
 

Insulin Level Prediction Using Machine Learning 

Approach 

 

 

 

 

By 

 

Md. Tahmidul Meshkat 

Anindya Podder 

B.M. Rakibul Hasan 
 

 

 

 
 

 

 

Department of Computer Science and Engineering 
 

East West University 

 

 

Fall 2017 
 

 

 

 

 

 



Insulin Level Prediction Using Machine Learning 

Approach 

 

Submitted By 

Md. Tahmidul Meshkat 

ID: 2013-1-60-039 

 

AnindyaPodder 

ID: 2013-2-60-056 

 

B.M. Rakibul Hasan 

ID: 2014-1-60-039 
 

 

 

 

This thesis is submitted in partial fulfillment of the requirements for the 

degree of Bachelor of Science in Computer Science and Engineering 

 

In the 

 

Faculty of Science and Engineering 

 

Department of Computer Science & Engineering 

 

 

East West University 

Fall 2017 

 

 



Declaration 

This thesis titled “Insulin Level Prediction using Machine Learning Approach” has been 

submitted to the department of Computer Science and Engineering, East West University in 

the partial fulfillment of the requirement for the degree of Bachelor of Science in Computer 

Science and Engineering by us under the supervision of Dr. Shamim H Ripon, Associate 

Professor, Department of CSE at East West University under the course 'CSE 497’. We also 

declare that this thesis has not been submitted elsewhere for the requirement of any degree or 

any other purposes. This thesis complies with the regulations of this University and meets the 

accepted standards with respect to originality and quality. We hereby release this thesis to the 

public. We also authorize the University or other individuals to make copies of this thesis as 

needed for scholarly research. 

 

 

 

__________________________ 

Md. Tahmidul Meshkat 

ID: 2013-1-60-039 

Department of Computer Science and Engineering 

East West University 

 

 

 

__________________________ 

Anindya Podder 

ID: 2013-2-60-056 

Department of Computer Science and Engineering 

East West University 

 

 

 

__________________________ 

B.M. Rakibul Hasan 

ID: 2014-1-60-039 

Department of Computer Science and Engineering 

East West University 

 



Letter of Acceptance 

The thesis entitled “Insulin Chart Prediction Using Machine Learning Approach” submitted by 

Md. Tahmidul Meshkat, ID: 2013-1-60-039, Anindya Podder, ID: 2013-2-60-056 & B.M. 

Rakibul Hasan, ID: 2014-1-60-039 to the department of Computer Science & Engineering, 

East West University, Dhaka 1212, Bangladesh is accepted as satisfactory for partial 

fulfillments for the degree of Bachelor of Science in Computer Science & Engineering in 

December 2017. 

 

 

 

 

 

 

 

 

 

 

______________________________ 

Dr. Shamim H Ripon 

Associate Professor 

Department of Computer Science and Engineering 

East West University, Dhaka, Bangladesh 

 

 

 

 

 

 

______________________________ 

Dr. Ahmed Wasif Reza 

Associate Professor & Chairperson 

Department of Computer Science and Engineering 

East West University, Dhaka, Bangladesh 



i 
 

Abstract 

Diabetes patients have to continuously monitor their blood glucose levels and adjust insulin 

doses, striving to keep blood glucose levels as close to normal as possible. They need to take 

insulin dose before their every meal. The doctors have to decide insulin doses for every patient 

according to the patient’s previous records of doses and sugar levels measured at regular 

intervals. Our paper proposes a Machine Learning Approach & uses a RNN (LSTM) and ANN 

algorithm to predict the insulin chart for a patient efficiently to implement the model. The 

thirty-six months chart maintained by the patient has been used to train the model and the long 

sequence of next insulin prediction is done on the basis of trained data. In this research, out of 

various existing algorithms of finding insulin level frequent item sets and mining association 

rule, we use predictive Apriori algorithm for this prediction. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Introduction 

Diabetes is a disease caused by hyperglycemia (high blood glucose level).  Diabetes affects an 

estimated 3-4% of the world's population (half of whom are undiagnosed), making it one of the 

major chronic illnesses prevailing today. It is caused by hyperglycemia resulting from defects 

in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated 

with long-term damage, dysfunction, and failure of various organs, especially the eyes, 

kidneys, nerves, heart, and blood vessels. This deficiency leads to destruction of the b-cells of 

the pancreas with consequent insulin deficiency to abnormalities that result in resistance to 

insulin action and reaction process. Deficiency of insulin results from inadequate insulin 

secretion. This Improper insulin secretion and defects in insulin action is the primary cause of 

hyperglycemia. So, the significance of insulin dose is clearly visible.  

In this paper, we have taken the challenge of predicting insulin chart for Diabetic patients. We 

have taken thirty-six month’s data (insulin chart) for code 33 (Regular insulin dose) of a patient. 

Assuming thirty-six month’s data as training data, next thirty-six month’s charts is predicted 

and compared with the actual data. We have used RNN model to predict the insulin chart by 

taking the data of a diabetic patient. RNN has solved variety of problems such as- speech 

recognition, language modeling, translation, image captioning etc. RNN is mainly used for 

where the gap between the relevant information and the place that it’s needed is small. But 

there are also cases where we need more contexts. Unfortunately, as that gap grows, RNNs 

become unable to learn to connect the information. We have solved this problem by using a 

special kind of RNN called LSTM (Long Short Term Memory) which is designed to avoid the 

long-term dependency problem. We have trained 67% &tested 33% of our given dataset for 

RNN. We use RNN for solving sequence of insulin level of hospital patient at a time. ANN is 

a popular way to identify unknown and hidden patterns in data which is suitable for predicting 

insulin data. For the prediction of insulin level, we use 80% train on data and 20% predict on 

the train data. We use Predictive Apriori for searching if one takes insulin at breakfast & at 

lunch, then what will be the accuracy to take in insulin at dinner time. Predictive Apriori mining 

is the association rule for prediction of insulin level. 

 

1.2 Motivation 

Diabetes prevalence has been rising more rapidly in middle and low-income countries. The 

number of people with diabetes has risen from 108 million in 1980 to 422 million in 2014. The 

global prevalence of diabetes among adults over 18 years of age has risen from 4.7% in 1980 

to 8.5% in 2014. A lack of insulin, or an inability to adequately respond to insulin, can each 

lead to the development of the symptoms of diabetes. 
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For a diabetes patient, insulin dose is necessary to control the level of glucose. The doctor of 

the patient also has to know the required insulin dose from previous records of doses & from 

patient’s current calculated blood sugar level. This has inspired us to make a research on how 

to predict the insulin dose level of a patient before every meal.  

The prediction we have done through RNN has produced a very good result. Similar kind of 

insulin chart prediction for diabetes patients by Ravindra Nath was completed in December, 

2013 using HMM (Hidden Markov Model). Ravindra’s sequence prediction was great but it 

was time consuming. We have made that sequence prediction faster using Recurrent Neural 

Network. Also, HMM doesn’t work for lot of data. LSTM in RNN addresses this issue & 

designed to perform quite well for long term dependencies and works faster. LSTM maximizes 

the prediction accuracy rate by minimizing error at each iteration.  

Lastly, we want to tell that there are many researches going on to discover newer methods to 

predict insulin dose. Despite having all those methods, we believe our research data will help 

doctors to predict almost accurate insulin dose of diabetes patients.  

 

1.3 Objective 

The specific objectives of our project are as follows: 

a) Insulin level sequence prediction using recurrent neural network long short term memory.  

b) Discover meaningful pattern and frequent insulin level using Predictive Apriori Algorithm.  

c) Prediction on train data with loss function and accuracy using Neural Network. 

 

1.4 Contribution 

Contributions in the project are as follows: 

For our research, at first, we have preprocessed our raw data. After that, we have used neural 

network to find out the data loss rate & the data accuracy rate of our predicted insulin dose. 

Again, we have implemented LSTM (special kind of RNN used for long term dependency) to 

predict the insulin dose for a patient before every meal. After all, we have generated predictive 

Apriori algorithm to determine the most frequently taken insulin doses by the patients over full 

day period.  
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1.5 Outline 

Chapter 1: This chapter represents about the motivation to work, specify the objectives and 

then the contribution that we have made. 

Chapter 2: Description about Machine learning, deep learning and also about the algorithms 

RNN (LSTM), ANN and Predictive Apriori that we have implemented.  

Chapter 3: Methodology. It shows the architectural view of our work. 

Chapter 4: Implementation& flow chart of our research. The tools that have been used in the 

project. 

Chapter 5: Result analysis. By generating different graphs, we have shown our prediction 

accuracy.  

Chapter 6: At last in this chapter we have summarized our work and have pointed out our 

future plans. 
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CHAPTER 2 

BACKGROUND STUDY 

 

2.1 Background Study 

Artificial Intelligence (AI) and Machine Learning (ML) are two very hot trendy expressions at 

this moment, and frequently seem to be used interchangeably. They are not exactly a similar 

thing, but the perception that they are can sometimes lead to some confusion. Broadly speaking, 

Artificial Intelligence is the extensive idea of machines being able to carry out tasks in a way 

that we would consider “smart”. On the other hand, Machine learning is a utilization of 

manmade brainpower (AI) that provides systems the capacity to automatically learn and 

improve from experience without being explicitly programmed. 

Machine learning centers around the improvement of PC programs that can get to information 

and utilize it learn for themselves. The process of learning begins with observations or data, 

such as examples, direct experience, or instruction, in order to look for patterns in data and 

make better decisions in the future based on the examples that we provide. The primary aim is 

to allow the computers learn automatically without human intervention or assistance and adjust 

actions accordingly. 

Two of the most widely adopted machine learning methods are supervised learning and 

unsupervised learning – but there are also other methods of machine learning. Here's an 

overview of the most popular types. 

• Supervised Learning: These algorithms are trained using labeled examples, such as 

an input where the desired output is known. For example, a piece of equipment could 

have data points labeled either “F” (failed) or “R” (runs). The learning algorithm 

receives a set of inputs along with the corresponding correct outputs, and the algorithm 

learns by comparing its actual output with correct outputs to find errors. It then modifies 

the model accordingly. Through methods like classification, regression, prediction and 

gradient boosting, supervised learning uses patterns to predict the values of the label on 

additional unlabeled data. Supervised learning is commonly used in applications where 

historical data predicts likely future events. For example, it can anticipate when credit 

card transactions are likely to be fraudulent or which insurance customer is likely to file 

a claim. 

 

• Unsupervised Learning: This is used against data that has no historical labels. The 

system is not told the "right answer." The algorithm must figure out what is being 

shown. The goal is to explore the data and find some structure within. Unsupervised 

learning works well on transactional data. For example, it can identify segments of 

customers with similar attributes who can then be treated similarly in marketing 

campaigns. Or it can find the main attributes that separate customer segments from each 

other. Popular techniques include self-organizing maps, nearest-neighbor mapping, k-
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means clustering and singular value decomposition. These algorithms are also used to 

segment text topics, recommend items and identify data outliers. 

 

• Semi-supervised Learning: This algorithm is used for the same applications as 

supervised learning. But it uses both labeled and unlabeled data for training – typically 

a small amount of labeled data with a large amount of unlabeled data (because 

unlabeled data is less expensive and takes less effort to acquire). This type of learning 

can be used with methods such as classification, regression and prediction. Semi 

supervised learning is useful when the cost associated with labeling is too high to allow 

for a fully labeled training process. Early examples of this include identifying a 

person's face on a web cam. 

 

• Reinforcement learning: It is often used for robotics, gaming and navigation. With 

reinforcement learning, the algorithm discovers through trial and error which actions 

yield the greatest rewards. This type of learning has three primary components: the 

agent (the learner or decision maker), the environment (everything the agent interacts 

with) and actions (what the agent can do). The objective is for the agent to choose 

actions that maximize the expected reward over a given amount of time. The agent will 

reach the goal much faster by following a good policy. So the goal in reinforcement 

learning is to learn the best policy. 

 

Deep Learning is another concept of machine learning which is actually a technique for 

implementing machine learning. In deep learning, a computer model learns to perform 

classification tasks directly from images, text, or sound. Deep learning is a key technology 

behind driverless cars, enabling them to recognize a stop sign, or to distinguish a pedestrian 

from a lamppost. It is the key to voice control in consumer devices like phones, tablets, 

TVs, and hands-free speakers. Deep learning is getting lots of attention lately and for good 

reason. It’s achieving results that were not possible before. Deep learning models can 

achieve state-of-the-art accuracy, sometimes exceeding human-level performance. Models 

are trained by using a large set of labeled data and neural network architectures that contain 

many layers. 
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Figure 2.1: Performance comparison between Deep Learning & other Machine Learning 

Algorithms 

2.2 Artificial Neural Network (ANN) 

The term ‘Neural’ is derived from the human (animal) nervous system’s basic functional unit 

‘neuron’ or nerve cells which are present in the brain and other parts of the human (animal) 

body. The development of neural networks has been key to teaching computers to think and 

understand the world in the way we do, while retaining the innate advantages they hold over 

us such as speed, accuracy and lack of bias.  

A Neural Network is a computer system designed to work by classifying information in the 

same way a human brain does. It can be taught to recognize, for example, images, and classify 

them according to elements they contain. Essentially it works on a system of probability – 

based on data fed to it, it is able to make statements, decisions or predictions with a degree of 

certainty.  

Artificial Neural Networks are the biologically inspired simulations performed on the computer 

to perform certain specific tasks like clustering, classification, pattern recognition etc. A neural 

network acquires knowledge through learning & this knowledge is stored within inter-neuron 

connection strengths known as synaptic weights. 
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• Artificial Neural Network’s working method: 

 

Figure 2.2(a): Working method of Artificial Neural Network 

Artificial neural networks can be viewed as weighted directed graphs in which artificial 

neurons are nodes and directed edges with weights are connections between neuron outputs 

and neuron inputs. 

The Artificial Neural Network receives input from the external world in the form of pattern 

and image in vector form. These inputs are mathematically designated by the notation x(n) for 

n number of inputs.                                                                                                                                                    

Each input is multiplied by its corresponding weights. Weights are the information used by the 

neural network to solve a problem. Typically, weight represents the strength of the 

interconnection between neurons inside the neural network. 

The weighted inputs are all summed up inside computing unit (artificial neuron). In case the 

weighted sum is zero, bias is added to make the output not- zero or to scale up the system 

response. Bias has the weight and input always equal to ‘1’. 

The sum corresponds to any numerical value ranging from 0 to infinity. In order to limit the 

response to arrive at desired value, the threshold value is set up. For this, the sum is passed 

through activation function. 

The activation function is set of the transfer function used to get desired output. There are linear 

as well as the non-linear activation function. 

Some of the commonly used activation function are — binary, sigmoidal (linear) and tan 

hyperbolic sigmoidal functions (nonlinear). 

Binary — the output has only two values either 0 or 1. For this, the threshold value is set up. If 

the net weighted input is greater than 1, an output is assumed 1 otherwise zero. 
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Sigmoidal Hyperbolic — this function has ‘S’ shaped curve. Here tan hyperbolic function is 

used to approximate output from net input. The function is defined as — f (x) = (1/1+ exp (-

𝝈x)) where 𝝈 — steepness parameter. 

• Architecture of Artificial Neural Networks: 

A typical neural network contains a large number of artificial neurons called units arranged in 

a series of layers. In typical artificial neural network, comprises a different layer – 

Input layer:  It contains those units (artificial neurons) which receive input from the outside 

world on which network will learn, recognize about or otherwise process. 

Output layer: It contains units that respond to the information about how it’s learned any task. 

Hidden layer:  These units are in between input and output layers. The job of hidden layer is 

to transform the input into something that output unit can use in some way.  

 

Figure 2.2(b): Architecture of Artificial Neural Networks 

Most neural networks are fully connected that means to say each hidden neuron is fully 

connected to every neuron in its previous layer (input) and to the next layer (output) layer. 
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2.3 Recurrent Neural Network (RNN) 

Suppose, A Bangladeshi guy living in the U.S. He has a constant flow of money from home to 

U.S. and vice versa. If the USD is stronger in the market, then the Bangladeshi Currency 

(Taka)goes down, hence, a person from Bangladesh buys a dollar for more takas. If the dollar 

is weaker, one needs to spend fewer rupees to buy the same dollar. Predicting how much a 

dollar will cost tomorrow can guide our decision making and can be very important in 

minimizing risks and maximizing returns. Traditional neural networks can’t do this, and it 

seems like a major shortcoming. It’s unclear how a traditional neural network could use its 

previous record to predict the U.S. dollar rate for this currency exchange event.  

Again, for example, consider a language model trying to predict the next word based on the 

previous ones. If we are trying to predict the last word in “the clouds are in the sky,” we don’t 

need any further context – it’s pretty obvious the next word is going to be sky. In such cases, 

where the gap between the relevant information and the place that it’s needed is small, RNNs 

can learn to use the past information. 

 

Figure 2.3(a): Chain-like nature of Recurrent Neural Network 

But there are also cases where we need more contexts. Consider trying to predict the last word 

in the text “I grew up in France… I speak fluent French.” Recent information suggests that the 

next word is probably the name of a language, but if we want to narrow down which language, 

we need the context of France, from further back. It’s entirely possible for the gap between the 

relevant information and the point where it is needed to become very large. 

Unfortunately, as that gap grows, RNNs become unable to learn to connect the information. 

Yet Thankfully, Long Short Term Memory networks (LSTM) are a special kind of RNN, 

capable of learning long-term dependencies. 

LSTM: In the late 90s, LSTM was proposed by Sepp Hochreiter and Jurgen Schmidhuber, 

which is relatively insensitive to gap length over alternatives RNNs, hidden Markov models, 

and other sequence learning methods in numerous applications [2]. LSTMs are explicitly 

designed to avoid the long-term dependency problem. Remembering information for long 

periods of time is practically their default behavior, not something they struggle to learn.  

In standard RNNs, this repeating module will have a very simple structure, such as a single 

tanh layer. LSTMs also have this chain like structure, but the repeating module has a different 
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structure. Instead of having a single neural network layer, there are four, interacting in a very 

special way.  

 

Figure 2.3(b): Repeating module in a standard RNN contains a single layer 

 

Figure 2.3(c): Repeating module in an LSTM contains four interacting layers 

 

This model is organized in cells which include several operations. LSTM has an internal state 

variable, which is passed from one cell to another and modified by operation gates. 

 

Forget Gate 

ft = σ (Wf. [ht-1, xt] + bf) 

This is a sigmoid layer that takes the output at t-1 and the current input at time t, concatenates 

them into a single tensor, and applies a linear transformation followed by a sigmoid. Because 

of the sigmoid, the output of this gate is between 0 and 1. This number is multiplied with the 

internal state and that's why the gate is called a forget gate. If ft=0, then the previous internal 

state is completely forgotten, while if ft=1, it will be passed through unaltered. 
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Input Gate 

it = σ (Wi.[ht-1, xt ] + bi) 

The input gate takes the previous output and the new input and passes them through another 

sigmoid layer. This gate returns a value between 0 and 1. The value of the input gate is 

multiplied with the output of the candidate layer. 

Ct = tanh (Wc. [ht-1, xt] + bc) 

This layer applies a hyperbolic tangent to the mix of input and previous output, returning a 

candidate vector to be added to the internal state. 

The internal state is updated with this rule: 

Ct = ft * Ct-1 + it * Ct 

The previous state is multiplied by the forget gate and then added to the fraction of the new 

candidate allowed by the output gate. 

 

Output Gate 

Ot = σ (Wo. [ht-1, xt] + bo) 

ht = Ot * tanh Ct 

This gate controls how much of the internal state is passed to the output and it works in a similar 

way to the other gates. 

The three gates described above have independent weights and biases, hence the network will 

learn how much of the past output to keep, how much of the current input to keep, and how 

much of the internal state to send out to the output. 
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2.4 Predictive Apriori Algorithm 

Apriori algorithm is a classical algorithm in data mining. It is used for mining frequent item 

sets and relevant association rules. It is devised to operate on a database containing a lot of 

transactions, for instance, items brought by customers in a store. 

Predictive Apriori Algorithm: This algorithm searches with an increasing support threshold 

for the best 'n' rules concerning a support-based corrected confidence value. A rule is added if 

the expected predictive accuracy of the rule is among the 'n' best and it is not subsumed by a 

rule with at least the same expected predictive accuracy. This is also a confidence based 

association rule but in this rule ranked are sorted according to “predictive accuracy”. It tries to 

maximize predictive accuracy of an association rule rather than confidence in apriori. 

Predictive Accuracy: Predictive accuracy is generally used for the Predictive Apriori rule 

measurement. According to Scheffer, definition of predictive accuracy is as follows: Let D be 

a data file with n number of records. If [x → y] is an Association Rule which is generated by a 

static process P then the predictive accuracy of [x →y] is c([x → y])=P[n] satisfies y|n satisfies 

x]where distribution of ris given by the static process P and the Predictive Accuracy is the 

conditional probability of x→n and y→n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 13 of 55 
 

CHAPTER 3 

METHODOLOGY 

 
3.1 Overview of the System 

In the large diabetes dataset, it is difficult to predict all insulin doses from data. We here predict 

only insulin dose code=33 for the prediction. Among 36 months data are trained here for 

predicting. We try to find which algorithm best for predicting the sequence of Diabetes Data. 

Our works for predicting insulin are as follows:  

1. Take our raw diabetes data 

2. Preprocess the raw data and find the data which contains 33 codes. 

3. Apply RNN LSTM for predicting next state sequence of insulin level. 

4. Apply ANN on insulin level with accuracy. 

5. Apply Predictive algorithm to find insulin level frequent item and Association rule with 

accuracy. 

We first take raw diabetes dataset which contain 70000 data of various diabetes patients. We 

only take code=33 which contain insulin dose where we want to measure the next insulin level 

of long sequence data. 

For these thinking we choose to any algorithm that predict 36 months breakfast to lunch or 

dinner prediction with a consume process time. Here we found many algorithms that predict 

the next observable sequence for fifteen or 20 days. But these algorithms don’t predict 2000 

days data at a time. We select RNN long short-term memory for solving these algorithms. For 

prove we use best prediction algorithm neural network. We compare two algorithms to know 

which one gives best prediction. A last we use java machine learning tool weka to find the best 

possible frequent insulin items set and mining some association rules with accuracy take 90 % 

accuracy. Before Apply predictive Apriori, we eliminate 50% zeros from dataset and convert 

each numerical data as a string. We will analysis RNN rmse and Ann rmse and what accuracy 

gives ANN for each dataset. We will analyze the epochs and training data for ANN and Train 

data score and test data score for RNN lstm. 
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Figure 3.1:  Structure of our Research Work 

We first take raw diabetes dataset which contain 70000 data of various diabetes patients. We 

only take code=33 which contain insulin dose where we want to measure the next insulin level 

of long sequence data. 

For these thinking we choose to any algorithm that predict 36 months breakfast to lunch or 

dinner prediction with a consume process time. Here we found many algorithms that predict 

the next observable sequence for fifteen or 20 days. But these algorithms don’t predict 2000 

days data at a time. We select RNN long short-term memory for solving these algorithms. For 

prove we use best prediction algorithm neural network. We compare two algorithms to know 

which one gives best prediction. A last we use java machine learning tool weka to find the best 

possible frequent insulin items set and mining some association rules with accuracy take 90 % 

accuracy. Before Apply predictive Apriori, we eliminate 50% zeros from dataset and convert 

each numerical data as a string. We will analysis RNN RMSE and Ann RMSE and what 

accuracy gives ANN for each dataset. We will analyze the epochs and training data for ANN 

and Train data score and test data score for RNN LSTM. 
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CHAPTER 4 

IMPLEMENTATION 

 

4.1 Data Set Information 

The dataset is used in our research was taken from https://archive.ics.uci.edu/ml/datasets/diab

etes called UCI repository. Diabetics patient records can be obtained from two sources: an 

automatic electronic recording device and paper records. The automatic device has an internal 

clock to timestamp events, whereas paper records provide "logical time" slots (breakfast, lunch, 

dinner, bedtime). Diabetic files consist of four fields per record. (1) Date in MM-DD-YYYY 

format (2) Time in XX:YY format (3) Code (4) Value. 

The code field is deciphered as follows: 33=Regular Insulin dose 54=NPH insulin dose, 

35=Ultralente insulin dose, 48=Unspecified blood glucose measurement, 57=unspecified 

blood glucose measurement etc. 

We have taken 36 month’s data (insulin chart) for code 33i.eReguler insulin dose of a patient. 

Assuming that this huge data works as training data, next one-month chart is predicted and then 

it will be compared with the actual data. 

 

 

Original Data and Preprocessed Data(Code=33): 

 
 

 

 

 

 

 

 

 

 
 

 

Figure 4.1.1: Original Data 
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Figure 4.1.2: Preprocessed Data 

 
Implementation Code: 

1. First, we first take all in a individual file. Where we take all time to convert into each 

time as breakfast, dinner, lunch, bedtime. 

2. Then calling function take 1 file, read it and take code 33 from that. Then extended data 

frame to store file what number of file read. After extended which data file, it reads 

added with the current file. Then stores it in data frame. 

 

def get_time_table(time): 

    time = time.replace(":", "") 

    time = int(time) 

    if time < 1200: 

              

return "Breakfast" 

elif 1200 <= time < 1600: 

        return "Lunch" 

elif 1600 <= time < 2000: 

        return "Dinner" 

elif 2000 <= time < 2400: 

        return "Bedtime" 

 

def get_presented_data(temp_data, _code): 

data_list = [] 

    for row in temp_data.iterrows(): 

        if row[1][2] == _code: 

            single = {"date": row[1][0], "time": 

get_time_table(row[1][1]), "code": row[1][2], "level": 

row[1][3]} 
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data_list.append(single) 

 

temp_all_data = [ 

        {'date': data_list[0]['date'], 'code': 

str(data_list[0]['code']), 'Breakfast': 0, 'Lunch': 0, 

'Dinner': 0, 'Bedtime': 0}] 

i = 0 

    for data in data_list: 

        if temp_all_data[i]['date'] != data['date']: 

temp_all_data.append( 

                {'date': data['date'], 'code': 

str(data['code']), 'Breakfast': 0, 'Lunch': 0, 'Dinner': 0, 

'Bedtime': 0}) 

i += 1 

temp_all_data[i][data['time']] = data['level'] 

    return temp_all_data 

 

4.2 Implementation Diagram 

 

 

 

 

 

 

 

 

 

Figure 4.2: Implementation Diagram of our Research Work 
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4.3 Recurrent Neural Network (Long Short Term Memory) 

Procedure: 

1. Load dataset from csv file. 

2. Fit random seed for predictability. 

3. Normalize dataset. 

4. Split into train and test data. 

5. Reshape input to be samples, time steps and features. 

6. Create and fit LSTM neural network. 

7. Make prediction. 

8. Invert prediction. 

9. Calculate root mean square. 

10. Shift train and test data for plotting. 

Description on procedural: 

1. We can write a simple function to convert our single column of data into a two-column 

dataset: the first column containing 36 month’s (t) days insulin column for breakfast or 

lunch or dinner and the second column containing next 36month’s (t+1) insulin, to be 

predicted. 

 

Before getting first import all of function. This assumes a working scipy environment with 

keras deep learning installed. 

 

import numpy 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

 

2. Fix random number seed to ensure our results are reproducible. 

 

# fix random seed for reproducibility 

 

numpy.random.seed(7) 
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3. We can also use the code from the previous section to load the dataset as a Pandas data 

frame. We can then extract the NumPy array from the data frame and convert the integer 

values to floating point values, which are more suitable for modeling with a neural network. 

 

# load the dataset 

 

dataframe = read_csv('person.csv', usecols=[2], 

engine='python', skipfooter=3) 

dataset = dataframe.values 

 

4. LSTMs are sensitive to the scale of the input data, specifically when the sigmoid (default) 

or tanh activation functions are used. It can be a good practice to rescale the data to the 

range of 0-to-1, also called normalizing. We can easily normalize the dataset using the 

MinMaxScaler preprocessing class from the scikit-learn library. 

 

# normalize the dataset 

 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

 

5. With time series insulin data, the sequence of values is important. A simple method that we 

can use is to split the ordered dataset into train and test datasets. The code below calculates 

the index of the split point and separates the data into the training datasets with 67% of the 

observations that we can use to train our model, leaving the remaining 33% for testing the 

model. 

 

# split into train and test sets 

 

train_size = int(len(dataset) * 0.67) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], 

dataset[train_size:len(dataset),:] 

 

6. The function takes two arguments: the dataset, which is a NumPy array that we want to 

convert into a dataset, and the look_back, which is the number of previous time steps to 

use as input variables to predict the next time period — in this case defaulted to 1. 

 

This default will create a dataset where X is the total row of insulin in breakfast or lunch 

or dinner or breakfast at a given time (t) and Y is insulin level for breakfast or dinner or 

lunch or bedtime at the next time (t + 1). 
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# converts an array of values into a dataset matrix 

 

def create_dataset(dataset, look_back=1): 

 dataX, dataY = [], [] 

 for i in range(len(dataset)-look_back-1): 

  a = dataset[i:(i+look_back), 0] 

  dataX.append(a) 

  dataY.append(dataset[i + look_back, 0]) 

 return numpy.array(dataX), numpy.array(dataY) 

 

7. The LSTM network expects the input data (X) to be provided with a specific array structure 

in the form of: [samples, time steps, features]. 

 

Currently, our data is in the form: [samples, features] and we are framing the problem as 

one-time step for each sample. We can transform the prepared train and test input data into 

the expected structure using numpy.reshape() as follows: 

 

# reshape into X=t and Y=t+1 

 

look_back = 1 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

 

8. We are now ready to design and fit our LSTM network for this problem. The network has 

a visible layer with 1 input, a hidden layer with 4 LSTM blocks or neurons, and an output 

layer that makes a single value prediction. The default sigmoid activation function is used 

for the LSTM blocks. The network is trained for 100 epochs and a batch size of 1 is used. 

 

# create and fit the LSTM network 

 

model = Sequential() 

model.add(LSTM(4, input_shape=(1, look_back))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

 

model.fit(trainX, trainY, epochs=10, shuffle=True, 

batch_size=1, verbose=2) 

 

9. Prediction: Once the model is fit, we can estimate the performance of the model on the 

train and test datasets. This will give us a point of comparison for new models. 

 

Note that we invert the predictions before calculating error scores to ensure that 

performance is reported in the same units as the original data. 
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# make predictions 

 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

 

# invert predictions 

 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

 

# calculate root mean squared error 

 

trainScore = math.sqrt(mean_squared_error(trainY[0], 

trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY[0], 

testPredict[:,0])) 

print('Test Score: %.2f RMSE' % (testScore)) 

 

10. Finally, we can generate predictions using the model for both the train and test dataset to 

get a visual indication of the skill of the model. 

 

Because of how the dataset was prepared, we must shift the predictions so that they align 

on the x-axis with the original dataset. Once prepared, the data is plotted, showing the 

original dataset in blue, the predictions for the training dataset in green, and the predictions 

on the unseen test dataset in red. 

 

# shift train predictions for plotting 

 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = 

trainPredict 

 

# shift test predictions for plotting 

 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict 
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# plot baseline and predictions 

 

plt.plot(scaler.inverse_transform(dataset)) 

plt.plot(trainPredictPlot, label='train') 

plt.plot(testPredictPlot, label='test') 

plt.legend() 

plt.show() 

 

4.4 Artificial Neural Network 

Procedure 

1. Load data 

2. Define model 

3. Compile model 

4. Fit model 

5. Evaluate and prediction we implement artificial neural network, Scipy(including 

Numpy)installed and we use keras and a backend (theano and tensorflow)installed. 

 
Procedure description: 

1. Whenever we work with machine learning algorithms that use a stochastic process (e.g. 

random numbers), it is a good idea to set the random number seed.  

 

This is so that you can run the same code again and again and get the same result. This is 

useful if you need to demonstrate a result, compare algorithms using the same source of 

randomness or to debug a part of your code. 

 

As such, it is a binary classification problem (onset of diabetes as 1 or not as 0). All of the 

input variables that describe each patient are numerical. This makes it easy to use directly 

with neural networks that expect numerical input and output values, and ideal for our first 

neural network in Keras. 

 

We now load the file directly using the NumPy function loadtxt(). There are 3 input 

variables and one output variable (the last column). Once loaded we can split the dataset 

into input variables (X) and the output class variable (Y). 

 
training_data_df = pd.read_csv("0-64.csv") 

del training_data_df['date'] 

del training_data_df['code'] 

 

training_data = training_data_df 

train, test = train_test_split(training_data, test_size=0.1) 

X = train.drop('Lunch', axis=1).values 
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Y = train[['Lunch']].values 

 

X_test = test.drop('Lunch', axis=1).values 

Y_test = test[['Lunch']].values 

 

2. Models in Keras are defined as a sequence of layers. 

We create a Sequential model and add layers one at a time until we are happy with our 

network topology. 

 

The first thing to get right is to ensure the input layer has the right number of inputs. This 

can be specified when creating the first layer with the input_dim argument and setting it 

to 3 for the 50 input variables. 

 

We will use a fully-connected network structure with three layers. 

 

Fully connected layers are defined using the Dense class. We can specify the number of 

neurons in the layer as the first argument, the initialization method as the second argument 

as init and specify the activation function using the activation argument. 

 

We will use the rectifier (‘relu‘) activation function on the first three layers and the sigmoid 

function in the output layer. It used to be the case that sigmoid and tanh activation functions 

were preferred for all layers. These days, better performance is achieved using the rectifier 

activation function. We use a sigmoid on the output layer to ensure our network output is 

between 0 and 1 and easy to map to either a probability of class 1 or snap to a hard 

classification of either class with a default threshold of 0.5. 

 

We can piece it all together by adding each layer. The first layer has 50 neurons and expects 

3 input variables. The second hidden layer has 100 neurons and finally, the output layer has 

1 neuron to predict the class (onset of diabetes or not). 

 

# Define the model 

model = Sequential() 

model.add(Dense(50, input_dim=3, activation='relu')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(50, activation='relu')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss='mean_squared_error', optimizer='adam', 

metrics=['acc']) 
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3. Now that the model is defined, we can compile it. 

 

Compiling the model uses the efficient numerical libraries under the covers (the so-called 

backend) such as Theano or TensorFlow. The backend automatically chooses the best way 

torepresent the network for training and making predictions to run on your hardware, such 

as CPU or GPU or even distributed. 

 

When compiling, we must specify some additional properties required when training the 

network. Remember training a network means finding the best set of weights to make 

predictions for this problem. 

 

We must specify the loss function to use to evaluate a set of weights, the optimizer used to 

search through different weights for the network and any optional metrics we would like to 

collect and report during training. 

 

In this case, we will use logarithmic loss, which for a binary classification problem is 

defined in Keras as “mean_squared_error“. We will also use the efficient gradient descent 

algorithm “adam” for no other reason that it is an efficient default and metrics=”acc” to 

find accuracy. 

 
model.compile(loss='mean_squared_error', optimizer='adam', 

metrics=['acc']) 

  

4. We have defined our model and compiled it ready for efficient computation. 

 

Now it is time to execute the model on some data. 

 

We can train or fit our model on our loaded data by calling the fit() function on the model. 

The training process will run for a fixed number of iterations through the dataset called 

epochs, that we must specify using the nepochs argument. We can also set the number of 

instances that are evaluated before a weight update in the network is performed, called the 

batch size and set using the batch_size argument. 

 

For this problem, we will run for a small number of iterations (len(train_data)). Again, these 

can be chosen experimentally by trial and error. 

 

# Train the model 

model.fit( 

    X, 

    Y, 

    epochs=len(training_data), 

    shuffle=True 

) 
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5. We have trained our neural network on the entire dataset and we can evaluate the 

performance of the network on the same dataset. 

 

This will only give us an idea of how well we have modeled the dataset (e.g. train accuracy), 

but no idea of how well the algorithm might perform on new data. We have done this for 

simplicity, but ideally, you could separate your data into train and test datasets for training 

and evaluation of your model. 

 

You can evaluate your model on your training dataset using the evaluate() function on your 

model and pass it the same input and output used to train the model. 

 

This will generate a prediction for each input and output pair and collect scores, including 

the average loss and any metrics you have configured, such as accuracy. 

 

test_error_rate = model.evaluate(X_test, Y_test, verbose=0) 

print("The mean squared error (MSE) for the test data set is: 

{}".format(test_error_rate)) 

 

4.5 Predictive Apriori Algorithm Implementation with Weka 

Implementation 1: We take string data for each column of bedtime, breakfast, dinner, lunch. 

Due to some numerical problem of row wise prediction we convert the dataset with like this 

Dinner=2, we write in dataset Dinner=” twoD”. Because if Apriori does not find any string 

they cannot find item set or association rule. 

 

Implementation 2: 

 

Figure 4.5.1: Weka Implementation 
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Implementation3: 

 
 

 

 

 

Implementation 4: 

 
Figure 4.5.2: Predictive Apriori 
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CHAPTER 5 

RESULT AND ANALYSIS 

 
5.1 Recurrent Neural Network LSTM Prediction 

After preprocessing data, we implement RNN LSTM for predicting next state sequence of 

insulin data. RNN takes data as a sequence. For this it is easy to predict for RNN to predict any 

sequence of data. We have a large 70 dataset of text file where each contain 1000 data. After 

preprocessing, we got only 130 data each file of code =33, which contains only insulin regular 

dose. We have four states of breakfast, lunch, dinner, bedtime. We here predict each of each 

state’s insulin value by RNN. We measure 100 epochs for iteration to this algorithm. The 

performance of each prediction gives RNN a good test score RMSE or a bad test score RMSE 

or an average test RMSE. 

5.1.1 Breakfast Prediction 

We train column 2 on the dataset from (0-14) dataset. Almost 655 data found after 

preprocessing. We train breakfast 67% and test 33%. RNN predicts from columns 2. On the 

Figure 5.1.1.1,RNN lstm predicts well. After 100 epochs, loss will be decreasing. If epochs 

will increase, the prediction of 655 data will be quite accurate. 

 

Figure 5.1.1.1: Breakfast Prediction (0-14) Dataset 

In Figure 5.1.1.1, RNN just predicts sequentially. For improving prediction need more epochs 

and data, it can   predict very well. In this Figure, RNN seems done very good job. 
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Figure 5.1.1.2: Breakfast Prediction (0-31) Dataset 

On the Figure 5.1.1.2, dataset is better from previous. We take (0-31) dataset which contains 

1595 data. Data prediction seems quite good. Blue color on the graph actually predict data, 

orange and green color graph actually train and test data. RNN improves for predicting in this 

graph. In this graph, we need too much epochs for better plot. But system will be slow. We 

keep it 100 because 1000 epochs need too much time. 

 

Figure 5.1.1.3: Breakfast Prediction (0-46) Dataset 
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On the Figure 5.1.1.3 dataset, from (0-46) preprocessed data 2050, RNN evaluates this data 

performance better from previous 2 plots. RNN takes too many sequences once a time. When 

it takes more data, it gives prediction very well. In previous data plot, data will not fit properly 

due to less of data. For this RNN prediction gives graph plot too many wrong predictions. But 

when it gets this type of data, prediction of next state sequence will be better. On the 2050 data, 

graph fits very well and RNN predicts this data very well. 

 

Figure 5.1.1.4: Breakfast Prediction (0-64) Dataset 

In Figure 5.1.1.4, predictions are slightly better than previous plot. When it gets too much data, 

predicts is absolutely brilliant. Most of time predictions are slightly better. What is the benefit 

of RNN is, don’t need to calculation each of the state. It is the biggest advantage of RNN. It 

predicts whatever gives sequence. This will be better if we give epochs 1000. RNN improves 

prediction in every state. 
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5.1.2 Lunch Prediction 

In lunch, Insulin level was not too high. During this time, prediction RNN just predicts next 

state sequence. RNN takes sequence to its three gates where forget, input and output gates give 

the prediction of sequence. 

 

Figure 5.1.2.1: Lunch Prediction (0-14) Dataset 

Here in Figure 5.1.2.1, predicted data quietly under fit. We predict from dataset (0-14) 655 

preprocessed data in 655 days. Each day of data are different from previous data. RNN needs 

this sequence where it has the ability to predict from its own gates. From the differences of 

other algorithm, it doesn’t need to calculate each of these states. It predicts a sequence of 655 

days data with a 100 epochs. 

 

Figure 5.1.2.2: Lunch Prediction (0-31) Dataset 
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In Figure 5.1.2.2, the insulin level of this graph is very low. We know insulin level of human 

body can take (2-11) .RNN predicts this graph overfitting. Predicted value does not differ too 

much from actual data. RNN does a good work after each day predicting. Dataset from (0-31) 

about 1595 data, RNN gets more data   for predicting than previous plot. This plot seems very 

good prediction than the previous. 

Figure 5.1.2.3: Lunch Prediction (0-46) Dataset 

 

In Figure 5.1.2.3, Dataset from (0-46) contains data 2050, prediction on this data is improving. 

Figure 5.1.2.3 above seems very good after predicting than previous two plots. RNN gives this 

opportunity to every sequence prediction, if we give too much data and epochs, then the loss 

functions are decreasing, then we find a very good plot. 

 

Figure 5.1.2.4: Lunch Prediction (0-64) Dataset 

 

RNN predicts this well than previous three plots. Here dataset from (0-64) and 2905 data. RNN 

impressively predict this large 2905-day data. Predicted data are plotted on the similar to actual 
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data. Moreover, we have got 90% accuracy in this graph. Loss functions are decreasing here. 

RNN lstm proves that observable sequence of data prediction it is master of technique. 

5.1.3 Dinner Prediction 

In Dinner time insulin level is high for each person. 

 

Figure 5.1.3.1: Dinner Prediction (0-14) Dataset 

In Figure 5.1.3.1 predicted data looks so good. The improvement of prediction looks RNN very 

strong. For 655 preprocessed data RNN easily can predict. The accuracy of Figure 5.1.3.1 very 

well. The number of epoch will increase, we will improve plotted data will be improved 

gradually. 

 

Figure 5.1.3.2: Dinner Prediction (0-31) Dataset 

 

In the Figure 5.1.3.2 dataset from (0-31) where 1545 data is predicted on the actual data. RNN 

lstm predicted well. It seems data was fitting very well on the actual data. The whole graph 

predicted insulin level with the time series and epochs. If we improve epochs with RNN, graph 

will gradually be a better shape. 
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Figure 5.1.3.3: Dinner Prediction (0-46) Dataset 

In the Figure 5.1.3.3 dataset from (0-46),2050 preprocessed data predicted on the actual data. 

Predicted data are quite impressive on the actual data. Data are very fit on the actual data. RNN 

lstm predicts these previous two plots well. 

 

Figure 5.1.3.4: Dinner Prediction (0-64) Dataset 

In the Figure 5.1.3.4 we predicted 2905 data on the actual value. Prediction looks good to this 

dataset. This prediction goes better because we take more data from previous three plots. When 

we take too many data, loss will be decreasing and predicted data will fit correctly fit on actual 

data. 
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5.1.4 Bedtime Prediction 

 

Figure 5.1.4.1: Bedtime Prediction (0-14) Dataset 

In the Figure 5.1.4.1, most of time bedtime almost zero in the dataset. RNN try to predict for 

this low-level insulin and predict almost looks good for this graph. 

 

Figure 5.1.4.2: Bedtime Prediction (0-31) Dataset 

In the Figure 5.1.4.2 we take minimum 1545 data to predict bedtime sequence of next state 

prediction. Hence bedtime times show almost zero, so almost predict through these difficulty 

very well. 
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Figure 5.1.4.3: Bedtime Prediction (0-46) Dataset 

 

In the Figure 5.1.4.3 almost 2000 data was trained for predicting in bed time. Hence most of 

data is zero, graph does not show much, although it will predict well on dataset. 

 

 

Figure 5.1.4.4: Bedtime Prediction (0-64) Dataset 

We take almost all preprocessed data, predict level was not too good because bedtime insulin 

level almost goes zero to this time. 
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5.2 Prediction train Score and test Score (RMSE) 

Table 5.2.1: Breakfast Prediction 

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE) 

0-14 655 2.38 2.37 

0-31 1545 2.88 2.18 

0-46 2050 2.64 2.28 

0-64 2905 2.79 2.28 

In the Table 5.2.1, we divided our dataset 4 times and takes train score and test score upon the 

prediction of RNN lstm on the insulin level. When we take (0-14) 655 data, we see that RNN 

predicts that average insulin level prediction on train data is 2.38 and test data 2.37 where we 

see train data is greater than the test data. So, we conclude that test data are underfitting on 

train data score. So RNN predicts insulin level very well. 

 

Figure 5.2.1: Breakfast Prediction 

In the Figure 5.2.1 Train data goes high on the test data. So, test data underfit over train data. 

RNN predicts well in breakfast. But some of reasons, prediction test score goes underfit. But 

prediction looks good. 

Table 5.2.2: Lunch prediction 

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE) 

0-14 655 1.20 2.19 

0-31 1545 1.99 1.84 

0-46 2050 2.21 1.80 

0-64 2905 2.55 2.15 

In the lunch time, we see for data 655 predicted score that means test score on average high on 

train score. For the next state observation test score is overfitting on the train score. So RNN 
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predicts very good on the sequence of next state insulin level. For data 1545 train score goes 

underfit, because lunch time some person cannot take insulin. For data 2050 train score error 

2.21 where test score error 1.80, quite good prediction by RNN. 

Figure 5.2.2: Lunch Prediction 

In the Figure 5.2.2, Train score goes above of test score that means test score underfit in the 

prediction. On average the prediction is good for RNN lstm, when we get 2050 data, train data 

slide predicted well upon the test data. In the Figure 5.2.2 next step prediction, it predicts quite 

well. When we get 2905 data preprocessed, score will be increasing and loss function will be 

decreasing. 

 

Table 5.2.3: Dinner Prediction 

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE) 

0-14 655 2.13 2.50 

0-31 1545 2.76 2.36 

0-46 2050 2.84 2.92 

0-64 2905 3.20 3.55 

In the Table 5.2.3, From the data (0-14) on dinner time test score upon insulin level prediction 

quite high that means test score on average outfit the train score in whole dataset. RNN 

predicted the next state of dinner time insulin very well. For 1545 data, test score gradually 

underfit, for 2050 data test score over fit and predict next state sequence very well. RNN 

computes this with time series. For time series prediction ,RNN gives a long sequence of data 

with 100 epochs. If we maximize this epoch, then it will be good for the loss function, both 

train score and test score. 
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Figure 5.2.3: Dinner Prediction 

In the Figure 5.2.3 test score goes up over the train score. Test score perfectly fit on the actual 

data. For train score its prediction is quite well though. 

Table 5.2.4: Bedtime Prediction 

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE) 

0-14 655 1.67 2.60 

0-31 1545 3.57 6.20 

0-46 2050 3.17 4.74 

0-64 2905 2.97 3.26 

In the Table 5.2.4 from (0-14) data set test score over fit, from (0-31) data set test score overfit 

more and this time test score fail to predict from the actual data, from (0-46) test score overfit 

through train score, (0-64) test score overfit upon the train score. When data increases, lstm 

predicts well next step sequence. 

 

Figure 5.2.4: Bedtime Prediction 
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In the Figure 5.2.4, test score of each dataset improves the train score. Test score overfits the 

train score and prediction are quite well on this Figure 5.2.4. RNN LSTM just predicted well 

on actual data in bedtime.  

5.3 Artificial Neural Network: 

Artificial neural network combined of input layer, hidden layer and output layer. Here in ANN 

trained data with same number of epoch and calculate MSE and accuracy to prediction on train 

data and find how to measure loss and MSE based on train data with accuracy. 

For Bedtime: 

Table 5.3.1: Bedtime Prediction 

Data Set Data Epoch 

Training 

Data MSE (%) Accuracy 

0-14 655 655 588 4.758682193 39.39393939 

0-31 1545 1545 1389 6.154442058 54.83870937 

0-46 2050 2050 1844 5.524987688 48.29268307 

0-64 2905 2905 2613 5.667004256 50.85910653 

 

 

Figure 5.3.1: Bedtime Prediction 

In the Figure 5.3.1, when we take small data with same number of epoch to predict   on insulin 

level goes less accuracy. We take (0-14) dataset where 655 data with 655 epoch , find accuracy 

39%,where large dataset predict on trained data with accuracy improved with 50%. 
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For Breakfast: 

Table 5.3.2: Breakfast Prediction 

Data Set Data Epoch 

Training 

Data MSE (%) Accuracy 

0-14 655 655 588 10.79077052 18.18181818 

0-31 1545 1545 1389 13.21224167 25.16129023 

0-46 2050 2050 1844 9.997701812 30.24390251 

0-64 2905 2905 2613 10.95711449 17.86941581 

 

 

Figure 5.3.2: Breakfast Prediction 

In the Figure 5.3.2, ANN we see, small datasets give too much error and accuracy does not 

improve, where (0-46) dataset ANN algorithm gives less error with high accuracy of insulin 

prediction. With same data type epoch in dinner prediction accuracy falls in the (0-64) dataset.  

When large dataset goes less prediction of accuracy, prediction goes fail in time. 
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For Dinner: 

Table 5.3.3: Dinner Prediction 

Data Set Data Epoch 

Training 

Data MSE(%) Accuracy 

0-14 655 655 588 26.19357392 21.21212121 

0-31 1545 1545 1389 12.80214388 29.67741939 

0-46 2050 2050 1844 14.44231148 27.31707321 

0-64 2905 2905 2613 13.27945396 24.74226804 

 

 

Figure 5.3.3: Dinner Prediction 

In the Figure 5.3.3, ANN gives prediction for small data with more errors and less accuracy. 

In big dataset, it will give small error with comfortable prediction accuracy. Epoch with same 

data type gives ANN a largest advantage with predictions accuracy and less error. 

Unfortunately (0-46) dataset give perfect accuracy for in all dataset. 

For Lunch: 

Table 5.3.4: Lunch Prediction 

Data Set Data Epoch 

Training 

Data MSE (%) Accuracy 

0-14 655 655 588 6.743752022 19.69697 

0-31 1545 1545 1389 6.809755664 27.09677 

0-46 2050 2050 1844 6.334257019 24.39024 

0-64 2905 2905 2613 8.058921011 32.98969 
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Figure 5.3.4: Lunch Prediction 

In the Table 5.3.4 and Figure 5.3.4, for prediction lunch time insulin, we find largest dataset to 

get most accuracy and most MSE error. ANN predicted lunch time with accurately and 

perfectly.  

5.4 Comparison between RNN LSTM and Artificial Neural Network 

RNN and ANN, both is different type neural network. ANN has three layers and RNN has three 

gates. We are likely to find out which algorithm give us the best prediction on the comparison 

with RMSE where RNN we use 100 epoch and ANN where we use same data type with same 

epoch. 

For Bedtime: 

Table 5.4.1: Bedtime Comparison 

  RNN LSTM ANN 

Dataset Data 

RMSE (Epoch 

100) RMSE 

0-14 655 2.7889 4.758682193 

0-31 1545 12.7449 6.154442058 

0-46 2050 10.0489 5.524987688 

0-64 2905 8.8209 5.667004256 
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Figure 5.4.1: Bedtime Comparison 

In the Figure 5.4.1, we see that for the bedtime are more RMSE with 100 epochs where ANN 

with same RMSE with same type of epoch.  

For the comparison from dataset (0-64) ANN give better insulin level prediction than the RNN 

with 100 epochs. Though epoch was not same ANN gives perfect accuracy and prediction. 

ANN just gives perfect accuracy with RMSE.  

In the graph shows that RNN goes high than the ANN. RNN fails here for prediction. Some 

memory gate may fail to this work. But ANN give less error with better accuracy. So ANN 

predicts better. 

For Breakfast: 

Table 5.4.2: Breakfast Comparison 

  RNN LSTM ANN 

Dataset Data 

RMSE (Epoch 

100) RMSE 

0-14 655 5.6644 10.79077052 

0-31 1545 8.2944 13.21224167 

0-46 2050 6.9696 9.997701812 

0-64 2905 7.7841 10.95711449 
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Figure 5.4.2: Breakfast Comparison 

In the above Figure 5.4.2, RNN lstm gives less RMSE with fewer epochs where ANN gives 

too much error with same type of errors. Here RNN predicts too well than the ANN. Solve this 

ANN,RNN use three gates to overcome this neural network prediction. 

In the above graph RNN goes lower error with the comparison of ANN. So here RNN gives 

better prediction of insulin 

For Dinner: 

Table 5.4.3: Dinner Comparison 

  RNN LSTM ANN 

Dataset Data 

RMSE (Epoch 

100) RMSE 

0-14 655 4.5369 26.19357392 

0-31 1545 7.6176 12.80214388 

0-46 2050 8.0656 14.44231148 

0-64 2905 10.24 13.27945396 
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Figure 5.4.3: Dinner Comparison 

In the Figure 5.4.3 for dinner RNN lstm gives less error with small epoch where ANN gives 

too much error where prediction on insulin. Here RNN gives better predict sequence of insulin 

where ANN gives less prediction with the comparison with RNN. 

For Lunch: 

Table 5.4.4: Lunch Comparison 

  RNN LSTM ANN 

Dataset Data 

RMSE (Epoch 

100) RMSE 

0-14 655 1.44 6.743752022 

0-31 1545 3.9601 6.809755664 

0-46 2050 4.8841 6.334257019 

0-64 2905 6.5025 8.058921011 
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Figure 5.4.4: Lunch Comparison 

In the Table 5.4.4 comparison with RNN and ANN, RNN gives less errors prediction with 100 

epoch and ANN gives too much errors with same type of data with same number of epoch. 

Here RNN gives better prediction than ANN. 

In the Figure 5.4.4 RNN goes lower where ANN gives high errors with lots of epoch. here 

RNN gives perfect prediction with small epoch.                 

In all prediction with results and analysis that three out of four-column’s sequence are predicted 

well by RNN. So, here we come to finish the decision that RNN gives with best prediction in 

the insulin level of a patient for the next state prediction and sequence prediction with less error 

than ANN prediction on train data. 

5.5 Predictive Apriori Algorithm 

 In the Predictive Apriori algorithm, we use weka to find association rule. Due to numerical 

dataset we convert each data as a string like Dinner=insulin 9, we write dataset Dinner=” 

nineD” for the finding frequent item sets and association rules. Here After predict Apriori 

implementation we find 100 association rules where in predictive Apriori doesn’t give 

confidence level, it gives the accuracy of each association rule. We choose 92% accuracy to 

find best row wise pair for prediction insulin. 

 1. Bedtime=twoB Breakfast=fiveM Lunch=threeL 67 ==> Dinner=sixD 67    acc:(0.99482) 

 2. Bedtime=sixB Breakfast=fiveM Dinner=sixD 16 ==> Lunch=threeL 16    acc:(0.992) 

 3. Bedtime=sixB Breakfast=fiveM Lunch=threeL 16 ==> Dinner=sixD 16    acc:(0.992) 

 4. Breakfast=tenM Lunch=sixteenL 7 ==> Dinner=twelveD 7    acc:(0.97711) 

 5. Bedtime=twoB Dinner=tenD Lunch=tenL 7 ==> Breakfast=tenM 7    acc:(0.97711) 
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 6. Breakfast=fifteenM Dinner=fifteenD 6 ==> Lunch=sixL 6    acc:(0.96911) 

 7. Bedtime=threeB Breakfast=fiveM Dinner=sixD 71 ==> Lunch=threeL 68  acc:(0.95928) 

 8. Breakfast=fiveM Lunch=threeL 192 ==> Dinner=sixD 185    acc:(0.95916) 

 9. Breakfast=twelveM Lunch=fourteenL 5 ==> Dinner=twelveD 5    acc:(0.95512) 

 10. Breakfast=eightM Dinner=elevenD 5 ==> Bedtime=threeB 5    acc:(0.95512) 

 11. Breakfast=oneM Dinner=threeD 5 ==> Lunch=zeroL 5    acc:(0.95512) 

 12. Bedtime=threeB Breakfast=tenM Lunch=sevenL 5 ==> Dinner=tenD 5    acc:(0.95512) 

 13. Bedtime=twoB Breakfast=fiveM Lunch=oneL 5 ==> Dinner=sevenD 5    acc:(0.95512) 

 14. Bedtime=oneB Breakfast=fiveM Dinner=sixD 36 ==> Lunch=threeL 34    acc:(0.94609) 

 15. Breakfast=fiveM Dinner=sixD 195 ==> Lunch=threeL 185    acc:(0.94416) 

 16. Dinner=oneD 4 ==> Lunch=zeroL 4    acc:(0.92949) 

 17. Bedtime=threeB Lunch=fourteenL 4 ==> Dinner=twelveD 4    acc:(0.92949) 

 18. Breakfast=fifteenM Dinner=eighteenD 4 ==> Lunch=sixL 4    acc:(0.92949) 

 19. Breakfast=eightM Dinner=twoD 4 ==> Lunch=zeroL 4    acc:(0.92949) 

 20. Breakfast=eightM Lunch=nineL 4 ==> Bedtime=threeB 4    acc:(0.92949) 

For insulin prediction, all the analysis on RNN, ANN and predictive, we tell that if a patient or 

doctor want to know the next state prediction, we can easily tell them by applying RNN Long 

Short Term Memory algorithm which gives a higher prediction analysis than above all other 

algorithm. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 
6.1 Conclusion 

We have described a machine learning approach of predicting insulin dose levels and presented 

the results of experiments. From the graphs we have shown the comparison between predicted 

data & data and it can be observed that results are very encouraging and reliable. Our method 

has passed all criteria of predicting a long sequence problem. We have trained our data in a 

time consuming process and fulfill the achievements. In conclusion we can say that if we train 

our system with more input data set, it generates more error free insulin prediction. 

6.2 Future Work 

 

A) Prediction for remaining Insulin dose codes: 

We have done prediction using RNN for Regular Insulin dose (code=33). In future we will 

work for other Insulin doses like NPH insulin dose (code=34), Ultralente insulin dose 

(code=35).  

B) Prediction using Beum Welch Algorithm: 

We have reached our goal using LSTM (RNN). But we want to implement other sequence 

prediction algorithms like Beum Welch with this same data set to compare the results & also 

to see how much efficient is Beum Welch than our LSTM.  

C) Compare with Randomized Algorithm: 

We would like to compare the results by implementing randomized algorithm. 
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APPENDIX A 

 

A.1 Preprocessing from Dataset 

 
import pandas as pd 

import numpy as np 

 

np.random.seed(42) 

 

fileNumbers = ['01', '02', '03', '04', '05', '06', '07', '08', 

'09', '10', '11', '12', '13', '14', '15', '16', '17', '18', 

'19', '20', '21', '22', '23', '24', '25', '26', '27', '28', 

'29', '30', '31', '32', '33', '34', '35', '36', '37', '38', 

'39', '40', '41', '42', '43', '44', '45', '46', '47', '48', 

'49', '50', '51', '52', '53', '54', '55', '56', '57', '58', 

'59', '60', '61', '62', '63', '64', '65', '66', '67', '68', 

'69', '70'] 

 

def get_time_table(time): 

    time = time.replace(":", "") 

    time = int(time) 

    if time < 1200: 

        return "Breakfast" 

    elif 1200 <= time < 1600: 

        return "Lunch" 

    elif 1600 <= time < 2000: 

        return "Dinner" 

    elif 2000 <= time < 2400: 

        return "Bedtime" 

 

 

def get_presented_data(temp_data, _code): 

    data_list = [] 

    for row in temp_data.iterrows(): 

        if row[1][2] == _code: 

            single = {"date": row[1][0], "time": 

get_time_table(row[1][1]), "code": row[1][2], "level": 

row[1][3]} 

            data_list.append(single) 

 

    temp_all_data = [ 
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        {'date': data_list[0]['date'], 'code': 

str(data_list[0]['code']), 'Breakfast': 0, 'Lunch': 0, 

'Dinner': 0, 'Bedtime': 0}] 

    i = 0 

    for data in data_list: 

        if temp_all_data[i]['date'] != data['date']: 

            temp_all_data.append( 

                {'date': data['date'], 'code': 

str(data['code']), 'Breakfast': 0, 'Lunch': 0, 'Dinner': 0, 

'Bedtime': 0}) 

            i += 1 

        temp_all_data[i][data['time']] = data['level'] 

    return temp_all_data 

 

all_data = [] 

 

temp_data01 = pd.read_csv('datasets/data-'+fileNumbers[16], 

header=None, delim_whitespace=True) 

all_data.extend(get_presented_data(temp_data01, 33)) 

 

data_frame = pd.DataFrame.from_dict(data=all_data, 

orient='columns') 

loaded_frame = pd.read_csv('person.csv') 

 

frames = [data_frame, loaded_frame] 

result_frame = pd.concat(frames) 

 

result_frame.to_csv('person.csv', index=0) 

 

 

A.2 Prediction using Recurrent Neural Network Long Short Term Memory 

# LSTM for international airline passengers’ problem with regression framing 

 

import numpy 

import matplotlib.pyplot as plt 

from pandas import read_csv 

import math 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 
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# convert an array of values into a dataset matrix 

 

def create_dataset(dataset, look_back=1): 

dataX, dataY = [], [] 

for i in range(len(dataset)-look_back-1): 

a = dataset[i:(i+look_back), 0] 

dataX.append(a) 

dataY.append(dataset[i + look_back, 0]) 

return numpy.array(dataX), numpy.array(dataY) 

 

# fix random seed for reproducibility 

 

numpy.random.seed(7) 

 

# load the dataset 

 

dataframe = read_csv('person.csv', usecols=[2], 

engine='python', skipfooter=3) 

dataset = dataframe.values 

 

# print(dataset) 

 

dataset = dataset.astype('float32') 

 

# normalize the dataset 

 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

 

# split into train and test sets 

 

train_size = int(len(dataset) * 0.67) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], 

dataset[train_size:len(dataset),:] 

 

# reshape into X=t and Y=t+1 

 

look_back = 1 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

 

# reshape input to be [samples, time steps, features] 
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trainX = numpy.reshape(trainX, (trainX.shape[0], 1, 

trainX.shape[1])) 

testX = numpy.reshape(testX, (testX.shape[0], 1, 

testX.shape[1])) 

 

# create and fit the LSTM network 

 

model = Sequential() 

model.add(LSTM(4, input_shape=(1, look_back))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

 

model.fit(trainX, trainY, epochs=10, shuffle=True, 

batch_size=1, verbose=2) 

 

# make predictions 

 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

 

# invert predictions 

 

trainPredict = scaler.inverse_transform(trainPredict) 

trainY = scaler.inverse_transform([trainY]) 

testPredict = scaler.inverse_transform(testPredict) 

testY = scaler.inverse_transform([testY]) 

 

# calculate root mean squared error 

 

trainScore = math.sqrt(mean_squared_error(trainY[0], 

trainPredict[:,0])) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY[0], 

testPredict[:,0])) 

print('Test Score: %.2f RMSE' % (testScore)) 

 

# shift train predictions for plotting 

 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, :] = 

trainPredict 

 

# shift test predictions for plotting 
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testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict 

 

# plot baseline and predictions 

 

plt.plot(scaler.inverse_transform(dataset)) 

plt.plot(trainPredictPlot, label='train') 

plt.plot(testPredictPlot, label='test') 

plt.legend() 

plt.show() 

 

A.3 Prediction using Artificial Neural Network 

 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import * 

import numpy as np 

from sklearn.model_selection import train_test_split 

 

training_data_df = pd.read_csv("0-64.csv") 

del training_data_df['date'] 

del training_data_df['code'] 

 

training_data = training_data_df 

 

train, test = train_test_split(training_data, test_size=0.1) 

 

X = train.drop('Lunch', axis=1).values 

Y = train[['Lunch']].values 

 

X_test = test.drop('Lunch', axis=1).values 

Y_test = test[['Lunch']].values 

 

# Define the model 

 

model = Sequential() 

model.add(Dense(50, input_dim=3, activation='relu')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(50, activation='relu')) 

model.add(Dense(1, activation='linear')) 
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model.compile(loss='mean_squared_error', optimizer='adam', 

metrics=['acc']) 

 

# Train the model 

 

model.fit( 

    X, 

    Y, 

    epochs=len(training_data), 

    shuffle=True 

) 

 

test_error_rate = model.evaluate(X_test, Y_test, verbose=0) 

print("The mean squared error (MSE) for the test data set is: 

{}".format(test_error_rate)) 

 

 

 


