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ABSTRACT  

The finite element method is a numerical technique used to perform finite element 

analysis of any given physical phenomenon. Finite element method is necessary to 

use mathematics to comprehensively understand and quantify any physical 

phenomena, such as structural or fluid behavior, thermal transport, wave 

propagation and the growth of biological cells etc. Here, in this thesis we showed 

the implementation of finite element method with the help of boundary value 

problem and the galerkin methods. Galerkin methods are a class of methods for 

converting a continuous operator problem to a discrete problem. In this thesis we 

used galerkin finite element method solution to solve 2D boundary valued problem 

using triangular elements. We developed a Matlab code to solve 2D boundary 

value problem. Then we got analytical and numerical solutions with proper figures. 

You will see those solutions and figures in our thesis paper.   
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1.1 Introduction 

 

The Finite Element Method (FEM) is a numerical technique to find approximate solutions of 

partial differential equations. It had been originated from the necessity of resolution 

complicated snap and structural analysis issues in Civil, Mechanical and part engineering etc. 

In a very structural simulation, FEM helps in manufacturing stiffness and strength 

visualizations. It also conjointly helps to minimize material weight and its price of the 

structures. FEM allows for elaborate visual image and indicates the distribution of stresses 

and strains within the body of a structure. Several of FE software are powerful yet complex 

tool - meant for skilled engineers with the coaching and education necessary to properly 

interpret the results.   

 

Several fashionable FEM packages embody specific element like fluid, thermal, magnetism 

and structural operating environments. FEM permits entire styles to be made, refined and 

optimized before the design is manufactured. This powerful design tool has considerably 

improved both the quality of engineering designs and therefore the methodology of the 

design method in several industrial applications. The utilization of FEM has significantly 

diminished the time to take products from idea to the assembly line. 

 

1.2 History of finite element method 

 

 

The finite element analysis are often derived back to the work by Alexander Hrennikoff 

(1941)and Richard Courant(1942). Hrenikoff introduced the framework methodology, during 

which a plane elastic medium was drawn as collections of bars and beams.These pioneers 

share one essential characteristic: mesh discretization of a nonstop domain into a collection of 

discrete sub-domains, usually called elements.  

Below some advancement in time- link about FEM is illustrated:  

 

 In 1950s, solution of large number of simultaneous equations became possible 

because of the digitalcomputer.  

 

 In 1960, Ray W. Clough first published a paper using term ―Finite Element Method‖.  

 

 In 1965, First conference on ―finite elements‖ was held 

.  

 In 1967, the first book on the ―Finite Element Method‖ was published by Zienkiewicz 

and Chung.  
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 In the late 1960s and early 1970s, the FEM was applied to a wide variety of 

engineering problems. 

 

 In the 1970s, most industrial FEM computer code packages (ABAQUS, NASTRAN, 

ANSYS, etc.) originated.Interactive FE programs on supercomputer result in riding of 

CAD systems.  

 

 In the 1980s, algorithm on magnetic force applications, fluid flow and thermal 

analysis were developed with the utilization of FE program.  

 

 Engineers will appraise ways that toregulate the vibrations and extend the use of 

flexible, deployablestructures in space using FE and alternative ways within the 

1990s. Trends to resolve absolutely coupled resolution of fluid flows with structural 

interactions, bio-mechanics connected issues with a better level of accuracy were 

discovered during this decade. 

 

With the event of finite element method, along with tremendous will increases in computing 

power and convenience, nowadays it is possible to understand structural behavior with levels 

of accuracy. This was in fact the beyond of imagination before the computer age. 

 

1.3 Numerical methods 

 

The formulation for structural analysis is usuallysupported the three elementary relations: 

equilibrium, constitutive and compatibility. There are two major approaches to the analysis: 

Analytical and Numerical. Analytical approach that ends up in closed-form solutions is 

effective just in case of simple geometry, boundary conditions, loadings and material 

properties. However, in reality, such straightforward cases might not arise. As a result, varied 

numerical methods are evolved for finding such issuesthat area unit complicated in nature. 

For numerical approach, the solutions are approximate once any of those relations are only 

approximately satisfied. The numerical methodology depends heavily on the process power 

of computers and is a lot of applicable to structures of absolute size and complexness. It‘s 

common apply to use approximate solutions of differential equations because the basis for 

structural analysis. This can be sometimes done using numerical approximation techniques. 

Few numerical methods are commonly used to solve solid and fluid mechanics problems are 

given below.   

 

 Finite Difference Method   

 Finite Volume Method   

 Finite Element Method   

 Boundary Element Method   

 Meshless Method   
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1.3.1 Finite difference Method: 

 

 

Finite Differences are just algebraic schemes one can derive to approximate derivatives. The 

uses of Finite Differences are in any discipline where one might want to approximate 

derivatives. A common usage is for things like solving Differential Equations numerically, 

and approximating derivatives for root finding and numerical optimization schemes. 

 

The mentioned areas of use span application in several domains, whether it‘s engineering, 

science, business, etc. They are a great tool in several areas, although they aren‘t essentially 

the only approach to approximating derivatives. They also aren‘t the only tools use to solve 

Differential Equations. But they have their important part to play historically and in many 

applications where their use makes sense.   

 

The finite difference method is one of a family of methods for approximating the solution of 

partial differential equations such as heat transfer, stress/strain mechanics problems, fluid 

dynamics problems, electromagnetics problems, etc. 

 

It is most easily derived using an orthonormal grid system so that, for example in space, the 

x, y, and potentially the z coordinate (in 3D) are decoupled. 

 

Difference equations based on a difference approximation of the partial differential equations 

can then be established. This will result in a set of coupled linear equations usually 

represented as a matrix. Solution of this matrix equation yields an approximate solution to the 

partial differential equation. 

 

One can build a simple demonstration by using the conduction heat transfer equation applied 

to a line. Break the line into n segments, assign a value of T to one end, and 0 to the other and 

solve the resulting difference equations across the assembly of line segments. This is a trivial 

example but demonstrates the process. 

 

An important application of finite differences is in numerical analysis, especially in 

numerical differential equations, which aim at the numerical solution of ordinary and partial 

differential equations respectively. The idea is to replace the derivatives appearing in the 

differential equation by finite differences that approximate them. The resulting methods are 

called finite difference methods. 

 

The common applications of the finite difference method are in computational science and 

engineering disciplines, such as thermal engineering, fluid mechanics, etc. 
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The application of finite difference method for engineering issues involves commutation the 

governing differential equations and therefore the boundary condition by appropriate 

algebraic equations.  

 

1.3.2 Finite Volume Method:    

 

The finite volume method is currently the most popular method in CFD. Generally the finite 

volume method is a special case of finite element.  

 

Using Finite volume method, the solution domain is subdivided into a finite number of small 

control volumes by a grid. The gird defines to boundaries of the control volumes while the 

computational node lies at the center of the control volume. The advantage of FVM is that the 

integral conservation is satisfied exactly over the control volume.  

 

The basis of the finite volume method is the integral conversation law. The essential idea is to 

divide the domain into many control volumes and approximate the integral conservation law 

on each of the control volumes. For example, as shown in figure 1.1, 

 

 

 

    Figure 1.1: Mesh and notation for one-dimensional finite volume method. 

 

The finite-volume method directly utilizes the conservation laws—the integral formulation of 

the Navier-Stokes/Euler equations. The finite-volume method discretizes the governing 

equations by first dividing the physical space into a number of arbitrary polyhedral control 

volumes. The accuracy of the spatial discretization depends on the particular scheme with 

which the fluxes are evaluated. 

 

There are several possibilities of defining the shape and position of the control volume with 

respect to the grid. Two basic approaches can be distinguished: 
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Cell-centered scheme (Fig. 1.2a): Here the flow quantities are stored at the centroids of the 

grid cells. Thus, the control volumes are identical to the grid cells. 

 

 

 

            Figure 1.2: Control volume of cell-centered (a) and cell-vertex scheme (b). 

 

Cell-vertex scheme (Fig. 1.2b): Here the flow variables are stored at the grid points. The 

control volume can then either be the union of all cells sharing the grid point, or some volume 

centered around the grid point. In the former case we speak of overlapping control volumes, 

in the second case of dual control volumes. 

 

The important feature of finite volume schemes is their conservation properties. Since they 

are based on applying conservation principles over each small control volume, global 

conservation is also ensured. 

 

 Initially we consider how they are applied on rectangular Cartesian grids. In later 

lectures we see how to adapt them to non-orthogonal and even unstructured grids. 

 

 

 The method starts by dividing the flow domain into a number of small control 

volumes. 
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          Figure 1.3: Discretization Approaches used in Computational Fluid Dynamics 

 

 

 The grid points where variables are stored are typically defined as being at the center 

of each control volume. 

 

 Extra boundary nodes are often added, as shown in the figure 1.3. 

 

 

 The transport equation(s) are then integrated over each control volume. 

 

1.3.3 Finite Element Method 

 

The FEM method is very suitable for complex structure. In this method the simulation space 

can be divided with arbitrarily oriented, arbitrary shaped elements, commonly used triangle 

for 2D and tetrahedra for 3D. Here the governing equation is approximated over each element 

by some basis functions, which is a low-order polynomial. The solutions are made continuous 

at the boundaries of each element, and must be fit with in the enforced global boundary 

conditions. Its only disadvantage is the inherent complexity, as it requires some level of 

global knowledge of the simulation space. Although the used basis functions are local, as 

they are defined in each element, to enforce continuity at element boundaries a large sparse 

matrix needs to be solved, which enhances the computational time a lot.  

 

For last couple of year discontinuous Galerkin methods leap forefront in the field of 

electromagnetic simulations. By relaxing the continuity between elements this method 

enforces strict locality rule. This idea of connecting the elements along their boundaries was 

borrowed from the finite volume method. Thus it provides explicitly localized and highly 

accurate algorithms. FEM is discussed in details later in Chapter 2. 
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1.3.4 Boundary Element Method 

 

The boundary element method (BEM) is a technique for solving a range of 

engineering/physical problems.  

 

It is most often used as an engineering design aid - similar to the more common finite 

element method - but the BEM has the distinction and advantage that only the surfaces of the 

domain need to be meshed. 

 

Engineers who are familiar with finite elements very often ask why it is necessary to develop 

yet another computational technique. The answer is that finite elements have been proved to 

be inadequate or inefficient in many engineering applications and what is perhaps more 

important is in many cases cumbersome to use and hence difficult to implement in Computer 

Aided Engineering systems. Finite Element (FE) analysis is still a comparatively slow 

process due to the need to define and redefine meshes in the piece or domain under study. 

 

Boundary elements (BE) have emerged as a powerful alternative to finite elements 

particularly in cases where better accuracy is required due to problems such as stress 

concentration or where the domain extends to infinity. The most important feature of 

boundary elements, however, is that different to the finite domain methods as, e.g., the finite 

difference method or the finite element method, the methodology of formulating boundary 

value problems as boundary integral equations describes problems only by equations 

withknown and unknown boundary states.Hence, it only requires discretization of the surface 

rather than the volume, i.e., the dimension of problems is reduced by one. Consequently, the 

necessary discretization effort is mostly much smaller and, moreover, meshes can easily be 

generated and design changes do not require a complete remeshing. 

 

The BE method is especially advantageous in the case of problems with infinite orsemi-

infinite domains, e.g., so-called exterior domain problems: there, although only thefinite 

surface of the infinite domain has to be discretized, the solution at any arbitrary point of the 

domain can be found after determining the unknown boundary data. 

 

To be objective, the features of the BE method should be compared to its main rival, the FE 

method. Its advantages and disadvantages can be summarized as follows: 
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1.3.4.1 Advantages: 

 

1. Less data preparation time: This is adirect result of the ‘surface-only‘ modeling. Thus, 

the analyst‘s time required for data preparation and data checking for a given problem should 

be greatly reduced. Furthermore, subsequent changes in meshes are made easier. 

 

2. High resolution of stress: Stresses are accurate because no further approximation is 

imposed on the solution at interior points, i.e., solution is exact and fully continuous inside 

the domain. 

 

3. Less computer time and storage: For the same level of accuracy, the BE method uses a 

lesser number of nodes and elements (but a fully populated matrix), i.e., to achieve 

comparable accuracy in stress values, FE meshes would need more boundary divisions than 

the equivalent BE meshes. 

 

4. Less unwanted information: In most engineering problems, the ‘worst‘ situation usually 

occur on the surface. 

 

Thus, modeling an entire three-dimensional body with finite elements and calculating stress 

(or other states) at every nodal point is very inefficient because only a few of these values 

will be incorporated in the design analysis. Therefore, using boundary elements is a very 

effective use of computing resources, and, furthermore, since internal points in BE solutions 

are optional, the user can focus on a particular interior region rather than the whole interior. 
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1.3.4.2 Disadvantages  

 

1. Unfamiliar mathematics: The mathematics used in BE formulations may seem unfamiliar 

to engineers (but not difficult to learn). However, many FE numerical proceduresare directly 

applicable to BE solutions (such as numerical integration, surface approximation, treatment 

of boundary conditions). 

 

2. In non-linear problems, the interior must be modeled: Interior modeling is unavoidable 

in non-linear material problems. However, in many non-linear cases interior modeling can be 

restricted to selected areas such as the region around a crack tip. 

 

3. Fully populated and unsymmetrical solution matrix: The solution matrix resulting from 

the BE formulation is unsymmetrical and fully populated with non-zero coefficients, whereas 

the FE solution matrices are usually much larger but sparsely populated. This means that the 

entire BE solution matrix must be saved in the computer core memory. 

However, this is not a serious disadvantage because to obtain the same level of accuracy as 

the FE solution, the BE method needs only a relatively modest number of nodes and 

elements. 

 

4. Poor for thin structures (shell) three-dimensional analyses: This is because of the large 

surface/volume ratio and the close proximity of nodal points on either side of the structure 

thickness. This causes inaccuracies in the numerical integrations. 
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1.3.5 Meshless Methods 

 

Meshless methods belong to a class of techniques for solving boundary/initial value partial 

differential equations in which both geometry representation and numerical discretization are 

principally performed based on nodes or particles. In meshless methods, there is no inherent 

reliance on a particular mesh topology, meaning that no element connectivity is required. In 

practice, however, in many meshless methods, recourse must be taken to some kind of 

background meshes at least in one stage of the implementation.    

Analysis of many practical processes in modern engineering requires modeling of problems 

with time-dependent geometry or boundary conditions. Pulsating flow of blood in heart, 

metal-forming processes, and stretching of a polymer filament are only a few examples. 

Conventional mesh-based methods such as the finite volume and finite element methods face 

serious difficulties when dealing with large element deformations and/or element 

entanglement. This is particularly true in the case of problems involving discontinuities and 

moving boundaries. Examples of such problems are complex free-surface flows, fluid–

structure interactions, projectile impact, and material breakup during manufacturing 

processes. Standard mesh-based techniques handle such problems using adaptive remeshing 

techniques. This means that the computational mesh (grid) is remeshed either globally or 

locally to correctly represent the deformed geometry. This technique however suffers from 

two drawbacks. Firstly, generating a new mesh may not only be troublesome but also 

consume considerable time. This is particularly true when complex three-dimensional 

geometries are to be meshed using automatic mesh generators. Secondly, the mapping of the 

state variables from the old mesh to the new mesh can introduce significant numerical errors 

into the computations. To alleviate this problem, special numerical techniques have been 

devised in which the material and the mesh move independently. 

 

In recent years, interest in meshless methods has grown rapidly because such methods can 

circumvent the abovementioned difficulties in a more convenient fashion. The main 

advantages of meshless methods can be summarized as follows:  

 

 Problems with large deformations can be handled since the connectivity among nodes 

is generated during the computation and can change in time. 

 

 There are no constraints imposed from the system geometry, and the system may 

evolve far from the initial conditions. 
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 The accuracy of the solution can be controlled easily, since nodes can be added in the 

regions where refinement is required. 

 

 Complex geometries can be accurately represented by particles. 

 

 The particles map onto the mass density of the fluid, leading automatically to higher 

resolution in the high-density regions. 

 

 Fairly simple implementation procedure.  

 

Abundance of meshless methods, as well as many variations in the terminology adopted in 

the literature, makes a thorough review unfeasible for the purpose of this manuscript. Instead, 

this entry attempts to give an overview of this class of methods by briefly describing some of 

their most important features. 

 

Based on the physical principle, meshless (particle) methods can be classified as 

deterministic and probabilistic. Many of the meshless methods are based on probabilistic 

principles. The molecular dynamics, Monte Carlo methods, the Lagrangian probability 

density function (PDF) methods, and the Lattice Boltzmann (LBM) method are among these 

methods. Methods such as the smoothed particle hydrodynamics (SPH) and the vortex 

method initially developed as probabilistic methods, but nowadays they are most frequently 

used as deterministic. 

 

The meshless methods can be also classified as strong and weak formulations of the 

associated partial differential equations. The strong formulation of a partial differential 

equation is usually obtained by a collocation technique. The smoothed particle 

hydrodynamics method, the vortex method, and the generalized finite difference (GFD) 

method are based on the strong form. On the other hand, weak forms are often based on 

Galerkin formulations. The diffuse element method (DEM), the element-free Galerkin 

method (EFGM), the reproducing kernel particle method (RKPM) (Kernel Function), the hp 

cloud method, the partition of unity method (PUM), and the meshless local Petrov-Galerkin 

method (MLPG) are all among this category. Some particle methods like the particle-in-cell 

method can be used in both strong and weak formulations. 
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1.4 Concepts of elements and nodes 

 

1.4.1Nodes 

A node is a coordinate location in space where the degrees of freedom (DOFs) are defined. 

The DOFs for this point represent the possible movement of this point due to the loading of 

the structure. The DOFs also represent which forces and moments are transferred from one 

element to the next. The results of a finite element analysis, (deflections and stresses), are 

usually given at the nodes. 

 

In the real world, a point can move in 6 different directions, translation in X, Y, and Z, and 

rotation about X, Y, and Z. In FEA, a node may be limited in the calculated motions for a 

variety of reasons. For example, there is no need to calculate the out of plane translation on a 

2-D element; it would not be a 2-D element if its nodes were allowed to move out of the 

plane. 

 

The DOF of a node (which is based on the element type) also relates what types of forces and 

restraints are transmitted through the node to the element. A force (axial or shear) is 

equivalent to a translation DOF. A moment is equivalent to a rotational DOF. Thus, to 

transfer a moment about a certain axis, the node must have a rotational DOF about the axis. If 

a node does not have that rotational DOF, then applying a moment to the node will have no 

effect on the analysis. This fact may also place requirements on how two parts are connected 

together. Additional modeling may be required to insure that the connection between the 

parts does not produce a hinge. 

 

                      Figure 1.4: Nodes 
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1.4.2 Elements 

 

An element is the basic building block of finite element analysis. There are several basic 

types of elements. Which type of element for finite elements analysis that is used depends on 

the type of object that is to be modeled for finite element analysis and the type of analysis 

that is going to be performed. 

 

An element is a mathematical relation that defines how the degrees of freedom of a node 

relate to the next. These elements can be lines (trusses or beams), areas (2-D or 3-D plates 

and membranes) or solids (bricks or tetrahedrals). It also relates how the deflections create 

stresses. 

 

 

 

Figure1.5:  Elements 
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Chapter 2  

Finite Element Method (FEM) 
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2.1Finite Element Method (FEM) 

 

The Finite Element Method (FEM) is one of the most potent and resourceful   numerical 

method for solving problems of engineering and mathematical physics. In the year 1960 the 

term ‗Finite Elements‘ was first introduced by Clough in defining a new technique for plane 

stress analysis. 

As a numerical technique finite element method provides an approximate solution of a 

problem base on a set of governing equations, generally, in the algebraic, integral or 

differential forms through a discretization process of the domain in interest. Its main 

characteristicsistodiscretizethedomainoftheproblemintoasetofsmallersub-domainsor elements. 

Two well-known features of finite element method may help in discriminating its domi- 

nance over other methods. Firstly, in this method any geometrically complex domain can be 

assumed as disintegration of simple sub-domains named finite-element, which can be of 

different shapes, for instance, triangular or rectangular. Secondly, a fundamental idea that any 

continuous function can be correspondent to by a linear combination of algebraic 

polynomials governs the derivation of the approximation functions over each finite-element. 

The FEM always follows an orderly step-by-step process in providing solution of any 

problem. 

 

 

 

2.2 Analytical Solution 

• Stress analysis for trusses, beams, and other simple structures are carried out based on 

dramatic simplification and idealization: 

- mass concentrated at the center of gravity 

- beam simplified as a line segment (same cross-section) 

• Design is based on the calculation results of the idealized structure & a large safety factor is 

given by experience.  
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2.3  FEM 

• Design geometry is a lot more complex; and the accuracy requirement is a lot 

higher. We need 

- To understand the physical behaviors of a complex object (strength, heat 

transfer capability, fluid flow, etc.) 

- To predict the performance and behavior of the design; to calculate the 

safety margin; and to identify the weakness of the design accurately, and 

- To identify the optimal design with confidence  

 

 

 

2.4 Common FEM Applications 

Below some applications of FEM analysis area are stated. 

*Mechanical/Aerospace/Civil/AutomotiveEngineering 

*Structural/Stress Analysis 

- Static/Dynamic 

- Linear/Nonlinear 

*Fluid Flow 

*Heat Transfer 

*Electromagnetic Fields 

*Soil Mechanics 

*Acoustics 

*Biomechanics 
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2.5 Types of Finite Elements 

 

 

 

Fig. 2.1   Types of Finite Elements 
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2.6 Advantages of Finite element Method 

1.Modeling of complex geometries and irregular shapes are easier as varieties of finite 

elements are available for discretization of domain. 

2.Boundary conditions can be easily incorporated in FEM. 

3.Different types of material properties can be easily accommodated in modeling from 

element to element or even within an element. 

4.Higher order elements may be implemented. 

5.FEM is simple, compact and result-oriented and hence widely popular among engineering 

community. 

6.Availability of large number of computer software packages and literature makes FEM a 

versatile and powerful numerical method. 

 

2.7  Principles of FEM  

 

The finite element method (FEM), or finite element analysis (FEA), is a computational 

technique used to obtain approximate solutions of boundary value problems in engineering. 

Boundary value problems are also called field problems. The field is the domain of interest 

and most often represents a physical structure. 

The field variables are the dependent variables of interest governed by the differential 

equation. 

The boundary conditions are the specified values of the field variables (or related variables 

such as derivatives) on the boundaries of the field. 

For simplicity, at this point, we assume a two-dimensional case with a single field variable 

φ(x, y) to be determined at every point P(x, y) such that a known governing equation (or 

equations) is satisfied exactly at every such point. 
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Fig: 2.2 

(a) A general two-dimensional domain of field variable ∅(X, Y), 

(b) A three-node finite element defined in the domain. 

(c) Addition elements showing a partial finite element mesh of the domain. 

A finite element is  a differential element of size dx × dy. 

- A node is a specific point in the finite element at which the value of the field variable is to 

be explicitly calculated. 

 

 

2.8 A GENERAL PROCEDURE FORFINITE ELEMENT ANALYSIS 

 

2.8.1 Preprocessing 

– Define the geometric domain of the problem. 

– Define the element type(s) to be used (Chapter 6). 

– Define the material properties of the elements. 

– Define the geometric properties of the elements (length, area, and the like). 

– Define the element connectivity (mesh the model). 

– Define the physical constraints (boundary conditions). Define the loadings. 
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2.8.2 Solution 

– computes the unknown values of the primary field variable(s) 

– computed values are then used by back substitution to compute additional, derived 

variables, such as reaction forces, element stresses, and heat flow.  

 

2.8.3 Post processing 

– Postprocessor software contains sophisticated routines used for sorting, printing, and 

plotting selected results from a finite element solution.  

 

2.9  Stiffness Matrix 

The primary characteristics of a finite element are embodied in the element stiffness matrix. 

For a structural finite element, the stiffness matrix contains the geometric and material 

behavior information that indicates the resistance of the element to deformation when 

subjected to loading. Such deformation may include axial, bending, shear, and torsional 

effects. For finite elements used in nonstructural analyses, such as fluid flow and heat 

transfer, the term stiffness matrix is also used, since the matrix represents the resistance of the 

element to change when subjected to external influences.  
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2.10Discretization of domain and generalization of an element:      

 

The fundamental concept in FEM is to divide the domain of interest into a finite number of 

sub-domains or elements. Some elements in the domain may share nodal points and element 

boundaries. Thus the domain looks like a collection of elements as shown in Fig. 3.2. 

Element boundaries of an finite element are, generally straight lines. When the domain of 

interest has curved or irregular boundaries, approximation at the edge is made by using series 

of straight or flat segments or even by the use of isoparametric elements.        

 

In implementation of FEM, after the domain of interest has been discretized by proper choice 

of elements, the unknown field variable‘s behavior over each element is approximated by 

continuous functions represented in terms of nodal values of the field variable and sometimes 

by its derivatives of certain order. The function defined over each element is named as shape 

function or interpolation function. The collection of the interpolation function for the domain 

of interest as a whole provide a piecewise approximation of the filed variable for that domain. 

In this thesis triangular elements are used to discretize two dimensional waveguide. 

 

2.10.1Shape functions:  

 

After discretization of the domain the unknown filed variable values at the vertices of the 

triangular shaped element is approximated by a set of polynomial approximation named the 

shape function. Because polynomials can be easily manipulated both algebraically and 

computationally, furthermore, any continuous function may be arbitrarily approximated 

closely by a suitable polynomial, so these are used as shape function. These shape functions 

are considered to be continuous within the element and across the element boundaries as 

well. It would not be possible to add separate contribution from each element to get the final 

solution without inter-element continuity. The physical significance is that the shape 

functions should possess continuity characteristics similar to that of the physical fields they 

approximated.  

 

Although it is preferred that interpolation elements to be isotropic or geometrically invariant, 

however, shape functions may not be invariant. To ensure the solution isotropy, in each 

element the polynomial expression must be complete, without any preference for either x or 

y-directions. It means, if the function has an order q, the polynomial that approximating it 

should contain all possible terms xa1yb1 such that,  
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     0 ≤ a1 + b1 ≤ q       ……… (2.4)   

 

This type of polynomial should contain l = 1 2(q+1)(q+2) terms. The polynomial to be unique 

the number of terms in it should be equal to the total number of degree of freedom, i.e., the 

number of nodes associated with the element. For instance, a triangular element requires a 

polynomial consists of three terms. Equation 3.18 represents the relationship between the 

nodes in an element and the order of the shape function. The number of terms necessary for 

all possible polynomials up to the 3rd order is shown in Fig. 3.3 by Pascal triangle.  

 

The triangle is one the most commonly used elements in two dimensional structure, although, 

rectangles and even quadrilaterals are also used. In this thesis triangle is used as element and 

first degree polynomials are used as shape functions, which consists of three coefficients, as 

stated earlier. These can be corresponded to the three nodal values of the triangular element‘s 

vertices.  

 

 

1 

 

x ----------    y --------------- order   1 

 

                                                        X
2
……..   xy……….  y

2
 ………….  2 

 

X
3
 x

2
y ……..xy

2
…………y

3
 ………. 3       

 

Fig : 2.3 the Pascal triangle 

Let us consider the continuous field function in the domain of interest is Φ(x,y), which can be 

replaced by set of discrete values (Φe, where e = 1, 2 and 3) as shown in Fig. 2.4. Such functions 

are considered as continuous across adjacent triangles. Field across the elements boundaries 
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should be continuous for these functions to be permissible. A first degree polynomial of the type a 

+ bx + cy can be used to represent the field. 

 

The field in first order element can therefore be expressed as, 

Φe(xi,yi)= a
e
 + b

e
x + c

e
y…...  (2.5) 

Here a
e
 , b

e
 and c

e
 are constants. At each  of  three  vertices  of the triangle we, then, have, 

 

Φe(xi,yi)=Φi               i= 1,2,3    …….. (2.6) 

Then Φi, the nodal values can be expressed as, 

 

Φ1 = Φe(xi,yi)= a
e
 + b

e
x1 + c

e
y1  ……… (2.7) 

 

 

 

 E (X,Y) 

1                             E(X,Y) 

 

 3 

 

 

                                                                                             P(X,Y)                       X 

 1                                                                   

 (X1,Y1)                                       3 

 2 (X3,Y3) 

 Y (X2,Y2) 

Fig:2.4A typical first order triangular element 

 

Φ2 = Φe(xi,yi)= a
e
 + b

e
x2 + c

e
y2  ………. (2.8) 

Φ3 = Φe(xi,yi)= a
e
 + b

e
x3 + c

e
y3 ………..  (2.9) 
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In matrix Form, 























3

2

1

= 

















331

221

111

yx

yx

yx

















e

e

e

c

b

a

…….. (2.10) 

 

In terms of  Φi the constants a
e
, b

e 
 and  c

e
 can be found as, 

 

















e

e

e

c

b

a

=

1

331

221

111


















yx

yx

yx























3

2

1

………… (2.11) 

 

In expanded form we can write from Eq. (2.11) 

a
e
  =       122131132332

2

1
321 yxyxyxyxyxyx

Ae

 …….  (2.12) 

b
e
 =       211332

2

1
321 yyyyyy

Ae

 ……….        (2.13) 

c
e
 =       123123

2

1
321 xxxxxx

Ae

              ………        (2.14) 

Here Ae is the area of the triangular element and can be presented as, 

Ae = 
2

1

















331

221

111

yx

yx

yx

= 
2

1
      122131132332 yxyxyxyxyxyx  ……. (2.15) 

Substituting for  a
e
, b

e 
,  c

e
 from Eq. (2.11) – (2.14) into Eq. (2.5)  and rearranging will 

provide, 

Φe(x,y) =N1(x,y)·Φ1+N2(x,y)·Φ2+N3(x,y)·Φ3    ………. (2.16) 

 

Or, 

Φe(x,y) = [N] [Φe]     ………………. (2.17) 

where [N] is the shape function matrix and the column vector [Φe] is the vector 

corresponding to the element nodal field values. 

 

Therefore, after discretizing the domain by using small triangular elements, the unknown 

field Φe in every element, can be written in terms of an interpolation of the field values ateach 
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node, as given by Eq. (2.17). It can be shown that the element shape function can be written 

in the matrix notation form [Davies, 1989] as, 

 

 










































12211221

31133113

23322332

2

1

3

2

1

xxyyyxyx

xxyyyxyx

xxyyyxyx

A
N

N

N

N
e

T

















y

x

1

……  (2.18) 

Here T represents the transpose . This shape function matrix can also be expressed as, 

 

 




































ycxba

ycxba

ycxba

A
N

N

N

N
eee

eee

eee

e

T

333

222

111

2

1

3

2

1

……… (2.19) 

 

The coefficients 
ea1   , 

eb1 and 
ec1  can be calculated as, 

ea1 = x2y3 – x3y2                  …………  (2.20) 

eb1 = y2 - y3             …………  (2.21) 

ec1  = x3 – x2          …………..     (2.22) 

With cyclic exchange of 1→ 2→ 3 in Eq. (2.20)-(2.22), the other six coefficients can also be found. 

The shape function Ni has useful property of taking the value 1 at the node I and 0 at all other nodes 

as, 

 

Ni (xj,yj) = δij=   1 for i = j           ……(2.23) 

0 for i ≠  j 
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2.10.2 Relationshipoflinearshapefunctionswithareacoordinates 

Let us consider an arbitrary point P(x,y) inside the bottom triangle shown in Fig. 2.4. The 

area coordinates functions Li can be represented by utilizing the areas of the triangles as, 

  

Area of the sub triangle P23 

                                    L1   =                                                                   ……….  (2.24) 

Area of the full triangle 123 

 

in similar way L2 and L3 can also be defined. The area coordinates functions Li has the 

following property, 

 

 𝐿𝑖 = 13
𝑖=1         ………(2.25) 

The perpendicular distance from P to side 23 is proportional to L1, which takes the value 

of1atnode-1and0intheothernodes. So,itisauniquefirstdegreeinterpolatingpolynomial for node-

1. Similarly, L2 and L3 can also be defined. The interpolating polynomials or local area 

coordinates, Li, can be related to the global Cartesian coordinates by interpolation polynomial 

properties by, 

 

x = x1L1 + x2L2 + x3L3          ………….. (2.26) 

y = y1L1 + y2L2 + y3L3          ………… (2.27) 

The Equation. (2.26) and (2.27) can be expressed in matrix form as, 

















y

x

1

=

















321

321

111

yyy

xxx

















3

2

1

L

L

L

                  …………… (2.28) 

By using inverse transformation from Eq. (2.28), we have, 

















3

2

1

L

L

L

=  
eA2

1

















eee

eee

eee

cba

cba

cba

333

222

111

















y

x

1

                ………….  (2.29) 

In terms of the normalized local area coordinates the operation like integration in global 

coordinatescanbeattained, whereitneedstoperformonlyonce. Mostofthosecanbefoundin 
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[Zienkiewicz, Book, 2005]. For instance, to obtain integration, following equation can be 

used 

 

dxdyLLL f

e

gd

321  = 2Ae
)!2(

!!!

 fgd

fgd
        ………………(2.30) 

 

For the first order polynomial interpolation function, both area coordinates and shape 

functions are identical, i.e., Ni = Li. The area coordinates are useful in constructing higher 

order shape functions. 
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Chapter 3 

Boundary value problemAndGalerkin method 
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3.1 Boundary Value Problem:  

 

A boundary value problem is a problem, typically an ordinary differential equation or a 

partial differential equation, which has values assigned on the physical boundary of the 

domain in which the problem is specified. For example,  

 

 

 

Where∂Ω  denotes the boundary of  Ω, is a boundary problem.   

 

In mathematics, in the field of differential equations, a boundary value problem is a 

differential equation together with a set of additional constraints, called the boundary 

conditions. A solution to a boundary value problem is a solution to the differential equation 

which also satisfies the boundary conditions. 

 

Boundary value problems arise in several branches of physics as any physical differential 

equation will have them. Problems involving the wave equation, such as the determination of 

normal modes, are often stated as boundary value problems. A large number of important 

boundary value problems are the Sturm–Lowville problems. The analysis of these problems 

involves the Eigen functions of a differential operator.  
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Fig 3.1 

 

3.1.1 Explanation  

 

Boundary value problems are similar to initial value problems. A boundary value problem 

has conditions specified at the extremes ("boundaries") of the independent variable in the 

equation whereas an initial value problem has all of the conditions specified at the same value 

of the independent variable (and that value is at the lower boundary of the domain, thus the 

term "initial" value). A boundary value is a data value that corresponds to a minimum or 

maximum input, internal, or output value specified for a system or component.[1] 

 

For example, if the independent variable is time over the domain [0,1], a boundary value 

problem would specify values for y(t) at both t=0 and  t=1, whereas an initial value problem 

would specify a value of)} y(t) and y'(t) at time t=0. 

 

Finding the temperature at all points of an iron bar with one end kept at absolute zero and the 

other end at the freezing point of water would be a boundary value problem. If the problem is 

dependent on both space and time, one could specify the value of the problem at a given point 

for all time or at a given time for all space. Concretely, an example of a boundary value (in 

one spatial dimension) is the problem 

y''(x)+y(x)=0 

to be solved for the unknown function y(x) with the boundary conditions 

y(0)=0,y(π/2)=2. 

Without the boundary conditions, the general solution to this equation is 

y(x)=Asin(x)+Bcos(x). 

From the boundary condition y(0)=0 one obtains 
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0= A. 0+B.1  

Which implies that B=0. From the boundary condition y( π/2)=2 one finds 

2=A. 1  

 

and so A=2. One sees that imposing boundary conditions allowed one to determine a unique 

solution, which in this case is 

y(x)=2\sin(x) 

 

 

3.1.2 Boundary Conditions: 

 

There are three types of boundary conditions commonly encountered in the solution of partial 

differential equations: 

 

1. Dirichlet boundary conditions specify the value of the function on a surface T=f(r,t). 

 

2. Neumann boundary conditions specify the normal derivative of the function on a surface, 

𝜕𝑇

𝜕𝑛
=𝑛 ̇̇ ∙ ∇T= f(r,t). 

 

3. Robin boundary conditions. For an elliptic partial differential equation in a region Ω, 

Robin boundary conditions specify the sum of α u and the normal derivative of u=f at all 

points of the boundary of Ω, with α and f being prescribed.   

 

 

3.1.3 Initial Value Problem  

 

An initial value problem is a problem that has its conditions specified at some time t=t_0. 

Usually, the problem is an ordinary differential equation or a partial differential equation. For 

example,   
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Where ∂Ω denotes the boundary of Ω, is an initial value problem.   

 

 

3.1.4 Numerical Analysis of Boundary Value Problem   

 

3.1.4.1 Shooting Method 

 

In numerical analysis, the shooting method is a method for solving a boundary value problem 

by reducing it to the system of an initial value problem. Roughly speaking, we 'shoot' out 

trajectories in different directions until we find a trajectory that has the desired boundary 

value. The following exposition may be clarified by this illustration of the shooting method. 

 

For a boundary value problem of a second-order ordinary differential equation, the method is 

stated as follows. Let 

 

y''(t)=f(t, y(t), y'(t)),    y(𝑡𝑜) = 𝑦𝑜 ,    y(𝑡1) =𝑦1 

be the boundary value problem. Let y(t; a) denote the solution of the initial value problem 

 

y''(t)= f(t,y(t), y'(t)),   y(𝑡𝑜) = 𝑦𝑜 ,   y'(𝑡𝑜)= a  

Define the function F(a) as the difference between y(𝑡1; a) and the specified boundary value 

y1. 

 

F(a)= y(𝑡1;a) - 𝑦1 
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If F has a root a then the solution y(t; a) of the corresponding initial value problem is also a 

solution of the boundary value problem. Conversely, if the boundary value problem has a 

solution y(t), then y(t) is also the unique solution y(t; a) of the initial value problem where a = 

y'(𝑡𝑜), thus a is a root of F. 

 

The usual methods for finding roots may be employed here, such as the bisection method or 

Newton's method. 

 

3.1.4.2 Example 

 

 

A boundary value problem is given as follows by Stoer and Burlisch[1] (Section 7.3.1). 

 

ω''(t) = 
3

2
𝜔2,   ω(0)=4,  ω(1)=1 

 

The initial value problem 

ω''(t) = 
3

2
𝜔2,  ω(0) =4,  ω'(0) = s  

 

was solved for s = −1, −2, −3, ..., −100, and F(s) = ω(1;s) − 1 plotted in the first figure. 

Inspecting the plot of F, we see that there are roots near −8 and −36. Some trajectories of 

ω(t;s) are shown in the second figure. 

 

Stoer and Burlisch[1] state that there are two solutions, which can be found by algebraic 

methods. These correspond to the initial conditions w′(0) = −8 and w′(0) = −35.9 

(approximately). 

 



35 
 

 

Fig 3.2 

The function F(s) = w(1;s) − 1. 

 

 

 

Fig: 3.3 

Trajectories ω(t;s) for s = ω'(0) equal to −7, −8, −10, −36, and −40. The point (1,1) is marked 

with a circle. 
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3.2 Galerkin Method: 

 

The Galerkin method is one of the most popular and powerful numerical techniques for 

solving transient partial differential equations of parabolic type. The Galerkin method can be 

viewed as a separation-of-variables technique combined with a weak finite element 

formulation to discretize the problem in space. This leads to a stiff system of ordinary 

differential equations that can be integrated by available off-the-shelf implicit ordinary 

differential equations (ode) solvers based on implicit time-stepping schemes such as 

backward differentiation formulas (BDF) or implicit Runge-Kutta (IRK) methods.   

 

 

 

 

3.2.1 A one-dimensional parabolic problem 

 

The basic idea of the Galerkin finite element method of lines will be demonstrated on the 

following one-dimensional linear parabolic partial differential problem 

 

 

𝑢𝑡(𝑥, 𝑡) − (𝑎(𝑥)𝑢𝑥(𝑥, 𝑡))𝑥 + 𝑏(𝑥)𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑥 ∈ (0,1), 0 ≤ 𝑡 ≤ 𝑇,

𝑢(𝑥, 0) = 𝑔(𝑥), 𝑥 ∈ (0,1),

𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0, 0 ≤ 𝑡 ≤ 𝑇,

  ………….(1) 

 

Where, a(x)>0 and b(x)≥0 on [0,1] . 
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3.2.2 Weak Galerkin formulation  

 

A spatial weak formulation of the model problem is obtained by multiplying the parabolic 

equation (1) by a test function v in the Sobolevspace𝐻0
1, integrating over (0,1) and integrating 

by parts to show that u∈ 𝐻0
1 satisfies 

 

 
(𝑣,𝑢𝑡(. , 𝑡)) + 𝐴(𝑣, 𝑢(. , 𝑡)) = (𝑣,𝑓(. , 𝑡)),∀ 𝑣 ∈ 𝐻0

1, 0 ≤ 𝑡 ≤ 𝑇,

𝑢 𝑥, 0 = 𝑔 𝑥 ,𝑥 ∈  0,1 ,
 ………………………(2) 

Where,  

(v, u(.,t))=  𝑣(𝑥)𝑢(𝑥, 𝑡)𝑑𝑥,𝐴(𝑣,𝑢(. , 𝑡)
1

0
)= [𝑎(𝑥)

𝑑𝑣(𝑥)

𝑑𝑥
𝑢𝑥(𝑥, 𝑡) + 𝑏(𝑥)𝑣(𝑥)𝑢(𝑥, 𝑡)]𝑑𝑥.

1

0
 

 

3.2.3 Semi-discretization 

 

The semi-discrete Galerkin finite formulation consists of subdividing the domain (0,1) into n 

elements 𝐼𝑖=(𝑥𝑖 , 𝑥𝑖+1 ), i=0,1,⋯,n and constructing a finite-dimensional subspace 𝑆𝑝
𝑁⊂𝐻0

1 . 

Here 𝑆𝑝
𝑁 consists of piecewise p-degree polynomial functions spanned by a set of basis 

functions𝜙𝑖 , i=1,2,⋯,N . For instance, N=n−1, for piecewise linear finite elements. 

 

The semi-discrete Galerkin method consists of finding 

 

𝑢𝑁(x,t) =  𝑐𝑖(𝑡)𝜙𝑖(𝑥),    𝑁
𝑖=1  

 

with time-dependent coefficients 𝑐𝑖(t)∈R such that 

 

 
(𝑣𝑁 , (𝑢_𝑁)𝑡(. , 𝑡)) + 𝐴(𝑣𝑁 ,𝑢𝑁(. , 𝑡)) = (𝑣𝑁 ,𝑓(. , 𝑡)),∀ 𝑣𝑁 ∈ 𝑆𝑝

𝑁 , 0 ≤ 𝑡 ≤ 𝑇,

(𝑣𝑁 ,𝑢𝑁(. ,0) = (𝑣𝑁 ,𝑔),∀𝑣𝑁 ∈ 𝑆𝑝
𝑁 .
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Testing against 𝑣𝑁 =𝜙𝑗 , j=1,2,⋯,N , leads to the following system of linear ordinary 

differential equations for 𝑐𝑖 , i=1,⋯,N , 

 

 
 𝑐𝑖  (𝜙𝑗 ,𝜙𝑖)
𝑁
𝑖=1 +   𝑐𝑖  𝐴(𝜙𝑖 ,𝜙 𝑗 ) = (𝜙𝑗 ,𝑓(. , 𝑡)), 𝑗 = 1,2,⋯ ,𝑁, 𝑡 ≥ 0,𝑁

𝑖=1

 𝑐𝑖  (0)(𝜙𝑗 ,𝜙𝑖) = (𝜙𝑗 ,𝑔), 𝑗 = 1,2,⋯ ,𝑁𝑁
𝑖=1

 …………..(3) 

 

Other optimal approximations of the initial condition include the elliptic projection of 

g(x)onto 𝑆𝑝
𝑁 defined by the equation 

 

A(𝑢𝑁(.,0),𝑣𝑁)=A(g,𝑣𝑁), ∀𝑣𝑁∈𝑆𝑝
𝑁, 

 

and the piecewise polynomial Lagrange interpolant of g defined by 

 

               𝑢𝑁(x,0)= 𝑔 𝑥𝑖 𝜙𝑖 𝑥 ,
𝑁
𝑖=1  

 

Where,𝜙𝑖  are finite element basis functions of Lagrange type, i.e.,𝜙𝑖(𝑥𝑗 )= 𝛿𝑖𝑗  . Here 𝛿𝑖𝑗=1 if I 

=j and 0 otherwise. 

 

Let c(t)= [𝑐1(𝑡), 𝑐2(𝑡),⋯ , 𝑐𝑁(𝑡)]𝑡  ; thus, the linear ordinary differential system (3) may be 

written in matrix form as 

 

 
𝑀𝑐˙ + 𝐾𝑐(𝑡) = 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇,

𝑀𝑐(0) = 𝑔,
 ……………………………..…..(4) 

 

 

Where, the N×N mass matrix M and stiffness matrix K defined by 𝑀𝑖𝑗 =𝑀𝑗𝑖 =(𝜙𝑗 ,𝜙𝑖 ) and 

𝐾𝑖𝑗 =𝐾𝑗𝑖 =A(𝜙𝑗 ,𝜙𝑖 ) are symmetric positive definite. The vectors f, g∈𝑅𝑁  are defined by 

𝑓𝑗 (t)=(𝜙𝑗 ,f(.,t)) and 𝑔𝑗=(𝜙𝑗 ,g) . 
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The initial-value problem (4) has a unique solution. 

 

The mass matrix M may be replaced by a diagonal matrix using a low-order quadrature to 

approximate the L
2 

inner product, which is easier to invert. This new method is called lumped 

masses finite element method. 

 

3.2.4 Multidimensional problems 

 

A Galerkin finite element method for multi-dimensional parabolic problems is derived in a 

similar manner, as illustrated on the following model problem: 

 

 

𝑢𝑡(𝑥, 𝑡) = 𝛥𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛺 × [0,𝑇],
𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝛺 × [0,𝑇],

 𝑢 𝑥, 0 = 𝑔 𝑥 , 𝑥 ∈ 𝛺,

 ……………………….(5) 

 

 

Where, Ω⊂R
d
. 

 

The domain Ω is partitioned into a regular mesh consisting of triangular or rectangular 

elements (in two dimensions) and tetrahedral or hexahedral elements in three dimensions. We 

apply the standard procedure to construct a finite-dimensional subspace 𝑆𝑝
𝑁 of 𝐻0

1 spanned by 

a piecewise p-degree polynomial finite element basis 𝜙𝑖(x), i=1,2,⋯,N, developed for elliptic 

problems; see (Axelson and Barker 2006, Baker et al. 1981). 

 

The semi-discrete Galerkin finite element problem consists of finding 

 

                                𝑢𝑁(x,t) = 𝑐𝑖(𝑡)ϕ𝑖(𝑥),𝑁
𝑖=1  

such that 
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(𝑣𝑁 , (𝑢𝑁)𝑡(. , 𝑡)) + 𝐴(𝑣𝑁 ,𝑢𝑁(. , 𝑡)) = (𝑣𝑁 ,𝑓(. , 𝑡)),∀ 𝑣𝑁 ∈ 𝑆𝑝

𝑁 , 𝑡 ≥ 0,

(𝑣𝑁 ,𝑢𝑁(. ,0) = (𝑣𝑁 ,𝑔),∀ 𝑣𝑁 ∈ 𝑆𝑝
𝑁 ,

  

 

Where, 

 

(v,u(.,t))=∫Ωv(x)u(x,t)dx, A(v,u(.,t))= 𝛺 [𝛻𝑣(𝑥)]𝑡𝛻𝑢(𝑥, 𝑡)𝑑𝑥. 

 

Testing against 𝑣𝑁=𝜙𝑗 , j=1,2,⋯,N yields a system of differential equations of the form (4). 

 

Again, an implicit time-stepping method should be used to integrate the ordinary differential 

system in time. 
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Chapter 4 

Galerkin FEM Solution For 2D BVP Using Triangular Elements 
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4.1 Governing Equation:  

𝜕

𝜕𝑥
(∝𝑥

𝛿𝑢

𝛿𝑥
)  +  

𝜕

𝜕𝑦
(∝𝑦

𝛿𝑢

𝛿𝑦
)+𝛽𝑢 = 𝑔……..  (1) 

and the domain is defined as, 

𝑥 ∈  0,𝑎  

𝑦 ∈  0, 𝑏  

Consider, 

𝑟𝑒 =  
𝜕

𝜕𝑥
 ∝𝑥

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑦
 ∝𝑦

𝜕𝑢

𝜕𝑦
 + 𝛽𝑢 − 𝑔 

The weighted residual integration along the given domain 

 𝜔𝑟𝑒𝑑𝑥𝑑𝑦 = 0
Ω𝑒

 

 

=> 𝜔  
𝜕

𝜕𝑥
 ∝𝑥

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑦
 ∝𝑦

𝜕𝑢

𝜕𝑦
 + 𝛽𝑢 − 𝑔 𝑑𝑥𝑑𝑦 = 0

Ω𝑒 ………. (2) 

Now, 

𝜕

𝜕𝑥
 𝜔𝛼𝑥

𝛿𝑢

𝛿𝑥
  =  

𝜕𝜔

𝜕𝑥
 𝛼𝑥

𝛿𝑢

𝛿𝑥
 +  𝜔

𝜕

𝜕𝑥
 𝛼𝑥

𝛿𝑢

𝛿𝑥
  

=> 𝜔
𝜕

𝜕𝑥
 𝛼𝑥

𝛿𝑢

𝛿𝑥
 =

𝜕

𝜕𝑥
 𝜔𝛼𝑥

𝛿𝑢

𝛿𝑥
 −  

𝜕𝜔

𝜕𝑥
 𝛼𝑥

𝛿𝑢

𝛿𝑥
  

=>𝜔
𝜕

𝜕𝑥
 𝛼𝑥

𝛿𝑢

𝛿𝑥
 =

𝜕

𝜕𝑥
 𝜔𝛼𝑥

𝛿𝑢

𝛿𝑥
 −  𝛼𝑥

𝛿𝜔

𝛿𝑥

𝛿𝑢

𝛿𝑥
………  (3) 

Similarly, 

=> 𝜔
𝜕

𝜕𝑦
 𝛼𝑦

𝛿𝑢

𝛿𝑦
 =

𝜕

𝜕𝑦
 𝜔𝛼𝑦

𝛿𝑢

𝛿𝑦
 −  𝛼𝑦

𝛿𝜔

𝛿𝑦

𝛿𝑢

𝛿𝑦
      ………..    (4) 

Using equation (3) and (4) in equation (2), we have, 
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 𝜔  
𝜕

𝜕𝑥
 𝜔 ∝𝑥

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝜔 ∝𝑦

𝜕𝑢

𝜕𝑦
  𝑑𝑥𝑑𝑦 −   𝜔[𝛼𝑥

𝛿𝜔

𝛿𝑥

𝛿𝑢

𝛿𝑥
+

Ω𝑒Ω𝑒

 𝛼𝑦
𝛿𝜔

𝛿𝑦

𝛿𝑢

𝛿𝑦
] 𝑑𝑥𝑑𝑦 +  𝜔𝛽𝑢𝑑𝑥𝑑𝑦 = 

Ω𝑒  𝜔𝑔𝑑𝑥𝑑𝑦
Ω𝑒    ………………. (5)  

 

Again , using the Green’s theorem, the first part of equation (5) can be rewritten as,  

 𝜔
Ω𝑒  

𝜕

𝜕𝑥
 𝜔 ∝𝑥

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝜔 ∝𝑦

𝜕𝑢

𝜕𝑦
  𝑑𝑥𝑑𝑦=  𝜔(𝛼𝑥  

𝜕𝑢

𝜕𝑥
𝑛𝑥 + 𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦)

𝑟𝑒   𝑑𝑙              

………… (6) 

[𝑎 𝑛 = 𝑎 𝑥𝑛𝑥 + 𝑎 𝑦𝑛𝑦 ] 

 

Based on equation (6) the equation (5) can be rewritten as , 

 

- 𝜔
Ω𝑒 [𝛼𝑥

𝜕𝜔

𝜕𝑥

𝜕𝑢

𝜕𝑥
 + 𝛼𝑦

𝜕𝜔

𝜕𝑦

𝜕𝑢

𝜕𝑦
 ] dxdy +  𝜔𝛽𝑢𝑑𝑥𝑑𝑦 = 

Ω𝑒  𝜔𝑔𝑑𝑥𝑑𝑦  
Ω𝑒 - 

 𝜔
𝑟𝑒

 ( 𝛼𝑥  
𝜕𝑢

𝜕𝑥
𝑛𝑥  + 𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦 ) dl   ……………….  (7) 

 

Now ,𝑢 =   𝑢𝑗
𝑒𝑛

𝑗=1 ∅𝑗  . Let 𝜔 = ∅𝑖  for 𝑖 = 1,2,…… . ,𝑛, since, according 

to Galerkin‘s approach the weight function should belongs to the same 

shape function that is used to interpolate u. 

From equation (7) 

- [
Ω𝑒 𝛼𝑥

𝜕∅𝑖

𝜕𝑥

𝜕

𝜕𝑥
( 𝑢𝑗

𝑒∅𝑗
𝑛
𝑗=1 )  + 𝛼𝑦

𝜕∅𝑖

𝜕𝑦

𝜕

𝜕𝑦
 ( 𝑢𝑗

𝑒∅𝑗
𝑛
𝑗=1 )] 𝑑𝑥𝑑𝑦  +  ∅𝑖Ω𝑒 𝛽 

( 𝑢𝑗
𝑒∅𝑗

𝑛
𝑗=1 )𝑑𝑥𝑑𝑦  =  ∅𝑖Ω𝑒 𝑔𝑑𝑥𝑑𝑦 -  ∅𝑖𝑟𝑒

 ( 𝛼𝑥  
𝜕𝑢

𝜕𝑥
𝑛𝑥  +  𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦 ) dl     

For 𝑖 = 1,2,…… . , 𝑛, 

 

- [
Ω𝑒 𝛼𝑥

𝜕∅𝑖

𝜕𝑥
( 𝑢𝑗

𝑒 𝜕∅𝑗

𝜕𝑥

𝑛
𝑗=1 )  + 𝛼𝑦

𝜕∅𝑖

𝜕𝑦
( 𝑢𝑗

𝑒 𝜕∅𝑗

𝜕𝑦

𝑛
𝑗=1  )] 𝑑𝑥𝑑𝑦 +  ∅𝑖Ω𝑒 𝛽 

( 𝑢𝑗
𝑒∅𝑗

𝑛
𝑗=1 ) dxdy    =   ∅𝑖Ω𝑒 𝑔𝑑𝑥𝑑𝑦 -  ∅𝑖𝑟𝑒

 ( 𝛼𝑥  
𝜕𝑢

𝜕𝑥
𝑛𝑥  + 𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦 )dl    

……………(8)  
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In matrix form , 

 





















e

nn

e

n

e

n

e

n

ee

e

n

ee

AAA

AAA

AAA









21

22221

11211





















e

n

e

e

u

u

u


2

1

+ 





















e

nn

e

n

e

n

e

n

ee

e

n

ee

HHH

HHH

HHH









21

22221

11211





















e

n

e

e

u

u

u


2

1

= 





















e

n

e

e

b

b

b


2

1

+ 





















e

n

e

e

d

d

d


2

1

…… (9) 

 

 

Here, 

𝐴𝑖𝑗
𝑒  = -  [ 𝛼𝑥  Ω𝑒

𝜕∅𝑖

𝜕𝑥

𝜕∅𝑗

𝜕𝑥
+𝛼𝑦

𝜕∅𝑖

𝜕𝑦

𝜕∅𝑗

𝜕𝑦
] 𝑑𝑥𝑑𝑦  ………  (10)  

𝐻𝑖𝑗
𝑒  =  

e

dxdyji               ………….   (11) 

 

 



e

i

e

ib  𝑔𝑑𝑥𝑑𝑦          …………..(12)  

 

𝑑𝑖
𝑒=   ∅𝑖𝑟𝑒

 ( 𝛼𝑥  
𝜕𝑢

𝜕𝑥
𝑛𝑥  + 𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦 ) dl    ……… (13) 

 

 

Let us write the equation (9) in more compact form,  

 





















e

nn

e

n

e

n

e

n

ee

e

n

ee

CCC

CCC

CCc









21

22221

11211





















e

n

e

e

u

u

u


2

1

 =  





















e

n

e

e

f

f

f


2

1

………… (14) 

 

 

Here , 

 

𝐶𝑖𝑗
𝑒  = 𝐴𝑖𝑗

𝑒 +  𝐻𝑖𝑗
𝑒  

𝑓𝑖
𝑒  = 𝑏𝑖

𝑒  + 𝑑𝑖
𝑒  

 

Notice that  the line integral in equation (13) will be zero for all interior edges, as it 

produces equal terms but of opposite sign while evaluating in sharing edge of two 

adjacent triangular elements . It is non – zero at Ω domain boundary Γ, 

where Γ = 𝛤1  ∪  𝛤2. 

 

Here, 
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𝛤1= Boundary edges where Dirichlet condition to be imposed. The contribution of 

equation (13) being zero will be discarded for this case . 

 

𝛤2=  Boundary edges which is characterized by mixed boundary condition or 

boundary condition of  3𝑟𝑑  kind or Robin boundary condition,  

 

(𝛼𝑥  
𝜕𝑢

𝜕𝑥
𝑛𝑥     +    𝛼𝑦

𝜕𝑢

𝜕𝑦
𝑛𝑦     ) + 𝜆𝑢 =  𝛾 

 

So, the line integral in equation (13) becomes, 

 

𝑑𝑖
𝑒= -  𝜙𝑖𝛤2

 (𝛾 − 𝜆𝑢 ) dl     ………….  (15) 

 

The equation (15) only exixts for boundary elements of the domain Ω, which satisfy 

Robin boundary conditions . 

Now, let us evaluate different entries in equation (9) . First, we will try to simplify the 

entries of matrix 𝐴𝑒  . 

 

We know, for triangular element the shape function in natural 𝜉 -  𝜂 

 Co-ordinates are,  

𝜙1 = 1 −  𝜉 − 𝜂 

𝜙2 = 𝜉 

𝜙3 = 𝜂 

 

Now, co-ordinates inside any element can be presented as , 

 

𝑥 =  𝑥1
𝑒 + 𝑥21

𝑒 𝜉 +  𝑥31 
𝑒  𝜂         ..……….. (16a) 

 

𝑦 =  𝑦1
𝑒 + 𝑦𝜉 +  𝑦31 

𝑒  𝜂………….. (16b) 

 

Where  𝑥𝑖𝑗
𝑒  = 𝑥𝑖

𝑒  - 𝑥𝑗
𝑒 , Again, 

 

𝜕𝜙

𝜕𝜉
=  

𝜕𝜙

𝜕𝑥

𝜕𝑥

𝜕𝜉
+
𝜕𝜙

𝜕𝑦

𝜕𝑦

𝜕𝜉
 

 

𝜕𝜙

𝜕𝜂
=  

𝜕𝜙

𝜕𝑥

𝜕𝑥

𝜕𝜂
+
𝜕𝜙

𝜕𝑦

𝜕𝑦

𝜕𝜂
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In matrix form  

 

































= 





































yx

yx


























y

x




             …………………. (17) 

 

 

where





































yx

yx

 = Jacobian Matrix J.  

using equation set (16) and equation (17) , we have,  

 





































yx

yx

= 








3131

2121

yx

yx
        …………………  (18) 

 

Equation (17) and (18) gives us the idea of co-ordinate transformation , 

 

 


























y

x




 = 𝐽−1

































           ………………………  (19) 

 

Where, 

 

𝐽−1 = 
1

∣ 𝐽  ∣ 












2131

2131

xx

yy
 

 

And ∣  𝐽 ∣ = 𝑥21𝑦31  - 𝑥31𝑦21  = 2 × Area of an element = 2× 𝐴𝑒 . Now from equation 

(19) 

 


























y

x




=  
1

2𝐴𝑒 












2131

2131

xx

yy

































1

1
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= 
1

2𝐴𝑒 












2131

2131

xx

yy













1

1
 

 

as∅1 = 1 − 𝜉 −  𝜂 

 

= 
1

2𝐴𝑒 












2131

3121

xx

yy
 

                                             = 
1

2𝐴𝑒 








32

23

x

y
                   …………………..  (20) 

 

 

 Hence,  

𝜕∅1

𝜕𝑥
 = 

𝑦23

2𝐴𝑒
         ……………(21a) 

𝜕∅1

𝜕𝑦
 = 

𝑥32

2𝐴𝑒
       …………….(21b) 

 

 

Similarly,  

𝜕∅2

𝜕𝑥
 = 

𝑦31

2𝐴𝑒
…………….(22a) 

𝜕∅2

𝜕𝑦
 = 

𝑥13

2𝐴𝑒
…………….(22b) 

𝜕∅3

𝜕𝑥
 = 

𝑦12

2𝐴𝑒
…………….(22c) 

𝜕∅3

𝜕𝑦
 = 

𝑥21

2𝐴𝑒
……………(22d) 

 

 

Now the Jacobi transformation can helps us to transform a double integral, in equation 

(10), from the regular co- ordinate to the natural co-ordinate. 

 

e
dxdyyxf ),( =  

1

0

1

0
)],(),,([  yxf ∣  𝐽 ∣ 𝑑𝜉𝑑𝜂 

[Ref: H.Anton, ―Calculus‖, 7
th

 edition, New York : Willy, 2002, p- 1075 to 1090] 

So, 

 

𝐴11
𝑒 = 



ddA
A

x

A

x

A

y

A

y
e

ee

y

ee

x 2
2222

1

0

1

0

32322323

 










  
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=
   














e

y

e

x
A

x

A

y

22

2

32

2

23   
1

0

1

0



dd  

=
   














e

y

e

x
A

x

A

y

44

2

32

2

23                         ………….. (23) 

 

 

 

 

Similarly, 









e

y

e

x

ee

A

xx

A

yy
AA

44

13323123

2112    ……….. (24) 

And, 

 











e

y

e

x

ee

A

xx

A

yy
AA

41

21321223

3113  ……………(25) 

 











e

y

e

x

e

A

x

A

y
A

4

)(

4

)( 2

13

2

31

22  …………..  (26) 

 











e

y

e

x

ee

A

xx

A

yy
AA

41

21131231

3223  ……………… (27)  











e

y

e

x

e

A

x

A

y
A

4

)(

4

)( 2

21

2

12
33             …………..      (28) 

It is noticeable that the matrix A
e
 is symmetric ,i.e., 𝐴𝑖𝑗

𝑒  = 𝐴𝑗𝑖
𝑒  

Again from equation (11) 

 

𝐻𝑖𝑗
𝑒  =  

e

dxdyji  

Using Jacobian transformation, 

 

 

𝐻𝑖𝑗
𝑒 = 



ddJji 
1

0

1

0
 

=  
1

0

1

0
2



 ddA jie  

 

Now, let us determine different entries of H
e
 matrix, 

 

  







ddA

ddAH

e

e

e

21

0

1

0

21

0

1

0
111

12

2

 

 







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=
6

eA
            …………………….  (29) 

 

 

Again , we know,  

 

      dxdy
mlk

e

321  


 = 
  eA

mlk

mlk
2

!2

!!!


 

 

[Ref: The finite element method- R.L. Taylor, 4
th

 edition, Vol. 1, Basic foundation of 

linear problems, New York: McGraw Hill, 1989] 

 

Using this formula we can have the same result of equation (29), 

 

eH11 =   dxdy
e

2

1 


  

= 
  eA2

!2002

!0!0!2


  

=
6

eA
 

 

Similarly the other entries of H
e
, 

 

𝐻12
𝑒 = 𝐻21

𝑒  = 𝐻13
𝑒  = 𝐻31

𝑒  = 𝐻23
𝑒  = 𝐻32

𝑒  = 
12

eA
 

 

And,  

𝐻22
𝑒 = 𝐻33

𝑒  = 
6

eA
 

 

Again from equation (12)  

 



e

i

e

ib  𝑔𝑑𝑥𝑑𝑦 

 
Using the same formula, 

 

𝑏1
𝑒 = 𝑔  

e

1 𝑑𝑥𝑑𝑦 = 𝑔
  eA2

2001

!0!0!1


= 
𝑔𝐴𝑒

3
 = 𝑏2

𝑒  = 𝑏3
𝑒  

 

Now in equation (15) ,𝛾 and 𝜆   are constant, 
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𝑑𝑖
𝑒= −  dlui





2

  

 

Considering for a given Robin boundary condition, 

 

𝑑𝑖
𝑒= −  dlu

eL

i


   

 

 

𝐿Ω
𝑒 = Boundary edge that satisfy mixed boundary condition and coincides with Γ2 . 

 

=>𝑑𝑖
𝑒= − dl

eL

i


 +  



eL

eee

i dluuu 33221   

 

Now, let us consider the case for two nodes 1 and 2, both 

are at the edge as shown in Fig. 1, 

𝑑𝑖
𝑒= - 

21

dli +  



21

332211 dluuu eee

i            ………….   (30) 

 

At any point along edge 1→ 2 in x-y co-ordinate Fig. 1(a). 

 

 

  

 

 𝜂 

                                                              (0,1) 

 1       3 

y 

 2 

 312 

xΓ2    (0,0)                 (1,0)   𝜉 

 

(a) (b) 

 

  

Figure 1: (a) Triangular element in x-y co-ordinate, (b) Triangular element in 𝜉 − 𝜂 co-ordinate 
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𝑥 =  𝑥1
𝑒𝜙1 𝜉, 0 +  𝑥2

𝑒𝜙2(𝜉, 0) 

=𝑥1
𝑒 1 − 𝜉 − 0 +  𝑥2

𝑒𝜉 

=𝑥1
𝑒 +  𝑥21𝜉 

Similarly, 

𝑦 = 𝑦1
𝑒 +  𝑦21𝜉 

Now,                                             𝑑𝑙 =   (𝑑𝑥)2 +  (𝑑𝑦)2 

=  (𝑥21)2 + (𝑦21)2𝑑𝜉 = 𝑙12𝑑𝜉   ………………..  (31) 

Using equation (31) in equation (30) to operate the integral in local node 1 of the triangle, 

𝑑1
𝑒  =              dluuudl eee

12332211

1

0
112

1

0
1 0,0,0,0,0,    

=         
1

0

1

0
1232112 0010101  dluuudl eee  

= 







 ee u

l
u

ll
2

12
1

1212

632


                    ………………….  (32) 

 

If we observe the effect of equation (32) in equation (14), we can see easily, 

𝐶11
𝑒 = 𝐶11

𝑒 −  
𝜆𝑙12

3
…………  (33a) 

𝐶12
𝑒 = 𝐶12

𝑒 −  
𝜆𝑙12

6
……………(33b) 

𝐶13
𝑒     =𝐶13

𝑒 − 0……………. (33c) 

In similar way, the entries for the local node 2, 

𝑑2
𝑒=            

1

0
12332211212

1

0
2 0,0,0,0,0,  dluuudl eee  

= 







 ee u

l
u

ll
2

12
1

1212

362


 

The change in equation (14), 

𝐶21
𝑒 = 𝐶21

𝑒 −  
𝜆𝑙12

6
…………  (34a) 
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𝐶22
𝑒 = 𝐶22

𝑒 −  
𝜆𝑙12

3
………… (34b) 

𝐶23
𝑒     =𝐶23

𝑒 − 0……………. (34c) 

Now for local node 3, 

𝑑3
𝑒=             

1

0

1

0
123322113123 0,0,0,0,0,  dluuudl eee  

But it is a fact that 𝜙3(𝜉, 0)= 0 along 𝜉 – axis, as shown in Fig.1. So, for a boundary elemnent 

show in Fig.1, the vector d
e
 in equation (9) will be, 

𝑑𝑒=−
𝛾𝑙12

2
















0

1

1

……………. (35) 

 

So far we have developed the necessary equations for the different entries in matrix 

representing a specific triangular element and work with 𝜙𝑗 (𝜉, 𝜂) in 𝜉 − 𝜂 co-ordinate system. 

Thus after determining u in term of natural co-ordinates we have to return in co-ordinate 

system x-y to express u as,𝑢 𝑥,𝑦 =   𝑢𝑗
𝑒𝜙𝑗 (𝑥,𝑦)𝑛

𝑖=1  

Now we will see how to re-transform to the x-y co-ordinate from the natural co-ordinate 

system.As we see in equation (16), the x-y co-ordinates of a point inside a triangular element 

is given by, 

𝑥= 𝑥1
𝑒+ 𝑥21

𝑒 + 𝑥31
𝑒  

𝑦= 𝑦1
𝑒+ 𝑦21

𝑒 + 𝑦31
𝑒  

 

Re-writing the above equation pair in matrix form, 













e

e

yy

xx

1

1 = 








3121

3121

yy

xx












 

=> 











= 

1

𝑥21𝑦31−𝑥31𝑦21













2121

3131

xy

xy












e

e

yy

xx

1

1

    …………..(36)

 

Just substituting the relations in equation (36) in shape function 𝜙𝑗 (𝜉, 𝜂) we will get 𝜙𝑗 (𝑥,𝑦) 

in x-y co-ordinate system 
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Implementation:  

Now we will apply the Galerkin approach on the same problem discussed in the chapter of ― 

PDE 2D BVP‖. Let us recall the problem. 

Problem : 

Solve the Boundary value problem for the following square domain, where the domain is 

characterized by an Elliptic Laplace equation with domain supports 𝑥 ∈ [0,1]and 𝑦 ∈ [0,1]. 

𝜕2𝑢

𝜕𝑥2 + 
𝜕2𝑢

𝜕𝑦2 = 0……………. (37) 

 

                                                                Y      u=1 

 

u= 0    𝛁𝟐𝒖 = 𝟎      u=0 

 

0                              X 

Fig : 2D BVP with Dirichlet boundary conditions 

Analytical solution : 

The analytical solution of the above problem is ; 

 

𝑢(𝑥, 𝑦) = 
4

𝜋
 

sin  2𝑚+1 𝜋𝑥

2𝑚+1
∞
𝑚=0

sin 𝑕 2𝑚+1 𝜋𝑦

sinh ⁡(2𝑚+1)𝜋
…………….(38) 

Numerical solution: 

In equation (1)  if we consider 𝛼𝑥   = 𝛼𝑦= 1 and   𝛽= 𝑔= 0, then we will have equation (37). 

Now using equation (23) to (29) and with the help of Matlab we can have the following 

figures. Here we have used the triangular element in 2D FEM Galerkin approach for different 

domain discretization‘s. 
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Chapter 5 

Result and Simulation 
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5.1 Figure 
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Chapter 6 

Conclusion 
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We hope this thesis has covered the answer to the most important questions 

regarding what is the finite element method and also covered the answer about 

the Galerkin Method. We outline the many continuum fields and subjects in 

which FEM can be applied and showed how to solve the 2D boundary value 

problem by using finite element method.  

 

At present days, engineers use computers and software in the design and 

manufacture of most products, processes and systems. Finite element method is 

one of the most important tools for an engineer or designer for design and 

analysis of products and processes.  

 

In chapter 1, we have introduced the basic of Numerical analysis. You also 

knew the details of numerical methods and its types. We also gave the basic 

concepts of elements and nodes in the introduction part. From the introduction 

part you known about the history of finite element method. 

 

In chapter 2, we discussed the details of finite element method. From this 

chapter you knew about the common FEM application, types of finite element, 

principle of finite element method, advantages of finite element method etc. 

Here, we also discussed about a general procedure for finite element analysis. 

You also knew the stiffness matrix and shape function from this chapter. So, in 

this chapter we gave you a proper concept about finite element method.  

 

In chapter 3, boundary value problem and Galerkin Method were discussed in 

details. From this chapter, you knew about the boundary conditions, initial value 

problem etc. In Galerkin Method part, you knew about a one dimensional 

parabolic problem, weak Galerkin formulation, semi discretization and 

multidimensional problems. So, you had a proper concept of boundary value 

problem and Galerkin Method from this chapter.  



60 
 

In chapter 4, there was a Galerkin finite element solution. You knew about the 

governing equation and how its work from this chapter. We showed here the 

Galerkin FEM solution for 2D boundary value problem using triangular 

elements with the help of Matlab code. Using those codes we presented a 

numerical solution, of a space bounded by four arm where higher potential is 

applied to one arm and rests are grounded. 

 

 

In chapter 5, we presented the result, of the 2D boundary value problem with 

figures.  

 

So, in our thesis, we showed how to implement the finite element method and 

also showed the process of Galerkin Finite Method solution for 2D boundary 

value problem. Now you can solve and kind of 2D boundary value problem by 

following Galerkin Finite element method solution process. 
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Appendix 
 

 

Matlab code  

%%Galerkin FEM for 2D BVP Numerical Solution using triangular Elements 

clc 

clearall 

clf 

m=3;  

N=2^m; %Number of Segment in each direction (even) 

K=zeros((N+1)^2,(N+1)^2); 

b=zeros((N+1)^2,1); 

x_L=0; 

x_R=1;  %Support in x direction 

y_D=0; 

y_U=1;  %support in y direction 

h=(x_R-x_L)/N;  %step size or segment size 

x=zeros(N+1,N+1);  %x co-ordinates 

y=zeros(N+1,N+1);  %y co-ordinates 

n=zeros(N+1,N+1);   %nodes number in serial sequence 

P=1;  %increment factor 

for i=1:(N+1) 

for j=1:(N+1) 

x(i,j)=h*(i-1); 

y(i,j)=h*(j-1); 

n(i,j)=P; 

        P=P+1; 

end 

end 

%Area of a single element, |J|=2*A_e 

A_e=(1/2)*(((x(2,1)-x(1,1))*(y(2,2)-y(1,1)))-((y(2,1)-y(1,1))*(x(2,2)-x(1,1)))); 

%Elements co-ordinates and number 

x_e=zeros(1,3); 

y_e=zeros(1,3); 

n_e=zeros(1,3); 

%selecting element and assembling matrix  
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for i=1:N  

for j=1:N  

x_e(1,1)=x(i,j);  

y_e(1,1)=y(i,j);  

n_e(1,1)=n(i,j);  

x_e(1,2)=x(i+1,j);  

y_e(1,2)=y(i+1,j);  

n_e(1,2)=n(i+1,j);  

x_e(1,3)=x(i+1,j+1);  

y_e(1,3)=y(i+1,j+1);  

n_e(1,3)=n(i+1,j+1);  

 

        [C,B] = matrix_assemble_G_2D(x_e,y_e,n_e,A_e);  

 

        K(n_e(1,1),n_e(1,1))=K(n_e(1,1),n_e(1,1))+C(1,1);  

        K(n_e(1,1),n_e(1,2))=K(n_e(1,1),n_e(1,2))+C(1,2);   

        K(n_e(1,1),n_e(1,3))=K(n_e(1,1),n_e(1,3))+C(1,3);  

 

        K(n_e(1,2),n_e(1,1))=K(n_e(1,2),n_e(1,1))+C(2,1);  

        K(n_e(1,2),n_e(1,2))=K(n_e(1,2),n_e(1,2))+C(2,2);   

        K(n_e(1,2),n_e(1,3))=K(n_e(1,2),n_e(1,3))+C(2,3);   

 

        K(n_e(1,3),n_e(1,1))=K(n_e(1,3),n_e(1,1))+C(3,1);  

        K(n_e(1,3),n_e(1,2))=K(n_e(1,3),n_e(1,2))+C(3,2);   

        K(n_e(1,3),n_e(1,3))=K(n_e(1,3),n_e(1,3))+C(3,3);   

 

        b(n_e(1,1),1)=b(n_e(1,1),1)+B(1,1);  

        b(n_e(1,2),1)=b(n_e(1,2),1)+B(2,1);  

        b(n_e(1,3),1)=b(n_e(1,3),1)+B(3,1);  

 

x_e(1,1)=x(i+1,j+1);  

y_e(1,1)=y(i+1,j+1);  

n_e(1,1)=n(i+1,j+1); 

x_e(1,2)=x(i,j+1);  

y_e(1,2)=y(i,j+1);  

n_e(1,2)=n(i,j+1);  

x_e(1,3)=x(i,j);  

y_e(1,3)=y(i,j);  

n_e(1,3)=n(i,j);  

 

        [C,B]=matrix_assemble_G_2D(x_e,y_e,n_e,A_e);  

 

        K(n_e(1,1),n_e(1,1))=K(n_e(1,1),n_e(1,1))+C(1,1);  

        K(n_e(1,1),n_e(1,2))=K(n_e(1,1),n_e(1,2))+C(1,2);   
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        K(n_e(1,1),n_e(1,3))=K(n_e(1,1),n_e(1,3))+C(1,3);  

 

        K(n_e(1,2),n_e(1,1))=K(n_e(1,2),n_e(1,1))+C(2,1);  

        K(n_e(1,2),n_e(1,2))=K(n_e(1,2),n_e(1,2))+C(2,2);   

        K(n_e(1,2),n_e(1,3))=K(n_e(1,2),n_e(1,3))+C(2,3);   

 

        K(n_e(1,3),n_e(1,1))=K(n_e(1,3),n_e(1,1))+C(3,1);  

        K(n_e(1,3),n_e(1,2))=K(n_e(1,3),n_e(1,2))+C(3,2);   

        K(n_e(1,3),n_e(1,3))=K(n_e(1,3),n_e(1,3))+C(3,3);   

 

        b(n_e(1,1),1)=b(n_e(1,1),1)+B(1,1);  

        b(n_e(1,2),1)=b(n_e(1,2),1)+B(2,1);  

        b(n_e(1,3),1)=b(n_e(1,3),1)+B(3,1);  

end 

end 

 

U=[zeros(1,N) 1];  

for R=1:N  

    U=[zeros(1,N) 1 U];  

end 

U=U';  

b_subtract=K*U;  

b=b-b_subtract;  

 

%For (N+1)x(N+1) nodes  

L=N+1;  

K_1=[K(:,(L+2):(2*L-1))];  

for i=2:(N-1)  

    K_1=[K_1 K(:,(i*L+2):((i+1)*L-1))];  

end 

 

K_2=[K_1((L+2):(2*L-1),:)];  

for i=2:(N-1)  

    K_2=[K_2; K_1((i*L+2):((i+1)*L-1),:)];  

end 

 

b_1=[b((L+2):(2*L-1),1)];  

for i=2:(N-1)  

    b_1=[b_1; b((L+2):(2*L-1),1)];  

end 

u_vector=K_2\b_1;  

 

%u_vector=K\b;  

u_matrix=zeros(N+1,N+1);  
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M=2;  

for Q=1:(N-1):((N-1)^2-(N-2))  

u_matrix(M,2:N)=(u_vector(Q:(N-2+Q),1))';  

    M=M+1;  

end 

%u_matrix(:,(N+1)) = ones((1:(N+1)),1); 

u_matrix(:,(N+1)) = ones(N+1,1); 

contour(x,y,u_matrix)  

xlabel('x-->')  

ylabel('y-->')  

title('Galerkin FEM solution of Laplace equation for 65x65 nodes') 

 

 

 

 Function code  

function [C,B] = matrix_assemble_G_2D(x_e,y_e,n_e,A_e)  

Beta = 0;  

g=0; 

 

A=zeros(3,3);  

H=zeros(3,3);  

C=zeros(3,3);  

B=zeros(3,1);  

 

x1=x_e(1,1);  

y1=y_e(1,1);  

n1=n_e(1,1); 

x2=x_e(1,2);  

y2=y_e(1,2);  

n2=n_e(1,2);          

x3=x_e(1,3);  

y3=y_e(1,3);  

n3=n_e(1,3);  

 

%Assembling matrix A  

A(1,1)=-((y2-y3)^2+(x3-x2)^2)/(4*A_e); 

A(2,2)=-((y3-y1)^2+(x1-x3)^2)/(4*A_e);  

A(3,3)=-((y1-y2)^2+(x2-x1)^2)/(4*A_e);  

 

A(1,2)=-((y2-y3)*(y3-y1)+(x3-x2)*(x1-x3))/(4*A_e);  

A(2,1)=A(1,2);  
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A(1,3)=-((y2-y3)*(y1-y2)+(x3-x2)*(x2-x1))/(4*A_e);  

A(3,1)=A(1,3);  

A(2,3)=-((y3-y1)*(y1-y2)+(x1-x3)*(x2-x1))/(4*A_e);  

A(3,2)=A(2,3);  

%assembling matrix H and C  

for i=1:3  

for j=1:3  

if i==j  

H(i,j)=(Beta*A_e)/6;  

else H(i,j)=(Beta*A_e)/12;  

end 

C(i,j)=A(i,j)+H(i,j);   

end 

end 

%Assembling matrix B  

B(1,1)=(g*A_e)/3;  

B(2,1)=B(1,1);   

B(3,1)=B(1,1); 
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