasCloudCover UnKnownCloud

Weather Attribute Atmospheric
Pressure

Pressure/10 hasPressureValue ˃ 1028

Weather Attribute Atmospheric
Pressure

Pressure/11 hasPressureValue 1018-1028

Weather Attribute Atmospheric
Pressure

Pressure/12 hasPressureValue < 998

Weather Attribute Atmospheric
Pressure

Pressure/13 hasPressureValue 1008-1017

Weather Attribute Atmospheric
Pressure

Pressure/14 hasPressureValue 998- 1007

Time Instant
Instant/1 hasPeriodOfMonth January

Time Instant Instant/2 hasPeriodOfMonth
February

Time Instant Instant/3 hasPeriodOfMonth
March

Time Instant Instant/4 hasPeriodOfMonth
April

Time Instant Instant/5 hasPeriodOfMonth
May

Time Instant Instant/6 hasPeriodOfMonth
June

Time Instant Instant/7 hasPeriodOfMonth
July

Time Instant Instant/8 hasPeriodOfMonth
August

Time Instant Instant/9 hasPeriodOfMonth
September

Time Instant Instant/10 hasPeriodOfMonth
October

Time Instant Instant/11 hasPeriodOfMonth
November

Time Instant Instant/12 hasPeriodOfMonth
December

Time Interval Interval/1 hasPeriodOfDuration
1

Time Interval Interval/2 hasPeriodOfDuration
3

Time Interval Interval/3 hasPeriodOfDuration
6

Time Interval Interval/4 hasPeriodOfDuration
9

60

Time Interval Interval/5 hasPeriodOfDuration
12

Time Interval Interval/6 hasPeriodOfDuration
15

Time Interval Interval/7 hasPeriodOfDuration
18

Time Interval Interval/8 hasPeriodOfDuration
21

Time Interval Interval/9 hasPeriodOfDuration
24

Time Interval Interval/10 hasPeriodOfDuration
36

Time Interval Interval/11 hasPeriodOfDuration
42

Time Interval Interval/12 hasPeriodOfDuration
76

Weather Condition ------ Condition/1 hasCondition
Severe Condition

Weather Condition --------- Condition/2 hasCondition
Good Condition

Weather Condition ----------- Condition/3 hasCondition
Bad Condition

Table A.4: Class attributes table

A.2 Figure

Sparql syntax and output result

Syntax

Figure1: Sparql Syntax for prediction of factors for Thunderstorm

PREFIX : <http://localhost/Weather.owl#>

SELECT DISTINCT ?Condition ?Factors ?ThunderStorm

WHERE{

{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.?Factors

:hasHighWindSpeed "64-72(mph)". ?Factors :hasHighWindSpeed ?ThunderStorm. }

UNION{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasHighPreciIntensity "21-50 (mm)". ?Factors :hasHighPreciIntensity ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasFuriousCloudType "Cumulonimbus".?Factors :hasFuriousCloudType ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasLightningPresence ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasTunderOccur ?ThunderStorm.}}

61

Figure 2: Sparql Syntax for prediction of factors for VeryHumidWeather

Figure3:Sparql Syntax for prediction of factors for Drizzle Rain.

 Figure 2: Sparql Syntax for prediction of factors for Drizzle

PREFIX : <http://localhost/Weather.owl#>

SELECT DISTINCT ?Description ?Factors ?VeryHumidWeather

WHERE{

{ ?WeatherCondition :hasCondition ?Description.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasAverageTemp ?VeryHumidWeather.

 FILTER regex(str(?VeryHumidWeather), "26-37")

}UNION{?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.
?Factors :hasHighHumi ?VeryHumidWeather.

FILTER regex(str(?VeryHumidWeather), "81-89") }

UNION{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasLightningPresence ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasTunderOccur ?ThunderStorm.}

}

PREFIX : <http://localhost/Weather.owl#>

SELECT DISTINCT ?Condition ?Factors ?DrizzleRain ?DropletSize

WHERE{

{

?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasNormalPreciIntensity ?DrizzleRain. FILTER regex(str(?DrizzleRain), "1 - 5").}

UNION{?WeatherCondition :hasCondition ?Condition. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasDropLetSize ?DropletSize.}

}

}?Factors :hasLightningPresence ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasTunderOccur ?ThunderStorm.}

}

62

PREFIX : <http://localhost/Weather.owl#>

PREFIX Weather: <http://localhost/Weather.owl#>

SELECT DISTINCT ?Description ?Factors ?TropicalCyclone

WHERE

{

{ ?WeatherCondition :hasCondition ?Description.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasLowPressureValue "998 - 1007(hPa)". ?Factors :hasLowPressureValue ?Value.

bind(concat("LowPressureAtCentralPoint, ", " , " , ?Value) as ?TropicalCyclone)}

UNION{ ?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasHighHumi ?TropicalCyclone. FILTER regex (str(?TropicalCyclone), "81-89")}

UNION{ ?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasHighWindSpeed "GreaterThan72(mph)". ?Factors :hasHighWindSpeed ?Value. bind(concat(

"SpiralingWind", ", " , ?Value) as ?TropicalCyclone)}

UNION{ ?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasAbnormalTemp "GreaterThan26(°C)". ?Factors :hasAbnormalTemp ?Valuebind(concat(

"SeaSurfaceTempreature", ", " , ?Value) as ?TropicalCyclone) }

UNION{ ?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasHighPreciIntensity "GreaterThan100(mm/h)".?Factors :hasHighPreciIntensity ?TropicalCyclone.

}

UNION{ ?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasSurgeHeight ?TropicalCyclone }

UNION

{?WeatherCondition :hasCondition ?Description.?WeatherCondition :hasTimeAndDate ?X.

?WeatherCondition :hasTimeAndDate ?Y. ?X :hasPeriodOfMonth "April" . ?X :hasPeriodOfMonth ?Month1.

?Y :hasPeriodOfMonth "May" . ?Y :hasPeriodOfMonth ?Month2. BIND (concat (?X, " , " , ?Y) as

?Factors)BIND (concat ("Early Summar ", ?Month1, " , " , ?Month2) as ?TropicalCyclone)}

UNION{?WeatherCondition :hasCondition ?Description. ?WeatherCondition :hasTimeAndDate ?A.

?WeatherCondition :hasTimeAndDate ?B. ?A :hasPeriodOfMonth "October" . ?A :hasPeriodOfMonth

?Month3. ?B :hasPeriodOfMonth "November" . ?B :hasPeriodOfMonth ?Month4.BIND (concat (?A, " , " , ?B)

as ?Factors)BIND (concat ("Late RainySeason ", ?Month3, " , " , ?Month4) as ?TropicalCyclone)}}

}

}?Factors :hasLightningPresence ?ThunderStorm.}

UNION{?WeatherCondition :hasCondition ?Condition.?WeatherCondition :hasWeatherAttribute ?Factors.

?Factors :hasTunderOccur ?ThunderStorm.}

}

63

Figure 4: Sparql Syntax for prediction of factors for Cyclone.

Figure 5: Individual of Atmospheric Pressure

Figure 6: Individual of Lightning

64

Figure 7: ontop Sparql Window

Figure 8: Individuals of Wind Direction

65

References:

1. Paul Staroch Developed A Weather Ontology for Predictive Control in Smart

Homes to the Faculty of Informatics at the Vienna University of Technology,

Software Engineering & Internet Computing, 29.08.2013

2. Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A

Guide Creating Your First Ontology. Stanford Knowledge Systems Laboratory

Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report

SMI-2001-0880, March 1. 2001

3. .Hai Dong, RMIT University, Farookh Khadir Hussain, Application of Protégé

and SPARQL in the Field of Project Knowledge Management”University of

Technology, Sydney, Elizabeth Chang, Curtin University, Conference Paper,

January 2007, “

4. Timea Bagosi, Diego Calvanese, Sarah Komla-Ebri, Davide Lanti, Martin Rezk,

Mindaugas Slusnys, Guohui Xiao, “The Ontop Framework for Ontology Based

Data Access”Free University of Bozen-Bolzano, Bolzano, Italy, Joseph Hardi,

Obidea Technology, Jakarta, Indonesia, Mariano, Rodriguez-Muro, IBM T.J.

Watson Research Center, NY, USA 18 November 2014.

5. Mariano Rodr__guez-Muro1, Roman Kontchakov2 and Michael Zakharyaschev2

Free University of Bozen-Bolzano, Italy Department of Computer Science and

Information Systems, Birkbeck, University of London

6. Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King, Youssef

Kaddoura, and Erwin Jansen. The Gator Tech Smart House: A Programmable

Pervasive Space. Computer,38(3):50–60, March 2005.

7. Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov,

Davide Lanti Martin Rezk, Mariano Rodriguez-Muro , and Guohui Xiao Ontop:

Answering SPARQL Queries over Relational Databases, Free University of

Bozen-Bolzano.13 July 2002

8. John Bally Tal Boneh**Ann E. Nicholson***Kevin B. Korb; Developing An

Ontology for the Meteorological Forecasting Process, School of Computer Science

and Software Engineering Monash University, 3800, Victoria, Australia

9. Ramar Kaladevi 1, Gurunathan Geetha 2, P. Narayanasamy Developing An

Ontology for the Meteorological Forecasting Process, Research scholar, Computer

science and engineering department, Jerusalem College ofEngineering, Chennai,

Tamilnadu, India, Vol. 39, Nº 1, 185 - 192, 2016

10. Rupal Gupta, Ruchika Gupta, Ashish Bishnoi ROLES AND USAGES OF RDF,

SPARQL, ONTOLOGY TOOLS IN SEMANTIC WEB, CCSIT, Teerthanker

Mahaveer University, Moradabad Bansal Institute, Rohini, 28 July 2016.

11. Blake Middleton, James Halbert, and Frank P. Coyle, Security Impacts on

Semantic Technologies in the Coming Decade Southern Methodist University,

 Dallas TX 75205, USA, 5-sept 2003.

66

12. Ghislain Atemezing, Oscar Corcho b, Daniel Garijo b, José Mora b, María

Poveda- Villalón b, Pablo Rozas c, Daniel Vila-Suero b and Boris Villazón-

Terrazas Transforming Meteorological Data into Linked Data, EURECOM,

Multimedia Department, Campus SophiaTech, France, 1-5-2011

13. http://www.sciencedirect.com/science/article/pii/S1674237015302520 [Access date 10-12-
2016]

14. http://www.h2database.com/h2.pdf [Access date 18-02-2017]

15. http://ldc.usb.ve/~yudith/docencia/UCV/ScientificAmerican_FeatureArticle_TheSemanticWeb_
May2001.pdf [Access date 25-02-2017]

16. https://github.com/ontop/ontop/wiki/ontopProMappingsTab [Access date 16-03-02-2017]

17. https://en.wikipedia.org/wiki/Weatherforecasting [Access date 18-11-2016]

18. https://www.w3.org/TR/sparql11-query/ [Access date 17-12-2016]

19. https://dior.ics.muni.cz/~makub/owl/ [Access date 1-02-2017]

20. https://en.wikipedia.org/wiki/Cyclone [Access date 15-02-2017]

21. https://en.wikipedia.org/wiki/Thunderstorm [Access date 10-01-2017]

22. https://en.wikipedia.org/wiki/Drizzle [Access date 15-12-2016]

http://www.sciencedirect.com/science/article/pii/S1674237015302520
http://www.h2database.com/h2.pdf
http://ldc.usb.ve/~yudith/docencia/UCV/ScientificAmerican_FeatureArticle_TheSemanticWeb_May2001.pdf
http://ldc.usb.ve/~yudith/docencia/UCV/ScientificAmerican_FeatureArticle_TheSemanticWeb_May2001.pdf
https://github.com/ontop/ontop/wiki/ontopProMappingsTab
https://en.wikipedia.org/wiki/Weatherforecasting
https://www.w3.org/TR/sparql11-query/
https://dior.ics.muni.cz/~makub/owl/
https://en.wikipedia.org/wiki/Cyclone
https://en.wikipedia.org/wiki/Thunderstorm
https://en.wikipedia.org/wiki/Drizzle

67

