INTERNSHIP REPORT

ON

COLOR TELEVISION ASSEMBLY IN SHAHNOOR ELECTRONICS

Submitted to the
Department of Electrical and Electronic Engineering Faculty of Sciences and Engineering

East West University

In partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering (B.Sc. in EEE)

Fall, 2010

Approved By

Dr. Khairul Alam
 Academic Advisor

Dr. Anisul Haque Department Chairperson

Certificate

Awarded to Mir Mosharraf Hossain
Student ID: 2004-2-85-029
Department of Electrical and Electronics Engineering
Of East West University

For successful completion of the internship in Shahnoor Ele:'ronics (TCL) Held from September 17, 2010 to December 03, 2010

Mamunur Rashid Parvez General Manager

SHAHNOOR ELECTRONICS (TCL)

Issue date: March 08, 2011

Acknowledgment

The internship report could not be prepared without the cooperation of others as it involved diverse field of knowledge and experience. The list of those great people, who helped me and guided me to prepare the report, is very long and cannot be accommodated within this limited space but it will be unfair to ignore acknowledging some of them as they contributed so much to my effort of writing a worthy report.

I would like to thank my mentor, Engr. A.S.M Shariful Islam (production and service engineer), Shahnoor Electronics (TCL), for his support and guidance during the internship program. He has given his endless efforts to guide me in the right direction during the processing of the report. I would to thank him for his cordial and valued suggestions.

I would like to thank Mr. A.K.M Mohiuddin, Manager of accounts and audit, TCL., for allowing me as an intern. Finally, I wish to express my gratitude to all the technical people of TCL who have been very helpful and friendly to co-operate me.

I am indebted to all the employees of TCL for their cordial assistances and hospitality during the Internship.

I would also like to thank both Mirza MD. Maruf Khasru and Moin Ul Hasan for spreading their helping hands to me in preparing the report.

I am grateful to my honorable supervisor Dr. Khairul Alam, Associate Professor, Department of Electrical \& Electronic Engineering, East West University (EWU) for providing me much needed assistance to prepare the internship report on "Color Television".

I would also like to thank Dr. Anisul Haque, the Chairperson and Professor of the Department of Electrical \& Electronic Engineering, East West University (EWU).

My deepest gratitude goes to my family also who has provided me support throughout my whole life and guided me to reach my objective of life. Thanks to mother and father.

Last but not the least I would Iike to thank almighty Allah to reach the end of this report which in the end left me wiser than before.

Department of EEE, East West University

Executive Summary

This report is about assembling of a color television. The parts are imported from China and the assembling section of Shahnoor Electronics assemble those and if necessary color television is taken under servicing department.

The television is made up of four principal sets of parts: the exterior part or housing, the picture tube, the audio (sound) reception and stereo system, and the electronic components (parts). These electronics parts include cable and antenna input and output devices. a builtin antenna in most television sets, a remote control receiver, computer chips, and access buttons.

The color television (CTV) assembly section was under the supervision of my mentor. That is why I got the clear idea on assembling a CTV. I worked on attachment of felt sheet to the front panel, setting main PCB (Printed Circuit Board) inside the cabinet, and connecting the speakers. To ensure the better service for the customers, warranty sticker on the back side of the CRT was placed. I placed the CRT very carefully by tapping four screws at its four corners. Then I plugged on the wires of power cord, sensor, speakers etc. sequentially on the main PCB. Few adjustments like color, brightness, contrast etc. were performed by me. By using magnetic machine I also checked horizontal and vertical adjustments. Sound quality, channel tuning, A/V input output ports were checked by me before back cover docking. I performed ground test at the final stage of assembly. At servicing station I did not have hands-on experience rather observed technicians doing there jobs and for better understanding they provided me few flow charts so that I could follow their works.

TABLE OF CONTENTS

Executive Summary II
CHAPTER 1: 1-2
1.1 Company profile 1
1.2 Objective of Internship 1
1.3 Sources and Methods of Data Collection 2
1.4. Benefit of study 2
1.5 Limitations 2
CHAPTER 2: 3-8
2.1 The Internship Schedule 3
2.2 Name of the parts to assemble the whole system 3
2.3 Functions of the electrical parts 3
2.3.1 CRT 3
2.3.2 Flyback Transformer (FBT) 5
2.3.3 Deflection Yoke 6
2.3.4 PCB 7
CHAPTER 3: 8-19
3.1 Safety precautions 8
3.2 Servicing precautions 11
3.3 Assembling steps 12
CHAPTER 4: 20-23
CHAPTER 5: 24-33
5.1 Disassembly and reassembly 24
5.2 IC Remove/Replacement 27
5.3 "Small-Signal" Discrete Transistor Removal/Replacement 27
5.4 Fuse and Conventional Resistor Removal/Replacement 28
5.5 Troubleshooting 30
CHAPTER 6: 34
6.1 Problems and Recommendations 34
6.2 Conclusion 34
APPENDIX 35-51
Appendix A: Diagrams and Layouts 36
Appendix B: Table of Acronyms 42
Appendix C: Parts Location \& Description 43-51
REFERENCES 52

LIST OF FIGURES

Figure 2.1: CRT 4
Figure 2.2: Flyback 6
Figure 2.3: Deflection yoke 6
Figure 2.4: Color TV PCB 7
Figure 3.1: Front panel 13
Figure 3.2: Main PCB 13
Figure 3.3: CRT 14
Figure 3.4: PAL digital pattern 15
Figure 3.5: PAL digital pattern 17
Figure 3.6: Back panel 18
Figure 3.7: Power supply of CTV 19
Figure 4.1: Pin Layout 21
Figure 5.1: Back cover removal 24
Figure 5.2: Main board removal 24
Figure 5.3: Speaker removal 25
Figure 5.4: Speaker removal 26
Figure 5.5: CRT removal 26

LIST OF TABLES

Table 4.1: IC line up 20
Table 4.2: Pin Assignment Specification 22

Chapter 1

1.1 Company profile

As color television has become a part of everyday life even in the countries like Bangladesh, people like to have color television but not an expensive one rather wants that at low cost. Keeping that in mind Shahnoor electronics started its journey in Bangladesh in 1998 with its low cost and stylish color television. With the time they have expanded their business as the supplier of many low cost electronic home appliances. They became top 3 in the line within a very short period of time. In 2004, TCL air conditioner entered Bangladesh. CTV, mobile phone, air conditioner, computer and many kinds of other products of TCL were well accepted and quite popular in china. Depending on its wise and strategically sales channel and powerful distributors and agents, the sales volume increased rapidly and the market share hence expanded step by step. TCL is the leader of this line. Shahnoor electronics started as its business as an importer of television, later on it started to import only the parts of color television and assemble those parts in their own assembling plant located in Gandaria(9,Rajani,Chowdhury road,Gandaria,Dhaka). From the very beginning they were selling the television as the mother brand named TCL. Depending on the reliable quality, advanced technology, stylish looks, design and considerate after sales service, TCL now maintains a good reputation and remarkable market share in Bangladesh. Now they have 283 show rooms in different districts of Bangladesh. Their corporate office is located at Motijheel (54, Dilkusha commercial area, Prachi building $1^{\text {st }}$ floor,Dhaka). The company started with only 5 employees and now they have more than 100 employees. Not only tv and air conditioner they have many other house hold products such as refrigerator, VCD and DVD player. Facing the future, TCL will continue to try its best to give customers the outstanding quality products and considerable after service to survive and win the more and more intense competition.

1.2 Objective of Internship

Internship is an academic activity that is to perform so that a student can relate the theoretical knowledge with the practical world through this program. The objective was initially to know about color television but later on job seemed more complex as assembling techniques were tough and so was the servicing as well. This report explains
the experience that I have obtained in the assembling plant. The main objective of the report is to present the proper sequential stages of assembling color television which I performed under Shahnoor Electronics (TCL).

1.3 Sources and Methods of Data Collection

I have collected from both the primary and secondary sources. In general, the company itself was the primary source of data collection whereas the internet was the secondary one. The primary source includes discussion with engineer in-charge, observing and consulting with the workers etc. The secondary sources are the system layouts provided by the exporter (Chinese company).I have also gone through different websites to collect the secondary information.

1.4. Benefit of study

The analysis of the report is based on the functions of electrical parts inside CTV assembly procedures. Finally this report also dictates few solutions to solve problems if there any problem occurs after completion of assembling a whole system. I anticipate that, this report will be helpful for those who have interests on color television.

1.5 Limitations

It is almost impossible to prepare a report without any limitation. This intern report also has certain limitations, which must be mentioned for the sake of reader's understandability and achieving transparency. As most of the secondary data were collected from the web sites, there are very few websites that contain information about Chinese television assembly details. Though the cross check was conducted; still the depth of reliability varies as by the nature of web sites. Lastly the limited knowledge of the analyst, who is conducting such report for the first time, has its effect on the paper.

Chapter 2

2.1. The Internship Schedule

Though I had started going to the main factory of Shahnoor Electronics (which is at Gandaria) on Friday but later on because of changing the schedule of the office I finally started doing my job on Monday and on Wednesday in each week. On the very first Friday I had been there for about two hours but later on (Monday and Wednesday) I stayed there for about six hours each day in the office to serve my purpose. During my examination week (in the university) I did not work too long in the factory rather I worked there about three hours in the particular day.

2.2. Name of the parts to assemble the whole system

Cabinet, speaker, CRT (cathode ray tube), deflection yoke, PCB (printed circuit board like power $\mathrm{PCB}, \mathrm{A} / \mathrm{V} \operatorname{PCB}$, stereo PCB . main PCB), Flyback (Boost) transformer/generator. felt sheet, screws etc.

2.3 Functions of the electrical parts

2.3.1 CR'T

The Cathode Ray Tube (CRT) is a vacuum tube which contains one or more electron guns (a source of electrons) and a fluorescent screen. In television sets and computer monitors, the entire front area of the tube is scanned repetitively and systematically in a fixed pattern called a raster. By controlling the intensity of each of the three electron beams (red, green and blue), an image is produced. In all modern CRT monitors and televisions, the beams are bent by magnetic deflection; a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube. The CRT uses an evacuated glass envelope which is large, deep, heavy, and also fragile.

CRTs have a cathode and a pair (or more) of anodes. Besides having Phosphor coated screen it also has a conductive coating inside the tube to soak up the electrons that pile up at the screen-end of the tube. A CRT is composed of several parts, all working together to form a coherent picture.

a Cathode
 Conductive coating Anode

(3) Phosphor-coated screen 3 Electron beams B Shadow mask

Figure 2.1: CRT

A CRT contains a cathode, or a negative electronic terminal. It consists of a thick, heated wire that is contained within a glass tube which is vacuum-sealed to eliminate resistance. The cathode emits a stream of electrons into the tube that travel down its length and are attracted and accelerated by an anode, a positive terminal. After speeding up to extremely high the electrons strike a phosphorescent screen at the end of the tube compelling it to glow. CRTs require steering coils that consist mainly of copper wire wrapped around the picture tube itself, and create magnetic fields that steer the electron beam to the desired pixel on the screen. These magnetic fields can be manipulated with extreme precision by changing the voltage of the wiring to focus the electron beam to any point on the screen.

A shadow mask or aperture grill a fraction of an inch ($0.5^{\prime \prime}$ typical) is utilized by all color CRTs behind the phosphor screen to direct the electron beams for the red, green, and blue video signals to the proper phosphor dots. Since the electron beams for the R, G, and B phosphors originate from slightly different positions (individual electron guns for each) and thus arrive at slightly different angles, only the proper phosphors are excited when the purity is properly adjusted and the necessary magnetic field free region is maintained inside the CRT. The purity determines that the correct video signal excites the proper color while convergence determines the geometric alignment of the three colors where both are affected by magnetic fields. Bad convergence results in color fringing at edges of
characters or graphics whereas bad purity results in mottled or incorrect colors. It is important to note that the three beams in color CRTs would not strike at the same point without convergence calibration but to maintain color accuracy, the set may be needed to adjust manually to converge the three color beams together.

The shadow mask is made of thin steel which is basically a ferrous alloy with a fine array of holes - one for each trio of phosphor dots - positioned about a half inch behind the surface of the phosphor screen. The phosphors are arranged in triangular formations (which are called triads) with each of the color dots at the top of the triangle in the most CRTs but they are arranged as vertical slots with the phosphors in the most of the TVs (also in some computer monitors) for the sequential three colors.

Degaussing:

Modern CRT televisions and computer monitors have a built-in degaussing coil (also called demagnetizing coil) that creates a brief but alternating magnetic field which decays in strength over the course of a few seconds. To remove most cases of shadow mask magnetization, this degaussing field is strong enough.

2.3.2 Flyback Transformer (FBT)

A flyback transformer (FBT) can also be called a line output transformer (LOPT). It is a special transformer which is used to generate high voltage (HV) signals at a relatively high frequency. It was invented as a means to control the horizontal movement of the electron beam in a CRT. Receiving low voltages, step-up transformers transform them into high voltages at a relatively high frequency (specifically much faster than the vertical movement of the vertical scan rate or electron beam).

A FBT or LOPT is a type of transformer that is used in the power supply of a cathode ray tube that generates the high voltage needed to drive a CRT type monitor which essentially generates a voltage ranging from a few kilovolts for an oscilloscope tube to 20 to 30 kilovolts for a color TV tube. A FBT operates in the range of 17 kHz to 50 kHz with switched currents.

Figure 2.2: Flyback

2.3.3 Deflection Yoke

Deflection yoke can be defined as an assembly of one or more electromagnets that is placed around the neck of an electron-beam tube to produce a magnetic field for deflection of one or more electron beams, which is also known as scanning yoke or yoke.

It is a solenoid-shaped auxiliary coil arranged for a picture tube adjacent to a core of the deflection yoke with a center axis of the auxiliary coil being aligned to a center axis of the deflection yoke. An electron beam is deflected by a magnetic field generated by the current of the auxiliary coil so that a raster formed on a face plate of the picture tube is deformed. When it is projected on a screen the raster is deformed to such an extent that it has a correct shape. It is important to note that to the auxiliary coil a vertical deflection current or horizontal deflection current is supplied. Finally, it is nothing but the magnetic coils around a television tube used to control the position of the picture beam.

Figure 2.3: Deflection yoke

2.3.4 PCB

\therefore PCB (printed circuit board) is a thin plate on which chips and other electronic components are placed. A PCB is used to support mechanically and to connect electronic components electrically using conductive pathways, tracks or signal traces etched from onpper sheets laminated onto a non-conductive substrate. PCBs are used virtually but the stmplest commercially-produced electronic devices. It is also referred to as printed wiring buard (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA).

Figure 2.4: color TV PCB

Inside a television there are also few PCBs like CRT PCB, main PCB, and front jack PCB.

Chapter 3

3.1. Safety Precautions

I: was important for me to follow these safety, servicing and ESD (Electrostatically Sensitive Devices) precautions to prevent damage and to avoid potential hazards such as electrical shock and X-rays.
.. Must have to be sure that all of the built-in protective devices are placed. Remember to install any missing protective shields.
2. When installing the chassis and its assemblies, be sure to install all protective devices, including: nonmetallic control knobs and compartment covers.
3. Make sure that there are no cabinet openings through which people--particularly children-might insert fingers and contact dangerous voltages. Such openings include the spacing between the picture tube and the cabinet mask.
4. Leakage Current Hot Check:

Warning: Do not use an isolation transformer during this test.
With the unit completely reassembled, plug the AC line cord directly into the power outlet. With the unit's AC switch first in the 'ON' position and then 'OFF', measure the current between a known earth ground (metal water pipe, conduit, etc.) and all exposed metal parts, including: antennas, handle brackets, metal cabinets. screwheads and control shafts. The current measured should not exceed 0.5 milliamp. Reverse the powerplug prongs in the AC outlet and repeat the test.

5. Antenna Cold Check:

With the unit's AC plug disconnected from the AC source, connect an electrical jumper across the two AC prongs. Connect one lead of the ohmmeter to an AC prong. Connect the other lead to the coaxial connector.

6. X-ray Limits:

The picture tube is especially designed to prohibit X-ray emissions. To ensure continued X-ray protection, replace the picture tube only with one that is the same type as the original. Carefully reinstall the picture tube shields and mounting hardware; these also provide X-ray protection.

Undergraduate Internship
7. High Voltage Limits:

High voltage must be measured each time servicing is done on the $\mathrm{B}+$, horizontal deflection or high voltage circuits. Correct operation of the X-ray protection circuits must be reconfirmed whenever they are serviced.
(X-ray protection circuits also may be called "horizontal disable" or "hold-down".) Heed the high voltage limits. These include the X -ray protection specifications label, and the product safety and X-ray warning note on the service data schematic.
8. High voltage is maintained within specified limits by close-tolerance, safety-related components and adjustments. If the high voltage exceeds the specified limits, check each of the special components.
9. Design Alteration Warning:

Never alter or add to the mechanical or electrical design of this unit. Example: Do not add auxiliary audio or video connectors. Such alterations might create a safety hazard. Also, any design changes or additions will void the manufacturer's warranty.

10. Hot Chassis Warning:

Some TV receiver chassis are electrically connected directly to one conductor of the AC power cord. If an isolation transformer is not used, these units may be safely serviced only if the AC power plug is inserted so that the chassis is connected to the ground side of the AC source. To confirm that the AC power plug is inserted correctly, do the following: Using an AC voltmeter, measure the voltage between the chassis and a known earth ground. If the reading is greater than 1.0 V , remove the AC power plug, reverse its polarity and reinsert. Re-measure the voltage between the chassis and ground.
11. Some TV chassis are designed to operate with 85 volts AC between chassis and ground, regardless of the AC plug polarity. These units can be safely serviced only if an isolation transformer inserted between the receiver and the power source.
12. Some TV chassis have a secondary ground system in addition to the main chassis ground. This secondary ground system is not isolated from the AC power line. The two ground systems are electrically separated by insulating material that must not be defeated or altered.
13. Components, parts and wiring that appear to have overheated or that are otherwise dmaged should be replaced with parts that meet the original specifications. Always determine the cause of damage or overheating, and correct any potential hazards.
14. Observe the original lead dress, especially near the following areas: Antenna wiring, sharp edges, and especially the AC and high voltage power supplies. Always inspect for pinched, out-of-place, or frayed wiring. Do not change the spacing between components and the printed circuit board. Check the AC power cord for damage. Make sure that leads and components do not touch thermally hot parts.
15. Picture Tube Implosion Warning:

The picture tube in this receiver employs "integral implosion" protection. To ensure continued implosion protection, make sure that the replacement picture tube is the same as the original.
16. Do not remove, install or handle the picture tube without first putting on shatterproof goggles equipped with side shields. Never handle the picture tube by its neck. Some "inline" picture tubes are equipped with a permanently attached deflection yoke; do not try to remove such "permanently attached" yokes from the picture tube.

17. Product Safety Notice:

Some electrical and mechanical parts have special safety-related characteristics which might not be obvious from visual inspection. These safety features and the protection they give might be lost if the replacement component differs from the original-even if the replacement is rated for higher voltage, wattage, etc. Components that are critical for safety are indicated in the circuit diagram by shading, $(\stackrel{S}{\Delta})$ or (Δ). Use replacement components that have the same ratings, especially for flame resistance and dielectric strength specifications. A replacement part that does not have the same safety characteristics as the original might create shock, fire or other hazards.
--こergraduate Internship

3.2. Servicing precautions

Sraicing precautions are printed on the cabinet.
Always unplug the unit's AC power cord from the AC power source before attempting
(a) Remove or reinstall any component or assembly,
(b) Disconnect an electrical plug or connector,
(c) Connect a test component in parallel with an electrolytic capacitor.

S Some components are raised above the printed circuit board for safety. An insulation :ze or tape is sometimes used. The internal wiring is sometimes clamped to prevent ontact with thermally hot components. Reinstall all such elements to their original position.
4. After servicing, always check that the screws, components and wiring have been correctly reinstalled. Make sure that the portion around the serviced part has not been damaged.

5 Check the insulation between the blades of the AC plug and accessible conductive parts (examples: metal panels, input terminals and earphone jacks).
6. Insulation Checking Procedure:

Disconnect the power cord from the AC source and turn the power switch on. Connect an insulation resistance meter (500V) to the blades of the AC plug. The insulation resistance between each blade of the AC plugs and accessible conductive parts (see above) should be greater than 1 megohm.
7. Never defeat any of the B+ voltage interlocks. Do not apply AC power to the unit (or any of its assemblies) unless all solid-state heat sinks are correctly installed.
8. Always connect a test instrument's ground lead to the instrument chassis ground before connecting the positive lead; always remove the instrument's ground lead last.

Precautions for Electrostatically Sensitive Devices (ESDs):

1. Some semiconductor ('solid state') devices are easily damaged by static electricity. Such components are called 'Electrostatically Sensitive Devices' (ESDs); examples include integrated circuits and some field-effect transistors. The following techniques will reduce the occurrence of component damage caused by static electricity.

Codergraduate Internship

2 lmmediately before handling any semiconductor components or assemblies, drain the doctrostatic charge from your body by touching a known earth ground. Alternatively, wear a discharging wrist-strap device. (Be sure to remove it prior to applying power-this is an electric shock precaution.)
3. After removing an ESD-equipped assembly, place it on a conductive surface such as aluminum foil to prevent accumulation of electrostatic charge.
4. Do not use Freon-propelled chemicals. These can generate electrical charges that d-mage ESDs.
5. Use only a grounded-tip soldering iron when soldering or unsoldering ESDs.
6. Use only anti-static solder removal device. Many solder removal devices are not rated
ss -anti-static"; these can accumulate sufficient electrical charge to damage ESDs.
7. Do not remove a replacement ESD from its protective package until you are ready to install it. Most replacement ESDs are packaged with leads that are electrically shorted rogether by conductive foam, aluminum foil or other conductive materials.
8. Immediately before removing the protective material from the leads of a replacement ESD. touch the protective material to the chassis or circuit assembly into which the device will be installed.
9. Minimize body motions when handling unpackaged replacement ESDs. Motions such as brushing clothes together or lifting a foot from a carpeted floor can generate enough static electricity to damage an ESD.

3.3. Assembling steps

While performing my internship the company received a consignment of color television parts having different models. This part of the report describes the sequential steps of a specific model (T-21M83) although all the models require the same assembling process.

Stage 1:

At first station I attached (raw) felt sheet to plastic made front panel in the three sides (left. right and top sides) so that the inner part gets isolated. Then I finished the step by setting door (keyboard on the front panel) on the front panel through screw tapping.

Figure 3.1: Front panel

Stage 2:

Main PCB was set by me inside the cabinet using Pneumetic for the perfect screw tapping.

Figure 3.2: Main PCB

Stage 3:

Then I connected the speakers (wires) by proper screw tapping inside the cabinet. It is important to notice that speaker for the left side usually has two and right sided speaker has three pins.

Stage 4:

I attached TCL branded sticker mentioning a product number (this number is the warranty mark for the customer if he faces any trouble after purchasing) which carries a distinct identity for each individual product on the back side of the CRT. Then by tapping up four
srews at the four corners of CRT the picture tube was placed by me. Performing this step very crucial for me because the picture tube is very sensitive and vulnerable.

Fell sheet was attached in between the CRT and the body of the cabinet for the safety of the picture tube.
this step I fixed the screws at the four corners carefully so that the tapping gets neither hard nor too loose so that they do no harm. Additionally sheet CRT support was used me before tapping up the screws. It is highly recommended to use Pneumetic in =Justing the screws.

Figure 3.3: CRT

Stage 5:

In this step I plugged on the wires of the power cord, sensor, speakers, yoke terminal, earthing wire and degaussing coil on the PCB board.

Stage 6:

I connected CRT with CRT PCB whereas ST cap (named locally) was attached by glue and finally connected the CRT PCB to the ground.

Stage 7:

In this level it is to check whether the assembled system up to the previous stage is functioning properly by taking the helps of magnet and the degaussing machines. If the assembly is perfect, degaussing machine confirms that by beeping.

With help of master remote I adjusted the picture screen. The adjustments are of color, contrast etc.

Firuly picture screen is needed to adjust to check whether the horizontal (ON) line is okay and loth the high and low voltages of the fly back should be examined carefully. In this
seq I was asked to follow few things:
S_qle Focus CPT: Adjust the upper Focus volume of FBT for the best focus of burmontal line A, vertical line B.
2) Double Focus CPT:
2) Alfust the lower Focus volume of FBT for the best focus of vertical line B.
7. Afjust the upper Focus volume of FBT for the best focus of area A.
c) Repeat above step 1) and 2) for the best overall focus.

Figure 3.4: PAL digital pattern

POR COLOR PURITY ADJUSTMENT:
(1) Demagnetize the CRT and cabinet using a degaussing coil.
(2) Set the brightness and contrast to maximum.
(3) Receive the green raster test pattern.
(4) Loosen the clamp screw holding the deflection yoke and slide it backward or forward to display vertical green belt (zone) on the screen.
(5) Remove the rubber wedge.
and spread the tabs of the purity magnet around the neck of the CRT until the is on the center of the screen.

- Slowly move the deflection yoke forward or backward until a uniform green screen is Tighten the clamp screw of the yoke temporarily.
purity of the red and blue raster.

CONVERGENCE ADJUSTMENT:

Befiore attempting any convergence adjustment, make sure that the receiver has been powered ON for at least twenty minutes.
liput a crosshatch pattern from a color bar generator.
2. Adjust the brightness and contrast controls for a well defined pattern.
3. Adjust the two tabs of the 5 -pole magnets. Change the angle between the tabs, and superimpose red and blue vertical lines in the center area of the picture screen.

4 Next, turn both tabs at the same time. Keep the angle between the tabs constant, and sperimpose the red and blue horizontal lines at the center of the screen.
5. Adjust the two tabs of the 6-pole magnets. Superimpose the red/blue lines on the green. Adjusting the angle affects the horizontal lines.

Repeat adjustments 3, 4 and 5. The dot movement is complex because the 4 -pole and 6 pole magnets interact.

Stage 8 :
There were a reference television (a monogram was set in the central position on the screen for an instance the starting monogram of channel BTV) and newly assembled television, they were connected together and another device called magnetic machine was -nterlinked with the reference to check whether both the horizontal and vertical alignments were perfect in the newly assembled television by comparing to the reference one. If the Egnments were not identical to the reference television then the magnetic machine Frovided a beep as an indication that the alignments went wrong then to solve the problem I used a remote to make the alignments perfect. It was needed to follow the instructions:
(I) VL (Vertical Linearity) adjustment: Adjust the top \& bottom size of inner circle to be equal.

- \quad : (Vertical Amplitude) adjustment: Adjust so that the circle of a digital circle pattern 5w:-- - be located in interval of $6 \sim 7 \mathrm{~mm}$ from the effective screen of the CPT.
- - (Vertical S correction) adjustment: Adjust so that all distance between each lattice - L. of top/center/bottom are to be the same.

Figure 3.5: PAL digital pattern

- VS (Vertical Shift) adjustment: Adjust so that the geometric vertical center line is in - coord with vertical center line of CPT.

5) HS (Horizontal Shift) adjustment: Adjust so that the geometric horizontal center line is in accord with horizontal center line of CPT.
b) EW (East-West Width) adjustment: Adjust until the outmost left and right lattice of reveived pattern is accord with 25% of other lattice width.
6) ET (Trapezoidal) adjustment: Adjust to make the length of top horizontal line same with it of the bottom horizontal line.
(3) EP (Pin Cushion) adjustment: Adjust so that middle portion of the outermost left and rght vertical line look like parallel with vertical lines of the CPT.
(4) ANGLE adjustment: When you adjust the angle, adjust correctly raster of left/right screen.
(10) BOW adjustment: A standard is not changing the default value.
(11) CRNU (Upper Corner Correction) adjustment: After finished EP adjustment, adjust vertical line of left top, right-top of screen to the best straight line.
(12) CRNL (Lower Corner Correction) adjustment: After finished EP adjustment, adjust sertical line of left bottom, right-bottom of screen to the best straight line.

Thes is the final stage of checking the sound quality, tuning the channels and adjusting the =ivers (RGB) and to check the A / V input output ports. Finally in this step I had to ensure ter the front panel buttons worked properly.

sage 10:

Back cover docking (placement) was done here by tapping up the screws in this stage by

Figure 3.6: Back panel

Stage 11:

is called ground test by taking the help of ground machine (voltmeter). I connected a Eigital voltmeter to the second anode of the picture tube and kept the CTV on. It was seoded to adjust the brightness and contrast controls to minimum. The high voltage should

The more than 27.5 KV under any conditions. This is also important that the power supply voltage must be set to $+125 /+135$ Volts ($B+$ power supply).

Stage 12:
linput Voltage: AC150V-AC264V
Output Voltage: 5V 16V 26V 52V 145V 190V 115V
Output Power: 100W
is spplied for color television of the parallel connection power supply which is above 25 inches and television or display of the series power supply which is below 25 inches.

It ises new switching power supply control IC that essentially provides high efficiency. mitage regulation of wide range, steady, compact circuit, good holistic capability. Iow Lailure rate. It also can be protected even though it is over voltage, over current or under

Figure 3.7: Power supply of CTV
--. ogh TCL follows the sequential steps mentioned above but it is not mandatory for all :tacly to follow the steps sequentially. Here the basic steps that every assembling station Sillows are given below:

Color TV assembly starts with preparation of Front cabinet with speaker and decoration ---A. After the preparation of front cabinet, Color Picture Tube (CPT) is fitted on front ...her and the same is wired with degaussing coil and earth wire. After this. chassis is put - th. cabinet and the same is wired. After the fixing of various components and their biring. soaking of the TV set is done. Soaking is necessary so that the system is stable -e ere carrying out various adjustments. After soaking, all the adjustments such as $B+$. e-ometry, AGC, white balance, convergence etc to TV sets are done. At this stage. we do .. Linds of functional testing of the CTV to make sure they meet all functional and quality --ameters.

Color TVs assembly Process (briefly in blocks):

Front cabinet 1 Eottom cover preparation		Componen ts fixing \& wiring	\square	Soaking	\square	Adjustments	\square	Testing. Label Packing

Chapter 4:

: different boards containing different transistors, diodes etc inside a color TV.
5 may vary for different models but few ICs like 201,901 are more or less
for all CTV systems. Table 4.1 shows the functions of different ICs, diodes etc in

Table 4.1

IC line up			
ND	Board	Location no.	Description
L	Main	IC201S	Video Processor
		IC601	Multi-standard Sound Processor
		IC901	MICOM, TTX(MTP)
		IC902	EEPROM
		IC602	Audio AMP
		HIC201	RGB Drive AMP Hybrid IC
		HIC202	
		HIC203	
		HIC204	
		HIC401	100 Hz Horizontal Pulse AMP
		IC301	Vertical IC
		Q402	Horizontal Drive IC
		Q401	
		D414	
		IC401	E/W Drive IC
		Q404	
		IC801S	SPS Controller
		D801S	Bridge Diode
		PC801S	Photo Coupler
		IC802	5V Controlled Regulator
		D805	Rectifier Diode
		D806	
		D807	
		D802	
		IC201	3.3V Regulator
		IC804	6 V Regulator
		IC803	8V Controlled Regulator
		IC903	3.3 V Regulator
		IC904	MICOM Reset IC
		Q909	IIC Level Shifter
		Q910	
		TU01S	Main Tuner with IF Block
		TU02S	Sub Tuner with IF Block
		T801S	Trans Switching
		T444S	Trans FBT
2	CRT	IC501	Video Output AMP R.G.B Drive
		IC502	
		IC503	
		QF04	Push-Pull (VM)
		QF05	

Internship

2 Board	Location no.	Description	
	QG02	TR-Power (TILT)	
	QG03		
	ICG01	OP-AMP	
3	Double focus	ICH01	TR-Power
	QH01	ICSOI	Video Switching IC with Adder Output

The not possible to show details of all ICs in this report. IC 901 (which is a mencomputer) is a very important IC for a CTV system. The pin layout of IC 901 is yien below:

Figure 4.1: Pin Layout of IC 901
of any IC is assigned to perform a particular job. IC 901 has 52 pins as shown in nous layout. Now, a table mentioning function, description in brief, input/output given:
4.2: IC 901 Pin Assignment Specifications

\cdots	PUNCTION	ASSIGN	IN/OUT	ACTIVE H / L	DESCRIPTION
-	10	Write Protect	Out	Low	EEPROM Write Protection
2	10	ROM SDA	1/O		EEPROM Serial Data Line
3	10	ROM SCL	1/O		EEPROM Serial Clock Line
-	10	Bus Stop	In	Low	Disable Micom IIC
E	10	Main SDA	1/O		Peripheral IC Serial Data Line
4	10	Main SCL	I/O	Low	Peripheral IC Serial Clock Line
7	IV	Sound Reset	Out	Low	MSP IC Initial Control
T	I/O	Video Reset	Out		VDP IC Initial Control
9	Vdd	VDD 2.5V			
迷	GND				
111	Vdd	VDD 3.3V			
E	CVBS	CVBS Input	In		TTX CVBS Input
13	Vdd	VDD 2.5V			Analog B+
17	GND				Analog Ground
15	ADC	AFT	In		Auto Fine Tuning Control
8	ADC	SC1-ID	In		Scart I Ident
\square	ADC	SC2-ID	In		Scart2 Ident
3	ADC	Keyl	In		Keyl Input
17	HS	H-Sync	In		Horizontal Sync Input
$\underline{\square}$	VS	V-Sync	In		Vertical Sync Input
\pm	IO	Key3	In		Key3 Input
Z	IOO	Key2	In		Key2 Input
5	I/O	X-Ray	In		X-Ray Protection
-	IO	IR-In	In		Remocon Signal Input
5	I/O	STD-LED	Out		LED Drive Output(Red)
38	VO	TIM-LED	Out		LED Drive Output(Green)
27	I/O	Relay	Out	Low	Activate Degausssing Coil
- 8	N.C.				Not Used (Programmed Gound Level)
39	GND				Analog Ground
30	Vdd	VDD 3.3V			Not Used (Programmed Gound Level)
31	N.C.				Not Used (Programmed Gound Level)
3	N.C.				Micom Hardware Reset
33	Reset	Reset	In	Low	Crystal Oscillation Input
34	X-In	X-TALİ	In	6 MHz	Crystal Oscillation Output
35	X-Out	X-TAL Out	Out	6 MHz	Analog Ground
30	GND				Analog B+
37	Vdd	VDD 2.5V			OSD/TTX Output (Red)
38	R	OSD-R	Out		OSD/TTX Output (Green)
39	G	OSD-G	Out		OSD/TTX Output (Blue)
4	B	OSD-B	Out		Fast Blank/Half Contrast Output

Undergraduate Internshıp

PIN NO	FUNCTION	ASSIGN	IN/OUT	ACTIVE H/L	DESCRIPTION
41	COR	CORE	Out		
42	Vdd	VDD 2.5 V			
43	GND				
44	Vdd	VDD 3.3V			
45	I/O	PX.Y	In		When The Caption Function Adopted, Used.
46	I/O	PX.Y	Out		Not Used (Programmed Gound Level)
47	N.C.				High
48	N.C.			Sound Amp Mute	
49	I/O	S-Mute	Out	Hew	
50	I/O	Power	Out	Low	Picture On/Off Control
51	N.C.				Not Used (Programmed Gound Level)
52	I/O	Tilt	Out	PWM	Tilt Control Output

Chapter 5

5.1. Disassembly and reassembly of color TV:

I did not perform the following works rather technicians did and I followed them. My mentor provided me few guidelines for better understanding. This servicing station was under the technicians' supervision. At servicing station at first it is to remove the back cabinet as the main electrical components are covered by it. The picture of the removal is shown below:

Figure 5.1: Back cover removal
If any problems occur in the main board it is necessary to solve that by taking the board out. The steps to do the work are mentioned below with a picture:

Figure 5.2: Main board removal

1. Separate the TBC-wire 2P connector from GT501,GT502.
2. Separate the CRT Assay from the CRT socket.
3. Remove the Anode Cap from the CRT.
4. Separate the D-Coil Connector from CN802.
5. Separate the AC cord from CN801.
6. Separate the DC connector from CN401.
7. Separate the CN501B 8P CRT connector from CN501.
8. Separate the CNA05 5P A/V side connector from CN602.
9. Separate the CNA01 8P CRT connector from CN701.
10. Separate the Focus screen Wire from the FBT clamper.
11. Separate the TBC wire $2 P$, speaker wires from the wire clamper.
12. Separate the CN701, CN602 connector from the wire clamper.
13. Separate the AC cord from the wire clamper.
14. Remove the main board by pulling it with both hands.

Sometimes for solving problems it is important to remove speakers so that a technician can work easily by getting a wider space. It is also possible that the speakers are needed to repair or replace. By pressing the tension rib and by separating the speaker wires from D. coil a technician removes those easily. Two pictures are given below to make a clear view:

Figure 5.3: Speaker removal

Figure 5.4: Speaker removal

To repair or to replace CRT from front cabinet during servicing is also very important as CRT is a very sophisticated part. A technician firstly removes the 4 nuts mounting the CRT to the front cabinet then pulls the CRT backwards.

Figure 5.5: CRT removal

It is important to remember few things:
Because of the high vacuum and large surface area of the picture tube, be careful while handling it:
(a) Always lift the picture tube by grasping it firmly around the faceplate,
(b) Never lift the tube by its neck.
(c) Do not scratch the picture tube or apply excessive pressure. Fractures of the glass may cause an implosion.

5.2. IC Remove/Replacement:

Some chassis circuit boards have slotted holes (oblong) through which the IC leads are inserted and then bent flat against the circuit foil. When holes are the slotted type, the following technique should be used to remove and replace the IC. When working with boards using the familiar round hole, use the standard technique.

Removal:

1. Desolder and straighten each IC lead in one operation by gently prying up on the lead with the soldering iron tip as thesolder melts.
2. Draw away the melted solder with an anti-static suction type solder removal device (or with solder braid) before removing the IC.

Replacement:

1. Carefully insert the replacement IC in the circuit board.
2. Carefully bend each IC lead against the circuit foil pad and solder it.
3. Clean the soldered areas with a small wire-bristle brush. (It is not necessary to reapply acrylic coating to the areas).

5.3. "Small-Signal" Discrete Transistor Removal/Replacement

1. Remove the defective transistor by clipping its leads as close as possible to the component body.
2. Bend into a " U " shape the end of each of three leads remaining on the circuit board.
3. Bend into a " U " shape the replacement transistor leads.
4. Connect the replacement transistor leads to the corresponding leads extending from the circuit board and crimp the "U" with long nose pliers to insure metal to metal contact then solder each connection.

Power Output, Transistor Device Removal/Replacement

1. Heat and remove all solder from around the transistor leads.
2. Remove the heat sink mounting screw (if so equipped).
3. Carefully remove the transistor from the heat sink of the circuit board.
4. Insert new transistor in the circuit board.
5. Solder each transistor lead, and clip off excess lead.
6. Replace heat sink.

Diode Removal/Replacement

1. Remove defective diode by clipping its leads as close as possible to diode body.
2. Bend the two remaining leads perpendicular to the circuit board.
3. Observing diode polarity, wrap each lead of the new diode around the corresponding lead on the circuit board.
4. Securely crimp each connection and solder it.
5. Inspect (on the circuit board copper side) the solder joints of the two "original" leads. If they are not shiny, reheat them and if necessary, apply additional solder.

5.4. Fuse and Conventional Resistor Removal/Replacement

1. Clip each fuse or resistor lead at top of the circuit board hollow stake.
2. Securely crimp the leads of replacement component around notch at stake top.
3. Solder the connections.

CAUTION: Maintain original spacing between the replaced component and adjacent components and the circuit board to prevent excessive component temperatures.
Circuit Board Foil Repair
Excessive heat applied to the copper foil of any printed circuit board will weaken the adhesive that bonds the foil to the circuit board causing the foil to separate from or "liftoff" the board.

The following guidelines and procedures should be followed whenever this condition is encountered.

To repair a defective copper pattern at IC connections use the following procedure to install a jumper wire on the copper pattern side of the circuit board. (Use this technique only on IC connections).

1. Carefully remove the damaged copper pattern with a sharp knife. (Remove only as much copper as absolutely necessary).
2. Carefully scratch away the solder resist and acrylic coating (if used) from the end of the remaining copper pattern.
3. Bend a small " U " in one end of a small gauge jumper wire and carefully crimp it around the IC pin. Solder the IC connection.
4. Route the jumper wire along the path of the out-away copper pattern and let it overlap the previously scraped end of the good copper pattern. Solder the overlapped area and clip off any excess jumper wire.

At Other Connections
Use the following technique to repair the defective copper pattern at connections other than IC Pins. This technique involves the installation of a jumper wire on the component side of the circuit board.

1. Remove the defective copper pattern with a sharp knife.

Remove at least $1 / 4$ inch of copper, to ensure that a hazardous condition will not exist if the jumper wire opens.
2. Trace along the copper pattern from both sides of the pattern break and locate the nearest component that is directly connected to the affected copper pattern.
3. Connect insulated 20-gauge jumper wire from the lead of the nearest component on one side of the pattern break to the lead of the nearest component on the other side.

Carefully crimp and solder the connections.
CAUTION: Be sure the insulated jumper wire is dressed so that it does not touch components or sharp edges.

5.5. Troubleshooting

If there is any trouble in the sound system (stereo) after assembling a color TV then firstly turning the TV check the sound options in the menu by using a master remote. If no problem is found then hardware repairing should be performed. A flowchart can be followed to solve the stereo problem:

RE. STEREO

If there is no trouble with the sound system then one can check whether CTV has a deformed raster or not. The ways of checking can be:

Though it is a complex and lengthy process to perform but to solve the previous problem a flowchart (given below) can be followed:

NO RASTER

Facing such a problem like there is no picture, even the sound is missing then next flowchart needs to follow:

IF a technician finds a problem regarding AV stereo system then has to follow the steps:

The above mentioned pin no., IC no., fuse no. etc in the flowcharts are given for a particular model. It is not possible to cover all the possible IC nos. or pin nos. in this report. An oscilloscope, voltmeter etc. are needed to solve such problems shown above in the flowchart

Chapter 6

6.1 Problems and Recommendations

1. It was really tough for me to know the few internationally named parts of color TV and of few instruments that technicians used in the assembling factory as they were using local names. Few of the senior technicians should get theoretical knowledge on CTV.
2. Working station was situated in the first floor which seemed to be a bit risky while after packaging labors used to carry those to the ground floor by using stairs. An elevated system can be established to avoid accidents or the working station can be shifted to the ground floor.
3. In the every step of assembling there is a manual system that is why the production at the end of the day seems to be slow. The production (total assembling packages) per day can be increased if automated machines in few stations are installed and even for better assembling.

6.2 Conclusion

It was quite a nice experience working with some good people in the Shahnoor electronics. I was the first internee in the company so did face a lot of problems but the solutions were also there because my supervisor and few technicians helped me a lot to solve those. From the front cabinet to main PCB, speakers, CRT etc were connected in assembling section sequentially to form a new CTV. After connecting each part it was mandatory to check whether a newly connected part was set properly. At few stations it was checked that after connecting parts upto that specific level (upto that station) the system worked properly or not. If any trouble detected then from that station it was sent to the previous station. At the final station newly formed CTV set was tested finally to test that the new set worked appropriately. If there was any unusual result in the final station then the set immediately forwarded to the servicing section to solve the problem. The problem I faced while working through the program was unavailability of detailed (written) procedures on CTV assembly and servicing. If there were any books or articles on color TV then my job might be an easier task to complete but I could not manage any even from internet. However, I had an intension that I would gather some practical knowledge on latest TVs like HD TV or LCD but I was a bit unlucky because those were not available in the factory while I was doing the program. After that I am not dissatisfied with the program because it helped me a lot to know the basic things of a modern digital device (color TV).

APPENDIX

Block diagram
A whole CTV can be represented by a block diagram . Such a block diagram is shown below:

mentioned in the side table):

Undergraduate Internship

Wiring diagram

A wiring diagram inside a CTV can be shown below:

filter then to TIX decoder, vertical amplifier etc. The wave shapes at different points (wires) are shown beside the schematic where the locations are marked with corresponding numbers (from 13 to 32).

This PWB is based on CRT where the wires are finally connected to CRT from FB1 or trom RGB amplifier. The waveforms are also shown beside the schematic mentioning the corresponding locations.

The PWB wiring for sound module is given below:

Appendix: B

Table of Acronyms			
ABL	Automatic Brightness Limiter	I/O	Input/output
AC	Alternating Current	L	Left
ACC	Automatic Chroma Control	L	Low
AF	Audio Frequency	LED	Light Emitting Diode
AFC	Automatic Frequency Control	LF	Low Frequency
AFT	Automatic Fine Tuning	MOSFET	Metal-Oxide-Semiconductor-Field-Effect-Tr
AGC	Automatic Gain Control	MTS	Multi-channel Television Sound
AM	Amplitude Modulation	NAB	National Association of Broadcasters
ANSI	American National Standards Institute	NEC	National Electric Code
APC	Automatic Phase Control	NTSC	National Television Systems Committee
APC	Automatic Picture Control	OSD	On Screen Display
A/V	Audio-Video	PCB	Printed Circuit Board
AVC	Automatic Volume Control	PLL	Phase-Locked Loop
BAL	Balance	PWM	Pulse Width Modulation
BPF	Bandpass Filter	QIF	Quadrature Intermediate Frequency
B-Y	Blue-Y	R	Right
CATV	Community Antenna Television (Cable TV)	RC	Resistor \& Capacitor
CB	Citizens Band	RF	Radio Frequency
CCD	Charge Coupled Device	R-Y	Red-Y
CCTV	Closed Circuit Television	SAP	Second Audio Program
Ch	Channel	SAW	Surface Acoustic Wave(Filter)
CRT	Cathode Ray Tube	SIF	Sound Intermediate Frequency
CW	Continuous Wave	SMPS	Switching Mode Power Supply
DC	Direct Current	S/N	Signal/Noise
DVM	Digital Volt Meter	SW	Switch
EIA	Electronics Industries Association	TP	Test Point
ESD	Electrostatic Discharge	TTL	Transistor Transistor Logic
ESD	Electrostatically Sensitive Device	TV	Television
FBP	Feedback Pulse	UHF	Ultra High Frequency
FBT	Flyback Transformer	UL	Underwriters Laboratories
FF	Flip-Flop	UV	Ultraviolet
FM	Frequency Modulation	VCD	Variable-Capacitance Diode
FS	Fail Safe	VCO	Voltage Controlled Oscillator
GND	Ground	VCXO	Voltage Controlled Crystal Oscillator
G-Y	Green-Y	VHF	Very High Frequency
H	High	VIF	Video Intermediate Frequency
HF	High-Frequency	VR	Variable Resistor
HI-FI	High Fidelity	VTR	Video Tape Recorder
IC	Inductance-Capacitance	VTVM	Vacuum Tube Voltmeter
IC	Integrated Circuit	TR	Transistor
1F	Intermediate Frequency		

Appendix: C

Parts Location \& Description:

No.	Description
104	SUPPORTER,PCB
112	CPT ASSY
	CPT ASSY A68QCU759X LGPD DY S-FOCUS
	CPT ASSY A68QCU759X 66L7ND
120	SPEAKER
121	BRACKET,SPEKER
150	COIL,DEGAUSSING
	COIL, DEGAUSSING 29 FLAT (W) SELLA TECH
153	DY
	DY 6150Z-1247G DC29SFL3 29"
170	CPT EARTH
300	CABINET ASSY SET STEREO MC022A
	CABINET ASSY 40AF STEREO LGEAP
	CABINET ASSY C/SKD STEREO MC022A.
310	BUTTON,CONTROL
320	SPRING,KNOB
330	BUTTON,POWER
400	BACK COVER ASSY 2PHONE
	BACK COVER ASSY 2PHONE 40AF LGEAP
	BACK COVER ASSY C/SKD 2PHONE
	BACK COVER ASSY ISCART+1PH
510	PWB ASSY.CPT 022A (CPT/VM)
520	PWB ASSY,MAIN 022A RT-25/29FB30VX
	PWB ASSY,MAIN 022A RT-29FB30V
	PWB ASSY,MAIN 022A RT-29FB30R
	PWB ASSY, MAIN 022A RT-29FB30VX LGEAP
	PWB ASSY,MAIN 022A RT-29FB30VX
	PWB ASSY,MAIN 022A RT-29FB30VX SC+PH
913	SCREW ASSY HEXAGON HEAD
943	SCREW, TAP TITE(P) D4.0 L16.0 MSWR3/FZB
P801	POWER CORD
	POWER CORD ASSY SAA L $=2200 \mathrm{MM} 219 \mathrm{~A}$

IC

LOCA. NO	DESCRIPTION
HIC920	IC,STK396-110 11P ST SCAN VELOCIT
IC01	IC,VCT3834B LG23 E/EU
*	IC.VCT3843B LG24 W/EU
-	IC.VCT3804B LG28 MIDDLE ASIA
ICO_{3}	IC,AT24C16-10PI -2.7 ATMEL 8PIN
1C06	IC,LD1117V33C 3SIP ST REGULATOR
1C07	IC,LD1117V33C 3SiP ST REGULATOR
IC09	IC,KA75270Z 3 TP RE-SET IC MC-007
IC30]	IC.LA7845 7SIP V/OUT(1.5A)
IC602	1C,TDA7297 15P,SIP BK 2CH 15W DUA
IC302	IC,KIA4558 8DIP DUAL OP AMP
1C603	IC,KA75420ZTA(KA7542ZTA) 3P, TO-92
1 C 610	IC,KIA 7805 API 3P TO-220 ST REGULA
1C661	IC,MSP3460G V3 52P DIP ST SOUND P
*	IC,MSP3410G B8 V3 52P
IC662	IC,KA75330ZTA(KA7533ZTA) 3P,TO-92
1C801	IC, STR-F6456R SANKEN 5PIN(LF1352)
IC802	IC,LTV817M-VB 4P,DIP BK PHOTO COU
1C803	IC,LTV817M-VB 4P, DIP BK PHOTO COU
IC851	IC, KIA $78 \mathrm{L05BP}(\mathrm{AT}) 3 \mathrm{P} 5 \mathrm{~V}, 150 \mathrm{MA}$
IC853	IC,KIA 78 R09PI KEC 4PIN, TO220IS-4
IC855	IC,KIA278R05PI KEC TO220IS,4P ST
IC856	IC.SE110N(LF 12) 3P 110V ERROR AMP
[C90]	IC.TDA6109JF PHILIPS 9SIP ST RGB

DIODE

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
D110	DIODE, 1N4148 TA	D864	DIODE,RECTIFIERS RU4AM,LF-LI
D180	DIODE, IN4148 TA	D865	DIODE.IN4I48 TA
D181	DIODE,RECTIFIERS RGPISJ TP	D866	DIODE,RECTIFIERS BAV21 DO35 200V 0.2
D301	DIODE,SWITCHING ISSI33 T- 72 TP	D867	DIODE,RECTIFIERS BAV2I DO35 200V 0.2
D302	DIODE,RECTIFIERS RS4FS BK R4 1500 V	D901	DIODE,RECTIFIERS BAV2I DO35 200V 0.2
D401	DIODE,RECTIFIERS RU4AM,LF-L!	D902	DIODE,RECTIFIERS IN4004A T-81 TP
D402	DIODE, RECTIFIERS RGPI5J TP	D903	DIODE,RECTIFIERS TVR06J
D403	DIODE,RECTIFIERS RGP15J TP	D904	DIODE,RECTIFIER D5SB60 BRIDGE(5A/600V)
D404	DIODE,RECTIFIERS RGP15G TP	D920	DIODE,RECTIFIERS RU4AM,LF-LI
D405	DIODE,RECTIFIERS RGP15G TP	DB801	DIODE.IN4148 TA
D406	DIODE,RECTIFIERS TVR06J GE	LD01	HOLDER DIODE.LED ASSY
D408	DIODE, IN4I48 TA	ZD101	DIODE ZENERS GDZI33B TP GRANDE DO34 0.5 W
D505	DIODE, IN4148 TA	2D102	DIODE ZENERS MTZIG.2B TP ROHM-K DO34 0.5 W
D506	DIODE,RECTIFIERS EUIZV(1)	ZD302	DIODE,ZENERS GDZS.IB
D802	DIODE,RECTIFIERS EUIZV(I)	ZD303	DIODE,ZENERS GDZJI8B TP

			GRANDE DO34 0.5W
D803	DIODE, IN4148 TA	ZD401	DIODE,ZENERS GD75.1B
D804	DIODE,RECTIFIERS TVR06J	ZD402	DIODE,ZENERS MTZJIIB TP ROHM-K DO34 - 11 V
D815	DIODE, 1 N4148 TA	ZD501	DIODE, ZENERS GDZ5.IB
D857	DIODE,RECTIFIERS RU2AMV(1)	ZD601	DIODE,ZENERS GDZ5.1B
D858	DIODE, D4L20U SHINDENGEN	2D610	DIODE,ZENERS GDZJ9.IB TP GRANDE DO34 0.5W
D860	DIODE,RECTIFIERS TVR06J	ZD910	DIODE,ZENERS GDZJ4.7B GRANDE TP DO34 0.5W
D861	DIODE, D4L20U SHINDENGEN	ZD911	DIODE,ZENERS GDZJ4.7B GRANDE TP DO34 0.5W
D862	DIODE, 1N4148 TA	ZD912	DIODE,ZENERS GDZJ4.7B GRANDE TP DO34 0.5W
D863	DIODE, IN4148 TA		

TRANSISTOR

LOCA. NO	DESCRIPTION
Q06	TR,2SA1980Y TP AUK
Q108	TR,2SC5343Y TP AUK
Q180	TR,2SC5343Y TP AUK
Q181	TR,2SA1980Y TP AUK
Q182	TR,2SA1980Y TP AUK
Q183	TR,2SC5343Y TP AUK
Q184	TR,2SC5343Y TP AUK
Q185	TR,2SA1980Y TP AUK
Q186	TR,2SA1980Y TP AUK
Q187	TR,2SC5343Y TP AUK
Q201	TR,2SA1980Y TP AUK
Q202	TR,2SA1980Y TP AUK
Q301	TR,2SC5343Y TP AUK
Q302	TR,KTD2059-Y TO-220IS KEC
Q303	TR,KTA1274-Y TO-92L TP KEC
Q401	TR,SGS-T(STM) ST2310H1 ST TO220
Q402	TR,KTC2238A-Y
Q505	TR,2SC5343Y TP AUK
Q506	TR,2SA1980Y TP AUK
Q507	TR,2SA1980Y TP AUK
Q508	TR,2SA1980Y TP AUK
Q509	TR,2SC5343Y TP AUK
Q621	TR,2SC5343Y TP AUK
Q671	TR,2SA1980Y TP AUK
Q672	TR,2SA1980Y TP AUK
Q806	TR,KRC102M,TP(KRC1202),KEC
Q807	TR,KRC102M,TP(KRC1202),KEC
Q853	TR,KTA1270-TP-Y (KTA562TM)KEC
Q855	TR,BF421L(AMMO)TO-92 TP PHILIPS
Q856	TR,KRC102M,TP(KRC1202),KEC
Q901	TR,2SA1980Y TP AUK

CAPACITOR

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
COl	5P 50V D NP0 TS	C242	10UF STD 16V M FL. TP5
C 02	5P 50V D NP0 TS	C244	220 P 50 V K B TA52
C 03	3.3UF STD 50V 20\% FL TP 5	C245	470 P 50 V K B TA52
C 04	1000P 50V K B TA52	C246	470 P 50 V K B TA52
C06	100 UF STD 16 V M FL TP5	C248	470 P 50 V K B TA52
C 07	10000 P 16 V M Y TA52	C249	470 P 50 V K B TA52
C08	10000 P 16 V M Y TA52	C301	0.01 U 100 V K POLY TP
C10	82 P 50 V K B TA52	C302	0.33 U 100 V J POLY F5
C11	100UF STD 10V M FL TP5	C303	100UF KME 50V M FL TP5
C14	47UF STD 16V M FL TP5	C304	0.0068 U 100 V K POLY TP
C16	4700 P 16 V K X TA52	C305	0.001 U 100 V K POLY TP
C17	10UF STD 50V M FL TP5	C306	0.033 U 100V K POLY TP
C22	100UF STD 10V M FL TP5	C308	47 UF STD 50V M FL TP5
C23	100 UF STD 10V M FL TP5	C309	470 P 50 V K B TAS2
C24	4.7UF STD 50V 20\% FL TP 5	C310	0.01 U 100 V K POLY TP
C25	0.1 M 50 V Z F TA52	C311	0.01 U 100 V K POLY TP
C27	47UF STD 16V M FL TP5	C401	1UF STD 50 V M FL TP5
C28	10000 P 16V M Y TA52	C402	4.7UF STD 50V 20\% FL TP 5
C29	100 UF STD 10V M FL TP5	C403	0.0015 U 100 V K POLY TP
C30	22UF STD 16V M FL TP5	C405	0.02UF 1.6KV H M/PP N1 FM20
C102	47 P 50 V J SL TA52	"(25")	0.022 UF 1.6KV H M/PP NI FM20
C 103	47P 50V J SL TA52	C406	R 680PF $2 \mathrm{KV} 10 \%,-10 \%$ R TP
Cl 104	10000 P 16 V M Y TA52	C407	PP 400V 0.022UF J
C107	10000 P 16 V M Y TA52	C408	6.8UF SM, SA 50V 20% FM7.5
C108	47UF STD 10V 20\% FL TP 5	C409	2200 P 500 V K B TS
C110	47UF STD 50V M FL TP5	C410	IUF SHL, SD $250 \mathrm{~V} 20 \% \mathrm{BP}(\mathrm{D})$
C114	47UF STD I0V 20\% FL TP 5	C411	0.53 UF D $400 \mathrm{~V} 5 \%$ BULK M/PP
C121	0.4700 UF STD 50V M FL TP5	"(25")	MPP 200V 0.5UF J
C125	0.1M 50V Z. F TA52	C413	100 UF STD 35 V M FL TP5
C130	10000 P 16 V M Y TA52	C415	1000 UF STD 25 V M FL TP5
C180	1000 P 50 V K B TA52	C416	PP 200V 0.022UF K
C181	220 P 50 V K B TA52	C419	1000 UF STD 25 V M FL TP5
C183	0.1M 50V Z F TA52	C420	PP 400 V 0.056 LF J
C184	1UF STD 50V M FL TP5	C422	4.7UF STD $250 \mathrm{~V} 20 \%$ FL TP 5
C200	100P 50V K B TA52	C501	100UF STD 10V M FL TP5
C201	220UF STD 16V M FL TP5	C502	0.1M 50VZF TA52
C202	100 P 50 V K B TA52	C503	IUF D 50V $80 \%,-20 \%$ F(Y5V)
C205	100P 50V K B TA52	C504	1UF D $50 \mathrm{~V} 80 \%,-20 \%$ F(Y5V)
C206	100P 50V K B TA52	C505	0.1 M 50 V Z F TA52
C207	220P 50V K B TA52	C506	0.1 M 50 V Z F TA52
C209	lUF D $50 \mathrm{~V} 80 \%,-20 \%$ F(Y5V) TA52	C508	IUF D 50V 80\%,-20\% F (Y5V)
C210	220UF STD 16V M FL TP5	C509	$1 \mathrm{UFD} 50 \mathrm{~V} 80 \%, 20 \% \mathrm{~F}(\mathrm{Y} 5 \mathrm{~V})$
C211	470 P 50V K B TA52	C511	1 UF D $50 \mathrm{~V} 80 \%,-20 \% \mathrm{~F}(\mathrm{Y} 5 \mathrm{~V})$
C213	470 P 50 V K B TA52	C512	100P 50V K B TA52
C215	470 P 50 V K B TA52	C513	IUF D 50V 80%, $20 \% \mathrm{~F}(\mathrm{Y} 5 \mathrm{~V})$
C216	470 P 50 V K B TA52	C514	IUF D $50 \mathrm{~V} 80 \%,-20 \%$ F(Y5V)
C227	22UF STD 16V M FL TP5	C515	IUF D $50 \mathrm{~V} 80 \%,-20 \%$ F (Y5V)
C228	22UF STD 16V M FL TP5	C516	10000 P 16 V M Y TA52
C229	22UF STD 16 V M FL TP5	C517	0.068 U 100 V K POLY TP
C230	22 UF STD 16V M FL TP5	C518	0.068 U 100 V K POLY TP
C232	220 P 50 V K B TA52	C 520	1000 P 50 V K B TA52
C240	220 P 50 V K B TA52	C521	100 P 50 V K B TAS2
C241	220P 50V K B TA52	C522	100 P 50 V K B TA52

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
C523	100P 50V K B TA52	"(25")	470UF STD 10V M FL TP5
C559	0.068 U 100 V K POLY TP	C857	1000UF KME 16V M FL TP5
C561	0.22 UF S $50 \mathrm{~V} 5 \% \mathrm{M} / \mathrm{PE} \mathrm{NI}$	C858	1000 UF KME 16 V M FL TP5
C562	220 P 50 V K B TA 52	C860	1000 UF KME 16 V M FL. TP5
C563	220P 50V K B TA52	C861	1000 UF STD 16 V M FL TP5
C564	220P 50V K B TA52	C862	4.7UF KME TYPE $50 \mathrm{~V} 20 \% \mathrm{FL}$
C565	220 P 50 V K B TA52	C864	1000 UF KME 35V M FL TP5
C568	100UF STD 16V M FL TP5	C865	220P IKV K B TP5
C601	22UF STD 16V M FL TP5	C867	220UF STD 50 V M FL TP5
C604	4.7UF STD $50 \mathrm{~V} 20 \%$ FL TP 5	C868	220UF STD IOV M FL. TP5
C605	0.0033 U 100 V K POLY TP	C871	220 UF STD $160 \mathrm{~V} 20 \%$ FL TP 7.5
C606	0.22 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C872	100 U SHL 160 V M FL TP5
C612	470UF STD 25V M FL TP5	C873	0.10100 V K POLY TP
C621	0.0033 U 100V K POLY TP	C874	R 680PF 2KV 10%, 10% RTP
C622	0.22 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C880	10 UF STD 25 V M FL TP5
C650	10000 P 16 V M Y TA52	C901	4.7UF STD $250 \mathrm{~V} 20 \%$ FL TP 5
C651	10000 P 16V M Y TA52	C902	0.1UF TE 250 V K M/PE Ni IPS
C663	100UF STD 10V M FL TP5	C903	2KV B 122K TP7. 5
C666	3.3UF STD $50 \mathrm{~V} 20 \%$ FL TP 5	C904	4.7UF STD $250 \mathrm{~V} 20 \%$ FL TP 5
C667	3300 P 16 V K X TA52	C920	10000P 16V M Y TA52
C668	3300P 16V K X TA52	C921	100UF STD 16V M FL. TP5
C670	IUF STD 50V M FL TP5	C922	150P 50V K B TA52
C671	100UF STD 10V M FL TP5	C923	100UF STD 35V M FL TP5
C672	1UF STD 50V M FL TP5	C924	100 UF STD 16V M FL TP5
C673	0.33 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C925	0.01 L 500 V K B S
C674	0.33UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C926	10UF STD 160V M FL TP5
C675	10UF STD 16V M FL TP5	C927	100 P 500 V K B TS
C676	0.33 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C928	100UF STD 16V M FL TP5
C677	0.33 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C929	0.01 U 500 V K B S
C678	0.33 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$	C930	10UF STD 160V M FL TP5
C679	0.33 UF D $63 \mathrm{~V} 5 \%$ TP $5 \mathrm{M} / \mathrm{PE}$		
C681	10UF STD 16V M FL TP5		
C685	10 UF STD 16V M FL TP5		
C686	56P 50V J SL TA52		
C687	56P 50V J SL TA52		
C688	56P 50V J SL TA52		
C689	2P 50V D NP0 TS		
C690	2 P 50 V D NP0 TS		
C802	A.C 275V 0.22UF K ($\mathrm{S}=22.5$)		
C803	R 220 PF $2 \mathrm{KV} 10 \%,-10 \%$ R/TP		
C804	330UF SLT 450V M VNSN		
"(25")	470UF 450V 20\%		
C806	MPP 1.6KV 0.0015UF J		
C807	470 PF 50 V K B TR		
C808	100UF KME 35V M FL TP5		
C809	DEHR 33 Al 102 KN 2 A 1000PF I		
C813	1000 P IKV K B TS		
C814	A.C 275 V 0.1 UF M ($\mathrm{S}=15$)		
C815	DEHR33A471KN2A 470PF		
C816	1000 P 1 KV K B TS		
C818	2200PF 4KV M E FMTW		
C821	4700 P 1 KV K B S		
C822	22UF STD 10V 20\% FLTP 5		
C840	100P 50V K B TA52		
C854	100UF STD 16V M FL TP5		
C855	100UF STD 10V M FL TP5		

COIL \& TRANSFORMER

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
J134	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & 4^{*} 10.5 \mathrm{TP} \end{aligned}$	L243	INDUCTOR,47UHK 2.3*3.4 TP
J225	$\begin{aligned} & \text { INDUCTOR,3.9UH K } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	L244	$\begin{aligned} & \text { INDUCTOR, } 47 \mathrm{UHK} \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$
J347	$\begin{aligned} & \text { INDUCTOR,3.9UH K } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	L245	$\begin{aligned} & \text { INDUCTOR, IOUHK } \\ & 4 * 10.5 \mathrm{TP} \end{aligned}$
L01	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & 2.3^{*} 3.4 \mathrm{TP} \end{aligned}$	L401	COIL,CHOKE I.IUH PHY TURN
L04	$\begin{aligned} & \text { INDUCTOR, } 10 U \mathrm{UK} \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	L402	COIL, LINEARITY 20UH USTC0. 12 PHY 48.5TURN
L05	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & 4 * 10.5 \mathrm{TP} \end{aligned}$	"(25")	COIL.LINEARITY 20UH IPHY ITURN
L08	INDUCTOR, IOUH K 2.3*3.4 TP	L509	INDUCTOR, IOUH K 2.3*3.4 TP
L103	$\begin{aligned} & \text { INDUCTOR, 10UH K } \\ & 4^{*} 10.5 \mathrm{TP} \end{aligned}$	L510	INDUCTOR, IOUH K 2.3*3.4 TP
L121	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & 4^{*} 10.5 \mathrm{TP} \end{aligned}$	L512	$\begin{aligned} & \text { INDUCTOR, IOUHK } \\ & 4 * 10.5 \mathrm{TP} \end{aligned}$
L210	$\begin{aligned} & \text { INDUCTOR, 10UH K } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	L663	INDUCTOR. IOUH K $2.3 * 3.4 \mathrm{TP}$
L211	$\begin{aligned} & \text { INDUCTOR, } 10 \mathrm{UH} \overline{\mathrm{~K}} \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	L810	INDUCTOR, 10 UHK $2.3 * 3.4 \mathrm{TP}$
L212	$\begin{aligned} & \text { INDUCTOR, IOUH } 10 \% \\ & \text { TP 5.0X14 } \end{aligned}$	L853	COIL,CHOKE 82 UH PHY TURN
L213	$\begin{aligned} & \text { INDUCTOR,10UH K } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	R213	$\begin{aligned} & \text { INDUCTOR, } 3.9 \mathrm{UHK} \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$
L214	$\begin{aligned} & \text { INDUCTOR, IOUHK } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	R242	INDUCTOR,3.9UHK 2.3*3.4 TP
L218	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & \text { 2.3*3.4 TP } \end{aligned}$	T401	TRANSFORMER,H-DRIVE,EI-19,BULK
L2 19	$\begin{aligned} & \text { INDUCTOR,10UHK } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$	T402	FBT BSC28-N2325 29* YINYANG 6003LB
L24]	$\begin{aligned} & \text { INDUCTOR, 10UH K } \\ & 2.3 * 3.4 \text { TP } \end{aligned}$	T802	TRANSFORMER.SMPS EER5345 340UH 115 V
1.242	$\begin{aligned} & \text { INDUCTOR, IOUH K } \\ & 2.3 * 3.4 \mathrm{TP} \end{aligned}$		

CONNECTOR

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
P03A	CONNECTOR (CIRC),2.5MM 10P GIL-G	P601	CONNECTOR (CIRC),2.5MM 3P GIL-G
P03B	CONNECTOR ASSY,10P 500MM H-B UL 1007	P602	CONNECTOR (CIRC),2.5MM 4P GIL-G
P102	CONNECTOR (CIRC),2.36PAI IP	P801A	CONNECTOR (CIRC),2.36PAI
P180	CONNECTOR (CIRC),2.5MM 3P GIL-G	P801B	CONNECTOR (CIRC),2.36PAI
P401	CONNECTOR (CIRC),PLUGG(4P)	P802A	CONNECTOR (CIRC),2.36PAI
P402A	CONNECTOR (CIRC),2.5MM 8P GIL-G	P802B	CONNECTOR (CIRC).2.36PAI
P402B	CONNECTOR ASSY,8P (L=450)	P901	CONNECTOR (CIRC),2.36PAI
P501	CONNECTOR (CIRC),2.5MM 3P GIL-G	P903	CONNECTOR (CIRC),2.36PAI
P502	CONNECTOR (CIRC),2.5MM 3P GlL-G	P920	CONNECTOR (CIRC),2.5MM 3P GIL-G LG

RESISTOR

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
F851	0.02 OHM I W 20\% TA52	R131	100 OHM 1/6 W 5.00\% TA52
F853	0.05 OHM 1/2 W 10\% TA52	R132	470 OHM 1/6 W 5.00\% TA52
F854	0.05 OHM 1/2 W 10\% TA52	R133	470 OHM 1/6 W 5.00\% TA52
F855	0.05 OHM 1/2 W 10\% TA52	R135	560 OHM 1/2 W 5.00\% TA52
FR401	0.68 OHM 2W 5	R136	10 K OHM 1/6 W 5.00% TA 52
FR402	1 OHM 2 W 5.00\% TA62	R137	10 K OHM 1/6 W 5.00\% TA52
FR403	0.05 OHM 1/2 W 10\% TA52	R180	1 K OHM 1/6 W 5.00% TA52
FR406	1.2 OHM 2 W 5.00\% TA.62	R181	30 K OHM 1/6 W 5.00\% TA52
FR413	0.05 OHM 1/2 W 10\% TA52	R182	6.8 K OHM 1/6 W 5.00% TA52
FR901	1.2 OHM 2 W 5.00\% TA62	R183	100 K OHM 1/6 W 5.00% TA52
"(25")	1 OHM 2 W 5.00\% TA62	R184	1.8 K OHM 1/6 W 5.00\% TA52
J128	10 K OHM 1/6 W 5.00% TA52	R185	1.8 K OHM 1/6 W 5.00% TA52
J137	100 OHM 1/6 W 5.00\% TA52	R186	4.7K OHM 1/6 W 5.00\% TA52
J149	100 OHM 1/6 W 5.00\% TA52	R187	1.8K OHM 1/6 W 5.00\% TA52
J151	180 OHM J/6 W 5.00\% TA52	R188	22 K OHM 1/6 W 5.00\% TAS2
$J 163$	100 OHM 1/6 W 5.00\% TA52	R189	56 K OHM 1/6 W 5.00% TA52
$J 167$	100 OHM 1/6 W 5.00\% TA52	R190	510 K OHM 1/6 W 5.00% TA52
1170	100 OHM 1/6 W 5.00% TA52	R191	100 OHM 1/6 W 5.00\% TA52
J175	100 OHM 1/6 W 5.00\% TA52	R192	$4.7 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} \mathrm{5.00} \mathrm{\%} \mathrm{TA52}$
1192	100 OHM 1/6 W 5.00\% TA52	R193	4.7K OHM 1/6 W 5.00\% TA52
J 207	100 OHM 1/6 W 5.00\% TA52	R201	68 OHM 1/6W 5 TA52
J210	47 K OHM 1/6 W 5.00\% TA52	R202	220 OHM I/2W 5
J215	1K OHM 1/6 W 5.00\% TA52	R205	33 K OHM 1/6W 5
1216	1 K OHM 1/6 W 5.00\% TA52	R206	75 OHM I/6 W 5.00\% TA52
J317	100 OHM I/6 W 5.00\% TA52	R207	75 OHM 1/6 W 5.00% TA52
J318	100 OHM 1/6 W 5.00\% TA52	R208	75 OHM 16 W 5.00\% TA52
R01	100 OHM 1/6 W 5.00\% TA52	R209	75 OHM 1/6 W 5.00\% TA52
R02	100 OHM 1/6 W 5.00% TA52	R210	68 OHM 1/6 W 5.00\% TA52
R06	$3 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52	R211	100 OHM 1/6 W 5.00\% TA52
R. 07	10 K OHM I/6 W 5.00\% TA52	R212	3.9K OHM 1/6 W 5.00\% TA52
R08	$2 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52	R215	220 OHM 1/6 W 5.00% TA 52
R09	2 K OHM 1/6 W 5.00\% TA52	R218	75 OHM 1/6 W 5.00\% TA52
R10	100 OHM 1/6 W 5.00\% TA52	R219	75 OHM 1/6 W 5.00\% TA52
R11	100 OHM 1/6 W 5.00\% TA52	R220	75 OHM 1/6 W 5.00\% TA52
R18	L00 OHM 1/6 W 5.00\% TA52	R230	120 OHM 1/2 W 5.00% TA52
R24	10 K OHM 1/6 W 5.00% TA52	R231	120 OHM 1/2 W 5.00% TA52
R43	330 OHM 1/6 W 5.00\% TA52	R301	2.2 K OHM 1/6 W 5.00\% TA52
R44	4.7 K OHM 1/6 W 5.00% TA52	R302	1 OHM 1/2 W 5.00\% TA52
R45	1.2K OHM 1/6 W 5.00% TA52	R305	470 OHM 1/6 W 1.00\% TA52
R46	820 OHM 1/6 W 5.00\% TA52	R306	10 K OHM 1/6 W 5.00% TA52
R47	360 OHM 1/6 W 5.00\% TA52	R307	22 K OHM $1 / 6 \mathrm{~W} 5.00 \%$ TA5 2
R48	430 OHM 1/6 W 5.00% TA52	R309	4.7 K OHM 1/6 W 5.00% TA52
R49	560 OHM 1/6 W 5.00\% TA52	R310	39 OHM 1/6 W 5.00\% TA52
R50	1 K OHM 1/6 W 5.00\% TA52	R311	1.5 OHM I/2 W 5.00% TA52
R51	3.3 K OHM $1 / 6 \mathrm{~W} 5.00 \%$ TA 52	R312.	4.7 OHM 1/2 W 5.00% TA52
R90	100 OHM 1/6 W 5.00\% TA52	R3i3	390 OHM I W 5.00% TA62
R94	100 OHM 1/6 W 5.00\% TA52	R315	100 OHM 1/6 W 5.00\% TA52
R95	1 K OHM 1/6 W 5.00\% TA52	R316	27 K OHM 1/6 W 5.00% TA52
R102	510 OHM 1/6 W 5.00\% TA52	R317	2 K OHM 1/6 W 5.00\% TA52
R119	10 OHM I/6 W 5.00\% TA52	R319	$82 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 1.00 \%$ TA52
R126	1 K OHM 1/6 W 5.00% TA52	R320	IK OHM 1/6 W 5.00\% TA52
R127	1 K OHM 1/6 W 5.00\% TA52	R321	5.6 OHM $2 \mathrm{~W} 5 \%$ TR
R128	22 OHM 1/6 W 5.00\% TA52	R322	1.5 K OHM 1/6 W 5.00% TA 52
R/29	100 OHM l/6 W 5.00\% TA52	R323	27 K OHM 1/6 W 5.00\% TA52
R130	100 OHM 1/6 W 5.00\% TA52	R324	470 OHM 1/6 W 5.00\% TA52

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
R325	2.7K OHM I/2 W 5.00% TA52	R572	82 OHM $/ 1 / 6$ W 5.00% TA52
R326	1.5 K OHM I/2 W 5.00% TA52	R601	1 K OHM 1/6 W 5.00% TA52
R327	$1.5 \mathrm{~K} \mathrm{OHM} \mathrm{1/2} \mathrm{~W} 5.00 \%$ TA52	R602	$10 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA. 52
R328	$8.2 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52	R603	$1 \mathrm{~K} \mathrm{OHM} 1 / 6$ W 5.00% TA52
R330	3K OHM 1/6 W 5.00\% TA52	R604	3.3 K OHM 1/6 W 5.00% TA52
R331	2.4 K OHM 1/6 W 5.00% TA52	R607	6.8 OHM I/2 W 5.00% TA52
R402	1 K OHM I/6 W 5.00% TA52	R608	3.3 K OHM 1/6 W 5.00% TA5?
R403	560 OHM 1/2 W 5.00\% TA52	R609	6.2K OHM 1/6 W 5.00% TA52
R404	$33 \mathrm{OHM} \mathrm{1/2} \mathrm{~W} \mathrm{5.00} \mathrm{\%} \mathrm{TA52}$	R610	$47 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52
R405	100 OHM 2 W 5\% TR	R611	$47 \mathrm{~K} \mathrm{OHM} 1 / 6 \mathrm{~W} 5.00 \%$ TA52
R408	2.2 OHM 2 W 5.00% TA 62	R624	6.2 K OHM 1/6 W 5.00% TA52
R409	1.8 K OHM 1/2 W 5.00% TA52	R629	91 OHM 1/6 W 5.00% TA52
R410	15 K OHM $5 \mathrm{~W}+1-5 \%$ RSR V	R662	100 OHM 1/6 W 5.00\% TA52
R411	51 K OHM 1/2 W 5.00% TA52	R663	100 OHM 1/6 W 5.00\% TA52
R413	22 K OHM 1/2 W 5.00% TA52	R664	$10 \mathrm{KOHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52
R414	1 K OHM 1/2 W 5.00\% TA52	R801	$0.47 \mathrm{M} \mathrm{OHM} 1 / 2 \mathrm{~W} 5 \%$ TA52P
R415	10K OHM 1/6 W 5.00\% TA52	R802	RWR 15W 1.0 OHM J PD
R416	IK OHM 1/6 W 5.00\% TA52	R803	10 OHM 1/2 W 5.00% TA52
R417	820 K OHM $1 / 6$ W 5.00% TA52	R804	4.7K OHM 1/6 W 5.00% TA5?
R419	7.5 K OHM 1/2 W 5.00% TA52	R805	IK OHM $1 / 6 \mathrm{~W} 5.00 \%$ TA52
R420	47 OHM 2 W 5.00\% TA62	R806	2 W RWR G 2W 0.12 JTA31
R509	75 OHM 1/6 W 5.00\% TA52	R807	8.2M OHM I/2 W 5\% TA52 UL
R512	75 OHM 1/6 W 5.00\% TA52	R808	$3.3 \mathrm{~K} \mathrm{OHM} \mathrm{I/6} \mathrm{~W} 5.00 \%$ TA52
R517	300 OHM $1 / 6 \mathrm{~W} 5.00 \%$ TA52	R809	27 K OHM $2 \mathrm{~W} 5.00 \%$ TR
R519	IK OHM 1/6 W 5.00\% TA52	R811	27 K OHM 2 W 5.00\% TR
R523	10 K OHM 1/6 W 5.00% TA52	R813	10 K OHM 1/6 W 5.00% TA52
R525	6.8K OHM 1/6 W 5.00\% TA52	R821	3.6 K OHM 1/6 W 5.00% TA52
R526	27 K OHM 1/6 W 5.00% TA52	R822	$3.3 \mathrm{~K} \mathrm{OHM} \mathrm{I/6} \mathrm{~W} \mathrm{5.00} \mathrm{\%} \mathrm{TA52}$
R528	6.8 K OHM 1/6 W 5.00% TA52	R850	4.7 OHM 1/6 W 5.00\% TA52
R531	1.2K OHM 16 W 5.00\% TA52	R852	10 OHM $2 \mathrm{~W} 5 \%$ TR
R532	120 OHM I/ 6 W 5.00\% TA 52	R858	4.7 OHM I/6 W 5.00% TA52.
R533	2.2 K OHM $16 \mathrm{~W} 5.00 \%$ TA52	R861	$2 \mathrm{~K} \mathrm{OHM} 1 / 6 \mathrm{~W} 5$
R534	100 OHM 1/6 W 5.00\% TA52	R862	5.6 K OHM 1/6 W 5.00% TA52
R537	$22 \mathrm{~K} \mathrm{OHM} \mathrm{I} 16 \mathrm{~W} 5.00 \%$ TA52	R863	2K OHM 1/6 W 5.00\% TA52
R541	270 OHM 1/6 W 5.00\% TA52	R864	1.6 OHM 2 W 5.00\% TA62
R542	220 OHM 1/6 W 5.00\% TAS2	R865	1.6 OHM 2 W 5.00\% TA62
R543	22 K OHM 1/6 W 5.00% TA52	R866	10 K OHM $1 / 2 \mathrm{~W} 5.00 \%$ TA52
R544	33 OHM 1/6 W 5.00\% TA52	R867	75 K OHM I/6 W 5.00% TA52
R545	$180 \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TĀ 52	R868	$10 \mathrm{~K} \mathrm{OHM} \mathrm{I/6} \mathrm{~W} \mathrm{5.00} \mathrm{\%} \mathrm{TA52}$
"(25")	200 OHM 1/6 W 5.00% TA52	R869	4.7 K OHM $1 / 6 \mathrm{~W} 5.00 \%$ TA52
R546	47 OHM 1/6 W 5.00\% TA52	R87!	240 OHM 1/6 W 5.00\% TA52
R548	430 OHM 1/6 W 5.00% TA52	R872	220 K OHM 1/2 W 5.00% TA52
R549	180 OHM 1/6 W 5.00\% TA52	R873	$4.7 \mathrm{~K} \mathrm{OHM} \mathrm{1/6} \mathrm{~W} 5.00 \%$ TA52
"(25")	200 OHM 1/6 W 5.00\% TA52	R901	220 OHM 1/6 W 5.00\% TA52
R550	47 OHM 1/6 W 5.00\% TA52	R902	220 OHM 1/6 W 5.00\% TA52
R552	430 OHM 1/6 W 5.00\% TA52	R903	220 OHM 1/6 W 5.00\% TA52
R553	180 OHM 1/6 W 5.00% TA52	R 904	470 OHM 1/6 W 5.00\% TA52
"(25")	200 OHM 1/6 W 5.00\% TA52	R905	7.5K OHM 1/6 W 5.00% TA52
R554	47 OHM 1/6 W 5.00% TA52	R906	100 OHM 1/6 W 5.00\% TA52
R556	430 OHM 1/6 W 5.00% TA52	R907	100 OHM 1/6 W 5.00\% TA52
R557	2.7 K OHM 1/6 W 5.00% TA52	R908	100 OHM 1/6 W 5.00\% TA52
R558	22 OHM 1/6 W 5.00\% TA52	R909	1/2 W I. 5K. 10%.PLIKOR
R559	IK OHM 1/6 W 5.00\% TA52	R910	I/2 W $1.5 \mathrm{~K}, 10 \%$,PLIKOR
R560	4.3 K OHM 1/6 W 5.00% TA52	R911	1/2 W 1.5K. 10%.PLIKOR
R570	180 OHM 1/6 W 5.00% TA52	R912	$2.2 \mathrm{M} \mathrm{OHM} \mathrm{1} 12 \mathrm{~W} 5.00 \%$ TA52
R571	3.9 K OHM I/6 W 5.00% TA52	R913	4.7K OHM 1/6 W 5.00\% TA52

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
R921	100 OHM 1/6 W 5.00\% TA52	R925	
R922	62 OHM 1/6 W 5.00% TA52	R926	680 OHM 2 W 5.00\% TA62
R923	10 OHM 1 W 5.00\% TA62	"(25")	390 OHM 2 W 5.00\% TA62
R924	330 OHM I W 5.00\% TA62		

SWITCH

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
SW01	SWITCH,TACT SKHV17910B LG C\&D NON 12V	SW05	SWITCH,TACT SKHV17910B LG C\&DNON 12V
SW02	SWITCH,TACT SKHV17910B LG C\&D NON 12V	SW06	SWITCH.TACT SKHV17910B LG C\&D NON 12V
SW03	SWITCH,TACT SKHV17910B LG C\&D NON 12V	SW801	SWITCH,PUSH SDKEA3 IEC 250V 8A HORIZO
SW04	SWITCH,TACT SKHV17910B LGC\&DNON 12V		

FILTER \& CRYSTAL

LOCA. NO	DESCRIPTION	LOCA. NO	DESCRIPTION
FB202	FILTER(CIRC),EMC FERRITE BFD3565R2F	FB803	FILTER(CIRC),EMC FERRITE IUH TAPING
FB220	FILTER(CIRC),EMC FERRITE BFD3565R2F	L920	FILTER(CIRC).EMC FERRITE IUH TAPING
FB241	FILTER(CIRC),EMC FERRITE BFD3565R2F	T801	FILTER(CIRC),EMC SQE3535 20 MH
FB401	FILTER(CIRC).EMC FERRITE 1LH TAPING	XOI	RESONATOR,CRYSTALHC49U SUNNY RADIAL 20.250 MHZ
FB801	FILTER(CIRC),EMC FERRITE ILH TAPING	X661	RESONATOR,CRYSTALHC49U KJE RADIAL 18.4.32MHZ 30P
FB802	FILTER(CIRC).EMC FERRITE IUH TAPING		

ACCESSORIES

LOCA. NO	DESCRIPTION
A1	MANUAL,OWNERS 022A RUS/BZ03 LG RU/EN 077V/
A2	REMOTE CONTROLLER MC-022A W/O TEXT, W/O PIP
A2	REMOTE CONTROLLER MC-022A WITH TEXT 48K

MISCELLANEOUS

LOCA. NO	DESCRIPTION
F801	FUSE,SLOW BLOW 4000MA 250V 5.2X20
JK201	JACK,RCA PPJI09K A/V IO 6P
$=$	JACK,SCART UPJ-RI-018
JK202	JACK,RCA PPJ109L A/V I/O 6P
"	JACK.RCA PPJ109C
JK203	JACK ASSY,3P+EAR(PJ6062A)
PA01	REMOTE CONTROLLER RECEIVER 38KHZ
RL801	RELAY SDT-S-105LMR OEG 5V 0.05A 250V
SK901	SOCKET (CIRC), CPT PCS030A 8PIN 14/360
TH801	THERMISTOR,03-07MX 7 OHM 20\% 80/60
TU101	TUNER.TAFD-Z242D LG MULTI FS 4SYS,DI
VD801	VARISTOR,SVC621D-14A 620V 0\% UL/C

REFERENCES

1. www.novelguide.com
2. www.wikipedia.org
3. www.fixya.com
4. www.e-repair.co.uk
5. www.tcl-shahnoor.com
6. Materials provided by the company
