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Abstract 

Traditionally, the technological development has been performed by means of the scaling down 

of the device dimensions, each vertically and laterally. Nonetheless, as device dimensions moved 

into nanometer regime, quantum mechanical tunnelling and bodily barrier have rendered device 

down-scaling a difficult task. Revolutionary measures, together with making use of substitute 

materials and replacement device structure are as a result inevitable to be able to maintain 

Moore‟s regulation. Among these novel devices, the vertical MOS transistor is deemed 

promising as it presents related, if now not better performance than different novel devices and 

yet it's CMOS method compatible. 

On this thesis, the effects of corner in the vertical MOS transistor had been investigated utilising 

3-dimensional device simulator, ATLAS3D from Silvaco TCAD bundle. Various gate structure 

and gate widths were simulated and investigated. The gate length, LG was once stored at 60 nm 

for the entire simulations, with the gate oxide of 2nm thick and pillar measurement of 100nm × 

100nm × 100nm. The substrate doping concentration used is 1×10
18

 cm
-3

, even as the source or 

drain area is modelled with abrupt junction and uniform concentration of 1×10
21 

 cm
-3

. A evenly 

doped area of 1×10
18

 cm
-3

 is used to modelled a doubly doped drain constitution. 

The simulation of the quadruple gate and corner gate vertical MOS transistor are also awarded 

and analyzed for width edge and corner effects. The current drive increases because the gate 

width is extended however off-state current decreases at identical time. This leads to lower 

subthreshold slope for higher gate dimension devices and could be thanks to additional distance 

of adjacent gates once the gate dimension is reduced, thus amplifying the dimension edge result. 

For many of the gate structures simulated, the corners of the pillar area unit determined to 

activate sooner than the non- corner sections, thus confirmed a threshold voltage decreasing at 

the corners. The corner section has shown a major contribution to complete drain current when 

the device is biased above the threshold voltage. With corner section occupying 240nm of the 

gate width, and the non-corner section taking 240nm, at 0.1V the drain current contribution of 

corner section is estimated to be 36.75% and at 1.0V the drain current contribution of corner 

section is estimated to be 2.30% founded on physical ratio. With corner section occupying 

160nm of the gate width, and the non-corner section taking 160nm, at 0.1V the drain current 
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contribution of corner section is estimated to be 85.43% and at 1.0V the drain current 

contribution of corner section is estimated to be 3.46% founded on physical ratio. In corner gate 

and double gate taking 80nm at 0.1V the drain current contribution of corner section is estimated 

to be 97.44% and at 1.0V the drain current contribution of corner section is estimated to be 

6.20% founded on physical ratio. This is believed to be valuable to increase the saturation 

current drive. 

The percentage contribution of complete drain current from the corner section lowered when VG 

is decreased, and was once least at VG close to threshold voltage. However, when VG is further 

decreased, the corner begins to make contributions to the drain current once more and might 

overtake the have an effect on of non-corner section when the drain voltage is high. 

The discussion given during this thesis is intuitive and more verification with measured 

knowledge will certainly create it additional credible. 
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Chapter 1 

1.1 Introduction: 

Increasing industry‟s needs for more overall performance and capability at lower cost has pushed 

many foundries to work beyond the visions of Moore‟s Law and International technology 

Roadmap for Semiconductor (ITRS). In Fact, the rate of development has always been ahead of 

the expected functions estimated by using ITRS [1], [2]. This astonishing technological 

advancement has been historically achieved through the scaling down of the device dimensions, 

both the vertical dimensions, such as the gate dielectric thickness and junction depth, and the 

lateral dimensions, such as gate length and lithographic feature size or pitch size. At present, in 

high performance applications, transistor dimensions have shrunk beyond nanometer regime, 

with gate length at sub-100nm regime and gate oxide thickness than 2nm. 

At this nanometer regime, direct quantum-mechanical tunnelling of carriers starts to occur, 

resulting in an exponential increase in off-state leakage current. In addition, the physical 

thickness limit of the gate oxide layer, for instance, is predicted to be 7A˚ in order to properly 

function as a dielectric layer [3], [4]. Hence, conventional down scaling cannot continue forever. 

Future improvement, inevitably, needs innovative measures to surmount the barriers of scaling 

due to fundamental physical constraints. 

 1.2 Alternative Innovations: 

While efforts is still been put into realizing down-scaling with conventional techniques, 

innovative measures to look into alternative materials and alternative structures have drawn a lot 

more attentions from academia, in addition to industrial players. Many innovative techniques, 

which includes introducing strained silicon to increase carriers‟s mobility, and using alternative 

materials such as high-Ƙ gate dielectric and metal gate could be next [5]. alternative structure 

such as ultra-thin body (UTB) MOSFET, novel non-planar structure such as Vertical MOS 

transistor which is not visible in planar devices due to manufacturing process complexity and 

parasitic effects. 
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In our thesis studies, we focused on the non- classical MOS architecture and the projection of 

non-planner devices. Non-planner devices give the excellent performance in present. We focused 

on the 3-dimensional devices of corner effect in non-planner devices. In previous, no worked 

based on the corner effect, it seems new to us and everyone. If further investigate about corner 

effect, we haven‟t knowledge about it. Corner effect based on the corner of pillar towards the 

subthreshold performance of the transistor and short channel effects on the device. 
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Chapter 2 

 

2.1 Overview: 

In this work, the 3-dimensional vertical MOS transistor is simulated by using Silvaco‟s ATLAS 

device simulation software. The main focus of this simulation is effect of the corners of the pillar 

towards the subthreshold performance of the transistor and short channel effects on the device. 

The simulation models and simulation profiles, with various gate structures and widths were 

discussed and simulated. The IDS-VG curve For VDS at 0.1V and 1.0V were simulated and 

plotted. 

 

2.2 Device Features: 

With various  gate structures and widths ,we have discussed about six gate structures which are 

named as surround gate, quardruple gate, single gate ,double gate, corner gate and combined gate 

and their various gate widths of 400nm, 368nm, 320nm, 240nm, 160nm, 80nm, 40nm and 32nm 

were simulated. Here each gate structures has different gate width but has same gate length of 

60nm, gate oxide thickness of 2nm and a pillar size of  100 nm×100nm×100nm. The substrate 

doping concentration is assumed to be 1×10
18

cm
-3

 for achieving a low sheet resistance and very 

thin depletion depths[58]. The source /drain region is modeled with abrupt junction and uniform 

concentration of 1×10
21

cm
-3

, assuming a solid source diffusion technology is available. Due to 

its simplicity and practicality in modeling, the source/drain structure is modeled with doubly 

doped drain with minimum overlap (DDD) structure, in preference to opposed to popular lightly 

doped drain (LDD) structure, or large-angle-tilt implanted drain (LATID) structure[59-62] . 
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                   Figure 2.1: Top View of various gate structures used in the simulation 

 

 

(a)Surround Gate 

 

 

(b) Single Gate 

 

 

 

     (c) Double Gate 

 

 

 

(d) Quadruple Gate 

 

 

 

(e) Corner Gate 

 

 

 

 

 

(f) Combined Gate 
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Chapter 3 

3.1 Simulation Models: 

ATLAS provides different types of physical models, which are mobility models, carrier 

recombination and regeneration models, energy balance simulations, lattice heating simulations, 

classical carrier statistic models and quantum carrier statistic models [67]. From these different 

types of models, carrier recombination and mobility models are usually specified. There are 

some default models also look after, for example carrier statistic modeling. For a more through 

analysis some of these models can be coupled together. There are some models which are not 

fully supported in 3D simulation. So for clarity it is important to refer the manual. 

In this work the electrostatic potential and current concentration in all x-,y- and z- direction are 

of particular interest. The dependency of carrier mobility in parallel and transverse field should 

include for the selection of physical model.  

Lombardi CVT model couples the transverse field, doping dependent and temperature dependent 

which are arts of the mobility model. CVT model also applies in the parallel electric field 

dependent mobility model for velocity saturation. The CVT model performs better in solving the 

bias point. 

3.2 Simulation Profile: 

The simulation of this 3D vertical MOS transistor has been divided into a several part. First of all 

we concentrate the structure with appropriate mesh density. In some difficult area finer nodes 

were allocated, like an accurate 2nm thickness across the gate oxide, to observe the channel 

activities near the sidewall of the pillar, near the source or drain boundaries to get a better picture 

of the depletion layer and the junction characteristics. To reduce the simulation run time coarser 

mesh has been used for long time, which can be calculated by N
α
, where N is the number of 

nodes and α is either 2 or 3 depends on the complexity of the structure. Eliminate statement is 

using to enumerate the mesh density to coarser at the areas around substrate and field oxide. 

When the structure and mesh are done, to obtain the best choice of model, numerical solving 

method and bias point solving preference the simulation is being performed. In order to reduce 
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the simulation run time and to keep the accuracy of simulation result in tolerable level the above 

mention phase is playing a vital role here. Depicted simulation model has been given in section 

simulation model. 

In this work for different gate structure and gate width simulation cases were established. The 

gate widths chosen based on the defined mesh density. The chosen gate widths are listed in the 

table 3.1. The mesh density will be constant for all simulations to perform a coherent analysis. 

Here, 14 tests cases were simulated which are listed in table 3.1, first for drain voltage, 

VDS=0.1V and the gate voltage, VG changed from 0.1V to 1.5V. In lower drain voltage, from the 

analysis probably able to illustrate the short channel effect and also focuses on the current and 

potential of the transistor which are affected by the gate structures. Therefore, VDS is increased to 

1.0V and changing gate voltage VG the same way, the simulation were repeated. 

Test case Gate Width(nm) Gate Structures 

01 400 Surround Gate 

02 400 Quadruple Gate 

03 368 Combined Gate 

04 368 Quadruple Gate 

05 320 Quadruple Gate 

06 240 Corner Gate 

07 240 Quadruple Gate 

08 240 Combined gate 

09 160 Quadruple Gate 

10 160 Corner Gate 

11 80 Double Gate 

12 40 Single Gate 

13 80 Corner Gate 

14 32 Corner Gate 

 

Table 3.1: List of test cases used in the simulation 
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Chapter 4 

Result and analysis 

 

4.1 Simulation Results 

The have an effect on of gate structure and gate width on the short channel consequences and the 

transistor‟s performance inside the subthreshold regime and investigated and analyzed. Unique 

interest is given to the have an effect on of the corner gate structure almost about off-state 

current and drive current capability of the transistor. Finally, comparisons are made with 

reference to other gate structure to work the seriousness of the consequences of the corner on the 

transistor‟s overall performance. 

 

4.2 Structure and Mesh Density 

The structures of simulated gate in 3D square measure delineate in Figure 4.6 let's say the 

physical outlook of the outlined structures. The oxide layers are created clear for clarity. The 

structures of gate illustrated square measure below non-bias condition and therefore the doping 

concentrations square measure shown with DDD profile at the source or drain regions. The mesh 

density used throughout the simulations is additionally illustrated in Figure 4.2. It will be seen 

that finer mesh has been outlined close to the important space mentioned previously, whereas 

coarser mesh square measure outlined elsewhere. 
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a)Surround Gate(WG=400nm) 

 

b)Single Gate(WG=40nm) 

 

c)Double Gate(WG=80nm) 

 

d)Quadruple Gate(WG=240nm) 
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e)Corner Gate(WG=240nm) 

 

f)Combined Gate(WG=240nm) 

 

Figure 4.1: 3D view of various simulated gate structures. Oxide layer have been made 

transparent for clarity. 

 

Figure 4.2: Cross-section view of surround gate vertical MOS transistor, displayed the mesh 

density used in the simulation. 
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4.3 Surround Gate Vertical MOS Transistor: 

The surround gate structure simulation is based on gate width of 400nm where the pillar size is 

fixed at 100 nm×100nm×100nm.The output characteristics of the surround gate is simulated 

where the drain current, IDS simulation has a unit of Ampere[A] due to 3D simulation instead of  

Ampere per micron [A/µm] in 2D normalize simulation. Where Vds=0.1V the subthreshold 

slope, S is 66.08mV/dec and for Vds=1.0V subthreshold slope, S is 65.81mV/dec where 

DIBL=22.6mV. At VG=2.0V, convergence issue occurred when ramping VDS from 0V to 2V. 

Convergence issues also occurred at lower gate voltages. The simulator stopped to converge at 

VDS=1.4V, after a number of iteration with bias update reduction had been performed. By 

managing automatic bias step reduction convergence problem may overcome. The device have 

been fully depleted when subthreshold characteristics are found to be near ideal.  

        

Figure 4.3: Simulated output characteristics of a Surround Gate Vertical MOS transistor in linear 

scale with gate Width of 400nm 
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Figure 4.4: Simulated subthreshold characteristics of a surround gate vertical MOS transistor in 

linear scale with gate width of 400nm, for 400nm, for VDS=0.1V and 1.0V 

          

Figure 4.5: Simulated subthreshold characteristics of a surround gate vertical MOS transistor in 

log scale with gate width of 400nm, for 400nm, for VDS=0.1V and 1.0V . 
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Figure 4.6: 3D zoomed view of electron concentration of the simulated surround gate vertical 

MOS transistor at VG=0.0V and VDS=0.1V oxide layer have been hidden for clarity and also 

made the cross sectional view, top view and the diagonal view. 

 

      

(a) 3D zoomed view of the pillar                               (b) Cross-sectional View 
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                   (c)  Top View                                                            (d) Diagonal View 

Figure 4.7: The a) 3D zoomed view of the pillar,(b) Cross-sectional View, (C)  Top View                                                                     

(d) Diagonal View of the simulated surround gate vertical MOS transistor at VG=0.0V and 

VDS=0.1V. 

Figure 4.7 depicts the electron concentration of the structure at VG=0.0V and VDS=0.1V,At this 

off-state region, the device is started to show weak inversion behaviour and the electron 

concentration has built-up and reached 10
14

cm
-3 

at the corner as opposed to 10
12

cm
-3 

at the non-

corner part. The depletion layer has formed with increase of VDS to 1.0V where VG=0.0V. 

Leakage current has increased significantly and the electric field is estimated to be fairly high in 

the drain region and may cause band-to-band tunnelling which is not supported by ATLAS3D. 

       

           (a)Top View                                                          (b) Diagonal View 

Figure 4.8: The a) Top View , (b) Diagonal View of the simulated surround gate vertical MOS 

transistor at VG=0.0V and VDS=0.1V. 
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At VG=1.5V and VDS=1.0V, the transistor is turned on and operates near the saturation region. 

By increasing the drain voltage, the depletion region will extend and create “depletion isolation 

effect‟‟ where the pillar is very thin [70], [71]. 

 

                        

(a)Cross-sectional View     

        

                (b) Top View                                                      (c) Diagonal View 

Figure 4.9: The a) Cross-sectional View b ) Top View , C) Diagonal View of the simulated 

surround gate vertical MOS transistor at VG=1.5V and VDS=1.0V. 
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                                                   (a)Cross-sectional view 

     

                    (b) Top View                                               (c) Diagonal View 

Figure 4.10: The a) Cross-sectional View b ) Top View , c) Diagonal View of the simulated 

surround gate vertical MOS transistor at VG=1.5V and VDS=1.0V. 

 

Here, figure 4.10 illustrates that the potential line is higher at the corner because the threshold 

voltage is lower in the corners compared to the non-corner part. 
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4.4 Quadruple Gates Vertical MOS Transistor: 

The quadruple gate structure was simulated with different gate widths like 400nm, 368nm, 

320nm, 240nm and 160nm. To compare with the surround gate structure the gate widths of 

400nm has been used. Quadruple gate structure design helps to eliminate the corner arrangement. 

While investigating the performance of transistor we noted that both transistor has performed 

very similarly and effectively emulate the effect of the corners. We can verify the result with 

near identical subthreshold curves. Figure 4.11 illustrate the similarities in subthreshold 

characteristics of both the surround gate and the 400nm quadruple gate structures.   

 

The gate width of the quadruple gate structure is then varied and the simulated results were 

plotted. The width edge effect start to increase when the gate width started to decrease and the 

effects become clearer when the gate width is around 240nm and below. However, for the gate 

width of 368nm, the effects of corner still represent as they are next to each other. When the gate 

width is 240nm the quadruple gate operated individually because of the distance of adjacent gate 

increases. As a result the gate fringing field increases and accumulate at the edge of the gate. The 

threshold curves also show the analysis as the hump-like behaviour illustrated in the figure 4.13 

and 4.14. Moreover it is notable that the subthreshold turn was lowest for the shortest gate width 

of quadruple gate structure with the lowest current drive. The drive current stays constant for the 

normalized drain current. When normalized but offset current increases linearly then the width of 

the gate is reduced exponentially down to 160nm. When VDS is at 0.1V and drain current being 

normalized, however a strange behaviour was observed, where the increase of gate width doesn‟t 

correspond to expected increase in normalized drive current. Figure 4.15 and figure 4.16 both at 

VDS = 0.1V illustrate the subthreshold curves and the drain current. 
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Fig 4.11: Simulated subthreshold characteristics of both the surround gate and quadruple gate 

vertical MOS transistor in linear scale with gate width of 400nm for VDS is set at 0.1V and 1.0V 

 

 

a)Vg=0.0V  and Vds=0.1V                                 b) Vg=1.5V  and Vds=1.0V 

Fig 4.12: the top view of potential distribution of the simulated 240nm wide quadruple gate 

vertical MOS transistor at a)Vg=0.0V  and Vds=0.1V  b) Vg=1.5V  and Vds=1.0V 
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Fig 4.13: Simulated subthreshold characteristics of quadruple gate vertical MOS transistor in 

linear scale with various gate width when VDS is set at 1.0V. 

 

 

Fig 4.14: Simulated subthreshold characteristics of quadruple gate vertical MOS transistor in log 

scale with various gate width when VDS is set at 1.0V. 
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Fig 4.15: Simulated subthreshold characteristics of quadruple gate vertical MOS transistor in 

linear scale with various gate width when VDS is set at 0.1V. 

 

Fig 4.16: Simulated subthreshold characteristics of quadruple gate vertical MOS transistor in log 

scale with various gate width when VDS is set at 0.1V. 
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Figure 4.17: Simulated output characteristics of a Quadruple Gate Vertical MOS transistor in 

linear scale with gate Width of 400nm 

 

Gate Width 

[nm] 

VDS 

[V] 

S 

[mV/dec] 

400 0.1 66.08 

1.0 65.82 

368 0.1 67.56 

1.0 66.98 

320 0.1 73.81 

1.0 75.42 

240 0.1 81.78 

1.0 110.4 

160 0.1 86.35 

1.0 132.06 

 

Table 4.1: Subthreshold Slope of quadruple gate vertical MOS transistors with Various gate 

widths. 
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4.5 Corner Gates Vertical MOS Transistor: 

Corner gate structure with various gate width of 240nm, 160nm, 80nm, 32nm were simulated 

and analysed. The transistor with smaller gate width is more reliable compared to larger gate 

width transistors for proximity of adjacent gates. The objective is to be able to isolate the corners 

from the non-corner part of the device, and analysed the subthreshold characteristics based on 

that. 

 

     

                   (a)WG=32nm                                                       ( b) WG=240nm 

Figure 4.18: The Top View of electron concentration of the simulated corner gate vertical MOS 

transistor at VG=0.3V and VDS=0.1V ,for gate width of a)32nm and b) 240nm 

 

Figure 4.18, depicts the electron concentration of the corner gate transistors viewed from top, for 

transistors with gate width of 32nm and 240nm.VDS of 0.1V is applied, while VG is kept to zero. 

The wider gate width structure attracts more crowding of electrons at the corners. 
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                      (a)WG=32nm                                                  (b) WG =240nm 

Figure 4.19: The Top View of electron concentration of the simulated corner gate vertical 

MOS transistor at VG=0.3V and VDS=1.0V ,for gate width of a)32nm and b) 240nm 

 

Figure 4.19 depicts the contribution of width edge effect compared to the corners of wider gate 

width transistor. 

 

               

Figure 4.20: Simulated subthreshold characteristics of corner gate vertical MOS Transistors in 

linear scale with various gate widths, VDS is set at 1.0V. 
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Figure 4.21: Simulated subthreshold characteristics of corner gate vertical MOS Transistors in 

log scale with various gate widths, VDS is set at 1.0V. 

 

The subthreshold curves in figure 4.20 and figure 4.21 illustrate the dependencies of drain 

current on gate width at VDS=1.0V. The surround gate structure with a steeper subthreshold 

swing still out-performs the corner gate transistor. Though the corner device has a higher current 

drive per micron, suffer from heavy leakage at VG lower than zero. At VDS of 0.1V the corner 

devices has a higher current drive per micron, suffer from lower leakage at VG. The reverse 

corner effect has negative VG and higher VDS. 

                

Figure 4.22: Simulated subthreshold characteristics of corner gate vertical MOS Transistors in 

linear scale with various gate widths, VDS is set at 0.1V. 
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Figure 4.23: Simulated subthreshold characteristics of corner gate vertical MOS Transistors in 

log scale with various gate widths, VDS is set at 0.1V. 

 

The corner gate plays a vital role in transistor. Loosely we can say that the surround gate can be 

defined as the addition of the corner gate structure (corner part) and quadruple gate structure 

(non-corner part) though practically might not be direct addition. 

           

Figure 4.24: Simulated subthreshold characteristics of combination of joined Quadruple and 

corner gate vertical MOS transistor for an equivalent gate width of 400nm is at 0.1V. 
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Figure 4.25: Simulated subthreshold characteristics of combination of joined Quadruple and 

corner gate vertical MOS transistor for an equivalent gate width of 400nm is at 1.0V. 

 

Figure 4.26: Simulated output characteristics of a Corner Gate Vertical MOS transistor in linear 

scale with gate Width of 240nm        
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Gate Width 

[nm] 

VDS 

[V] 

S 

[mV/dec] 

240 0.1 66.34 

1.0 66.42 

160 0.1 67.06 

1.0 67.85 

80 0.1 68.25 

1.0 71.81 

32 0.1 73.19 

1.0 82.86 

 

Table 4.2: Subthreshold Slope of corner gate vertical MOS transistors with Various gate widths. 

 

The subthreshold curves illustrate that as the gate width of quadruple gate is decreased, the 

corner gate width increased and the leakage current is also increased when VDS at 1.0V. The 

gate width of the corner gate used should be adequately small as to only consist of the influence 

from the corners and not inclusive the possible effect from the non-corner parts. In figure 4.27 

indicates the contribution of drain current by the corner part and the non-corner part is analysed. 

With corner section occupying 240nm of the gate width, and the non-corner section taking 

240nm, at 0.1V the drain current contribution of corner section is estimated to be 36.75% and at 

1.0V the drain current contribution of corner section is estimated to be 2.30% founded on 

physical ratio. In figure 4.28 with corner section occupying 160nm of the gate width, and the 

non-corner section taking 160nm, at 0.1V the drain current contribution of corner section is 

estimated to be 85.43% and at 1.0V the drain current contribution of corner section is estimated 

to be 3.46% founded on physical ratio. In figure 4.29 corner gate and double gate taking 80nm at 

0.1V the drain current contribution of corner section is estimated to be 97.44% and at 1.0V the 

drain current contribution of corner section is estimated to be 6.20% founded on physical ratio. 

The percentage contribution of corner part to drain current decreases as the gate voltage 

decreases and becomes least when VG is at 0.3V, near the threshold voltage. If VG is decreased, 

the percentage contribution of corner part increases. 
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Figure 4.27: Percentage contribution of corner gate MOS with respect to quadruple gate MOS 

when gate structure is 240nm 

 

 

 

Figure 4.28: Percentage contribution of corner gate MOS with respect to quadruple gate MOS 

when gate structure is 160nm 

0

5

10

15

20

25

30

35

40

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00

P
er

ce
n

ta
g

e 
C

o
n

tr
ib

u
ti

o
n

 o
f 

T
o

ta
l 

D
ra

in
 C

u
rr

en
t(

%
) 

 

Gate Voltage, VG 

VDS=0.1V VDS=1.0V

0

10

20

30

40

50

60

70

80

90

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00

P
er

ce
n

ta
g

e 
C

o
n

tr
ib

u
ti

o
n

 o
f 

T
o

ta
l 

D
ra

in
 C

u
rr

en
t(

%
) 

 

Gate Voltage, VG 

VDS=0.1V VDS=1.0V



41 
Department of Electrical & Electronic Engineering, East West University 

 

Figure 4.29: Percentage contribution of corner gate MOS with respect to double gate MOS when 

gate structure is 80nm 

 

4.6 Combined Gates Vertical MOS Transistor 

Shortly looking at the combined gate structure for comparison between quadruple and corner 

gate structure vertical transistors, can find an interesting result. The combined gate structure is 

comparatively impractical to be fabricated and is predicted to possess a raised edge result owing 

to raised proximity of adjacent gates. In figure 4.30 illustrated the top view of the potential 

distribution of a combined gate structure, at varied gate and drain voltages. 

 

The structure of combined gate in figure 4.30 consists of 160nm wide of quadruple gates and 

80nm wide of corner gates, thus giving a combined gate dimension of 240nm. Again in figure 

4.31 depicts the subthreshold curves of the 160nm wide quadruple gates (case 09), the 80nm 

wide corner gates (case 13), the adding of the 2 gates (case 09 + 13), and the 240nm wide 

combined gate structure (case 06). The overall characteristic of the 2 gate structure is not 

additive. 
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Figure 4.31 depicts the quadruple, corner and combined gate structures simulated at gate width 

of 240nm. The structure of corner gate provides a much better subthreshold characteristic with 

the simplest subthreshold swing. The structure of combined gate is appreciate corner gate 

structure, which could recommend that the corner half has been preponderantly the contributor to 

the drain current. 

                                

               a)VDS = 0.1 V, VG = 0.0 V                                         b) VDS = 1.0 V, VG = 0.0 V 

          

                  c) VDS = 0.1 V, VG = 1.5 V                                       d) VDS = 1.0 V, VG = 1.5 V 

Figure 4.30: The top view of potential distribution of the simulated combined gate vertical MOS 

transistor at a)VDS = 0.1 V, VG = 0.0 V, b) VDS = 1.0 V, VG = 0.0 V, c) VDS = 0.1 V, VG = 1.5 V, 

d) VDS = 1.0 V, VG = 1.5 V. 
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Figure 4.31: Simulated subthreshold curves in linear of the 160nm wide quadruple gates, the 

80nm corner gates, the sum of the two, and the 240nm wide combined gate structure at VDS = 0.1 

V. 

                    

Figure 4.32: Simulated subthreshold curves in log of the 160nm wide quadruple gates, the 80nm 

corner gates, the sum of the two, and the 240nm wide combined gate structure at VDS = 0.1 V. 
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Figure 4.33: Simulated output characteristics of a Combined Gate Vertical MOS transistor in 

linear scale with gate Width of 368nm        

 

Table 4.3: Subthreshold Slope of combined gate vertical MOS transistors with various gate 

widths. 

4.7 Single and Double Gates Vertical MOS Transistor: 

Single, double and quadruple gate structures are simulated and compared to research the impact 

of the multiple gate to the subthreshold performance of the transistors. The structure of single 

gate has a gate width of 40nm, with the structure of double gate effectively doubled to 80nm 

wide, and therefore the structures of quadruple gate quadrupled to 160nm wide. In figure 4.34 

depicts the subthreshold curves normalized to gate width, for the single, double and quadruple 

gate structures at VDS = 0.1 V. The doubling impact is somewhat evident because the double gate 

structure has effectively doubled the drain current as that of single, shown by the nearly identical 

normalized IDS. However, once the gate has been quadrupled, the effective drain current 

increased more than four times, possible due to effective contribution from adjacent gates. 
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In figure 4.38 and in figure 4.39 depict the top views of the single and double gate, with electron 

concentration and potential distribution severally, once the transistors are totally turned on. It is 

interesting to look at that the structures do have an impact on the corners of the pillar, 

particularly the structure of single gate, despite being isolated or separated so much apart. The 

alternative 2 corners of the structure of single gate appears to be crowded with electrons and 

switch on earlier, that is peculiar because the space opposite to the single gate must not be turned 

not be turned on in any respect, as there is no gate settled in this space. One possible reason can 

be the proximity of the drain contact that is barely 50nm apart and is biased at VDD of 1.0 V. 

However, this result is not evident all told the previous analysis, and should not be a true risk 

once there are gate contacts nearer to it space, hindering the drain contact to own any essential 

contributions to the drain current, as illustrated in Figure 4.39 with a VDS=0.1 V and VG =1.5 

V. 

 

          

Figure 4.34: Simulated subthreshold characteristics of single, double and quadruple gate vertical 

MOS transistor in linear scale VDS is at 0.1 V 
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Figure 4.35: Simulated subthreshold characteristics of single, double and quadruple gate vertical 

MOS transistor in log scale VDS is at 0.1 V 

 

  

Figure 4.36: Simulated output characteristics of a Single Gate Vertical MOS transistor in linear 

scale with gate Width of 40nm        
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Figure 4.37: Simulated output characteristics of a Double Gate Vertical MOS transistor in linear 

scale with gate Width of 80nm        
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Table 4.4: Subthreshold Slope of single and double gate vertical MOS transistors. 
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                    a )Single Gate                                                          b) Double Gate 

Figure  4.38: The top view of electron concentration of the simulated a )Single Gate and b) 

Double Gate vertical MOS transistor at VG =0.3 V and VDS =0.1 V. 

     

                         a )Single Gate                                                      b) Double Gate 

Figure 4.39: The top view of potential distribution of the simulated a )Single Gate and b) 

Double Gate vertical MOS transistor at VG =1.5 V and VDS =1.0 V. 
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                         a )Single Gate                                                     b) Double Gate 

Figure 4.40: The top view of the simulated Single Gate vertical MOS transistor at VG =1.5 V 

and  

VDS =1.0V, for a) electron concentration and b) potential distribution. 
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Chapter 5 

Conclusion 

We have investigated the possible corner effects of vertical MOS transistor by using 3-

dimensional device simulator, ATLAS3D from Silvaco TCAD with simplified device features. 

Different types of gate structure and gate width have been simulated and investigated. The gate 

length, LG was kept constant 60nm, the gate oxide of 2nm thick and pillar size of 

100nm×100nm×100nm for all the simulation. The surround gate vertical MOS transistor with 

gate width of 400nm shown early turn on effect at the corners and exhibited a threshold voltage 

lowering at the corners.  

The quadruple gate and corner gate vertical MOS transistor were simulated and analysed for 

corner effects and wide edge. When the gate width is increased, the current drive increases but 

the off state current decreases. The quadruple gate structure was joined with the corner gate 

structure result in 400nm wide surround gate structure. The combination of 368nm quadruple 

gate with 32nm corner gate which results in similarity with the simulated 400nm surround gate 

structure. From the corner and non-corner parts the contribution of total drain current was 

estimated. With corner section occupying 240nm of the gate width, and the non-corner section 

taking 240nm, at 0.1V the drain current contribution of corner section is estimated to be 36.75% 

and at 1.0V the drain current contribution of corner section is estimated to be 2.30% founded on 

physical ratio. With corner section occupying 160nm of the gate width, and the non-corner 

section taking 160nm, at 0.1V the drain current contribution of corner section is estimated to be 

85.43% and at 1.0V the drain current contribution of corner section is estimated to be 3.46% 

founded on physical ratio. In corner gate and double gate taking 80nm at 0.1V the drain current 

contribution of corner section is estimated to be 97.44% and at 1.0V the drain current 

contribution of corner section is estimated to be 6.20% founded on physical ratio. The corner of 

the pillar turned on earlier than the non-corner part which results in a significant contribution of 

total drain current when the device is biased above the threshold voltage. 
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Chapter 6 

Appendix A 

A.1 Surround Gate Vertical MOS Transistor 

 

Fig 01: Ids vs Vgs curves(linear) 

 

Fig 02: Ids vs Vgs curves(log) 
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Fig 03: Ids vs Vds curves 

 

A.2 Quadruple Gate Vertical MOS Transistor 

 

Fig 04: Ids vs Vgs curves for VDS=0.1V(linear) 

 

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00

VG=0.1V

VG=0.5V

VG=1.0V

VG=1.5V

VG=2.0V

-5.00E-06

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

-5.00E-01 0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00

case 02:400nm

case 04: 368nm

case 05: 320nm

case 07: 240nm

case 09: 160nm



59 
Department of Electrical & Electronic Engineering, East West University 

 

Fig 05: Ids vs Vgs curves for VDS=0.1V(log) 

 

Fig 06: Ids vs Vgs curves for VDS=1.0V(linear) 

 

Fig 07: Ids vs Vgs curves for VDS=1.0V(log) 
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A.3 Corner Gate Vertical MOS Transistor 

 

Fig 08: Ids vs Vgs curves for VDS=0.1V(linear) 

 

Fig 09: Ids vs Vgs curves for VDS=0.1V(log) 

 

Fig 10: Ids vs Vgs curves for VDS=1.0V(linear) 
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Fig 11: Ids vs Vgs curves for VDS=1.0V(log) 

 

A.4 Combined Gate Vertical MOS Transistor 

 

Fig 12: Ids vs Vgs curves for VDS=0.1V(linear) 

 

Fig 13: Ids vs Vgs curves for VDS=0.1V(log) 
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Fig 14: Ids vs Vgs curves for VDS=1.0V(linear) 

 

 

Fig 15: Ids vs Vgs curves for VDS=1.0V(log) 
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A.5 Single & Double Gate Vertical MOS Transistor 

 

 

Fig 16: Ids vs Vgs curves of Single gate for 40nm 

 

 

Fig 17: Ids vs Vgs curves of Double gate for 80nm 
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