

Software-defined Networking and Its

Implementation By using Mininet

 1. Kaniz Shormin Kushi ID- 2014-3-55-024

 2. Tasnia Enayet ID- 2015-1-55-002

 3. Oishe Ahmed Dipa ID- 2015-1-55-029

Under Supervision of

Dr. Mohammad Arifuzzaman

Assistant Professor

Department of Electronics and Communications Engineering

East West University

A thesis submitted in partial fulfillment of the requirements for the degree

of Bachelor of Science in Electronics and Telecommunications Engineering

Department of Electronics and Communications Engineering

EAST WEST UNIVERSITY

Dhaka-1212, Bangladesh

Fall Semester 2018-2019

April 2019

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the investigation

performed by me under the supervision of Dr. Mohammad Arifuzzaman, Assistant Professor,

Department of Electronics and Communications Engineering, East West University. I also declare

that no part of this thesis has been or is being submitted elsewhere for the award of any degree or

diploma.

Countersigned Signature

........................

(Dr. Mohammad Arifuzzman) (Kaniz Shormin Kushi)

Supervisor (2014-3-55-024)

 Signature

 (Tasnia Enayet)

 (2015-1-55-002)

 Signature

 (Oishe Ahmed Dipa)

 (2015-1-55-029)

 Letter of Acceptance

This thesis report entitled “Software-defined Networking & its Implementation using Mininet”

submitted by Kaniz Shormin Kushi (ID:2014-3-55-024), Tasnia Enayet (ID: 2015-1-55-002) and

Oishe Ahmed Dipa (ID: 2015-1-55-029) to the Department of Electronics and Communications

Engineering, East West University is Accepted by the department in partial fulfillment of

requirements for the award of the Degree of Bachelor of Science in Electronics and

Telecommunications Engineering on April, 2019.

 Supervisor

…………………………….

(Dr. Mohammad Arifuzzaman)

Assistant Professor,

Department of Electronics and Communications Engineering, East West University

 Chairperson

 …………………………….

 (Dr. Mohammed Moseeur Rahman)

 Assistant Professor and Chairperson,

 Department of Electronics and Communications Engineering, East West Universit

i

Abstract

Software Defined Networking (SDN) is an evolving networking technology concept that enables

advancement about how to maintain and design network systems. Due to the separate data plane

and control plane, consolidated management is assisted in a Software defined Network. In this

thesis we did a compulsive study on SDN.

Another important term is OpenFlow which is an SDN approach, presenting the inherent

OpenFlow switches with such a centralized controller. OpenFlow switches are designed with flow

tables that the controller can handle to use the OpenFlow protocol interface. An evaluation of an

SDN emulation tool called Mininet is performed in this thesis. In Software Defined Networking

(SDN) and OpenFlow, Mininet had been created to enable research. In this thesis we have used

Mininet network emulator to create a virtual SDN network for OpenDaylight to control. A tree

topology is created over OpenDaylight using mininet, which is a simple demonstration of SDN

and understandable to everyone.

ii

Acknowledgments

As it is true for everyone, we have also arrived at this point of achieving a goal in our life through

various interactions with and help from other people. However, written words are often elusive

and harbor diverse interpretations even in one’s mother language. Therefore, we would not like to

make efforts to find best words to express my thankfulness other than simply listing those people

who have contributed to this thesis its elfin an essential way. This work was carried out in the

Department of Electronics & Communication Engineering at East West University, Bangladesh.

First of all, we would like to express my deepest gratitude to the almighty for His blessings on us.

Next, our special thanks go to our supervisor, Dr. Mohammmad Arifuzzaman, who gave us this

opportunity, initiated us into the field of networking, and without him this work would not have

been possible. His encouragements, visionaries and thoughtful comments and suggestions,

unforgettable support at every stage of our B.Sc. study were simply appreciating and essential. His

ability to muddle us enough to finally answer our own question correctly is something valuable

what we have learned and we would try to emulate, if ever I/We get the opportunity.

Last but not the least; we would like to thank our parents for their unending support,

encouragement and prayers.

There are numerous other people to who have shown us their constant support and friendship in

various ways, directly or indirectly related to our academic life. One of them is Mohaiminul Islam

Shovon. We will remember them in our heart and hope to find a more appropriate place to

acknowledge them in the future.

 Kaniz Shormin Kushi

 April, 2019

 Tasnia Enayet

 April, 2019

Oishe Ahmed Dipa

 April, 2019

iii

Table of Content

Chapter 1 Introduction 1

1.1: Software-defined networking(SDN)………………………………………………..1

1.1.2: Differences between Traditional Networking and SDN.…………………………2

1.1.3: Importance of SDN ………………………………………………………………2

1.2: OpenFlow …………………………………………………………………………..3

1.2.1: OpenFlow working operation……………………………………………………..4

1.2.2: Necessary of OpenFlow…………………………………………………………..4

1.3: The Minnet………………………………………………………………………….5

Chapter 2 Literature Review 6

2.1 Introduction………...……………………………………………..………………...6

2.2 History of SDN …………...…………………………………………………...……6

2.3 Existing Works On Software-defined Networking……… …………………...…....6

Chapter 3 Components and Architecture of SDN 8

3.1: Infrastructure Layer (Data plane)...………………………………………………...9

3.2: Controller Plane ……………………………………………..…………………….12

3.2.1: SDN controller functional components ……………………………..…………..14

3.2.1.1: Data plane control function…………………………………………………....15

3.2.1.2: Co-ordinator…………………………………………………………………...15

3.2.1.3: Virtualizer……………………………………………………………………...15

3.2.1.4: Agent…………………………………………………………………………..16

3.2.1.5: Other controller component………………………………………………...….16

iv

3.2.2: Legation of control………………………………………………………………17

3.3: Application layer………………………………………………………………......17

3.4: Management……………………………………………………………..…………19

Chapter 4 Openflow Basics 20

4.1: Openflow………………..…………….…………………………………………..20

4.2: A Brief of OpenFlow SDN ………………………...……………………………..20

4.3: OpenFlow and OpenFlow Switch ……………………………………….………..20

4.4: OpenFlow Switch Process System……………………………………….………..21

4.5: Differences of OpenFlow Switch v Conventional Switch………………………...21

4.6: State of the Art of Open Switch…………………………………………...………21

Chapter 5 Mininet 23

5.1: Mininet ……………………………………………………………………….…..24

5.2: Future Work…………………………………………………….………………...34

Chapter 6 SDN Tree Topology Implementation using Minniet 25

6.1: Introduction……………………………………………………………………….25

6.2: Simulation…………………………………………………………………………27

6.3: Other Simulators…………………………………………………………………..37

Chapter 7 Future plan of SDN 38

7.1: SDN Migration plan…………………………………………………….………..38

7.2: SDN versus Conventional Systems Administration (Traditional Networking).....39

v

7.3: SDN Adoption……………………………………………………………….… 39

7.4: Virtual-Network peering………………………………………..………………. 40

7.5: Virtual-Network encryption…………………………….…………………...… 40

Conclusion 41

vi

List of Figure

Figure 1: three-layer software-defined networking (SDN) architecture .. 1

Figure 2: Basic packet forwarding with OpenFlow in a switch .. 4

Figure 3: Basic SDN Components .. 8

Figure 4: Network Element (NE) recourses details .. 9

Figure 5: Architecture of plane, layers and architecture design ... 10

Figure 6: Openflow Qualify SDN ... 11

Figure 7: SDN Control logic .. 12

Figure 8: Open flow and open flow switch communicates over OpenFlow channel to an external

Controller ... 21

Figure 9: Screenshot of configuring IP address of OpenDaylight .. 27

Figure 10: Screenshot of Ip address of OpenDaylight ... 28

Figure 11: Screenshot of starting the OpenDaylight .. 30

Figure 12: Screenshot of IP address of Mininet ... 31

Figure 13: Screenshot of configuring the Tree topology command ... 32

Figure 14: Screenshot of testing the all connections .. 33

Figure 15: Screenshot of page layout of OpenDaylight .. 34

Figure 16: Screenshot of creating the tree topology ... 34

Figure 17: Screenshot of node connections of the tree ... 35

Figure 18: Screen shot of PuTTY configuration .. 36

Figure 19: Screenshot wireshark that capture the data traffics ... 37

1

Chapter 1

Introduction

1.1 Software-defined networking (SDN)

Software-defined networking (SDN) raised a great deal in present-day since it tends to the

insufficiency of programmability in existing systems administration structures and empowers less

demanding and quicker system development.

Figure 1.1: A three-layer software-defined networking (SDN) architecture. [1].

Figure 1 delineates the SDN structure, which comprises of three layers. The least layer is the

foundation layer, additionally called the information plane. It includes the sending system

components. The obligations of the sending plane are mostly information sending, just as

observing neighborhood data and social event measurements. One layer above, we find the control

layer, additionally called the control plane. It is in charge of programming and dealing with the

sending plane. The application layer contains arrange applications that can present new system

highlights, for example, security and sensibility, sending plans or help the control layer in the

system configuration. [1]

2

1.1.2 Differences between Traditional Networking and SDN:

 Following table describes difference between traditional and software defined networking types.

Table 1: Difference between Traditional Networking and SDN

Traditional Networking Software Defined Networking

They are Static and inflexible networks.

They are not useful for new business

ventures. They possess little agility and

flexibility

They are programmable networks during deployment time as

well as a later stage based on a change in the requirements.

They help new business ventures through flexibility, agility

and virtualization.

 They are Hardware appliances. They are configured using open software.

They have distributed control plane. They have a logically centralized control plane.

They use custom ASICs and FPGAs. They use merchant silicon.

They work using protocols. They use APIs to configure as per need.

1.1.3 Importance of SDN:

With the end goal for SDN to convey on its full guarantee, it must be empowered by open systems

administration guidelines that can be effectively coordinated with current frameworks. Receiving

a SDN approach has a bunch of advantages including adaptability, versatility, repetition, and

execution. In a customary system, there may be sure restricted equipment and programming pieces.

At the point when a system requires extra assets, there will be significant expense in purchasing

new equipment and authorizing.

With SDN, the system is disconnected onto programming, leaving progressively decision and

adaptability in obtaining equipment. Also, a developing system can be all the more effectively

upheld by SDN on the grounds that a system overseer or designer can basically include more

virtual switches or switches as opposed to buy expensive hardware and authorizing.

3

A product characterized organize is likewise convenient, which permits the adaptability in picking

and moving to distributed storage, open or private. Abstracting your system onto a cloud could

exhibit numerous advantages too: less equipment to oversee nearby, lower vitality bills, and more

noteworthy uptime.

1.2 OpenFlow

An OpenFlow Controller is a product application that oversees stream control in a SDN domain.

As a rule, numerous SDN controllers depend on the OpenFlow convention. All correspondences

among applications and gadgets legitimately experience the controller. The OpenFlow convention

associates the controller programming to organize gadgets with the goal that server programming

can advise changes where to send parcels for the sending table. Thusly, the controller utilizes the

OpenFlow convention to arrange organize gadgets to pick the best way for application traffic. [2]

OpenFlow design comprises of three fundamental ideas.

1. The system is developed by OpenFlow-agreeable switches that create the information plan

2.The control plane comprises of at least one OpenFlow controllers

3.A secure control channel interfaces the switches with the control plane.

Three classes of correspondence exist in the OpenFlow convention: controller-to-switch, non-

concurrent and symmetric correspondence. The controller-to-switch correspondence is in charge

of highlight identification, configuration, programming the switch and data recovery. Offbeat

correspondence is started by the OpenFlow-consistent switch with no requesting from the

controller. It is utilized to advise the controller about bundle landings, state changes at the switch

and mistakes. At last, symmetric messages are sent without sales from either side, i.e., the switch

or the controller is allowed to start the correspondence without sales from the opposite side.

Instances of symmetric correspondence are hi or reverberation messages that can be utilized to

distinguish whether the control channel is still live and accessible.

4

1.2.1 OpenFlow working operation

Figure1.2: Basic packet forwarding with OpenFlow in a switch [1].

The essential bundle sending component with OpenFlow is outlined in Figure3. At the point when

a switch gets a bundle, it parses the parcel header, which is coordinated against the flow table. On

the off chance that a flow table passage is discovered where the header field special case

coordinates the header, the section is considered. On the off chance that few such passages are

discovered, bundles are coordinated dependent on prioritization, i.e., the most specific section or

the trump card with the most astounding need is chosen. At that point, the switch refreshes the

counters of that flow table passage. At last, the switch plays out the activities specified by the flow

table section on the parcel, e.g., the switch advances the bundle to a port. Something else, if no

flow table section coordinates the parcel header, switch by and large notifies its controller about

the bundle, which is cradled when the switch is fit for buffering. Keeping that in mind, it embodies

either the unbuffered bundle or the first bytes of the cushioned parcel utilizing a PACKET-IN

message and sends it to the controller; usually to exemplify the bundle header and the quantity of

bytes defaults to 128. The controller that gets the PACKET-IN notification identifies the right

activity for the parcel and introduces at least one fitting sections in the mentioning switch.

Supported bundles are then sent by the guidelines; this is activated by setting the cradle ID in the

flow inclusion message or in unequivocal PACKET-OUT messages. Most generally, the controller

sets up the entire way for the bundle in the system by changing the flow tables of all switches on

the way

1.2.2 Necessity of OpenFlow

5

Merchants offer differing degrees of client programmability on their switches and switches. This

can prompt constrained usefulness for traffic building and the executives or conflicting traffic the

board between hardware from different merchants. OpenFlow is intended to give consistency in

rush hour gridlock the executives and building by making this control work free of the equipment

it's proposed to control. [3]

1.3 The Mininet

The worldview SDN is as yet later in this way the system explores have concentrated their own

investigations of the subject. At the point when those scientists need to test the new SDN includes

in the controllers, switches or even in the OpenFlow convention, they have a few troubles. Those

challenges happen extraordinarily in light of the fact that there are so couple of modest gadgets

accessible that can execute in SDN standard. In addition, in increasingly explicit cases, when it is

important to reproduce substantial systems with extensive quantities of hosts, switches and SDN

controllers, utilizing the Internet may not be a smart thought, in light of the fact that ill-advised

setups can cause undesirable issues. One of the answers for this issue is making models and

reproducing them in virtual mode. To do this, a few apparatuses have been made and one of them

is the Mininet programming [8]. The Mininet is a framework that permits quickly prototyping

expansive systems on a solitary PC. It makes versatile Programming characterized systems

utilizing lightweight virtualization instruments, for example, procedures and system namespaces.

These highlights license the Mininet make, communicate with, redo and share the models rapidly.

A few attributes guided the formation of Mininet are

1) Flexibility, that is, new topologies and new highlights can be set in programming, utilizing

programming dialects and basic working frameworks;

2) Applicability, effectively executions done in models ought to be likewise usable in genuine

systems dependent on equipment with no adjustments in source codes;

3) Interactivity, the executives and running the reproduced system must happen progressively as

though it occurs in genuine systems;

4) Scalability, the prototyping condition must scale huge systems with hundreds or thousands of

switches on just a PC;

5) Realistic, the model conduct ought to speak to constant conduct with a high level of certainty,

so applications and conventions stacks ought to be usable with no code alteration; lastly

6) share-capable, the made models ought to be effectively imparted to different teammates, which

would then be able to run and change the trials.

6

Chapter 2

7

Literature Review

2.1 Introduction

Though SDN is a new topic but a good number work already done on SDN. This section

additionally talked about existing works on Software-defined Networking.

2.2 History of SDN

The records of SDN concepts can be traced lower back to separation of the control and data plane first used

in the public switched telephone networks as a way to simplify provisioning and management properly

earlier than this structure stared to be used in data networks. The open networking Foundation was founded

in 2011 to promote SDN and OpenFlow. At 2014 Interop and Tech field Day, software-defined networking

was demonstrated by Avaya using shortest path bridging (IEEE 802.1aq) and OpenStack as an automated

campus, extending automation from the data center to the end device, removing manual provisioning from

service delivery. [10, 11]

2.3 Existing Works On Software-defined Networking

Many researchers and scholars have done works using different tools and methods of software-

defined networking. In this section of the paper, we discussed about some existing works already

done by various researchers.

In [12] authors have focused on to make researches capable to do experiments and to take a look

at novel features of this new paradigm in practice at a low financial cost, and to use virtual

community emulators. This paper focuses on find out about and contrast of SDN emulation tool

called Mininet. Also its elements with working principles, some net prototypes are created to better

understand the Mininet toll and a distinguished its advantages and disadvantages

In [13] authors have proposed an innovative SDN architecture and their aim is to execute SDN

applications written for different controller in a unique network where the structure presents an

important trouble to debug and analyze the SDN network. Some set of tool is layout and developed

with the motive of solving this issue and assurance the appropriate operation of the network.

In [14] authors describe a way to bring the Software-defined Network paradigm into Wireless

Local Area Networks. The control and management functions that need to be implemented in the

wireless scenario are described. The thesis provides a quantitative measure of the gain attained in

various network parameters such as throughput and wireless station setup time by bringing in the

SDN paradigm, via simulations.

8

In [15] authors compared different mininet topologies and used one of the topologies to find out

how host communicates in the mininet environment, as well as using the wget linux feature to

make this possible.

In [16] authors evaluate Mininet's scalability in terms of creating many topologies is tested with

varying number of nodes and two different environment scenarios where results show simulation

environment creates impressive effect on required time to construct a topology.

Chapter-3

Components and Architecture of SDN

9

A software-defined networking (SDN) architecture (or SDN architecture) defines how a

networking and computing machine can be constructed the use of an aggregate of open, software-

based applied sciences and commodity networking hardware that separate the SDN manipulate

plane and the SDN statistics plane of the networking stack.

Traditionally, each the SDN manage data plane and facts data plane factors of a networking

architecture had been packaged in proprietary, built-in code disbursed by means of one or a mixture

of proprietary vendors. The OpenFlow standard, created in 2008, used to be identified as the first

SDN architecture that defined how the manage and facts plane elements would be separated and

communicate with every other the usage of the OpenFlow protocol. The Open Network

Foundation (ONF) is the body in cost of managing OpenFlow standards, which are open source.

However, there are other requirements and open-source agencies with SDN resources, so

OpenFlow is now not the only protocol that makes up SDN. Each layer has its own precise

functions. While some of them are always present in an SDN deployment, such as the southbound

API, NOSs, northbound API, and network applications, others might also be present only in

precise deployments, such as hypervisor- or language-based virtualization. The following sections

introduce each layer, following a bottom-up approach. For every layer, the core properties and

ideas are defined primarily based on the special technologies and solutions. Additionally,

debugging and troubleshooting strategies and equipment are discussed. [17]

Figure3.1: Basic SDN Components [17].

Figure 3.1 introduces the simple SDN components, with terminology similar to that from the

unique ONF white paper, “Software-Defined Networking: The New Norm for Networks”. The

initial view comprised infrastructure, control and utility layers (red text), which are certain in this

architecture report as data, controller, and utility planes (black text). The infrastructure layer (data

10

plane, note) includes community elements, which expose their skills towards the manipulate layer

(controller plane) by using interfaces southbound from the controller. This is known as a control-

data plane interface.) The SDN applications exist in the utility layer (plane), and talk their network

necessities toward the controller airplane by northbound interfaces, frequently referred to as NBIs.

In the middle, the SDN controller translates the applications’ requirements and exerts low-level

manipulate over the network elements, while presenting applicable records up to the SDN

applications. An SDN controller may orchestrate competing software demands for restricted

network sources in accordance to policy. [17]

3.1 Infrastructure Layer (Data plane)

The data plane incorporates the resources that deal immediately with customer traffic, alongside

with the quintessential help in gussets to make certain suitable virtualization, connectivity,

security, availability, and quality. The NE assets block consists of data sources, data sinks and

forwarding and/or visitors processing engines, as properly as a virtualizer whose function is to

abstract the sources to the SDN controller and put in force policy. This enlargement of element

additionally introduces a master aid facts base (RDB), the conceptual repository of all resource

facts recognized to the community element.

Figure 3.2: Network Element (NE) recourses details [18].

Software-defined networking concerns itself with visitors forwarding and visitors processing

function such as QoS, filtering, monitoring, or tapping. Traffic may additionally enter or leave the

SDN data plane by using physical or logical ports, and might also be directed into or out of

forwarding or processing functions. Traffic processing would possibly be exemplified by using an

11

OAM engine, an encryption function, or a virtualized network function. Control of traffic

forwarding or processing features can also be carried out by an SDN controller or with the aid of

separate mechanisms, maybe orchestrated in conjunction with the given SDN controller. The

statistics data plane implements forwarding choices made in the controller plane. In principle, it

does now not make self-sustaining forwarding decisions. [18] However, the controller data plane

may configure the facts data plane to reply autonomously to activities such as network screw-ups

or to guide functions delivered by, for example, LLDP, STP, BFD, or ICMP. The interface between

facts and controller planes (D-CPI) consists of features such as

• Programmatic manipulate of all features exposed by way of the RDB

• Capabilities advertisement

• Event notification

The data plane agent is the entity that executes the SDN controller’s directions in the facts plane.

The information plane coordinator is the entity through which management allocates information

data plane resources to a range of client marketers and establishes policy to govern their use.

Agents and coordinators serve the equal cause in every plane of the architecture. An SDN

infrastructure, in a similar fashion to an ordinary network, is composed of a set of networking

equipment (switches, routers, and middle box appliances). The predominant difference resides in

the fact that these ordinary bodily gadgets are now easy forwarding elements besides embedded

manage or software to take self-reliant decisions. The network Genius is removed from the data

plane devices to a logically centralized manipulate system, i.e., the NOS and applications, as

shown in Fig. 3.3. More importantly, these new networks are constructed (conceptually) on top of

open and standard interfaces (e.g., OpenFlow), a crucial approach for ensuring configuration and

communication compatibility and interoperability amongst unique data and manage plane devices.

Figure 3.3: Architecture of plane, layers and architecture design [19].

In different words, these open interfaces enable controller entities to dynamically software

heterogeneous forwarding devices, something hard in standard networks, due to the large range of

proprietary and closed interfaces and the disbursed nature of the control plane. In an

SDN/OpenFlow architecture, there are two main elements, the controllers and the forwarding

devices, as proven in Fig. 2.4. A facts plane system is a hardware or software element specialized

12

in packet forwarding, whilst a controller is a software program stack (the ‘‘network brain’’)

jogging on a commodity hardware platform. An OpenFlow enabled forwarding system is based on

a pipeline of drift tables the place every entry of a float desk has three parts: 1) a matching rule; 2)

moves to be carried out on matching packets; and 3) counters that preserve records of matching

packets. This excessive stage and simplified mannequin derived from OpenFlow is currently the

vastest layout of SDN records airplane devices. Nevertheless, different specs of SDN-enabled

forwarding units are being pursued, including POF and the negotiable data path models (NDMs)

from the ONF Forwarding Abstractions Working Group (FAWG). Inside an OpenFlow device, a

course thru a sequence of glide tables defines how packets ought to be handled. When a new packet

arrives, the look up process begins in the first table and ends both with a in shape in one of the

tables of the pipeline or with a leave out (when no rule is observed for that packet). A waft rule

can be defined via combining one of a kind matching fields, as illustrated in Fig. 3.4. If there is no

default rule, the packet will be discarded. However, the common case is to installation a default

rule which tells the change to send the packet to the controller (or to the ordinary non-OpenFlow

pipeline of the switch). The precedence of the rules follows the herbal sequence quantity of the

tables and the row order in a waft table. Possible moves include: forward the packet to outgoing

port(s)

Figure 3.4: Openflow Qualify SDN [19].

3.2 Controller Plane

Although control is exercised to various degrees in other planes (note), the SDN controller plane

is modeled as the home of one or greater SDN controllers. This clause describes the functional

13

components of an SDN controller and its relation to other controllers and other administrative

domains. As will as a result emerge, now not all duties of the SDN controller can be

allocated to precise practical components; the structure sees no price in proliferating blocks

beyond the modern-day level.

Figure 3.5: SDN Control logic [21].

The control layer consists of the number of orchestrators and controllers. Orchestrators provide

end-to-end lifecycle management skills to the upper Application Layer. The orchestrators get hold

of requests from the application layer (such as trade requests or new deployment request), and

fulfill these requests through direct conversation underlying controllers. These controllers, in

turn, screen parts of the Infrastructure layer. Orchestrators are consequently provider aware,

whether or not the provider request includes network, compute, storage, security, or a mixture of

all functions. Orchestrators may be unique to a service; however inter-orchestrator competencies

are required to hand off requests in a disbursed or area specific model. For example, one

orchestrator may handle data core service requests while another may additionally handle WAN

networking requests. Management area boundaries may additionally also exist, whether within a

single business enterprise, or across corporation boundaries. [21]

14

The controllers supply resource abstraction to the orchestrations. An Orchestration does not need

to understand the underlying infrastructure; however, the controllers provide this mapping from

a service view to an aid view. If an orchestrator receives a request to installation a workload on a

VM, the controllers virtually make that occur in the Infrastructure Layer. The orchestrator has

the understanding of which controllers to make the request of, whilst the controllers have

the know-how of which sources to make the requests to. For example, a software request may

additionally be obtained by using an orchestrator to set up the application on a new VM, with

certain compute, storage and networking attributes. The orchestrator parses the request into how

it receives realized via the controllers it communicates with, across the visible environment. One

controller may also be called to provision a new VM in Data Center X, while every other might

also be known as to provision available storage ability in Data Center Y. Yet another may be

known as to establish a secure network throughout the two Data Centers to make certain the new

VM has storage resources. [21]

Controllers take care of infrastructure demands, in response to requested services. The SDN

structure does now not specify the inner graph or implementation of an SDN controller. It ought

to be a single monolithic process; it should be a confederation of identical processes arranged to

share load or shield one another from failures; it should be a set of distinct functional components

in a collaborative arrangement; it should subscribe to exterior offerings for some of its functions,

for example course computation. Any combination of these selections is allowed: the SDN

controller is considered as a black box, defined by means of its externally-observable behavior.

Controller factors are free to execute on arbitrary compute platforms, including compute assets

local to a bodily NE. [17]

They might also execute on dispensed and possibly migratory resources such as on virtual

machines (VMs) in statistics centers. The principle of logically centralized control is explored in

element below; here, it suffices to say that the SDN controller is understood to have international

scope, for some fee of globe, and that its components are understood to share facts and state, such

that no external block need concern itself with conflicting or contradictory instructions from the

controller. To the extent that the OSS influences resources or states, it is concern to the same

coordination requirement with any SDN controllers that can also be involved.

Multiple supervisor or controller components may additionally have joint write get entry to to

network resources, but to comply with SDN principles, they need to either

• Be configured to manipulate disjoint sets of resources or actions, or

• Be synchronized with every other so that they by no means trouble inconsistent or

conflicting commands.

3.2.1 SDN controller functional components

15

Having just referred to that the SDN controller is a black box, it is nonetheless useful to

conceptualize a minimum set of useful elements within the SDN controller (figure 3.5), namely

data plane manipulates characteristic (DPCF), coordinator, virtualizer, and agent. Subject to the

logical centralization requirement, an SDN controller can also encompass arbitrary additional

functions. An aid facts base (RDB) models the modern-day facts model instance and the necessary

supporting competencies [20]

3.2.1.1 Data plane control function

The DPCF component efficaciously owns the subordinate assets reach able to it, and makes use of

them as recommended by using the OSS/coordinator or virtualized(s) that controls them. These

sources take the form of a data model instance accessed through the agent in the subordinate level.

Because the scope of an SDN controller is predicted to span multiple(virtual) NEs or even multiple

digital networks (with a wonderful D-CPI instance to each), the DPCF need to include a function

that operates on the aggregate. This feature is typically known as orchestration. This architecture

does not specify orchestration as a wonderful practical component.

3.2.1.2 Co-ordinator

To set up each patron and server environments, management functionality is required. The

coordinator is the useful factor of the SDN controller that acts on behalf of the manager. Clients

and servers require management, for the duration of all perspectives on data, manipulate and

application airplane models, so coordinator functional blocks are ubiquitous.

3.2.1.3 Virtualizer

An SDN controller affords offerings to applications by using way of a statistics mannequin

occasion that is derived from the underlying resources, management-installed policy, and nearby

or externally available support functions. The useful entity that supports the records mannequin

instance and coverage at an A-CPI (application-controller aircraft interface) is called a virtualizer.

It presents the local have confidence area boundary to the corresponding agent, which represents

the client’s view of the records model instance. A virtualizer is instantiated by using the

OSS/coordinator for every patron software or organization. The OSS/coordinator allocates

resources used via the virtualizer for the A-CPI view that it exposes to its application client, and it

installs policy to be enforced by the virtualizer. The effect of these operations is the introduction

of an agent for the given client. The virtualizer might also be notion of as the process that receives

client-specific requests across the A-CPI, validates the requests against the policy and assets

16

assigned to the client, translates the request into phrases of the underlying resources, and passes

the results on to the DPCF and the D-CPI. Virtualizer and DPCF and per chance different SDN

controller features need to collaborate to provide features such as notification interpretation, useful

resource sharing, implicit provider services, and transactional integrity. [22]

3.2.1.4 Agent

Any protocol must terminate in some form of useful entity. A controller-agent model is appropriate

for the relation between a controlled and a controlling entity, and applies recursively to the SDN

architecture. The controlled entity is special the agent, a practical component that represents the

client’s resources and competencies in the server’s environment. An agent in a given SDN

controller at degree N represents the sources and actions on hand to a client or application of the

SDN controller, at level N+1. An agent in the level N-1 statistics plane represents the resources

and movements handy to the given level N SDN controller. Even though the agent’s bodily place

is inside the servers have faith domain (i.e., on a server SDN controller platform), the agent

notionally resides in the client’s believe area.

3.2.1.5 Other controller component

To keep away from over specification, the structure solely describes functions that are required of

an SDN controller, however does not avoid additional functions. These can also take the shape of

applications or features supported with the aid of the controller. These elements may be exported

to some or all of the server’s external applications clients, or used internally by way of the issuer

administration for its own purposes. As factors of the SDN controller, such applications or features

are difficulty to the same synchronization expectation as other controller components. To facilitate

integration with third party software, the interfaces to such purposes or aspects may additionally

be the same as these of others at the A-CPI. The security components of such embedded functions

are necessary to understand. Because they execute in the server’s believe domain, they will be

challenge to the server’s test, verification, audit and launch administration cycle.

3.2.2 Legation of control

Although a key principle of SDN is noted as the decoupling of control and data planes, it is clear

that an agent in the data plane is itself exercising control, albeit on behalf of the SDN controller.

Further, a quantity of features with control components are widely viewed as candidates to execute

17

on community elements, for instance OAM, ICMP processing, MAC learning, neighbor discovery,

defect consciousness and integration, safety switching. A greater nuanced reading of the

decoupling precept approves an SDN controller to delegate control features to the data plane,

concern to a requirement that these features behave in ways acceptable to the controller; that is,

the controller have to in no way be surprised. This interpretation is vital as a way to follow SDN

concepts to the real world.

Criteria that motivate the controller to delegate a feature to the data plane include: Rapid real-time

response required to network events

• A giant quantity of traffic that need to be processed

• Byte- or bit-oriented functions that do not simply lend themselves to packetization, for

example repetitive SDH multiplex area overhead

• Low-value, possibly repetitive, predictable, well-understood, totally standardized

behavior, for example encryption, BIP, AIS insertion, MAC learning, CCM exchanges

• Survivability or continuity in case of controller failure or re-initialization

• Functionality oftentimes reachable in facts plane silicon, e.g., safety switching state

machines, CCM counters and timer

• No perceived probability to add cost through separating the function.

Assuming the uncooked data can be made available, an SDN controller continually has the option

now not to delegate a manipulate function, but to habits the indispensable operations itself. The

standards listed above have an effect on whether or not such a choice is practical. [23]

3.3 Application layer

Application layer is open place to strengthen as tons revolutionary application as feasible by using

leveraging all the community data about community topology, network state, network statistics,

etc. There can be numerous types of purposes which can be developed like these associated to

community automation, community configuration and management, network monitoring, network

troubleshooting, community insurance policies and security. Such SDN functions can provide a

range of end-to-end solutions for real world organization and records center networks. Network

vendors are coming up with their set of SDN applications. (Shown in figure 3.6) For example,

Brocade has following very beneficial applications:

1. Brocade Flow Optimize

2. Brocade Virtual router

3. Brocade Network advisor

HPE is additionally one supplier having SDN App keep which contains many SDN apps from

distinct groups as well. For example:

• HPE Network Optimizer

• HPE Network protector

• HPE Network visualizer

18

• NEC UNC for HP SDN VAN Controller

• Aricent SDN Load balancer

• TechM clever glide steering

• TechM server load balancer

As we quickly touched Openflow in preceding article, we would now cowl small print of

southbound communication from control layer to infrastructure layer (network switches) thru

Openflow protocol. Openflow has been instrumental in the revolution of SDN in the experience

that it has been key to show-case separation of manipulate aircraft from facts plane. Openflow is

the trendy specification provided through Open Networking Foundation (ONF), and is evolving

over the time with assist for various requirements of current world networking. Current model of

the Openflow protocol is 1.5.1. [24]

An SDN application may also invoke different external services, and can also orchestrate any

variety of SDN controllers to reap its objectives. The OSS hyperlink and the coordinator function

recognize that, like the other most important blocks of the architecture, SDN functions require at

least a certain amount of a priori information of their environments and roles.

• An application plane entity might also act as an information model server, in which case,

it exposes a records mannequin occasion for use by way of other applications. Formally,

the different applications are clients, which speak to the SDN utility server agent shown in

figure 3.6

• An application plane entity may act as an information model client, in which case it

operates

on a facts model occasion exposed through a server entity. The server entity may also be

an SDN controller or a subordinate application.

• A software airplane entity may additionally act in both roles simultaneously. For example,

a path computation engine (PCE) may also count number on an SDN controller for virtual

network topology information (maintained in a site visitors engineering database), while

supplying the SDN controller a course computation service.

Activity across the A-CPI normally includes queries or notifications about the kingdom of the

virtual network, and commands to alter its state, for example to create or adjust network

connectivity or visitors processing functions between network client layer (data plane) handoff

points, with some distinct bandwidth and QoS. The A-CPI can also be used for extra functions, for

example as an get entry to point to configure a carrier chain through one or extra layer 4-7 services

or as an input to manipulate virtualized community functions. Note – In terms of network behavior,

service chaining is just the steering of traffic through a terrific set of components. The brought cost

at an A-CPI may also be the ability to specify a sequence of aspect functions, watching for that the

SDN controller will choose the most appropriate cases of these features and observe the pertinent

traffic forwarding rules. The utility could additionally aid programming of component attributes,

or even instantiate new virtualized network functions at most desirable factors in the topology.

19

North Bound API: Northbound interface: is supposed for communication with upper, Application

layer and would be in frequent realized via REST APIs of SDN controllers.

South Bound API: Southbound interface, is meant for communication with lower, Infrastructure

layer of community factors and would be in typical realized through southbound protocols –

Openflow, Netconf, Ovsdb, etc. [24]

3.4 Management

Management covers infrastructure assist tasks that are no longer to be achieved with the aid of the

application, controller and information planes themselves. Management might also a perform

operations that the application, controller- and data planes are restrained from doing by coverage

or for different reasons. Perhaps the single most necessary motive to forestall a project from being

accomplished through SDN components is that the SDN controller may also dwell in a consumer

trust domain, while business reasons mandate that core administration and help functions be

achieved inside the issuer trust domain. Although an agent policy may want to be devised that

totally depended on its controller, the transparency policy and coverage enforcement software

would on the other hand have to be hooked up by the provider’s manager. For security reasons,

the default conduct is advocated to be to expose nothing, alternatively than everything.

The SDN structure recognizes classical administration features such as equipment inventory, fault

isolation, software improves and the like, but regards them as mostly out of scope of SDN. One of

the perceived benefits of SDN is allowing clients (in foreign trust domains) to perform many of

the actions that are today performed by using management systems. The ordinary OSS interface is

anticipated to play a smaller position over the path of time, as client applications take on greater

accountability via SDN controllers. Within the scope of SDN are the SDN-specific management

functions, particularly recording and expressing enterprise relationships (policies) between

provider and client, and configuring SDN entity environment and initialization parameters. This

consists of coordinating facts aircraft handoff points, identification conventions, reachability and

credentials among logical and physical entities.

The SDN architecture requires that this information be configured into the relevant SDN NEs,

controllers, and applications, but does now not specify the nature or shape of the OSSs. In the

everyday case, each client-server pair of information plane, controller and application level entities

lies in a separate believe area. Where a trust boundary exists in the SDN hierarchy, a corresponding

believes boundary additionally exists in the management domain. Managers called OSSs in this

record – in special trust domains may additionally want to alternate information, but this change

is past the scope of the SDN architecture. Two administration roles are recognized: server

supervisor and purchaser manager. The responsibilities of the server manager are now not the

identical as those of the consumer manager. [21]

20

CHAPTER-4

Openflow Basics

4.1 Openflow

21

OpenFlow empowers arrange controllers to decide the way of system bundles over a system of

switches. The controllers are unmistakable from the switches. This detachment of the control from

the sending takes into account more refined traffic the executives than is plausible utilizing access

control records (ACLs) and steering conventions. Additionally, OpenFlow permits changes from

various sellers frequently each with their own exclusive interfaces and scripting dialects to be

overseen remotely utilizing a solitary, open convention. The convention's creators consider

OpenFlow an empowering agent of programming characterized organize (SDN).

4.2 A Brief of OpenFlow SDN

ONF characterizes OpenFlow as the main standard correspondences interface characterized

between the controls and sending layers of a SDN design. OpenFlow enables direct access to and

control of the sending plane of system gadgets, for example, switches and switches, both physical

and virtual (hypervisor-based). [1]

4.3 OpenFlow and OpenFlow Switch

OpenFlow is a programmable system convention for SDN condition, which is utilized for

correspondence between OpenFlow switches and controllers. OpenFlow isolates the programming

of system gadget from hidden equipment, and offers an institutionalized method for conveying a

brought together, programmable system that can rapidly adjust to changing system necessities.

Figure 4.1: Open flow and open flow switch communicates over OpenFlow channel to an

external controller [1].

An OpenFlow switch is an OpenFlow-empowered information switch that imparts over OpenFlow

channel to an outside controller. It performs parcel query and sending as indicated by at least one

stream tables and a gathering table. The OpenFlow switch speaks with the controller and the

22

controller deals with the switch by means of the OpenFlow switch convention. They are either

founded on the OpenFlow convention or good with it.

4.4 OpenFlow Switch Process Systems

An OpenFlow switch cans just capacity with the team up work of three basic components: stream

tables introduced on switches, a controller and a restrictive OpenFlow convention for the controller

to talk safely with switches. Stream tables are set up on switches. Controllers converse with the

switches through the OpenFlow convention and force arrangements on streams. The controller

could set up ways through the system improved for explicit attributes, for example, speed, and

least number of bounces or decreased inactivity.

4.5 Differences of OpenFlow Switch vs Conventional Switch

In an ordinary switch, parcel sending (the information plane) and abnormal state directing (the

control plane) happen on a similar gadget. While for an OpenFlow switch, the information plane

is decoupled from the control plane: with the information plane executed in the switch itself yet

the control plane in programming and a different SDN controller settles on abnormal state steering

choices. The switch and controller convey by methods for the OpenFlow convention. OpenFlow

switch consequently helps the accompanying points of interest:

• With OpenFlow empowered switch, the SDN controller could course non basic/mass

traffic on longer courses that are not completely used.

• The SDN controller can without much of a stretch execute load-adjusting at high

information rates by simply guiding distinctive streams to various hosts, just doing the set-

up of the underlying streams.

• Traffic can be detached without the requirement for vlan's, the SDN controller of

OpenFlow switch can simply decline certain associations.

• Setup a system TAP/Sniffer effectively for any port or even explicit traffic by programming

the system to send a copy stream to a system checking gadget.

• It likewise takes into account the advancement of new administrations and thoughts all in

programming on the SDN controller, also to quicken new highlights and administrations.

4.6 State of the Art of Open Switch

OpenFlow change is intended to give consistency in rush hour gridlock the executives and

designing, by making control work autonomous of the equipment it's planned to control. This blend

of open source programming and product equipment holds the potential for phenomenal

23

productivity and operational dexterity, which fitted well on the planet where arrange turns out to

be progressively assorted and requesting. Empowering OpenFlow on physical changes and move

to OpenFlow switch is something that most customers have been progressing in the direction of.

FS.COM switch product offering comprises of 10GbE switch, 40GbE switch and 100GbE switch

that bolsters OpenFlow, which can be utilized as OpenFlow switches in open systems

administration environment. [2]

CHAPTER-5

Mininet Basics

5.1 Mininet

We have different accessible options of controller for SDN like POX, NOX, Onix, reference point

and Floodlight. The systems OS controls the information plane gadgets through restricted interface

called as OpenFlow which characterizes the sending of low dimension information plane gadgets.

SDN handles a convoluted assignment as well as it does as such in distributive path running in a

quickly evolving condition. Present day server farm incorporates a large number of switches and

hundred a large number of hosts. In this manner SDN must be recreated over numerous servers.

To execute SDN is expensive undertaking in light of the fact that SDN usage requires SDN steady

24

equipment assets. There is different open source organize emulators and test system accessible on

the web.

A portion of the accessible emulators are Mininet, Die Cast and Model Net and so forth. Most

utilized system test system is NS-2. The one of the limitation of the NS-2 is it doesn't give us the

actual networking condition. We have utilized Mininet emulator since it gives practical condition

to the client. We can say that Mininet goes about as a testing stage for the SDN. It encourages us

in quickly prototyping the vast systems with constrained resources on a solitary PC.

Table 2: OS Types and versions Other Requirements.

OS Type

OS Version
Virtualization

Software
X Server Terminal

windows

7.8 Virtualbox Xming

Putty

windows

XP Virtualbox Xming

Putty

Mac

OS X 10.7-10.8

Lion/Mountain

Virtualbox
Download and

Install XQartz

Terminal.app

(built.in)

Mac

OS X 10.5-10.6

Leopard/Snow

Leopard

Virtualbox

X11(Install

from

OS X main

system

Terminal.app

(built.in)

25

Mininet is advantageous in light of the fact that it gives precision in execution. It is simple being

used and also provides versatility. Mininet underpins different topologies that assistance us in

production of thousands of hubs and can perform testing on them. We can adjust the conduct of

these topologies as indicated by our need. Mininet bolster light weight virtualization that gives us

the virtual system which is like the genuine network, running genuine piece, switch and application

code and so on. Mininet depends on Command Line Inter face (CLI). Mininet switches support

OpenFlow controller for programming characterized systems administration and custom topology.

To begin Mininet in Linux plat structure we enter order in terminal as: Sudo mn. So as to run

Mininet as root we should utilize the Sudo watchword to run the Mininet. It begins the Mininet

and makes then it works by including controller, has, and switches and includes connects between

them. This direction at first make have sh1, h2 and switch s1.

Chapter 6

SDN Tree Topology Implementation using Minniet

6.1 Introduction:

In this part of the paper we broadly discussed about the implementation of SDN in Minnet along

with several tools which needed to be interconnected to get the output. Such as virtualbox, Ubuntu

server 14.04.5, OpenDaylight, Mininet, Wireshark, Xming, PuTTY.

Virtualbox

DVD,

preferred), or

download

XQuartz

Linux

Ubuntu 13.10 Virtualbox

X server

already

installed

Gnome terminal +

SSH built in

26

Users of virtualBox can load more than one guest OS below a single host-system(host,OS).East

guest can be started, paused and stopped independently inside its personal virtual computing

device(VM). The user can independently configure each configure each VM and run it under a

preference of software-based virtualization or hardware assisted virtualization if the underlying

host hardware supports this. The host OS and visitor Oss and functions can communicate with

every different through a number of mechanisms which include a frequent clipboard and a

virtualized community facility. Guest VMs can also immediately speak with each different if

configured independently inside its personal virtual computing device (VM).[25]

Ubuntu Server 14.04.5

To construct the OpenDaylight virtual machine, we have downloaded the Ubuntu Server ISO

image from the ubuntu.com web site. Then we mounted it in a new VM in VirtualBox.

OpenDaylight

OpenDaylight is especially available, modular, extensible, scalable and multi-protocol controller

infrastructure built for SDN deployments on current heterogeneous multi-vendor networks.

OpenDaylight offers a model-driven service abstraction platform that permits users to write apps

that without difficulty work throughout a broad range of hardware and south-bound protocols.[26]

Wireshark

Wireshark is a data capturing application that ‘understands’ the structure(encapsulation) of distinct

networking protocols. It can parse & show the fields, along with their meanings as detailed through

unique networking protocols. Wireshark uses pcap to capture packets to capture packets, so it can

only capture packets on the sorts of networks that pcap supports. [27]

Xming

Xming provides a X Window System display server, a set of traditional X sample applications

and tools, and a set of layouts. Xming can be used with Secure Shell (SSH) implementations to

securely forward X11 sessions from other computers. It supports PuTTY and ssh.exe, and comes

with a version of PuTTy’s plink.exe. The Xming project also offers a portable version Putty. When

SSh forwarding is not used, the local file Xn hosts must be updated with host name or IP address

of the remote machine where GUI application is started. [28]

27

PuTTY

PuTTY is a free and open-source terminal emulator, serial console and network file transfer

application. It supports several network protocols, including SCP, SSH, Telnet, rlogin, and raw

socket connection.

6.2 Simulation

Open Daylight

We have named the virtual machine OpenDaylight. To Configure it uses two CPUs and 2 GB or

RAM. This is the minimum configuration to support OpenDaylight. Then add a host-only network

adapter to the VM.

The first network adapter of the VM is attached to the VirtualBox NAT interface by default and

already configured when the VM boots up. We need to configure the second network adapter

that is attached to the VirtualBox host - only interface.

Ip Commands: ip addr show

https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Serial_console
https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Secure_copy
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Rlogin

28

Fig6.1: Screenshot of configuring IP address of OpenDaylight.

Here, we see interface in eth1, that it has no ip address. Because this the second network adapter

connected to vboxnet0. On this interface using the DHCP, if DHCP client request then virtualBox

can assign an ip address. No we run the following command or that it becomes set the eth1.

Ip commands:

sudo dhclient eth1

Now we can check the the ip address assign into eth1

29

Fig 6.2: Screenshot of Ip address of OpenDaylight.

Now, here we can see that in virtualBOX DHCP server that connected to the host only network

give us an ip address which is 192.168.56.102. So, this ip address now we can use to connect any

application that running to the VM.

 Now, we need to configure this interface eth1. By using following command.

Ip Command: sudo nano /etc/network/interfaces

For the OpenDaylight we need to install JAVA because OpenDaylight SDN controller is Java

program. To run Java we are using following some commands-

$ sudo apt-get update

$ sudo apt-get install default-jre-headless

Now we the next step we done in set the java environment variable by using following

command-

$ sudo nano ~/.bashrc

After creating bashrc file we add some following commands in that file-

export JAVA_HOME=/usr/lib/jvm/default-java

Then we run the Java successfully.

30

After that now the main and last step for running the OpenDaylight is downloading the

OpenDaylight software from the OpenDaylight web site.

For extracting the file we use the following command-

$ tar -xvf distribution-karaf-0.4.0-Beryllium.tar.gz

This command creates the folder named distribution-kara-f0.4.0-Beryllium which contains the

OpenDaylight software and plugins. OpenDaylight is packaged in a karaf container. Karaf is a

container technology that allows the developers to put all required software in a single distribution

folder.

Start OpenDaylight

We need to run the karaf command inside the package distribution folder for run the

OpenDaylight. We use the following commands-

$ cd distribution-karaf-0.4.0-Beryllium

$./bin/karaf

NOW, finally we can see that our OpenDaylight starts running. Here the snap of this-

https://www.opendaylight.org/
http://karaf.apache.org/
https://wiki.opendaylight.org/view/Karaf_Distribution_Folder_and_File_Guide
https://wiki.opendaylight.org/view/Karaf_Distribution_Folder_and_File_Guide

31

Fig 6.3: Screenshot of starting the OpenDaylight.

 Mininet

Firstly to set the mininet we need to download the mininnet virtualbox from

http://mininet.org/download. I chose the latest version available, which was mininet-2.1.0-

130919-ubuntu-13.04-server-amd64-ovf.zip. This file is a compressed ZIP archive containing two

files so, after downloading it, decompress it and save the files to my hard drive.

Then we go the Vm and click on setting and named the Vm as Mininet. Then go to the adapter 2

and choose host only network. And adding the mininet downloaded filie in Vm. Then we click on

start and our mininet start running. Here, user name is mininet and the password also mininet. Here

the snap of the mininet that we run.

After configure both Mininet and OpenDaylight now our task is to create a SDN topology. Here

we create a tree topology. So, in Opendaylight we found the ip address is 192.168.56.102. To

check the mininet ip address we use the following command-

$ sudu dhclient eth1

$ ifconfig eth1 : grep inet

http://mininet.org/download
https://bitbucket.org/mininet/mininet-vm-images/downloads/mininet-2.1.0-130919-ubuntu-13.04-server-amd64-ovf.zip
https://bitbucket.org/mininet/mininet-vm-images/downloads/mininet-2.1.0-130919-ubuntu-13.04-server-amd64-ovf.zip

32

Fig 6.4: Screenshot of IP address of Mininet.

After this we get the mininnet ip address which is 192.168.56.105. We see eth0 is connected to the

host-only interface because it has IP address 192.168.56.1025 which is in the address range

assigned by the VirtualBox hot-only network DHCP server. So we know we need to use IP address

192.168.56.105 to access applications running on this virtual machine.

Connect to the mininet Vm using SSH

Now in miminet Vm we open a new terminal and turn X forwarding on. (If you are using

Windows, use Xming for an X Window System Server and Putty as an SSH client). By using

following command-

$ ssh -X 192.168.56.105

After connecting this, we have to create a tree topology. For this we write the following command-

http://www.straightrunning.com/XmingNotes/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

33

$ sudo mn --controller=remote,ip=192.168.56.102 --topo=tree,3,4

Fig 6.5: Screenshot of configuring the Tree topology command.

For testing the network we use the following command-

$ pingall

This test that the OpenDaylight controller is working by pinging all nodes. Every host should be

able to reach every other host.

34

Fig 6.6: Screenshot of testing the all connections.

Graphical user interface of the OpenDaylight

In this stage we need to open a browser on your host system and enter the URL of the OpenDaylight User

Interface (DLUX UI). It is running on the OpenDaylight VM so the IP address is 192.168.56.102 and the

port, defined by the application, is 8181. So the URL is-

http://192.168.56.101:8181/index.html

\

Here, the user name is “admin” and password also is “admin” by default.

http://192.168.56.101:8181/index.html

35

Fig 6.7: Screenshot of page layout of OpenDaylight .

Now we see our network topology in the OpenDaylight controller’s topology tab.

Fig 6.8: Screenshot of creating the tree topology.

36

we can see the network that is emulated by the Mininet network emulator. now any one can test

OpenDaylight functionality by building different network topologies in Mininet with different attributes,

and by using OpenDaylight to run experiments on the emulated network.

Nodes-

If we click on the nodes then we can see the information of each switch in the network.

Fig 6.9: Screenshot of node connections of the tree.

Captureing Open Flow masseges (Wireshirk)

To dive deeper into how SDN controllers and switches operate, you can also desire to view the OpenFlow

messages exchanged between the controller and switches in the network. he Mininet VM comes

with Wireshark installed, with a custom version of the OpenFlow dissector already set up.

So ,we can start Wireshark on the mininet vm to capture the data on the interface to connect the host only

network, which is eth1 in our case.

https://www.wireshark.org/
https://wiki.wireshark.org/OpenFlow

37

Now, we go to putty and enable the SSh and X11 for Xming. Then in the terminal for ip address

192.168.56.105 that we get, write the following command for running the Wireshark-

Fig 6.10: Screen shot of PuTTY configuration.

$ sudo wireshark &

You will see a warning dialog but you can ignore it. Starting Wireshark with root privileges is a security

risk but, for our simple testing. In the display filter we write of and select loopback then click on apply.

Now we will see only OpenFlow messages in the Wireshark display, as shown below.

38

Fig 6.11: Screenshot wireshark that capture the data traffics.

6.3 Other Simulators:

Mininet is widely used, simplest and flexible simulator of SDN. There are also some other simulator such

as,

• Mininet-Wifi (developers added virtualized WiFi stations and access points based on standard

Linux wireless drivers to extend Mininet's functionality), [29]

• KNet (KNet builds the topology of the virtual network with switches, hosts, routers and servers.[30]

• NS3 (Discrete network of event simulators, ns-1, ns-2, ns-3 and ns-4 in particular. All are computer

network simulators for discrete events, mainly used in research).[31]

Other than Opendaylight controller some other Openflow controllers also available as they are,

39

• Floodlight Controller (It is an open developer community - led Apache - licensed, Java - based

OpenFlow controller).[32]

• MiniEdit (is an experimental tool created to show how to extend Mininet. To show how to create

and execute network simulations using MiniEdit).[33]

CHAPTER-7

40

Future plan of SDN

7.1 SDN Migration plan

At the point when Windows Server 2019 is discharged this fall, the updates will incorporate

highlights that undertakings can use to use programming characterized organizing (SDN).

SDN for Windows Server 2019 has various parts that have pulled in the consideration of early

adopters including security and consistence, calamity recuperation and business congruity, and

multi-cloud and half and half cloud.

SDN is one of the most recent innovations intended for Network Control. SDN can enable a

Network Manager to change the way the system gadgets, for example Switches, Switches.etc,

handle bundles by permitting unlimited oversight of the tenets set into system gadgets from a focal

reassure. SDN takes into consideration the whole control of as system to enable brisk reaction to

changing system or business needs. SDN additionally has a great deal of analytic ability.

SDN has a hazardous future as it has issues to survive. The main issue is the support/remote

capacity with the present security issues many won't have any desire to open their system to a

potential programmer takeover. It is an Open Source Technology.

Another issue is the present province of Network Management approaches and practices with

single gadget or single way center. At the point when a Network Manager takes a gander at SDN

he just perceives how it can help or damage his system yet SDN is a lot greater and a ton of training

still stays to be done to make SDN or comparable advances attractive.

SDN is a Human Centric Technology where the present innovation is Device Centric which is and

dependably will be a test to get supervisors to embrace particularly when one individual can totally

change your system, stockpiling, WAN, etc texture.

Many discussions about SDN's capacity to help with the "Cloud" however before we get SDN

included we have to get the "Cloud" leveled out.

There are additionally genuine budgetary, preparing and essential sending issues.

SDN opens bunches of inquiries for the fate of development systems administration and figuring

advances. We need progressively responsive innovation yet not at the expense of security and

control. Over the long haul SDN might be conveyed in supplier organizes yet singular companies

may think that its fair an excessive amount to send. SDN need much greater advancement and

evidence of being a protected and deployable innovation.

41

7.2 SDN versus Conventional Systems Administration (Traditional

Networking)

Conventional systems administration gadgets, for example, routers and switches are autonomous.

Every gadget chooses how to send its traffic as system administrators arranging approaches that

control traffic move through every gadget. Every individual gadget has two separate segments that

cooperate to transport traffic through the system: A control plane, the cerebrums of the gadget that

chooses where traffic ought to be sent, and an information plane which is in charge of sending

information.

This is the customary system structure that we've utilized for quite a long time. Numerous

preliminaries delivered programming and systems administration devices that, best case scenario,

upgraded arrangement the board on numerous gadgets in the meantime. In any case, be that as it

may, every gadget would decipher these arrangements by means of its cerebrum and course the

choice to the basic sending plane. Virtualization endeavors concentrated on making sub-occasions

of a similar gadget instead of structure a virtual system over the physical foundation.

SDN is an alternate story. With SDN, organizing gadgets are overseen and arranged from a focal

framework called a SDN controller. The controller decouples the basic leadership segment (control

plane) in systems administration gadgets from the information sending segment (information

plane). It at that point brings together the control plane outside of the system gadget and empowers

it to wind up programmable by outer administrations, predominantly the applications.

This creates a dynamic and flexible networking infrastructure that allows for a more efficient

automation of different networking services.

SDN targets are for making higher virtual system layer over the physical one which takes into

account making separate system areas for various applications or potentially clients. All new

consistent system gadgets and administrations, for example, routers, switches, firewalls and burden

balancers keep running over the physical system. For a considerable length of time, the system

was the significant piece of framework lacking virtualization. With SDN comes the guarantee of

virtualization the system to help progressively virtual conditions.

7.3 SDN Adoption

At first look, SDN reception appears like an easy decision. It's still in the beginning times, be that

as it may, of picking up section to datacenters. This is typical with any new innovation as the

greater part will in general be distrustful of early adopters. As examples of overcoming adversity

come about more organizations will be keen on conveying SDN in their datacenters.

42

Presently, there are continuous dynamic SDN extends in different stages. While a few

organizations are as yet assessing the advancements in Proof of Concepts (PoC) endeavors, others

are now sending and completely working them SDNs. The more IT experts think about SDN and

how they can profit, the rate of organization will absolutely get.

7.4 Virtual-Network peering

The new virtual systems administration peering usefulness in Windows Server 2019 enables

undertakings to peer their very own virtual systems in a similar cloud area through the spine

arrange. This gives the capacity to virtual systems to show up as a solitary system.

Central extended systems have been around for a considerable length of time and have given

associations the capacity to put server, application and database hubs in various locales. Be that as

it may, the test has dependably been the IP tending to of the hubs in restricting destinations. At the

point when there are just two static locales in a conventional wide region organize, the IP conspire

was generally static. You knew the subnet and tending to of Site A and Site B.

With Vnet Peering, while the outer area and texture that the host and applications frameworks are

running in may radically change, the virtual system stays predictable. No compelling reason to

change source and target addresses inside the application, no requirement for Web and Database

set to change settings.

7.5 Virtual-Network encryption

Another huge improvement in Windows Server 2019 is the capacity for virtual-arrange traffic to

be encoded between virtual machines. Traffic encryption isn't new to the business, anyway having

the encryption worked into the working framework as the premise of hypervisor correspondences,

server interchanges and application correspondences give both adaptabilities and that in the past

was often done at the application layer.

Presently with Vnet encryption, whole subnet interchanges between host servers can be secured,

and all system traffic inside that arrange is naturally encoded. For associations hoping to guarantee

interchanges between a Web server and a database server is scrambled, Vnet encryption in

Windows Server 2019 can be empowered. Since the correspondences are at the system/subnet

level, if extra Web frontends and backend databases should have been included, every one of those

servers joins the equivalent scrambled correspondence stream, offloading the verified interchanges

from the application itself, improving execution and effectiveness.

43

Chapter 8

Conclusion

44

Traditional network systems have become very complicated to manage for network operators, the

network systems are rapidly changing and it is still difficult to configure network devices across a

broad network system. Operators can combine network devices from different vendors into a

single, large network system in a traditional distributed network. SDN not only addresses these

issues, but also simplifies them by separating control planes and network data planes and

centralizing the control and management of the overall network system.

Networks are growing, bandwidth specifications are increasing along with the number of

connected devices, and our data networks will need to change and adapt to that growth and change

rate in order to keep up with the rest of Datacenter technology. It has visionary approach to IT

networking that easily and quickly is now the preferred style of network management.

In this paper we have broadly discussed about Software-defined networking & simulated in

mininet.

References :

45

[1] Available at:

https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eS

NdRY72qPvg4RxGT8s6ROyVr9GFwkw [accessed at Jan 15th 2019]

[2] Available at: Software-Defined Networking for Internet of Things: A Survey

[3] Available at:

https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eS

NdRY72qPvg4RxGT8s6ROyVr9GFwkw

 [accessed at Jan 15th 2019]

[4] Available at: https://ieeexplore.ieee.org/abstract/document/7452335/authors#author

[accessed at Jan 15th 2019]

[5] Available at: http://mininet.org/overview/ [accessed at Jan 15th 2019]

[6] Available at: https://en.wikipedia.org/wiki/OpenFlow [accessed at Jan 20th 2019]

[7] Software Defined Networks (S.D.N): Experimentation with Mininet Topologies Deepak Kumar
*

and Manu Sood Software Defined Networks (S.D.N): Experimentation with Mininet Topologies

Deepak Kumar* and Manu Sood

[8] Available at: http://www.gocertify.com/articles/sdn-is-the-future-of-it-

networking?fbclid=IwAR0ueb486bvPVpxLTTHrxHJKbUQihhxaIVFtGlmK8Ckl6MCvYmOK

AoO-n9o

[9] Available at: https://plvision.eu/rd-lab/blog/sdn/p4-programming-future

sdn?fbclid=IwAR0XhWjppuuOwor4xbG1jfilsjmJai4Z66vLQzOsGpvbEENc6Pn1Tr-ov_o

[accessed at Feb 5th 2019]

[10] 1Yang (Intel Corp.), R. Dantu (Univ. of North Texas), T. Anderson (Intel Corp.) & R.

Gopal (Nokia.) (April 2004). "Forwarding and Control Element Separation (ForCES)

Framework".

[11] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo (Nov 2004). "The

SoftRouter Architecture"

[12] Using Mininet for emulation and prototyping Software-Defined Networks

https://ieeexplore.ieee.org/document/6860404 by RLS de Oliveira - 2014

[13] Master Thesis “Tools for a Multi-Controller SDN Architecture”

eprints.networks.imdea.org/... /Tools_for_a_Multi_Controller_SDN_Architecture_2015 by SN

Tamurejo Moreno - 2015

https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eSNdRY72qPvg4RxGT8s6ROyVr9GFwkw
https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eSNdRY72qPvg4RxGT8s6ROyVr9GFwkw
https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eSNdRY72qPvg4RxGT8s6ROyVr9GFwkw
https://ieeexplore.ieee.org/document/6984209?fbclid=IwAR2_PlBJcz_028v94RSUZFkvaKE5eSNdRY72qPvg4RxGT8s6ROyVr9GFwkw
https://ieeexplore.ieee.org/abstract/document/7452335/authors#author
http://mininet.org/overview/
https://en.wikipedia.org/wiki/OpenFlow
http://www.gocertify.com/articles/sdn-is-the-future-of-it-networking?fbclid=IwAR0ueb486bvPVpxLTTHrxHJKbUQihhxaIVFtGlmK8Ckl6MCvYmOKAoO-n9o
http://www.gocertify.com/articles/sdn-is-the-future-of-it-networking?fbclid=IwAR0ueb486bvPVpxLTTHrxHJKbUQihhxaIVFtGlmK8Ckl6MCvYmOKAoO-n9o
http://www.gocertify.com/articles/sdn-is-the-future-of-it-networking?fbclid=IwAR0ueb486bvPVpxLTTHrxHJKbUQihhxaIVFtGlmK8Ckl6MCvYmOKAoO-n9o
https://ieeexplore.ieee.org/document/6860404

46

[14] Design and Implementation of a Software Defined Network Based

...https://www.ee.iitb.ac.in/~karandi/thesis/ojas_thesis.pdf by O Kanhere - 2017

[15] . Software Defined Networks (S.D.N): Experimentation with Mininet

...www.indjst.org/index.php/indjst/article/viewFile/100195/72639 Software Defined Networks

(S.D.N): Experimentation with Mininet Topologies. Deepak Kumar*

[16] Mininet as Software Defined Networking Testing PlatformKaramjeet Kaur1, Japinder

Singh2 and Navtej Singh Ghumman Conference Paper • August 2014

htps://www.researchgate.net/publication/287216738

[17] Available at: https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/

[Accessed at 20th jan 2019]

[18] Available at: https://www.sdxcentral.com/networking/sdn/definitions/open-sdn/ [Accessed at

25th jan]

[19] Availavle at: https://www.opennetworking.org/wp-content/uploads/2014/11/TR_SDN-ARCH-1.0-

Overview-12012016.04.pdf[Accessed at 25th jan 2019]

[20] Available at : https://www.cozlink.com/modules-a272-275-273/article-73747.html [Accessed at

20th feb 2019]

[21] Available at: https://www.opennetworking.org/sdn-definition/[Accessed at 11th jan 2019]

[22] Available at: https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-

architecture/[Accessed at 11th jan 2019]

[23] Available at: https://www.opennetworking.org/wp-

content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf[Accessed at 20th jan 2019]

[24] Available at: https://www.howtoforge.com/tutorial/software-defined-networking-sdn-

architecture-and-role-of-openflow/ [Accessed at 20th jan 2019]

[25] https://en.wikipedia.org/wiki/VirtualBox [accessed at Feb 10th 2019]

[26] https://en.wikipedia.org/wiki/OpenDaylight_Project

[27] https://en.wikipedia.org/wiki/Wireshark

[28] https://en.wikipedia.org/wiki/Xming

[29] https://www.quora.com/What-kind-of-monitoring-tools-are-used-for-SDN-deployments

[30] https://searchsdn.techtarget.com/news/.../Five-must-know-open-source-SDN-controllers

https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.sdxcentral.com/networking/sdn/definitions/open-sdn/
https://www.opennetworking.org/wp-content/uploads/2014/11/TR_SDN-ARCH-1.0-Overview-12012016.04.pdf
https://www.opennetworking.org/wp-content/uploads/2014/11/TR_SDN-ARCH-1.0-Overview-12012016.04.pdf
https://www.cozlink.com/modules-a272-275-273/article-73747.html
https://www.opennetworking.org/sdn-definition/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://en.wikipedia.org/wiki/VirtualBox
https://en.wikipedia.org/wiki/OpenDaylight_Project
https://en.wikipedia.org/wiki/Wireshark
https://en.wikipedia.org/wiki/Xming
https://www.quora.com/What-kind-of-monitoring-tools-are-used-for-SDN-deployments
https://searchsdn.techtarget.com/news/.../Five-must-know-open-source-SDN-controllers

47

[31] Henderson, Tom (2012-06-09). "upcoming ns-3.1 release" (Mailing list). ns-3 GSoC 2015

students. Retrieved 2013-05-31.

[32] https://www.sdxcentral.com › Networking › SDN › SDN Definitions

[33] https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

List of Acronym

SDN: Software Defined Networking.

48

 VM: Virtual Machine.

 ONF: Open network function.

 NE: Network element.

 QoS: Quality of service

 LLDP: Link layers discovery protocol.

 STP: Spanning tree protocol.

 BFD: Bidirectional forwarding detection.

 ICMP: Internet control message protocol.

 NOS: Network operating system.

 FAWG: Forwarding abstraction working group.

 NDMs: Nevertheless different space of models.

 DPCF: Distributed point coordination function.

 HPE: Hewlett Packard Enterprise Company.

 VAN- Value added network.

 PCE: Path computation engine.

 CLI: Command line interface.

 OS: Operating system.

 Pcap: Packet capture.

