

Insulin Level Prediction Using Machine Learning

Approach

By

Md. Tahmidul Meshkat

Anindya Podder

B.M. Rakibul Hasan

Department of Computer Science and Engineering

East West University

Fall 2017

Insulin Level Prediction Using Machine Learning

Approach

Submitted By

Md. Tahmidul Meshkat

ID: 2013-1-60-039

AnindyaPodder

ID: 2013-2-60-056

B.M. Rakibul Hasan

ID: 2014-1-60-039

This thesis is submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science & Engineering

East West University

Fall 2017

Declaration

This thesis titled “Insulin Level Prediction using Machine Learning Approach” has been

submitted to the department of Computer Science and Engineering, East West University in

the partial fulfillment of the requirement for the degree of Bachelor of Science in Computer

Science and Engineering by us under the supervision of Dr. Shamim H Ripon, Associate

Professor, Department of CSE at East West University under the course 'CSE 497’. We also

declare that this thesis has not been submitted elsewhere for the requirement of any degree or

any other purposes. This thesis complies with the regulations of this University and meets the

accepted standards with respect to originality and quality. We hereby release this thesis to the

public. We also authorize the University or other individuals to make copies of this thesis as

needed for scholarly research.

Md. Tahmidul Meshkat

ID: 2013-1-60-039

Department of Computer Science and Engineering

East West University

Anindya Podder

ID: 2013-2-60-056

Department of Computer Science and Engineering

East West University

B.M. Rakibul Hasan

ID: 2014-1-60-039

Department of Computer Science and Engineering

East West University

Letter of Acceptance

The thesis entitled “Insulin Chart Prediction Using Machine Learning Approach” submitted by

Md. Tahmidul Meshkat, ID: 2013-1-60-039, Anindya Podder, ID: 2013-2-60-056 & B.M.

Rakibul Hasan, ID: 2014-1-60-039 to the department of Computer Science & Engineering,

East West University, Dhaka 1212, Bangladesh is accepted as satisfactory for partial

fulfillments for the degree of Bachelor of Science in Computer Science & Engineering in

December 2017.

Dr. Shamim H Ripon

Associate Professor

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

Dr. Ahmed Wasif Reza

Associate Professor & Chairperson

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

i

Abstract

Diabetes patients have to continuously monitor their blood glucose levels and adjust insulin

doses, striving to keep blood glucose levels as close to normal as possible. They need to take

insulin dose before their every meal. The doctors have to decide insulin doses for every patient

according to the patient’s previous records of doses and sugar levels measured at regular

intervals. Our paper proposes a Machine Learning Approach & uses a RNN (LSTM) and ANN

algorithm to predict the insulin chart for a patient efficiently to implement the model. The

thirty-six months chart maintained by the patient has been used to train the model and the long

sequence of next insulin prediction is done on the basis of trained data. In this research, out of

various existing algorithms of finding insulin level frequent item sets and mining association

rule, we use predictive Apriori algorithm for this prediction.

ii

Acknowledgement

First of all, we are grateful to the Almighty God for establishing me to complete this research.

Therefore, we would not like to make efforts to find best words to express my thankfulness

other than simply listing those people who have contributed to this thesis itself in an essential

way. We wish to express my sincere thanks and gratitude to my supervisor Dr. Shamim H

Ripon, Associate Professor at Dept. of CSE for the continuous support during my thesis study

and related research, for his patience, motivation, and immense knowledge. His guidance

helped us in all the time of research and writing of the thesis. We will always be grateful for

having the opportunity to study under him.

We are thankful to all of my teachers, Department of CSE, East West University. We would

also like to express our thanks to our parents and siblings for supporting us spiritually

throughout writing this thesis. And we are thankful to all my friends and colleagues. And at

last we again thanks to the creator Allah for everything.

iii

Table of Contents

Chapter 1 ..1

1. Introduction ..1

1.1 Introduction ..1

1.2 Motivation ..1

1.3 Objectives ..2

1.4 Contribution ...2

1.5 Outline..3

Chapter 2 ..4

2. Background Study ...4

2.1 Background Study ..4

2.2 Artificial Neural Network ..6

2.3 Recurrent Neural Network ...9

2.4 Predictive Apriori Algorithm ...12

Chapter 3 ..13

3. Overview of the System ...13

3.1 Overview of the System ...13

Chapter 4 ..15

4. Implementation ..15

4.1 Data Set Information ..15

4.2 Implementation Diagram ...17

4.3 Recurrent Neural Network ...18

4.4 Artificial Neural Network ..22

4.5 Predictive Apriori Algorithm ...25

Chapter 5 ..27

5. Result and Analysis ..27

5.1 RNN LSTM Prediction ..27

5.2 Prediction Train Score and Test Score...36

5.3 Artificial Neural Network ..39

5.4 Comparison RNN and ANN ..42

5.5 Predictive Apriori Algorithm ...46

iv

Chapter 6 ..48

6. Conclusion ..48

6.1 Conclusion ...48

6.2 Future Work ...48

Bibliography ...49

Appendix ...50

 A.1 Preprocessing from Dataset ...50

 A.2 Prediction using Recurrent Neural Network Long Short Term Memory51

 A.3 Prediction using Artificial Neural Network ...54

v

List of Figure

1. Figure 2.1: Performance Comparison between Deep Learning and other

 Machine Learning Algorithms ..6

2. Figure 2.2(a): Working method of Artificial Neural Network7

3. Figure 2.2(b): Architecture of Artificial Neural Networks ..8

4. Figure 2.3(a): Chain-like nature of Recurrent Neural Network9

5. Figure 2.3(b): Repeating Module in a Standard RNN Contains a Single Layer10

6. Figure 2.3(c): Repeating Module in an LSTM Contains Four Interacting Layers10

7. Figure 3.1: Structure of our Research Work ..14

8. Figure 4.1.1: Original Data ..15

9. Figure 4.1.2: Preprocessed Data ..16

10. Figure 4.2: Implementation Diagram of our Research Work17

11. Figure 4.5.1: Weka Implementation ..25

12. Figure 4.5.2: Predictive Apriori with Weka ...26

13. Figure 5.1.1.1: Breakfast Prediction (0-14) Dataset ..27

14. Figure 5.1.1.2: Breakfast Prediction (0-31) Dataset ..28

15. Figure 5.1.1.3: Breakfast Prediction (0-46) Dataset ..28

16. Figure 5.1.1.4: Breakfast Prediction (0-64) Dataset ..29

17. Figure 5.1.2.1: Lunch Prediction (0-14) Dataset ...30

18. Figure 5.1.2.2: Lunch Prediction (0-31) Dataset ...30

19. Figure 5.1.2.3: Lunch Prediction (0-46) Dataset ...31

20. Figure 5.1.2.4: Lunch Prediction (0-64) Dataset ...31

21. Figure 5.1.3.1: Dinner Prediction (0-14) Dataset ..32

22. Figure 5.1.3.2: Dinner Prediction (0-31) Dataset ..32

23. Figure 5.1.3.3: Dinner Prediction (0-46) Dataset ..33

24. Figure 5.1.3.4: Dinner Prediction (0-64) Dataset ..33

25. Figure 5.1.4.1: Bedtime Prediction (0-14) Dataset ..34

26. Figure 5.1.4.2: Bedtime Prediction (0-31) Dataset ..34

27. Figure 5.1.4.3: Bedtime Prediction (0-46) Dataset ..35

28. Figure 5.1.4.4: Bedtime Prediction (0-64) Dataset ..35

29. Figure 5.2.1: Breakfast Prediction ...36

30. Figure 5.2.2: Lunch Prediction ..37

31. Figure 5.2.3: Dinner Prediction ...38

32. Figure 5.2.4: Bedtime Prediction ...38

33. Figure 5.3.1: Bedtime Prediction ...39

34. Figure 5.3.2: Breakfast Prediction ...40

35. Figure 5.3.3: Dinner Prediction ...41

36. Figure 5.3.4: Lunch Prediction ..42

37. Figure 5.4.1: Bedtime Comparison ..43

38. Figure 5.4.2: Breakfast Comparison ..44

39. Figure 5.4.3: Dinner Comparison ..45

40. Figure 5.4.4: Lunch Comparison ...46

vi

List of Table

1. Table 5.2.1: Breakfast Prediction...36

2. Table 5.2.2: Lunch Prediction ..36

3. Table 5.2.3: Dinner Prediction ...37

4. Table 5.2.4: Bedtime Prediction ..38

5. Table 5.3.1: Bedtime Prediction ..39

6. Table 5.3.2: Breakfast Prediction...40

7. Table 5.3.3: Dinner Prediction ...41

8. Table 5.3.4: Lunch Prediction ..41

9. Table 5.4.1: Bedtime Comparison ...42

10. Table 5.4.2: Breakfast Comparison ...43

11. Table 5.4.3: Dinner Comparison ..44

12. Table 5.4.4: Lunch Comparison ...45

vii

Abbreviations

1. RNN – Recurrent Neural Network

2. LSTM – Long Short Term Memory

3. PAA – Predictive Apriori Algorithm

4. ANN – Artificial Neural Network

5. AI – Artificial Intelligence

Page 1 of 55

CHAPTER 1

INTRODUCTION

1.1 Introduction

Diabetes is a disease caused by hyperglycemia (high blood glucose level). Diabetes affects an

estimated 3-4% of the world's population (half of whom are undiagnosed), making it one of the

major chronic illnesses prevailing today. It is caused by hyperglycemia resulting from defects

in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated

with long-term damage, dysfunction, and failure of various organs, especially the eyes,

kidneys, nerves, heart, and blood vessels. This deficiency leads to destruction of the b-cells of

the pancreas with consequent insulin deficiency to abnormalities that result in resistance to

insulin action and reaction process. Deficiency of insulin results from inadequate insulin

secretion. This Improper insulin secretion and defects in insulin action is the primary cause of

hyperglycemia. So, the significance of insulin dose is clearly visible.

In this paper, we have taken the challenge of predicting insulin chart for Diabetic patients. We

have taken thirty-six month’s data (insulin chart) for code 33 (Regular insulin dose) of a patient.

Assuming thirty-six month’s data as training data, next thirty-six month’s charts is predicted

and compared with the actual data. We have used RNN model to predict the insulin chart by

taking the data of a diabetic patient. RNN has solved variety of problems such as- speech

recognition, language modeling, translation, image captioning etc. RNN is mainly used for

where the gap between the relevant information and the place that it’s needed is small. But

there are also cases where we need more contexts. Unfortunately, as that gap grows, RNNs

become unable to learn to connect the information. We have solved this problem by using a

special kind of RNN called LSTM (Long Short Term Memory) which is designed to avoid the

long-term dependency problem. We have trained 67% &tested 33% of our given dataset for

RNN. We use RNN for solving sequence of insulin level of hospital patient at a time. ANN is

a popular way to identify unknown and hidden patterns in data which is suitable for predicting

insulin data. For the prediction of insulin level, we use 80% train on data and 20% predict on

the train data. We use Predictive Apriori for searching if one takes insulin at breakfast & at

lunch, then what will be the accuracy to take in insulin at dinner time. Predictive Apriori mining

is the association rule for prediction of insulin level.

1.2 Motivation

Diabetes prevalence has been rising more rapidly in middle and low-income countries. The

number of people with diabetes has risen from 108 million in 1980 to 422 million in 2014. The

global prevalence of diabetes among adults over 18 years of age has risen from 4.7% in 1980

to 8.5% in 2014. A lack of insulin, or an inability to adequately respond to insulin, can each

lead to the development of the symptoms of diabetes.

Page 2 of 55

For a diabetes patient, insulin dose is necessary to control the level of glucose. The doctor of

the patient also has to know the required insulin dose from previous records of doses & from

patient’s current calculated blood sugar level. This has inspired us to make a research on how

to predict the insulin dose level of a patient before every meal.

The prediction we have done through RNN has produced a very good result. Similar kind of

insulin chart prediction for diabetes patients by Ravindra Nath was completed in December,

2013 using HMM (Hidden Markov Model). Ravindra’s sequence prediction was great but it

was time consuming. We have made that sequence prediction faster using Recurrent Neural

Network. Also, HMM doesn’t work for lot of data. LSTM in RNN addresses this issue &

designed to perform quite well for long term dependencies and works faster. LSTM maximizes

the prediction accuracy rate by minimizing error at each iteration.

Lastly, we want to tell that there are many researches going on to discover newer methods to

predict insulin dose. Despite having all those methods, we believe our research data will help

doctors to predict almost accurate insulin dose of diabetes patients.

1.3 Objective

The specific objectives of our project are as follows:

a) Insulin level sequence prediction using recurrent neural network long short term memory.

b) Discover meaningful pattern and frequent insulin level using Predictive Apriori Algorithm.

c) Prediction on train data with loss function and accuracy using Neural Network.

1.4 Contribution

Contributions in the project are as follows:

For our research, at first, we have preprocessed our raw data. After that, we have used neural

network to find out the data loss rate & the data accuracy rate of our predicted insulin dose.

Again, we have implemented LSTM (special kind of RNN used for long term dependency) to

predict the insulin dose for a patient before every meal. After all, we have generated predictive

Apriori algorithm to determine the most frequently taken insulin doses by the patients over full

day period.

Page 3 of 55

1.5 Outline

Chapter 1: This chapter represents about the motivation to work, specify the objectives and

then the contribution that we have made.

Chapter 2: Description about Machine learning, deep learning and also about the algorithms

RNN (LSTM), ANN and Predictive Apriori that we have implemented.

Chapter 3: Methodology. It shows the architectural view of our work.

Chapter 4: Implementation& flow chart of our research. The tools that have been used in the

project.

Chapter 5: Result analysis. By generating different graphs, we have shown our prediction

accuracy.

Chapter 6: At last in this chapter we have summarized our work and have pointed out our

future plans.

Page 4 of 55

CHAPTER 2

BACKGROUND STUDY

2.1 Background Study

Artificial Intelligence (AI) and Machine Learning (ML) are two very hot trendy expressions at

this moment, and frequently seem to be used interchangeably. They are not exactly a similar

thing, but the perception that they are can sometimes lead to some confusion. Broadly speaking,

Artificial Intelligence is the extensive idea of machines being able to carry out tasks in a way

that we would consider “smart”. On the other hand, Machine learning is a utilization of

manmade brainpower (AI) that provides systems the capacity to automatically learn and

improve from experience without being explicitly programmed.

Machine learning centers around the improvement of PC programs that can get to information

and utilize it learn for themselves. The process of learning begins with observations or data,

such as examples, direct experience, or instruction, in order to look for patterns in data and

make better decisions in the future based on the examples that we provide. The primary aim is

to allow the computers learn automatically without human intervention or assistance and adjust

actions accordingly.

Two of the most widely adopted machine learning methods are supervised learning and

unsupervised learning – but there are also other methods of machine learning. Here's an

overview of the most popular types.

• Supervised Learning: These algorithms are trained using labeled examples, such as

an input where the desired output is known. For example, a piece of equipment could

have data points labeled either “F” (failed) or “R” (runs). The learning algorithm

receives a set of inputs along with the corresponding correct outputs, and the algorithm

learns by comparing its actual output with correct outputs to find errors. It then modifies

the model accordingly. Through methods like classification, regression, prediction and

gradient boosting, supervised learning uses patterns to predict the values of the label on

additional unlabeled data. Supervised learning is commonly used in applications where

historical data predicts likely future events. For example, it can anticipate when credit

card transactions are likely to be fraudulent or which insurance customer is likely to file

a claim.

• Unsupervised Learning: This is used against data that has no historical labels. The

system is not told the "right answer." The algorithm must figure out what is being

shown. The goal is to explore the data and find some structure within. Unsupervised

learning works well on transactional data. For example, it can identify segments of

customers with similar attributes who can then be treated similarly in marketing

campaigns. Or it can find the main attributes that separate customer segments from each

other. Popular techniques include self-organizing maps, nearest-neighbor mapping, k-

Page 5 of 55

means clustering and singular value decomposition. These algorithms are also used to

segment text topics, recommend items and identify data outliers.

• Semi-supervised Learning: This algorithm is used for the same applications as

supervised learning. But it uses both labeled and unlabeled data for training – typically

a small amount of labeled data with a large amount of unlabeled data (because

unlabeled data is less expensive and takes less effort to acquire). This type of learning

can be used with methods such as classification, regression and prediction. Semi

supervised learning is useful when the cost associated with labeling is too high to allow

for a fully labeled training process. Early examples of this include identifying a

person's face on a web cam.

• Reinforcement learning: It is often used for robotics, gaming and navigation. With

reinforcement learning, the algorithm discovers through trial and error which actions

yield the greatest rewards. This type of learning has three primary components: the

agent (the learner or decision maker), the environment (everything the agent interacts

with) and actions (what the agent can do). The objective is for the agent to choose

actions that maximize the expected reward over a given amount of time. The agent will

reach the goal much faster by following a good policy. So the goal in reinforcement

learning is to learn the best policy.

Deep Learning is another concept of machine learning which is actually a technique for

implementing machine learning. In deep learning, a computer model learns to perform

classification tasks directly from images, text, or sound. Deep learning is a key technology

behind driverless cars, enabling them to recognize a stop sign, or to distinguish a pedestrian

from a lamppost. It is the key to voice control in consumer devices like phones, tablets,

TVs, and hands-free speakers. Deep learning is getting lots of attention lately and for good

reason. It’s achieving results that were not possible before. Deep learning models can

achieve state-of-the-art accuracy, sometimes exceeding human-level performance. Models

are trained by using a large set of labeled data and neural network architectures that contain

many layers.

Page 6 of 55

Figure 2.1: Performance comparison between Deep Learning & other Machine Learning

Algorithms

2.2 Artificial Neural Network (ANN)

The term ‘Neural’ is derived from the human (animal) nervous system’s basic functional unit

‘neuron’ or nerve cells which are present in the brain and other parts of the human (animal)

body. The development of neural networks has been key to teaching computers to think and

understand the world in the way we do, while retaining the innate advantages they hold over

us such as speed, accuracy and lack of bias.

A Neural Network is a computer system designed to work by classifying information in the

same way a human brain does. It can be taught to recognize, for example, images, and classify

them according to elements they contain. Essentially it works on a system of probability –

based on data fed to it, it is able to make statements, decisions or predictions with a degree of

certainty.

Artificial Neural Networks are the biologically inspired simulations performed on the computer

to perform certain specific tasks like clustering, classification, pattern recognition etc. A neural

network acquires knowledge through learning & this knowledge is stored within inter-neuron

connection strengths known as synaptic weights.

Page 7 of 55

• Artificial Neural Network’s working method:

Figure 2.2(a): Working method of Artificial Neural Network

Artificial neural networks can be viewed as weighted directed graphs in which artificial

neurons are nodes and directed edges with weights are connections between neuron outputs

and neuron inputs.

The Artificial Neural Network receives input from the external world in the form of pattern

and image in vector form. These inputs are mathematically designated by the notation x(n) for

n number of inputs.

Each input is multiplied by its corresponding weights. Weights are the information used by the

neural network to solve a problem. Typically, weight represents the strength of the

interconnection between neurons inside the neural network.

The weighted inputs are all summed up inside computing unit (artificial neuron). In case the

weighted sum is zero, bias is added to make the output not- zero or to scale up the system

response. Bias has the weight and input always equal to ‘1’.

The sum corresponds to any numerical value ranging from 0 to infinity. In order to limit the

response to arrive at desired value, the threshold value is set up. For this, the sum is passed

through activation function.

The activation function is set of the transfer function used to get desired output. There are linear

as well as the non-linear activation function.

Some of the commonly used activation function are — binary, sigmoidal (linear) and tan

hyperbolic sigmoidal functions (nonlinear).

Binary — the output has only two values either 0 or 1. For this, the threshold value is set up. If

the net weighted input is greater than 1, an output is assumed 1 otherwise zero.

Page 8 of 55

Sigmoidal Hyperbolic — this function has ‘S’ shaped curve. Here tan hyperbolic function is

used to approximate output from net input. The function is defined as — f (x) = (1/1+ exp (-

𝝈x)) where 𝝈 — steepness parameter.

• Architecture of Artificial Neural Networks:

A typical neural network contains a large number of artificial neurons called units arranged in

a series of layers. In typical artificial neural network, comprises a different layer –

Input layer:  It contains those units (artificial neurons) which receive input from the outside

world on which network will learn, recognize about or otherwise process.

Output layer: It contains units that respond to the information about how it’s learned any task.

Hidden layer:  These units are in between input and output layers. The job of hidden layer is

to transform the input into something that output unit can use in some way.

Figure 2.2(b): Architecture of Artificial Neural Networks

Most neural networks are fully connected that means to say each hidden neuron is fully

connected to every neuron in its previous layer (input) and to the next layer (output) layer.

Page 9 of 55

2.3 Recurrent Neural Network (RNN)

Suppose, A Bangladeshi guy living in the U.S. He has a constant flow of money from home to

U.S. and vice versa. If the USD is stronger in the market, then the Bangladeshi Currency

(Taka)goes down, hence, a person from Bangladesh buys a dollar for more takas. If the dollar

is weaker, one needs to spend fewer rupees to buy the same dollar. Predicting how much a

dollar will cost tomorrow can guide our decision making and can be very important in

minimizing risks and maximizing returns. Traditional neural networks can’t do this, and it

seems like a major shortcoming. It’s unclear how a traditional neural network could use its

previous record to predict the U.S. dollar rate for this currency exchange event.

Again, for example, consider a language model trying to predict the next word based on the

previous ones. If we are trying to predict the last word in “the clouds are in the sky,” we don’t

need any further context – it’s pretty obvious the next word is going to be sky. In such cases,

where the gap between the relevant information and the place that it’s needed is small, RNNs

can learn to use the past information.

Figure 2.3(a): Chain-like nature of Recurrent Neural Network

But there are also cases where we need more contexts. Consider trying to predict the last word

in the text “I grew up in France… I speak fluent French.” Recent information suggests that the

next word is probably the name of a language, but if we want to narrow down which language,

we need the context of France, from further back. It’s entirely possible for the gap between the

relevant information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.

Yet Thankfully, Long Short Term Memory networks (LSTM) are a special kind of RNN,

capable of learning long-term dependencies.

LSTM: In the late 90s, LSTM was proposed by Sepp Hochreiter and Jurgen Schmidhuber,

which is relatively insensitive to gap length over alternatives RNNs, hidden Markov models,

and other sequence learning methods in numerous applications [2]. LSTMs are explicitly

designed to avoid the long-term dependency problem. Remembering information for long

periods of time is practically their default behavior, not something they struggle to learn.

In standard RNNs, this repeating module will have a very simple structure, such as a single

tanh layer. LSTMs also have this chain like structure, but the repeating module has a different

Page 10 of 55

structure. Instead of having a single neural network layer, there are four, interacting in a very

special way.

Figure 2.3(b): Repeating module in a standard RNN contains a single layer

Figure 2.3(c): Repeating module in an LSTM contains four interacting layers

This model is organized in cells which include several operations. LSTM has an internal state

variable, which is passed from one cell to another and modified by operation gates.

Forget Gate

ft = σ (Wf. [ht-1, xt] + bf)

This is a sigmoid layer that takes the output at t-1 and the current input at time t, concatenates

them into a single tensor, and applies a linear transformation followed by a sigmoid. Because

of the sigmoid, the output of this gate is between 0 and 1. This number is multiplied with the

internal state and that's why the gate is called a forget gate. If ft=0, then the previous internal

state is completely forgotten, while if ft=1, it will be passed through unaltered.

Page 11 of 55

Input Gate

it = σ (Wi.[ht-1, xt] + bi)

The input gate takes the previous output and the new input and passes them through another

sigmoid layer. This gate returns a value between 0 and 1. The value of the input gate is

multiplied with the output of the candidate layer.

Ct = tanh (Wc. [ht-1, xt] + bc)

This layer applies a hyperbolic tangent to the mix of input and previous output, returning a

candidate vector to be added to the internal state.

The internal state is updated with this rule:

Ct = ft * Ct-1 + it * Ct

The previous state is multiplied by the forget gate and then added to the fraction of the new

candidate allowed by the output gate.

Output Gate

Ot = σ (Wo. [ht-1, xt] + bo)

ht = Ot * tanh Ct

This gate controls how much of the internal state is passed to the output and it works in a similar

way to the other gates.

The three gates described above have independent weights and biases, hence the network will

learn how much of the past output to keep, how much of the current input to keep, and how

much of the internal state to send out to the output.

Page 12 of 55

2.4 Predictive Apriori Algorithm

Apriori algorithm is a classical algorithm in data mining. It is used for mining frequent item

sets and relevant association rules. It is devised to operate on a database containing a lot of

transactions, for instance, items brought by customers in a store.

Predictive Apriori Algorithm: This algorithm searches with an increasing support threshold

for the best 'n' rules concerning a support-based corrected confidence value. A rule is added if

the expected predictive accuracy of the rule is among the 'n' best and it is not subsumed by a

rule with at least the same expected predictive accuracy. This is also a confidence based

association rule but in this rule ranked are sorted according to “predictive accuracy”. It tries to

maximize predictive accuracy of an association rule rather than confidence in apriori.

Predictive Accuracy: Predictive accuracy is generally used for the Predictive Apriori rule

measurement. According to Scheffer, definition of predictive accuracy is as follows: Let D be

a data file with n number of records. If [x → y] is an Association Rule which is generated by a

static process P then the predictive accuracy of [x →y] is c([x → y])=P[n] satisfies y|n satisfies

x]where distribution of ris given by the static process P and the Predictive Accuracy is the

conditional probability of x→n and y→n.

Page 13 of 55

CHAPTER 3

METHODOLOGY

3.1 Overview of the System

In the large diabetes dataset, it is difficult to predict all insulin doses from data. We here predict

only insulin dose code=33 for the prediction. Among 36 months data are trained here for

predicting. We try to find which algorithm best for predicting the sequence of Diabetes Data.

Our works for predicting insulin are as follows:

1. Take our raw diabetes data

2. Preprocess the raw data and find the data which contains 33 codes.

3. Apply RNN LSTM for predicting next state sequence of insulin level.

4. Apply ANN on insulin level with accuracy.

5. Apply Predictive algorithm to find insulin level frequent item and Association rule with

accuracy.

We first take raw diabetes dataset which contain 70000 data of various diabetes patients. We

only take code=33 which contain insulin dose where we want to measure the next insulin level

of long sequence data.

For these thinking we choose to any algorithm that predict 36 months breakfast to lunch or

dinner prediction with a consume process time. Here we found many algorithms that predict

the next observable sequence for fifteen or 20 days. But these algorithms don’t predict 2000

days data at a time. We select RNN long short-term memory for solving these algorithms. For

prove we use best prediction algorithm neural network. We compare two algorithms to know

which one gives best prediction. A last we use java machine learning tool weka to find the best

possible frequent insulin items set and mining some association rules with accuracy take 90 %

accuracy. Before Apply predictive Apriori, we eliminate 50% zeros from dataset and convert

each numerical data as a string. We will analysis RNN rmse and Ann rmse and what accuracy

gives ANN for each dataset. We will analyze the epochs and training data for ANN and Train

data score and test data score for RNN lstm.

Page 14 of 55

Figure 3.1: Structure of our Research Work

We first take raw diabetes dataset which contain 70000 data of various diabetes patients. We

only take code=33 which contain insulin dose where we want to measure the next insulin level

of long sequence data.

For these thinking we choose to any algorithm that predict 36 months breakfast to lunch or

dinner prediction with a consume process time. Here we found many algorithms that predict

the next observable sequence for fifteen or 20 days. But these algorithms don’t predict 2000

days data at a time. We select RNN long short-term memory for solving these algorithms. For

prove we use best prediction algorithm neural network. We compare two algorithms to know

which one gives best prediction. A last we use java machine learning tool weka to find the best

possible frequent insulin items set and mining some association rules with accuracy take 90 %

accuracy. Before Apply predictive Apriori, we eliminate 50% zeros from dataset and convert

each numerical data as a string. We will analysis RNN RMSE and Ann RMSE and what

accuracy gives ANN for each dataset. We will analyze the epochs and training data for ANN

and Train data score and test data score for RNN LSTM.

Raw Diabetes

Dataset

Preprocess Diabetes

Dataset

Code=33

Apply Recurrent

neural network

(LSTM)

Use Artificial Neural

Network

Apply Predictive

Apriori Algorithm

Prediction

sequence of insulin

level and next

state insulin level

Prediction on train

data with accuracy

Predicting

frequent item set

and association

rule with accuracy

Page 15 of 55

CHAPTER 4

IMPLEMENTATION

4.1 Data Set Information

The dataset is used in our research was taken from https://archive.ics.uci.edu/ml/datasets/diab

etes called UCI repository. Diabetics patient records can be obtained from two sources: an

automatic electronic recording device and paper records. The automatic device has an internal

clock to timestamp events, whereas paper records provide "logical time" slots (breakfast, lunch,

dinner, bedtime). Diabetic files consist of four fields per record. (1) Date in MM-DD-YYYY

format (2) Time in XX:YY format (3) Code (4) Value.

The code field is deciphered as follows: 33=Regular Insulin dose 54=NPH insulin dose,

35=Ultralente insulin dose, 48=Unspecified blood glucose measurement, 57=unspecified

blood glucose measurement etc.

We have taken 36 month’s data (insulin chart) for code 33i.eReguler insulin dose of a patient.

Assuming that this huge data works as training data, next one-month chart is predicted and then

it will be compared with the actual data.

Original Data and Preprocessed Data(Code=33):

Figure 4.1.1: Original Data

Page 16 of 55

Figure 4.1.2: Preprocessed Data

Implementation Code:

1. First, we first take all in a individual file. Where we take all time to convert into each

time as breakfast, dinner, lunch, bedtime.

2. Then calling function take 1 file, read it and take code 33 from that. Then extended data

frame to store file what number of file read. After extended which data file, it reads

added with the current file. Then stores it in data frame.

def get_time_table(time):

 time = time.replace(":", "")

 time = int(time)

 if time < 1200:

return "Breakfast"

elif 1200 <= time < 1600:

 return "Lunch"

elif 1600 <= time < 2000:

 return "Dinner"

elif 2000 <= time < 2400:

 return "Bedtime"

def get_presented_data(temp_data, _code):

data_list = []

 for row in temp_data.iterrows():

 if row[1][2] == _code:

 single = {"date": row[1][0], "time":

get_time_table(row[1][1]), "code": row[1][2], "level":

row[1][3]}

Page 17 of 55

data_list.append(single)

temp_all_data = [

 {'date': data_list[0]['date'], 'code':

str(data_list[0]['code']), 'Breakfast': 0, 'Lunch': 0,

'Dinner': 0, 'Bedtime': 0}]

i = 0

 for data in data_list:

 if temp_all_data[i]['date'] != data['date']:

temp_all_data.append(

 {'date': data['date'], 'code':

str(data['code']), 'Breakfast': 0, 'Lunch': 0, 'Dinner': 0,

'Bedtime': 0})

i += 1

temp_all_data[i][data['time']] = data['level']

 return temp_all_data

4.2 Implementation Diagram

Figure 4.2: Implementation Diagram of our Research Work

Raw Diabets

Dataset
Preprocessing

All individually
code dataset
process here

Using recurrent

neural network

(long short term

memory)

LSTM for Univariate

time series

prediction

Predict insulin

data compare

to actual data

Page 18 of 55

4.3 Recurrent Neural Network (Long Short Term Memory)

Procedure:

1. Load dataset from csv file.

2. Fit random seed for predictability.

3. Normalize dataset.

4. Split into train and test data.

5. Reshape input to be samples, time steps and features.

6. Create and fit LSTM neural network.

7. Make prediction.

8. Invert prediction.

9. Calculate root mean square.

10. Shift train and test data for plotting.

Description on procedural:

1. We can write a simple function to convert our single column of data into a two-column

dataset: the first column containing 36 month’s (t) days insulin column for breakfast or

lunch or dinner and the second column containing next 36month’s (t+1) insulin, to be

predicted.

Before getting first import all of function. This assumes a working scipy environment with

keras deep learning installed.

import numpy

import matplotlib.pyplot as plt

from pandas import read_csv

import math

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

2. Fix random number seed to ensure our results are reproducible.

fix random seed for reproducibility

numpy.random.seed(7)

Page 19 of 55

3. We can also use the code from the previous section to load the dataset as a Pandas data

frame. We can then extract the NumPy array from the data frame and convert the integer

values to floating point values, which are more suitable for modeling with a neural network.

load the dataset

dataframe = read_csv('person.csv', usecols=[2],

engine='python', skipfooter=3)

dataset = dataframe.values

4. LSTMs are sensitive to the scale of the input data, specifically when the sigmoid (default)

or tanh activation functions are used. It can be a good practice to rescale the data to the

range of 0-to-1, also called normalizing. We can easily normalize the dataset using the

MinMaxScaler preprocessing class from the scikit-learn library.

normalize the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

dataset = scaler.fit_transform(dataset)

5. With time series insulin data, the sequence of values is important. A simple method that we

can use is to split the ordered dataset into train and test datasets. The code below calculates

the index of the split point and separates the data into the training datasets with 67% of the

observations that we can use to train our model, leaving the remaining 33% for testing the

model.

split into train and test sets

train_size = int(len(dataset) * 0.67)

test_size = len(dataset) - train_size

train, test = dataset[0:train_size,:],

dataset[train_size:len(dataset),:]

6. The function takes two arguments: the dataset, which is a NumPy array that we want to

convert into a dataset, and the look_back, which is the number of previous time steps to

use as input variables to predict the next time period — in this case defaulted to 1.

This default will create a dataset where X is the total row of insulin in breakfast or lunch

or dinner or breakfast at a given time (t) and Y is insulin level for breakfast or dinner or

lunch or bedtime at the next time (t + 1).

Page 20 of 55

converts an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

 dataX, dataY = [], []

 for i in range(len(dataset)-look_back-1):

 a = dataset[i:(i+look_back), 0]

 dataX.append(a)

 dataY.append(dataset[i + look_back, 0])

 return numpy.array(dataX), numpy.array(dataY)

7. The LSTM network expects the input data (X) to be provided with a specific array structure

in the form of: [samples, time steps, features].

Currently, our data is in the form: [samples, features] and we are framing the problem as

one-time step for each sample. We can transform the prepared train and test input data into

the expected structure using numpy.reshape() as follows:

reshape into X=t and Y=t+1

look_back = 1

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

8. We are now ready to design and fit our LSTM network for this problem. The network has

a visible layer with 1 input, a hidden layer with 4 LSTM blocks or neurons, and an output

layer that makes a single value prediction. The default sigmoid activation function is used

for the LSTM blocks. The network is trained for 100 epochs and a batch size of 1 is used.

create and fit the LSTM network

model = Sequential()

model.add(LSTM(4, input_shape=(1, look_back)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(trainX, trainY, epochs=10, shuffle=True,

batch_size=1, verbose=2)

9. Prediction: Once the model is fit, we can estimate the performance of the model on the

train and test datasets. This will give us a point of comparison for new models.

Note that we invert the predictions before calculating error scores to ensure that

performance is reported in the same units as the original data.

Page 21 of 55

make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0],

trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0],

testPredict[:,0]))

print('Test Score: %.2f RMSE' % (testScore))

10. Finally, we can generate predictions using the model for both the train and test dataset to

get a visual indication of the skill of the model.

Because of how the dataset was prepared, we must shift the predictions so that they align

on the x-axis with the original dataset. Once prepared, the data is plotted, showing the

original dataset in blue, the predictions for the training dataset in green, and the predictions

on the unseen test dataset in red.

shift train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, :] =

trainPredict

shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict

Page 22 of 55

plot baseline and predictions

plt.plot(scaler.inverse_transform(dataset))

plt.plot(trainPredictPlot, label='train')

plt.plot(testPredictPlot, label='test')

plt.legend()

plt.show()

4.4 Artificial Neural Network

Procedure

1. Load data

2. Define model

3. Compile model

4. Fit model

5. Evaluate and prediction we implement artificial neural network, Scipy(including

Numpy)installed and we use keras and a backend (theano and tensorflow)installed.

Procedure description:

1. Whenever we work with machine learning algorithms that use a stochastic process (e.g.

random numbers), it is a good idea to set the random number seed.

This is so that you can run the same code again and again and get the same result. This is

useful if you need to demonstrate a result, compare algorithms using the same source of

randomness or to debug a part of your code.

As such, it is a binary classification problem (onset of diabetes as 1 or not as 0). All of the

input variables that describe each patient are numerical. This makes it easy to use directly

with neural networks that expect numerical input and output values, and ideal for our first

neural network in Keras.

We now load the file directly using the NumPy function loadtxt(). There are 3 input

variables and one output variable (the last column). Once loaded we can split the dataset

into input variables (X) and the output class variable (Y).

training_data_df = pd.read_csv("0-64.csv")

del training_data_df['date']

del training_data_df['code']

training_data = training_data_df

train, test = train_test_split(training_data, test_size=0.1)

X = train.drop('Lunch', axis=1).values

Page 23 of 55

Y = train[['Lunch']].values

X_test = test.drop('Lunch', axis=1).values

Y_test = test[['Lunch']].values

2. Models in Keras are defined as a sequence of layers.

We create a Sequential model and add layers one at a time until we are happy with our

network topology.

The first thing to get right is to ensure the input layer has the right number of inputs. This

can be specified when creating the first layer with the input_dim argument and setting it

to 3 for the 50 input variables.

We will use a fully-connected network structure with three layers.

Fully connected layers are defined using the Dense class. We can specify the number of

neurons in the layer as the first argument, the initialization method as the second argument

as init and specify the activation function using the activation argument.

We will use the rectifier (‘relu‘) activation function on the first three layers and the sigmoid

function in the output layer. It used to be the case that sigmoid and tanh activation functions

were preferred for all layers. These days, better performance is achieved using the rectifier

activation function. We use a sigmoid on the output layer to ensure our network output is

between 0 and 1 and easy to map to either a probability of class 1 or snap to a hard

classification of either class with a default threshold of 0.5.

We can piece it all together by adding each layer. The first layer has 50 neurons and expects

3 input variables. The second hidden layer has 100 neurons and finally, the output layer has

1 neuron to predict the class (onset of diabetes or not).

Define the model

model = Sequential()

model.add(Dense(50, input_dim=3, activation='relu'))

model.add(Dense(100, activation='relu'))

model.add(Dense(50, activation='relu'))

model.add(Dense(1, activation='linear'))

model.compile(loss='mean_squared_error', optimizer='adam',

metrics=['acc'])

Page 24 of 55

3. Now that the model is defined, we can compile it.

Compiling the model uses the efficient numerical libraries under the covers (the so-called

backend) such as Theano or TensorFlow. The backend automatically chooses the best way

torepresent the network for training and making predictions to run on your hardware, such

as CPU or GPU or even distributed.

When compiling, we must specify some additional properties required when training the

network. Remember training a network means finding the best set of weights to make

predictions for this problem.

We must specify the loss function to use to evaluate a set of weights, the optimizer used to

search through different weights for the network and any optional metrics we would like to

collect and report during training.

In this case, we will use logarithmic loss, which for a binary classification problem is

defined in Keras as “mean_squared_error“. We will also use the efficient gradient descent

algorithm “adam” for no other reason that it is an efficient default and metrics=”acc” to

find accuracy.

model.compile(loss='mean_squared_error', optimizer='adam',

metrics=['acc'])

4. We have defined our model and compiled it ready for efficient computation.

Now it is time to execute the model on some data.

We can train or fit our model on our loaded data by calling the fit() function on the model.

The training process will run for a fixed number of iterations through the dataset called

epochs, that we must specify using the nepochs argument. We can also set the number of

instances that are evaluated before a weight update in the network is performed, called the

batch size and set using the batch_size argument.

For this problem, we will run for a small number of iterations (len(train_data)). Again, these

can be chosen experimentally by trial and error.

Train the model

model.fit(

 X,

 Y,

 epochs=len(training_data),

 shuffle=True

)

Page 25 of 55

5. We have trained our neural network on the entire dataset and we can evaluate the

performance of the network on the same dataset.

This will only give us an idea of how well we have modeled the dataset (e.g. train accuracy),

but no idea of how well the algorithm might perform on new data. We have done this for

simplicity, but ideally, you could separate your data into train and test datasets for training

and evaluation of your model.

You can evaluate your model on your training dataset using the evaluate() function on your

model and pass it the same input and output used to train the model.

This will generate a prediction for each input and output pair and collect scores, including

the average loss and any metrics you have configured, such as accuracy.

test_error_rate = model.evaluate(X_test, Y_test, verbose=0)

print("The mean squared error (MSE) for the test data set is:

{}".format(test_error_rate))

4.5 Predictive Apriori Algorithm Implementation with Weka

Implementation 1: We take string data for each column of bedtime, breakfast, dinner, lunch.

Due to some numerical problem of row wise prediction we convert the dataset with like this

Dinner=2, we write in dataset Dinner=” twoD”. Because if Apriori does not find any string

they cannot find item set or association rule.

Implementation 2:

Figure 4.5.1: Weka Implementation

Page 26 of 55

Implementation3:

Implementation 4:

Figure 4.5.2: Predictive Apriori

Page 27 of 55

CHAPTER 5

RESULT AND ANALYSIS

5.1 Recurrent Neural Network LSTM Prediction

After preprocessing data, we implement RNN LSTM for predicting next state sequence of

insulin data. RNN takes data as a sequence. For this it is easy to predict for RNN to predict any

sequence of data. We have a large 70 dataset of text file where each contain 1000 data. After

preprocessing, we got only 130 data each file of code =33, which contains only insulin regular

dose. We have four states of breakfast, lunch, dinner, bedtime. We here predict each of each

state’s insulin value by RNN. We measure 100 epochs for iteration to this algorithm. The

performance of each prediction gives RNN a good test score RMSE or a bad test score RMSE

or an average test RMSE.

5.1.1 Breakfast Prediction

We train column 2 on the dataset from (0-14) dataset. Almost 655 data found after

preprocessing. We train breakfast 67% and test 33%. RNN predicts from columns 2. On the

Figure 5.1.1.1,RNN lstm predicts well. After 100 epochs, loss will be decreasing. If epochs

will increase, the prediction of 655 data will be quite accurate.

Figure 5.1.1.1: Breakfast Prediction (0-14) Dataset

In Figure 5.1.1.1, RNN just predicts sequentially. For improving prediction need more epochs

and data, it can predict very well. In this Figure, RNN seems done very good job.

Page 28 of 55

Figure 5.1.1.2: Breakfast Prediction (0-31) Dataset

On the Figure 5.1.1.2, dataset is better from previous. We take (0-31) dataset which contains

1595 data. Data prediction seems quite good. Blue color on the graph actually predict data,

orange and green color graph actually train and test data. RNN improves for predicting in this

graph. In this graph, we need too much epochs for better plot. But system will be slow. We

keep it 100 because 1000 epochs need too much time.

Figure 5.1.1.3: Breakfast Prediction (0-46) Dataset

Page 29 of 55

On the Figure 5.1.1.3 dataset, from (0-46) preprocessed data 2050, RNN evaluates this data

performance better from previous 2 plots. RNN takes too many sequences once a time. When

it takes more data, it gives prediction very well. In previous data plot, data will not fit properly

due to less of data. For this RNN prediction gives graph plot too many wrong predictions. But

when it gets this type of data, prediction of next state sequence will be better. On the 2050 data,

graph fits very well and RNN predicts this data very well.

Figure 5.1.1.4: Breakfast Prediction (0-64) Dataset

In Figure 5.1.1.4, predictions are slightly better than previous plot. When it gets too much data,

predicts is absolutely brilliant. Most of time predictions are slightly better. What is the benefit

of RNN is, don’t need to calculation each of the state. It is the biggest advantage of RNN. It

predicts whatever gives sequence. This will be better if we give epochs 1000. RNN improves

prediction in every state.

Page 30 of 55

5.1.2 Lunch Prediction

In lunch, Insulin level was not too high. During this time, prediction RNN just predicts next

state sequence. RNN takes sequence to its three gates where forget, input and output gates give

the prediction of sequence.

Figure 5.1.2.1: Lunch Prediction (0-14) Dataset

Here in Figure 5.1.2.1, predicted data quietly under fit. We predict from dataset (0-14) 655

preprocessed data in 655 days. Each day of data are different from previous data. RNN needs

this sequence where it has the ability to predict from its own gates. From the differences of

other algorithm, it doesn’t need to calculate each of these states. It predicts a sequence of 655

days data with a 100 epochs.

Figure 5.1.2.2: Lunch Prediction (0-31) Dataset

Page 31 of 55

In Figure 5.1.2.2, the insulin level of this graph is very low. We know insulin level of human

body can take (2-11) .RNN predicts this graph overfitting. Predicted value does not differ too

much from actual data. RNN does a good work after each day predicting. Dataset from (0-31)

about 1595 data, RNN gets more data for predicting than previous plot. This plot seems very

good prediction than the previous.

Figure 5.1.2.3: Lunch Prediction (0-46) Dataset

In Figure 5.1.2.3, Dataset from (0-46) contains data 2050, prediction on this data is improving.

Figure 5.1.2.3 above seems very good after predicting than previous two plots. RNN gives this

opportunity to every sequence prediction, if we give too much data and epochs, then the loss

functions are decreasing, then we find a very good plot.

Figure 5.1.2.4: Lunch Prediction (0-64) Dataset

RNN predicts this well than previous three plots. Here dataset from (0-64) and 2905 data. RNN

impressively predict this large 2905-day data. Predicted data are plotted on the similar to actual

Page 32 of 55

data. Moreover, we have got 90% accuracy in this graph. Loss functions are decreasing here.

RNN lstm proves that observable sequence of data prediction it is master of technique.

5.1.3 Dinner Prediction

In Dinner time insulin level is high for each person.

Figure 5.1.3.1: Dinner Prediction (0-14) Dataset

In Figure 5.1.3.1 predicted data looks so good. The improvement of prediction looks RNN very

strong. For 655 preprocessed data RNN easily can predict. The accuracy of Figure 5.1.3.1 very

well. The number of epoch will increase, we will improve plotted data will be improved

gradually.

Figure 5.1.3.2: Dinner Prediction (0-31) Dataset

In the Figure 5.1.3.2 dataset from (0-31) where 1545 data is predicted on the actual data. RNN

lstm predicted well. It seems data was fitting very well on the actual data. The whole graph

predicted insulin level with the time series and epochs. If we improve epochs with RNN, graph

will gradually be a better shape.

Page 33 of 55

Figure 5.1.3.3: Dinner Prediction (0-46) Dataset

In the Figure 5.1.3.3 dataset from (0-46),2050 preprocessed data predicted on the actual data.

Predicted data are quite impressive on the actual data. Data are very fit on the actual data. RNN

lstm predicts these previous two plots well.

Figure 5.1.3.4: Dinner Prediction (0-64) Dataset

In the Figure 5.1.3.4 we predicted 2905 data on the actual value. Prediction looks good to this

dataset. This prediction goes better because we take more data from previous three plots. When

we take too many data, loss will be decreasing and predicted data will fit correctly fit on actual

data.

Page 34 of 55

5.1.4 Bedtime Prediction

Figure 5.1.4.1: Bedtime Prediction (0-14) Dataset

In the Figure 5.1.4.1, most of time bedtime almost zero in the dataset. RNN try to predict for

this low-level insulin and predict almost looks good for this graph.

Figure 5.1.4.2: Bedtime Prediction (0-31) Dataset

In the Figure 5.1.4.2 we take minimum 1545 data to predict bedtime sequence of next state

prediction. Hence bedtime times show almost zero, so almost predict through these difficulty

very well.

Page 35 of 55

Figure 5.1.4.3: Bedtime Prediction (0-46) Dataset

In the Figure 5.1.4.3 almost 2000 data was trained for predicting in bed time. Hence most of

data is zero, graph does not show much, although it will predict well on dataset.

Figure 5.1.4.4: Bedtime Prediction (0-64) Dataset

We take almost all preprocessed data, predict level was not too good because bedtime insulin

level almost goes zero to this time.

Page 36 of 55

5.2 Prediction train Score and test Score (RMSE)

Table 5.2.1: Breakfast Prediction

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE)

0-14 655 2.38 2.37

0-31 1545 2.88 2.18

0-46 2050 2.64 2.28

0-64 2905 2.79 2.28

In the Table 5.2.1, we divided our dataset 4 times and takes train score and test score upon the

prediction of RNN lstm on the insulin level. When we take (0-14) 655 data, we see that RNN

predicts that average insulin level prediction on train data is 2.38 and test data 2.37 where we

see train data is greater than the test data. So, we conclude that test data are underfitting on

train data score. So RNN predicts insulin level very well.

Figure 5.2.1: Breakfast Prediction

In the Figure 5.2.1 Train data goes high on the test data. So, test data underfit over train data.

RNN predicts well in breakfast. But some of reasons, prediction test score goes underfit. But

prediction looks good.

Table 5.2.2: Lunch prediction

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE)

0-14 655 1.20 2.19

0-31 1545 1.99 1.84

0-46 2050 2.21 1.80

0-64 2905 2.55 2.15

In the lunch time, we see for data 655 predicted score that means test score on average high on

train score. For the next state observation test score is overfitting on the train score. So RNN

Page 37 of 55

predicts very good on the sequence of next state insulin level. For data 1545 train score goes

underfit, because lunch time some person cannot take insulin. For data 2050 train score error

2.21 where test score error 1.80, quite good prediction by RNN.

Figure 5.2.2: Lunch Prediction

In the Figure 5.2.2, Train score goes above of test score that means test score underfit in the

prediction. On average the prediction is good for RNN lstm, when we get 2050 data, train data

slide predicted well upon the test data. In the Figure 5.2.2 next step prediction, it predicts quite

well. When we get 2905 data preprocessed, score will be increasing and loss function will be

decreasing.

Table 5.2.3: Dinner Prediction

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE)

0-14 655 2.13 2.50

0-31 1545 2.76 2.36

0-46 2050 2.84 2.92

0-64 2905 3.20 3.55

In the Table 5.2.3, From the data (0-14) on dinner time test score upon insulin level prediction

quite high that means test score on average outfit the train score in whole dataset. RNN

predicted the next state of dinner time insulin very well. For 1545 data, test score gradually

underfit, for 2050 data test score over fit and predict next state sequence very well. RNN

computes this with time series. For time series prediction ,RNN gives a long sequence of data

with 100 epochs. If we maximize this epoch, then it will be good for the loss function, both

train score and test score.

Page 38 of 55

Figure 5.2.3: Dinner Prediction

In the Figure 5.2.3 test score goes up over the train score. Test score perfectly fit on the actual

data. For train score its prediction is quite well though.

Table 5.2.4: Bedtime Prediction

Dataset Data(preprocessed) Train Score(RMSE) Test Score(RMSE)

0-14 655 1.67 2.60

0-31 1545 3.57 6.20

0-46 2050 3.17 4.74

0-64 2905 2.97 3.26

In the Table 5.2.4 from (0-14) data set test score over fit, from (0-31) data set test score overfit

more and this time test score fail to predict from the actual data, from (0-46) test score overfit

through train score, (0-64) test score overfit upon the train score. When data increases, lstm

predicts well next step sequence.

Figure 5.2.4: Bedtime Prediction

Page 39 of 55

In the Figure 5.2.4, test score of each dataset improves the train score. Test score overfits the

train score and prediction are quite well on this Figure 5.2.4. RNN LSTM just predicted well

on actual data in bedtime.

5.3 Artificial Neural Network:

Artificial neural network combined of input layer, hidden layer and output layer. Here in ANN

trained data with same number of epoch and calculate MSE and accuracy to prediction on train

data and find how to measure loss and MSE based on train data with accuracy.

For Bedtime:

Table 5.3.1: Bedtime Prediction

Data Set Data Epoch

Training

Data MSE (%) Accuracy

0-14 655 655 588 4.758682193 39.39393939

0-31 1545 1545 1389 6.154442058 54.83870937

0-46 2050 2050 1844 5.524987688 48.29268307

0-64 2905 2905 2613 5.667004256 50.85910653

Figure 5.3.1: Bedtime Prediction

In the Figure 5.3.1, when we take small data with same number of epoch to predict on insulin

level goes less accuracy. We take (0-14) dataset where 655 data with 655 epoch , find accuracy

39%,where large dataset predict on trained data with accuracy improved with 50%.

Page 40 of 55

For Breakfast:

Table 5.3.2: Breakfast Prediction

Data Set Data Epoch

Training

Data MSE (%) Accuracy

0-14 655 655 588 10.79077052 18.18181818

0-31 1545 1545 1389 13.21224167 25.16129023

0-46 2050 2050 1844 9.997701812 30.24390251

0-64 2905 2905 2613 10.95711449 17.86941581

Figure 5.3.2: Breakfast Prediction

In the Figure 5.3.2, ANN we see, small datasets give too much error and accuracy does not

improve, where (0-46) dataset ANN algorithm gives less error with high accuracy of insulin

prediction. With same data type epoch in dinner prediction accuracy falls in the (0-64) dataset.

When large dataset goes less prediction of accuracy, prediction goes fail in time.

0

5

10

15

20

25

30

35

0-14 0-31 0-46 0-64

In Breakfast

MSE(%) Accuracy

Page 41 of 55

For Dinner:

Table 5.3.3: Dinner Prediction

Data Set Data Epoch

Training

Data MSE(%) Accuracy

0-14 655 655 588 26.19357392 21.21212121

0-31 1545 1545 1389 12.80214388 29.67741939

0-46 2050 2050 1844 14.44231148 27.31707321

0-64 2905 2905 2613 13.27945396 24.74226804

Figure 5.3.3: Dinner Prediction

In the Figure 5.3.3, ANN gives prediction for small data with more errors and less accuracy.

In big dataset, it will give small error with comfortable prediction accuracy. Epoch with same

data type gives ANN a largest advantage with predictions accuracy and less error.

Unfortunately (0-46) dataset give perfect accuracy for in all dataset.

For Lunch:

Table 5.3.4: Lunch Prediction

Data Set Data Epoch

Training

Data MSE (%) Accuracy

0-14 655 655 588 6.743752022 19.69697

0-31 1545 1545 1389 6.809755664 27.09677

0-46 2050 2050 1844 6.334257019 24.39024

0-64 2905 2905 2613 8.058921011 32.98969

Page 42 of 55

Figure 5.3.4: Lunch Prediction

In the Table 5.3.4 and Figure 5.3.4, for prediction lunch time insulin, we find largest dataset to

get most accuracy and most MSE error. ANN predicted lunch time with accurately and

perfectly.

5.4 Comparison between RNN LSTM and Artificial Neural Network

RNN and ANN, both is different type neural network. ANN has three layers and RNN has three

gates. We are likely to find out which algorithm give us the best prediction on the comparison

with RMSE where RNN we use 100 epoch and ANN where we use same data type with same

epoch.

For Bedtime:

Table 5.4.1: Bedtime Comparison

 RNN LSTM ANN

Dataset Data

RMSE (Epoch

100) RMSE

0-14 655 2.7889 4.758682193

0-31 1545 12.7449 6.154442058

0-46 2050 10.0489 5.524987688

0-64 2905 8.8209 5.667004256

0

5

10

15

20

25

30

35

0-14 0-31 0-46 0-64

MSE(%) Accuracy

Page 43 of 55

Figure 5.4.1: Bedtime Comparison

In the Figure 5.4.1, we see that for the bedtime are more RMSE with 100 epochs where ANN

with same RMSE with same type of epoch.

For the comparison from dataset (0-64) ANN give better insulin level prediction than the RNN

with 100 epochs. Though epoch was not same ANN gives perfect accuracy and prediction.

ANN just gives perfect accuracy with RMSE.

In the graph shows that RNN goes high than the ANN. RNN fails here for prediction. Some

memory gate may fail to this work. But ANN give less error with better accuracy. So ANN

predicts better.

For Breakfast:

Table 5.4.2: Breakfast Comparison

 RNN LSTM ANN

Dataset Data

RMSE (Epoch

100) RMSE

0-14 655 5.6644 10.79077052

0-31 1545 8.2944 13.21224167

0-46 2050 6.9696 9.997701812

0-64 2905 7.7841 10.95711449

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500

In BedTime

RNN LSTM RMSE(Epoch 100) ANN RMSE

Page 44 of 55

Figure 5.4.2: Breakfast Comparison

In the above Figure 5.4.2, RNN lstm gives less RMSE with fewer epochs where ANN gives

too much error with same type of errors. Here RNN predicts too well than the ANN. Solve this

ANN,RNN use three gates to overcome this neural network prediction.

In the above graph RNN goes lower error with the comparison of ANN. So here RNN gives

better prediction of insulin

For Dinner:

Table 5.4.3: Dinner Comparison

 RNN LSTM ANN

Dataset Data

RMSE (Epoch

100) RMSE

0-14 655 4.5369 26.19357392

0-31 1545 7.6176 12.80214388

0-46 2050 8.0656 14.44231148

0-64 2905 10.24 13.27945396

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500

In Breakfast

RNN LSTM RMSE(Epoch 100) ANN RMSE

Page 45 of 55

Figure 5.4.3: Dinner Comparison

In the Figure 5.4.3 for dinner RNN lstm gives less error with small epoch where ANN gives

too much error where prediction on insulin. Here RNN gives better predict sequence of insulin

where ANN gives less prediction with the comparison with RNN.

For Lunch:

Table 5.4.4: Lunch Comparison

 RNN LSTM ANN

Dataset Data

RMSE (Epoch

100) RMSE

0-14 655 1.44 6.743752022

0-31 1545 3.9601 6.809755664

0-46 2050 4.8841 6.334257019

0-64 2905 6.5025 8.058921011

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500

In Dinner

RNN LSTM RMSE(Epoch 100) ANN RMSE

Page 46 of 55

Figure 5.4.4: Lunch Comparison

In the Table 5.4.4 comparison with RNN and ANN, RNN gives less errors prediction with 100

epoch and ANN gives too much errors with same type of data with same number of epoch.

Here RNN gives better prediction than ANN.

In the Figure 5.4.4 RNN goes lower where ANN gives high errors with lots of epoch. here

RNN gives perfect prediction with small epoch.

In all prediction with results and analysis that three out of four-column’s sequence are predicted

well by RNN. So, here we come to finish the decision that RNN gives with best prediction in

the insulin level of a patient for the next state prediction and sequence prediction with less error

than ANN prediction on train data.

5.5 Predictive Apriori Algorithm

 In the Predictive Apriori algorithm, we use weka to find association rule. Due to numerical

dataset we convert each data as a string like Dinner=insulin 9, we write dataset Dinner=”

nineD” for the finding frequent item sets and association rules. Here After predict Apriori

implementation we find 100 association rules where in predictive Apriori doesn’t give

confidence level, it gives the accuracy of each association rule. We choose 92% accuracy to

find best row wise pair for prediction insulin.

 1. Bedtime=twoB Breakfast=fiveM Lunch=threeL 67 ==> Dinner=sixD 67 acc:(0.99482)

 2. Bedtime=sixB Breakfast=fiveM Dinner=sixD 16 ==> Lunch=threeL 16 acc:(0.992)

 3. Bedtime=sixB Breakfast=fiveM Lunch=threeL 16 ==> Dinner=sixD 16 acc:(0.992)

 4. Breakfast=tenM Lunch=sixteenL 7 ==> Dinner=twelveD 7 acc:(0.97711)

 5. Bedtime=twoB Dinner=tenD Lunch=tenL 7 ==> Breakfast=tenM 7 acc:(0.97711)

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500

In Lunch

RNN LSTM RMSE(Epoch 100) ANN RMSE

Page 47 of 55

 6. Breakfast=fifteenM Dinner=fifteenD 6 ==> Lunch=sixL 6 acc:(0.96911)

 7. Bedtime=threeB Breakfast=fiveM Dinner=sixD 71 ==> Lunch=threeL 68 acc:(0.95928)

 8. Breakfast=fiveM Lunch=threeL 192 ==> Dinner=sixD 185 acc:(0.95916)

 9. Breakfast=twelveM Lunch=fourteenL 5 ==> Dinner=twelveD 5 acc:(0.95512)

 10. Breakfast=eightM Dinner=elevenD 5 ==> Bedtime=threeB 5 acc:(0.95512)

 11. Breakfast=oneM Dinner=threeD 5 ==> Lunch=zeroL 5 acc:(0.95512)

 12. Bedtime=threeB Breakfast=tenM Lunch=sevenL 5 ==> Dinner=tenD 5 acc:(0.95512)

 13. Bedtime=twoB Breakfast=fiveM Lunch=oneL 5 ==> Dinner=sevenD 5 acc:(0.95512)

 14. Bedtime=oneB Breakfast=fiveM Dinner=sixD 36 ==> Lunch=threeL 34 acc:(0.94609)

 15. Breakfast=fiveM Dinner=sixD 195 ==> Lunch=threeL 185 acc:(0.94416)

 16. Dinner=oneD 4 ==> Lunch=zeroL 4 acc:(0.92949)

 17. Bedtime=threeB Lunch=fourteenL 4 ==> Dinner=twelveD 4 acc:(0.92949)

 18. Breakfast=fifteenM Dinner=eighteenD 4 ==> Lunch=sixL 4 acc:(0.92949)

 19. Breakfast=eightM Dinner=twoD 4 ==> Lunch=zeroL 4 acc:(0.92949)

 20. Breakfast=eightM Lunch=nineL 4 ==> Bedtime=threeB 4 acc:(0.92949)

For insulin prediction, all the analysis on RNN, ANN and predictive, we tell that if a patient or

doctor want to know the next state prediction, we can easily tell them by applying RNN Long

Short Term Memory algorithm which gives a higher prediction analysis than above all other

algorithm.

Page 48 of 55

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have described a machine learning approach of predicting insulin dose levels and presented

the results of experiments. From the graphs we have shown the comparison between predicted

data & data and it can be observed that results are very encouraging and reliable. Our method

has passed all criteria of predicting a long sequence problem. We have trained our data in a

time consuming process and fulfill the achievements. In conclusion we can say that if we train

our system with more input data set, it generates more error free insulin prediction.

6.2 Future Work

A) Prediction for remaining Insulin dose codes:

We have done prediction using RNN for Regular Insulin dose (code=33). In future we will

work for other Insulin doses like NPH insulin dose (code=34), Ultralente insulin dose

(code=35).

B) Prediction using Beum Welch Algorithm:

We have reached our goal using LSTM (RNN). But we want to implement other sequence

prediction algorithms like Beum Welch with this same data set to compare the results & also

to see how much efficient is Beum Welch than our LSTM.

C) Compare with Randomized Algorithm:

We would like to compare the results by implementing randomized algorithm.

Page 49 of 55

Bibliography

[1]"Understanding LSTM Networks - colah's blog", Colah.github.io, 2017. [Online]. Availabl

e: http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 29- Nov- 2017].

[2]"Time Series Prediction Using Recurrent Neural Networks (LSTMs) - DZone AI",

dzone.com, 2017. [Online]. Available: https://dzone.com/articles/time-series-prediction-using-

recurrent-neural-netw. [Accessed: 29-Nov-2017].

[3]"Forbes Welcome", Forbes.com, 2017. [Online]. Available: https://www.forbes.com/sites/

bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-

learning/#283aaee12742. [Accessed: 29-Nov-2017].

[4]"Overview of Artificial Neural Networks and its Applications", Hacker Noon, 2017.

[Online]. Available: https://hackernoon.com/overview-of-artificial-neural-networks-and-its-

applications-2525c1addff7. [Accessed: 29-Nov-2017].

[5]"A beginner's tutorial on the apriori algorithm in data mining with R implementation |

HackerEarth Blog", Blog.hackerearth.com, 2017. [Online]. Available: http://blog.hackerearth

.com/beginners-tutorial-apriori-algorithm-data-mining-r-implementation. [Accessed: 29-Nov-

2017].

[6]"Apriori algorithm", En.wikipedia.org, 2017. [Online]. Available: https://en.wikipedia.org/

wiki/Apriori_algorithm. [Accessed: 29-Nov-2017].

[7]"What is Machine Learning? A definition - Expert System", Expertsystem.com, 2017.

[Online]. Available: http://www.expertsystem.com/machine-learning-definition/. [Accessed:

29-Nov-2017].

[8]"The Difference Between AI, Machine Learning, and Deep Learning? | NVIDIA Blog", The

Official NVIDIA Blog, 2017. [Online]. Available: https://blogs.nvidia.com/blog/2016/07/29/

whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/. [Accessed: 29-

Nov-2017].

[9]"Deep Learning Use Cases - Data Science Pop-up Seattle", Slideshare.net, 2017. [Online].

Available: https://www.slideshare.net/dominodatalab/data-science-popup-seattle-deep-

learning-use-cases. [Accessed: 29-Nov-2017]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://dzone.com/articles/time-series-prediction-using-recurrent-neural-netw
https://dzone.com/articles/time-series-prediction-using-recurrent-neural-netw
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#283aaee12742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#283aaee12742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#283aaee12742
https://hackernoon.com/overview-of-artificial-neural-networks-and-its-applications-2525c1addff7
https://hackernoon.com/overview-of-artificial-neural-networks-and-its-applications-2525c1addff7
http://blog.hackerearth.com/beginners-tutorial-apriori-algorithm-data-mining-r-implementation
http://blog.hackerearth.com/beginners-tutorial-apriori-algorithm-data-mining-r-implementation
https://en.wikipedia.org/wiki/Apriori_algorithm
https://en.wikipedia.org/wiki/Apriori_algorithm
http://www.expertsystem.com/machine-learning-definition/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.slideshare.net/dominodatalab/data-science-popup-seattle-deep-learning-use-cases
https://www.slideshare.net/dominodatalab/data-science-popup-seattle-deep-learning-use-cases

Page 50 of 55

APPENDIX A

A.1 Preprocessing from Dataset

import pandas as pd

import numpy as np

np.random.seed(42)

fileNumbers = ['01', '02', '03', '04', '05', '06', '07', '08',

'09', '10', '11', '12', '13', '14', '15', '16', '17', '18',

'19', '20', '21', '22', '23', '24', '25', '26', '27', '28',

'29', '30', '31', '32', '33', '34', '35', '36', '37', '38',

'39', '40', '41', '42', '43', '44', '45', '46', '47', '48',

'49', '50', '51', '52', '53', '54', '55', '56', '57', '58',

'59', '60', '61', '62', '63', '64', '65', '66', '67', '68',

'69', '70']

def get_time_table(time):

 time = time.replace(":", "")

 time = int(time)

 if time < 1200:

 return "Breakfast"

 elif 1200 <= time < 1600:

 return "Lunch"

 elif 1600 <= time < 2000:

 return "Dinner"

 elif 2000 <= time < 2400:

 return "Bedtime"

def get_presented_data(temp_data, _code):

 data_list = []

 for row in temp_data.iterrows():

 if row[1][2] == _code:

 single = {"date": row[1][0], "time":

get_time_table(row[1][1]), "code": row[1][2], "level":

row[1][3]}

 data_list.append(single)

 temp_all_data = [

Page 51 of 55

 {'date': data_list[0]['date'], 'code':

str(data_list[0]['code']), 'Breakfast': 0, 'Lunch': 0,

'Dinner': 0, 'Bedtime': 0}]

 i = 0

 for data in data_list:

 if temp_all_data[i]['date'] != data['date']:

 temp_all_data.append(

 {'date': data['date'], 'code':

str(data['code']), 'Breakfast': 0, 'Lunch': 0, 'Dinner': 0,

'Bedtime': 0})

 i += 1

 temp_all_data[i][data['time']] = data['level']

 return temp_all_data

all_data = []

temp_data01 = pd.read_csv('datasets/data-'+fileNumbers[16],

header=None, delim_whitespace=True)

all_data.extend(get_presented_data(temp_data01, 33))

data_frame = pd.DataFrame.from_dict(data=all_data,

orient='columns')

loaded_frame = pd.read_csv('person.csv')

frames = [data_frame, loaded_frame]

result_frame = pd.concat(frames)

result_frame.to_csv('person.csv', index=0)

A.2 Prediction using Recurrent Neural Network Long Short Term Memory

LSTM for international airline passengers’ problem with regression framing

import numpy

import matplotlib.pyplot as plt

from pandas import read_csv

import math

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

Page 52 of 55

convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

dataX, dataY = [], []

for i in range(len(dataset)-look_back-1):

a = dataset[i:(i+look_back), 0]

dataX.append(a)

dataY.append(dataset[i + look_back, 0])

return numpy.array(dataX), numpy.array(dataY)

fix random seed for reproducibility

numpy.random.seed(7)

load the dataset

dataframe = read_csv('person.csv', usecols=[2],

engine='python', skipfooter=3)

dataset = dataframe.values

print(dataset)

dataset = dataset.astype('float32')

normalize the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

dataset = scaler.fit_transform(dataset)

split into train and test sets

train_size = int(len(dataset) * 0.67)

test_size = len(dataset) - train_size

train, test = dataset[0:train_size,:],

dataset[train_size:len(dataset),:]

reshape into X=t and Y=t+1

look_back = 1

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

reshape input to be [samples, time steps, features]

Page 53 of 55

trainX = numpy.reshape(trainX, (trainX.shape[0], 1,

trainX.shape[1]))

testX = numpy.reshape(testX, (testX.shape[0], 1,

testX.shape[1]))

create and fit the LSTM network

model = Sequential()

model.add(LSTM(4, input_shape=(1, look_back)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(trainX, trainY, epochs=10, shuffle=True,

batch_size=1, verbose=2)

make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0],

trainPredict[:,0]))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0],

testPredict[:,0]))

print('Test Score: %.2f RMSE' % (testScore))

shift train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, :] =

trainPredict

shift test predictions for plotting

Page 54 of 55

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)

-1, :] = testPredict

plot baseline and predictions

plt.plot(scaler.inverse_transform(dataset))

plt.plot(trainPredictPlot, label='train')

plt.plot(testPredictPlot, label='test')

plt.legend()

plt.show()

A.3 Prediction using Artificial Neural Network

import pandas as pd

from keras.models import Sequential

from keras.layers import *

import numpy as np

from sklearn.model_selection import train_test_split

training_data_df = pd.read_csv("0-64.csv")

del training_data_df['date']

del training_data_df['code']

training_data = training_data_df

train, test = train_test_split(training_data, test_size=0.1)

X = train.drop('Lunch', axis=1).values

Y = train[['Lunch']].values

X_test = test.drop('Lunch', axis=1).values

Y_test = test[['Lunch']].values

Define the model

model = Sequential()

model.add(Dense(50, input_dim=3, activation='relu'))

model.add(Dense(100, activation='relu'))

model.add(Dense(50, activation='relu'))

model.add(Dense(1, activation='linear'))

Page 55 of 55

model.compile(loss='mean_squared_error', optimizer='adam',

metrics=['acc'])

Train the model

model.fit(

 X,

 Y,

 epochs=len(training_data),

 shuffle=True

)

test_error_rate = model.evaluate(X_test, Y_test, verbose=0)

print("The mean squared error (MSE) for the test data set is:

{}".format(test_error_rate))

