

I

Department of Electronics and Communication Engineering

Comparison of Backpropagation and Hopfield

Model in De-noising of Speech Signal

Prepared By

Md. Robayet Ferdous

 ID: 2015-2-55-030

 Mokarromah Akter

 ID: 2015-2-55-004

Nowsadul Islam

 ID: 2015-2-55-011

Supervised By

Dr. M Ruhul Amin

Department of Mathematical

and Physical Sciences,

East West University.

Dr. Md. Imdadul Islam

Department of Computer

Science and Engineering,

Jahangirnagar University.

II

Letter of Transmittal

To

Department of Electronics and Communication Engineering

East West University

Subject: Submission of Project Work Report on Comparison of Backpropagation and

Hopfield Model in De-noising of Speech Signal (ETE-498)

Dear Sir,

We are pleased to let you know that we have completed our Project work program on Comparison

of Backpropagation and Hopfield Model in De-noising of Speech Signal. The attaché contain the

Project work report that has been prepared for your evaluation and consideration. The Project work

has given us a great opportunity to work with the de-noising of speech signal closely and allowed

us to apply the theoretical knowledge in real-life criteria, which we have acquired since last four

years from you and the other faculties of EWU, which would be a great help for us in future.

We are very grateful to you for your guidance throughout the Thesis period, which helped us a lot

to acquire knowledge.

Thanking you.

__________________ ___________________ __________________

Md. Robayet Ferdous Mokarromah Akter Nowsadul Islam

2015-2-55-030 2015-2-55-004 2015-2-55-011

III

Declaration

We hereby declare that this Project work was done under ETE 498 and has not been submitted

elsewhere for the requirement of any degree or diploma or any purpose except for publication.

__________________ ___________________ __________________

Md. Robayet Ferdous Mokarromah Akter Nowsadul Islam

2015-2-55-030 2015-2-55-004 2015-2-55-011

IV

Acceptance

We hereby declare that this thesis is from the student’s work and best effort of us, and all other

source of information used, have been acknowledged. This Project work has been submitted with

our approval.

Supervisor:

Dr. M Ruhul Amin

Department of Mathematical and Physical Sciences

East West University

Supervisor:

Dr. Md. Imdadul Islam

Department of Computer Science and Engineering

Jahangirnagar University

Chairperson:

Dr. Mohammed Moseeur Rahman

Department of Electronics and Communications Engineering

East West University

V

Acknowledgement

Firstly, our most heartfelt gratitude goes to our beloved parents for their endless support,

continuous inspiration, great contribution and perfect guidance from the beginning to end. We owe

our thankfulness to our supervisors for their skilled, almost direction, encouragement and care to

prepare ourselves. Our sincere gratefulness for the faculty of Electronics and Communications

Engineering whose friendly attitude and enthusiastic support that they have given us for four years.

We are very grateful for the motivation and stimulation of our good friends and seniors. We also

thank the researchers for their works that help us to learn and implement the comparison of

Backpropagation and Hopfield Model in de-noising of the speech signal.

VI

Abstract

In this project work, we have used two algorithms of Neural Network (NN): Backpropagation and

Hopfield NN to de-noise speech signal. The backpropagation algorithm is found suitable to

remove random noise but very poor in the removal of awgn (Additive White Gaussian Noise). The

Hopfield NN shows completely reverse performance i.e. suitable for awgn but very poor for

random noise. The performance of both algorithms is measured graphically with an original

recovered signal, MSE, the convergence of regression and error histogram.

VII

Table of Content

Chapter Page no

Chapter 1: Introduction

Introduction 2

Chapter 2: Artificial Neural Network

2.1 Fundamental Parts of AN 4

2.2 Benefits and Drawbacks of ANN 5

Chapter 3: Backpropagation

3.1 Update of Output-layer Weights 9

3.2 Update of Hidden-layer Weights 11

3.3 BPN Summery 12

Chapter 4: Hopfield Neural Network

4.1 Mathematical Analysis 16

4.2 The Hopfield Learning Algorithm 18

4.3 Discrete-Time Hopfield Network 19

Chapter 5: Results and Discussion

Results and Discussion 20

Chapter 6: Conclusion and Future Works

Conclusion and Future Works 26

References 27

VIII

List of Figures

Chapter Page no

Chapter 2: Artificial Neural Network

Figure 2.1: A Biological Neuron 4

Figure 2.2: Schematic of an Artificial Neuron 5

Chapter 3: Backpropagation

Figure 3.1: The BPN architecture of Three Layers 7

Figure 3.2: The Sigmoid Function's distinctive S-shape 10

Chapter 4: Hopfield Neural Network

Figure 4.1. Basic Hopfield Paradigm 15

Figure 4.2. Discrete time Hopfield model 19

Chapter 5: Results and Discussion

Figure 5.1. Comparison of original, noisy and recovered signal under BPN 20

Figure 5.2. Error signal of BPN under random noise 21

Figure 5.3. MSE of train and validation 21

Figure 5.4. Comparison of error histogram 21

Figure 5.5. Comparison of convergence of original and recovered data 22

Figure 5.6. Poor performance of BPN under awgn 22

Figure 5.7. Good Performance of Hopfield under awgn 23

Figure 5.8. Poor performance of Hopfield under random noise 23

Figure 5.9. De-noising of speech signal by deep learning CNN under

random noise 24

Figure 5.10. De-noising of speech signal by deep learning CNN under awgn 24

IX

List of Abbreviations

NN Neural Network

ANN Artificial Neural Network

OCR Optical Character Recognition

CNN Convolutional Neural Network

BPN Backpropagation Algorithm

HNN Hopfield Neural Network

AWGN Additive White Gaussian Noise

MSE Mean Squared Error

AN Artificial Neuron

ASIC Application Specific Integrated Circuit

DSP Digital Signal Processing

GDR Generalized Delta Rule

SNR Signal-to-Noise Ratio

PSNR Peak Signal-to-Noise Ratio

X

List of Technical Symbols

𝛳𝑗
ℎ and 𝛳𝑘

𝑜 Bias Weights

⍵𝑗𝑖
ℎ Weights on the Hidden Layer

h Quantities on Hidden Layer

o Quantities on Output Layer

µ Positive Constant

η Learning-rate Parameter

Ep Total Error

𝑛𝑒𝑡𝑝𝑗
ℎ Net-inputs to the Hidden Layer units

𝑖𝑝𝑗 Outputs from the Hidden Layer

𝑛𝑒𝑡𝑝𝑘
𝑜 Net-inputs to the Output Layer units

𝑜𝑝𝑘 Outputs

𝛿𝑝𝑘
𝑜 Error terms for the Output units

𝛿𝑝𝑗
ℎ Error terms for the Hidden units

fHL Hard Limiter

 Possible Summing Junction

∇ E Energy Gradient Vector

Z -1 Unit Delay

1

Comparison of Backpropagation and Hopfield

Model in De-noising of Speech Signal

2

Chapter 1

Introduction

Speech is probably the most competent way to talk to each other. Speech is considered as a

useful interface for associating with computers as well as human beings is conceivable, analyzed

by NN in [1]. Speech signal de-noising is a construction field that reviews approaches used to

recover from loud flags a distinctive speech undermined by different types of noise. Noises could

be like repetitive sound, clamor, prattle clamor, and many distinct kinds of noise in nature. Other

kinds of noise include channel noise that affects both easy and sophisticated transmission,

quantization noise resulting from over-pressure of discourse signals, multi-talker babble,

resonation noise, or delayed noise form are also present in some circumstances, found in [2]. The

addition of substance-based noise is of an arbitrary nature and uncorrelated to discourse, as

discussed in [3]. It presents scenarios such as workplaces, cars, fans of town highways, condition

of manufacturing line, helicopters and so on in distinct conditions. In the case of an added

substance base noise, the suspicions produced for the creation of methods of enhancement are: 1)

Speech and noise signals are at any rate uncorrelated over a short timeframe. 2) Noise is

stationary or gradually moving more than a few discourse edges and 3) noise can be described as

uneven zero-mean procedures, available in [4]. In the event of resonation, speech impressions

from various papers will mix in a convoluted model with expression. In this way, if resonation

occurs, debasement is subordinate to the flag, while it is free in the event of additional substance-

based noise. Speech from distinct speakers may also be mixed in an added substance model with

the speech of the perfect speaker. Because the degradation characteristics are unique for each

scenario, it may be necessary to process degraded speech in distinct ways. Consequently, for

some flag-preparing undertakings, robotized techniques to evacuate the commotion would be a

valuable first phase. Noise expulsion from speech signals has been an area of analysts '

excitement during discourse handling over the last centuries and yet there is always space for

enhancement. A Neural Network is an information-processing framework, animated by organic

sensory systems, comparable to mental process information, found in [5]. Neural networks

incorporate basic computing elements operating in parallel, discussed in [1]. The network

3

function is largely solved by the connections between parts. It is possible to create a neural

network so that a specific input guides a specific target output, available in [1]. It is possible to

use the neural network in different parts. There are countless uses of NNs that are restricted by

our thoughts alone. Development is a response to advances, so we are using NNs to create

something that will modernize the world! For composing, there are a few applications for Neural

Networks in Speech Recognition, Optical Character Recognition (OCR), Modeling Human

Conduct, Example Classification, Loan Hazard Review, Music Age, Image Investigation,

Creation of New Fine Arts, Stock Market Expectations, and so on. We used both

Backpropagation and Hopfield neural network algorithms in our research job, and we used deep-

learning CNN processes to de-noise a predefined voice signal according to the demands of the

Matlab environment. Using the Matlab environment characteristics, all the techniques and

algorithms mentioned in this article were introduced.

Outline of the project report: The entire project report is organized as: chapter 2 gives basic

idea about Artificial Neural Network (ANN). Chapter 3 deals with complete Backpropagation

(BPN) algorithm of Artificial Neural Network. Chapter 4 provides complete analysis of Hopfield

Neural Network (HNN) with some basic idea of Deep learning. Chapter 5 provides results based

on analysis of previous chapters and finally chapter 6 concludes entire analysis.

4

Chapter 2

Artificial Neural Network

An Artificial Neural Network (ANN) is a model for the processing of information. It is a kind of

structure, which is based on the biological nervous system in its processing process. A

straightforward explanation of the ANN is that it is a series of linked input / output units with a

combined weight. It comprises of a body of easy processing components that interact through a

big amount of weighted links by sending signals to each other, as discussed in [6]. It is inspired

by a biological nervous system whose basic unit is the biological neuron shown in Figure 2.1. It

has been created as a generalization of neural biology mathematical models.

Figure 2.1: A Biological Neuron [7]

Since an ANN is comparable to a biological neural network, the mathematical model of a neuron

whose schematic is shown in Figure 2.2 is its basic construction block.

2.1 Fundamental Parts of AN:

The Artificial Neuron (AN) has three fundamental parts and they are:

• Synapses or linking connections to the input values, wkp, xp for p = 1,...,n

5

• An adder part that sums the weighted input values and calculates the activation function

input.

• Activation function mapping the amount of xp to yk, the neuron's output value. It has also

called a function of squashing.

Figure 2.2. Schematic of an Artificial Neuron. [8]

ANN discovers its usefulness in various sectors such as aerospace, defense, electronics,

manufacturing, medical, robotics, voice and transport in classification, pattern recognition, data

mining, control, optimization, and so on. ANN's energy system implementation fields include

load prediction, fault diagnosis / fault place, economic dispatch, safety evaluation, and transient

stabilization.

2.2 Benefits and Drawbacks of ANN:

As mentioned in [8], the benefits of ANN are:

• Its ability to support a non-linear mapping of input and output variables.

6

• It also has functions such as solid performance in noisy settings and incomplete

information environments that allow it to generalize.

• High parallel computing, which implies it can be implemented with very large-scale

embedded circuits such as ASIC, DSP, etc.

• Its capacity to learn on its own (with or without a supervisor) using information input into

the template, making it an adaptive method (generally accomplished by altering the link

strengths).

• If a model neuron is damaged throughout the process, the entire network will not be shut

down; it can still work very well.

• With a measure of confidence, it can create choices.

Authors of [9] provide some drawbacks of ANN:

• ANN's processing time improves with its size.

• ANN requires to be trained before starting operation.

• The ANN architecture varies from the microprocessor architecture.

7

Chapter 3

Backpropagation

A neural system is known as a mapping system in the event that it can register some useful

connection between its info and its output. For instance, if the contribution to a system is the

estimation of a point and the output is the cosine of that edge, the system plays out the mapping

Θ→cosθ. For such a straightforward capacity, we need not bother with a neural system;

nevertheless, we should need to play out a confused mapping where we do not know to portray

the utilitarian relationship ahead of time however we do know about instances of the right

mapping.

Figure 3.1. The BPN architecture of Three Layers

Here, The weights of bias, amble 𝛳𝑗
ℎ, and range 𝛳𝑘

𝑜, and the units of bias are optional. The bias

units on a connection to the bias weight provide a fictional input value of 1. The bias weight (or

merely bias) can then be treated as any other weight. It adds to the unit's net input value and

it participates as any other weight in the learning process.

8

Here the 𝑋p= (𝑥p1,𝑥p2,…., 𝑥pN)t data vector is linked to the system's info layer. The units of

information distribute the qualities to the units of the hidden-layer. The net input to the jth hidden

unit is,

 𝑛𝑒𝑡𝑝𝑗
ℎ = ∑ ⍵𝑗𝑖

ℎ𝑥𝑝𝑖
𝑁
𝑖=1 + 𝛳𝑗

ℎ 3.1

Where, ⍵𝑗𝑖
ℎ is the weight on the connection, from the ith input unit, and 𝛳𝑗

ℎ is the bias

term. On the hidden-layer, the "h" superscript alludes to quantities. Assuming that this activated

node is to be initiated as net input, then the output of this node would be,

 𝑖𝑝𝑗 = 𝑓𝑗
ℎ(𝑛𝑒𝑡𝑝𝑗

ℎ) 3.2

The equation for the output nodes is,

 𝑛𝑒𝑡𝑝𝑘
𝑜 = ∑ ⍵𝑘𝑖

𝑜𝐿
𝑗=1 𝑥pi+𝛳𝑘

𝑜 3.3

 𝑜𝑝𝑘 = 𝑓𝑘
𝑜(𝑛𝑒𝑡𝑝𝑘

𝑜) 3.4

Where amounts are referred to on the output layer in the "o" superscript. The fundamental weight

esteem scheme refers to a first conjecture about the best possible loads for the problem. The

technique we use here does not depend on creating a good first speculation as opposed to a few

approaches. Nevertheless, there are rules for selecting the underlying loads, and we will discuss

them in condition 3. The accompanying depiction illustrates the vital method for preparing the

system:

1. Apply a system info vector and calculate the related output values.

2. Compare the actual outputs with the correct outputs and determine a share of the

error.

3. Determine the course (+ or-)to modify each weight in order to decrease the

inaccuracy.

4. Determine the amount by which each weight is changed.

5. Use the adjustments to the loads.

6. Keep repeating the same thing from 1 to 5 with all the preparation vectors until the err

or in the preparation set for all vectors decreases to a dignified esteem.

In past we depicted an intuitive weight-change law for system with no concealed units and

straight out units, called delta rule.

 𝑤(𝑡 + 1)𝑖 = 𝑤(𝑡)𝑖 + 2µɛ𝑘𝑥𝑘𝑖 3.5

9

3.1. Update of Output-layer Weights:

In a single output unit, we will characterize the error to be δpk = (𝑦𝑝𝑘 — 𝑜𝑝𝑘), where the

subscription "𝑝" relates to the pth preparation vector, and "𝑘" relates to the 𝑘th output unit. 𝑦pk is

the ideal output esteem in this case, and 𝑜pk is the real output from the kth unit. The GDR-limited

error is the aggregate of the error squares for all output units:

 𝐸𝑝 =
1

2
∑ δ𝑝𝑘

2
𝑀

𝑘=1
 3.6

The factor of
1

2
 in this Eq is there for comfort in ascertaining subsidiaries afterward. Since a

subjective consistent will show up in the last outcome, the nearness of this factor does not negate

the deduction. We ascertain the negative of the inclination of 𝐸𝑝, ∇𝐸𝑝 ,as for the loads,𝑤𝑘𝑗.

We consider each element of ∇𝐸𝑝 separately to maintain stuff straightforward.

From Eq. 3.6 and the definition of δpk,

 𝐸𝑝 =
1

2
∑ (𝑦𝑝𝑘 − 𝑜𝑝𝑘)

2𝑀

𝑘=1
 3.7

 =
1

2
∑ {𝑦𝑝𝑘 − 𝑓𝑘

𝑜(𝑛𝑒𝑡𝑝𝑘
𝑜)}2

𝑀

𝑘=1

𝜕𝐸𝑝

𝜕𝑤𝑘𝑗
𝑜 = −(𝑦𝑝𝑘 − 𝑜𝑝𝑘)

𝜕𝑓𝑘
𝑜

𝜕(𝑛𝑒𝑡𝑝𝑘
𝑜)

𝜕(𝑛𝑒𝑡𝑝𝑘
𝑜)

𝜕𝑤𝑘𝑗
𝑜 3.8

Where 𝑦𝑝𝑘 is the desired output.

Where we used the Eq. 3.4 Output value, 𝑜𝑝𝑘, and partial derivatives chain rule. For this occasio

n, we will not attempt to evaluate the f 𝑓𝑘
𝑜 subsidiary, yet rather will compose it essentially as

𝑓𝑘
𝑜1(𝑛𝑒𝑡𝑝𝑘

𝑜) . The last factor in Eq. 3.7 is

𝜕(𝑛𝑒𝑡𝑝𝑘

𝑜)

𝜕𝑤𝑘𝑗
𝑜 = (

𝜕

𝜕𝑤𝑘𝑗
𝑜 ∑ ⍵𝑘𝑖

𝑜 𝑥pi + 𝛳𝑘
𝑜𝐿

𝑗=1) = 𝑖𝑝𝑗 3.9

Combining Eq. 3.7 and 3.8, we have for the negative gradient

 −
𝜕𝐸𝑝

𝜕𝑤𝑘𝑗
𝑜 = (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)𝑖𝑝𝑗 3.10

10

As far as the magnitude of the weight change is concerned, we take it to be proportional to the

negative gradient. Thus, the weights on the output layer are updated according to

 𝑤𝑘𝑗
𝑜 (𝑡 + 1)𝑖 = 𝑤𝑘𝑗

𝑜 (𝑡) + ∆𝑝𝑤𝑘𝑗
𝑜 (𝑡) 3.11

Where

 ∆𝑝𝑤𝑘𝑗
𝑜 = 𝜂(𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)𝑖𝑝𝑗 3.12

The factor 𝜂 is called the learning-rate parameter.

Let us go back to look at the function 𝑓𝑘
𝑜1.

Two types of the output function are of concern here:

 𝑓𝑘
𝑜1(𝑛𝑒𝑡𝑝𝑘

𝑜) = (𝑛𝑒𝑡𝑝𝑘
𝑜)

 𝑓𝑘
𝑜1(𝑛𝑒𝑡𝑝𝑘

𝑜) = (1 + 𝑒−𝑛𝑒𝑡𝑗𝑘
𝑜

)−1

In the first case, 𝑓𝑘
𝑜1 = 1; in the second case, 𝑓𝑘

𝑜1 = 𝑓𝑘
𝑜(1 − 𝑓𝑘

𝑜) = 𝑜𝑝𝑘(1 − 𝑜𝑝𝑘); for these two

cases, we have

 𝑤𝑘𝑗
𝑜 (𝑡 + 1)𝑖 = 𝑤𝑘𝑗

𝑜 (𝑡) + 𝜂(𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑖𝑝𝑗 3.13

Figure 3.2. The Sigmoid Function's distinctive S-shape.

For the linear output, and

 𝑤𝑘𝑗
𝑜 (𝑡 + 1)𝑖 = 𝑤𝑘𝑗

𝑜 (𝑡) + 𝜂(𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑜𝑝𝑘(1 − 𝑜𝑝𝑘)𝑖𝑝𝑗 3.14

11

For the sigmoidal output.

By identifying a amount, we want to summarize the weight update equations

 𝛿𝑝𝑘
𝑜 = (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)

 = 𝛿𝑝𝑘𝑓𝑘
𝑜1(𝑛𝑒𝑡𝑝𝑘

𝑜) 3.15

We can then write the equation for weight updates as

 𝑤𝑘𝑗
𝑜 (𝑡 + 1)𝑖 = 𝑤𝑘𝑗

𝑜 (𝑡) + 𝜂𝛿𝑝𝑘
𝑜 𝑖𝑝𝑗 3.16

Regardless of the output substring functional form, 𝑓𝑘
𝑜.

3.2. Updates of Hidden-Layer Weights:

We may want to rehash a comparable kind of computation for the hidden-layer as we did for the

output layer. A problem arises when we try to determine a measure of the error of the hidden-

layer unit’s outputs. We understand what the real output is, but we don't have the opportunity to

know in advance what the correct output should be for these units.. Of course, the absolute error,

Ep, should be recognized with the yield esteems on the hidden-layer in one manner or another.

By returning to Eq, we can verify our instinct. 3.7:

 𝐸𝑝 =
1

2
∑ (𝑦𝑝𝑘 − 𝑜𝑝𝑘)

2𝑀

𝑘=1

 =
1

2
∑ {𝑦𝑝𝑘 − 𝑓𝑘

𝑜(𝑛𝑒𝑡𝑝𝑘
𝑜)}2

𝑀

𝑘=1

 =
1

2
∑ {𝑦𝑝𝑘 − 𝑓𝑘

𝑜(∑ ⍵𝑘𝑖
𝑜

𝑗 𝑥pi + 𝛳𝑘
𝑜)}2

𝑀

𝑘=1

We comprehend that 𝑖𝑝𝑗 needs to rely through Eq. on the weights of the hidden-

layer (3.1) and (3.2) respectively. We can take advantage of this reality to calculate the 𝐸𝑝 gradie

nt for the weights of the hidden-layer.

𝜕𝐸𝑝

𝜕𝑤𝑘𝑗
𝑜 =

1

2
∑

𝜕

𝜕𝑤𝑘𝑗
𝑜 (𝑦𝑝𝑘 − 𝑜𝑝𝑘)

2
𝑘

 = −∑ (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑘
𝜕𝑜𝑝𝑘

𝜕(𝑛𝑒𝑡𝑝𝑘
𝑜)

𝜕(𝑛𝑒𝑡𝑝𝑘
𝑜)

𝜕𝑖𝑝𝑗

𝜕𝑖𝑝𝑗

𝜕(𝑛𝑒𝑡𝑝𝑗
ℎ)

𝜕(𝑛𝑒𝑡𝑝𝑗
ℎ)

𝜕𝑤𝑘𝑗
ℎ 3.17

Each of the factors in Eq. (3.17) can be calculated explicitly from previous equations. The result

is,

12

𝜕𝐸𝑝

𝜕𝑤𝑘𝑗
𝑜 = −∑ (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑘 𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)𝑤𝑘𝑗

𝑜 𝑓𝑘
ℎ1(𝑛𝑒𝑡𝑝𝑗

ℎ)𝑥𝑝𝑖 3.18

We update the weights of the hidden-layer in proportion to the Eq's negative. (3.18):

 ∆𝑝𝑤𝑗𝑖
ℎ = 𝜂𝑓𝑘

ℎ1(𝑛𝑒𝑡𝑝𝑗
ℎ)𝑥𝑝𝑖 ∑ (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑘 𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)𝑤𝑘𝑗

𝑜 3.19

Where η is once again the learning rate.

We can utilize the meaning of 𝛿𝑝𝑘
𝑜 given in the past segment to compose

 ∆𝑝𝑤𝑗𝑖
ℎ = 𝜂𝑓𝑘

ℎ1(𝑛𝑒𝑡𝑝𝑗
ℎ)𝑥𝑝𝑖 ∑ 𝛿𝑝𝑘

𝑜 𝑤𝑘𝑗
𝑜

𝑘 3.20

Note that every weight update on the hidden-layer is based on all the inaccurate terms, 𝛿𝑝𝑘
𝑜 , on

the yield layer. This outcome is the place where the idea of backpropagation emerges. The know

n blunders on the yield layer are proliferated back to the hidden-

layer to determine the fitting weight changes on that layer. By characterizing a hidden-

layer of error term

 𝛿𝑝𝑗
ℎ = 𝑓𝑘

ℎ1(𝑛𝑒𝑡𝑝𝑗
ℎ)∑ 𝛿𝑝𝑘

𝑜 𝑤𝑘𝑗
𝑜

𝑘 3.21

We cause the weight-updating conditions to be similar to those for the output layer.

 𝑤𝑗𝑖
ℎ(𝑡 + 1) = 𝑤𝑗𝑖

ℎ(𝑡) + 𝜂𝛿𝑝𝑘
ℎ 𝑥𝑖 3.22

3.3. BPN Summary:

We are collecting all the important conditions for the BPN here to reduce the need to flip pages

to find the right conditions. They are shown in the appropriate order in which they would be used

in the preparation of a single training-vector pair.

1. Apply the input vector, 𝑋p= (𝑥p1,𝑥p2,…., 𝑥pN)t to the input units.

2. Calculate the net-input values to the hidden-layer units:

 𝑛𝑒𝑡𝑝𝑗
ℎ = ∑ ⍵𝑗𝑖

ℎ𝑥𝑝𝑖
𝑁
𝑖=1 + 𝛳𝑗

ℎ

3. Calculate the outputs from the hidden-layer:

 𝑖𝑝𝑗 = 𝑓𝑗
ℎ(𝑛𝑒𝑡𝑝𝑗

ℎ)

4. Move to the output layer. Calculate the net-input values to each unit:

 𝑛𝑒𝑡𝑝𝑘
𝑜 = ∑ ⍵𝑘𝑖

𝑜𝐿
𝑗=1 𝑥pi+𝛳𝑘

𝑜

5. Calculate the outputs:

13

 𝑜𝑝𝑘 = 𝑓𝑘
𝑜(𝑛𝑒𝑡𝑝𝑘

𝑜)

6. Calculate the error terms for the output units:

 𝛿𝑝𝑘
𝑜 = (𝑦𝑝𝑘 − 𝑜𝑝𝑘)𝑓𝑘

𝑜1(𝑛𝑒𝑡𝑝𝑘
𝑜)

7. Calculate the error terms for the hidden units:

 𝛿𝑝𝑗
ℎ = 𝑓𝑘

ℎ1(𝑛𝑒𝑡𝑝𝑗
ℎ)∑ 𝛿𝑝𝑘

𝑜 𝑤𝑘𝑗
𝑜

𝑘

Here we can see that the error terms are calculated on the hidden units before updating the

connection weights to the output layer units.

8. Update weights on the output layer:

 𝑤𝑘𝑗
𝑜 (𝑡 + 1) = 𝑤𝑘𝑗

𝑜 (𝑡) + 𝜂𝛿𝑝𝑘
𝑜 𝑖𝑝𝑗

9. Update weights on the hidden-layer:

 𝑤𝑗𝑖
ℎ(𝑡 + 1) = 𝑤𝑗𝑖

ℎ(𝑡) + 𝜂𝛿𝑝𝑘
ℎ 𝑥𝑖

The order of the weight updates on an individual layer is not important. So, we have to

calculate the error term using,

 𝐸𝑝 =
1

2
∑ δ𝑝𝑘

2
𝑀

𝑘=1

Because this quantity is the indicator of how well the network is learning, instruction can be

stopped when the error is acceptably low for each of the training vector pairs.

14

Chapter 4

Hopfield Neural Network

In 1982, at the California Institute of Technology and AT&T Bell Laboratories, John J. Hopfield

conceptualized a model consistent with the asynchronous nature of biological neurons. As such,

in contrast to the perception, it was a more abstract, fully interconnected, random and

asynchronous network that required a clock to synchronize its circuit operation, similar to a

digital computer. Generally speaking, the Hopfield network is a fully connected auto associative

network of a single node layer. It is also a symmetrically weighted network. The network takes

two-value inputs: binary (0 1) or bipolar (+1 -1); the bipolar simplifies the analysis of

mathematics.

Hopfield's fundamental model unit has a two-output processing component, one non-inverting

and one inverting element (Figure 4.1). Each processing element's outputs is linked back to any

other processing element's inputs expect itself. The connections are resistive (a resistor parallel

to a capacitor) and represent the strength (weight), ꞷij of the connection. Since no negative

resistors are present, excitatory connections use positive outputs, and inhibitory connections use

inverted outputs. Connections are made excitatory when the processing element output is the

same as the input; when the inputs differ from the processing element output, they are inhibitory.

Although all outputs are shown in (Figure 4.1) to be fed back, one of them will eventually make

the connection. The sigmoid was used as the nonlinearity. A link between processing elements i

and j is connected with a connecting force ꞷij which, if positive, depicts the situation where, if

unit i is on, unit j is also on (i.e., some sort of excitatory synapse). If the strength of the

connection is negative, it represents the situation where unit j is not on when unit i is on. In

addition, the weights are symmetric: the strength of connection ꞷij is the same as ꞷji.

15

Figure 4.1. Basic Hopfield Paradigm

Here, fHL = hard limiter and = possible summing junction

Hopfield defined his model as an energy function that relies on the state of interconnected

neurons j with i, the state of firing V, and their strength of connections, ωij:

 𝐸 = −
1

2
∑∑ 𝜔𝑖≠𝑗 ij Vi Vj 4.1

He stated that changes in Vi monotonically decrease E until a minimum is reached. By

differentiating E over Vi, the latter is mathematically verified:

𝛿𝐸

𝛿𝑉ᵢ
= −∑ 𝜔𝑗≠𝑖 ij Vj 4.2

Equation 4.2 produces all minima, local and global. However, we are not interested in local

minima, as they are not necessarily given true results (targets). The neural network must

16

therefore be able to escape local minima and settle to the global minimum, i.e. generate real

results. The Hopfield network has found interesting applications by calculating the weighted sum

of the inputs and quantizing the outputs. An analog-to-digital converter was shown on the basis

of this.

4.1. Mathematical Analysis:

The output before nonlinearly Ri of the i th neuron is equation for a n-neuron single-layer

Hopfield network.

 Ri = ∑ 𝜔𝑛
𝑗 ij Oj + xi – 𝛩i for i = 1,2,……..n. 4.3

Where xi is the external input to the i th node, Oj is the output of the neurons (after nonlinearity),

Θi is the threshold of the i th neuron, and ωij is the connection weights.

Equation 4.3, for one neuron in vector notation

 Ri = 𝑤𝑖
𝑇O + xi – 𝛩i for i = 1, 2,…..n. 4.4

Where the weight vector and the output vector of the i th neuron are

wij =

[

ꞷ𝑖 1

ꞷ𝑖 2

.

.

.
ꞷ𝑖 𝑛

]

 , O =

[

𝑂 1

𝑂 2

.

.

.
𝑂 𝑛

]

 4.5

Considering all the nodes, we can write

 R = WO + x – 𝛩.

 4.6

Where,

17

R =

[

𝑅1

𝑅2

.

.

.
𝑅𝑛

]

 , x =

[

𝑥1

𝑥2

.

.

.
𝑥𝑛

]

 , and 𝛩 =

[

 𝛩1
 𝛩2

.

.

.
 𝛩𝑛

]

 4.7

Where weights can be displayed in an n × n symmetric matrix (i.e., wij = wji) with diagonal terms

ꞷii = 0:

W =

[

𝑤1
𝑇

 𝑤2
𝑇

.

.

.
𝑤𝑛

𝑇

]

 4.8

Moreover, 𝑤𝑖
𝑇is in the form of the n-vector.

Now, if the activation function is sgn(.), the outputs Oi take values (+1, -1). If Ri < 0 or Oi = +1

if Ri > 0, the response of the network will be Oi = -1 if Ri < 0 or Oi = +1 if Ri > 0.

To study the network's stability characteristics, one starts with the energy function.

E = -
1

2
 𝑂𝑇 𝑊𝑂 − 𝑥𝑇𝑂 + 𝛩𝑇 𝑂 . 4.9

The energy gradient vector is

∇ E = -
1

2
 (𝑊𝑇 + 𝑊)𝑂 − 𝑥𝑇 + 𝛩𝑇. 4.10

Outputs are updated asynchronously during learning (i.e., only one at a moment, here the i th).

Then

18

ΔO =

[

0
.
.
.

Δ 𝑂𝑖

0
.
.
.
0

]

 4.11

The increase in energy reduces to the form

Δ E = (- 𝑤𝑖
𝑇 𝑂 − 𝑥𝑖

𝑇 + 𝛩i) ΔOi 4.12

Or

Δ E = - (∑ ꞷ𝑖𝑗 𝑂𝑗 + 𝑥𝑖 − 𝛩𝑖
𝑛
𝑗=1) Δ Oi for j ≠ i . 4.13

4.2. The Hopfield Learning Algorithm

1. Assign random connection weights with values ꞷij = +1 or -1 for all i ≠ j and 0 for i = j

(i.e. all diagonal values are zero – an asynchronous update requirement).

2. Initialize the network with an unspecified sequence: xi = Oi (k), 0 ≤ i ≤ N – 1, where Oi (k)

is the output of the node i at the moment t = k = 0 and xi is an element at the input i of the

input pattern, + 1 or -1; i.e., the input pattern consists of the signs + 1 and -1 and the

nodes threshold is zero.

3. Iterate until it reaches convergence, using the relationship

Oi (k+1) = f (∑ 𝜔𝑁−1
𝑖=0 ij Oi (k)) , 0 ≤ j ≤ N – 1, 4.14

Where function f (.)is a non-linearity that is hard-limiting. Repeat the process until the

outputs of the node stay the same. Then the node outputs best depict the model pattern

that best fits the unknown input.

4. Return to step 2 and repeat for the next xi, and so on.

19

4.3. Discrete-Time Hopfield Network

The i th output is for a recurrent Hopefield network (Figure 4.2) at a discrete time is,

Oi (k+1) = fHL (Ri (k)) 4.15

Where,

Ri (k) = ∑ ꞷ𝑖𝑗 𝑂𝑗 + 𝑥𝑖 − 𝛩𝑖
𝑛
𝑗=1 4.16

And k is the recursive process index. The recursion begins with the initialization vector O(0),

resulting in Oi(1) for the first iteration.

Figure 4.2. Discrete time Hopfield model

Here, Z -1 = unit delay

20

Chapter 5

Results and Discussion

First, we consider random noise to contaminate the original speech signal of 100 samples. Figure

5.1. (a) and (b) shows the original, noisy and recovered signal at 12 dB and 6 dB respectively

applying Backpropagation algorithm with 10 hidden-layers. The corresponding absolute error

between original and recovered signals is show in figure 5.2. (a) - (b) and the mean square error

of validation is shown in figure 5.3. (a) - (b). The error histogram of both cases are shown in

figure 5.4. (a) - (b) for 20 bins and very few samples are found to exceed the error of 8%.

Finally, the convergence data are shown with linear regression in figure 5.5. (a) - (b). The

performance is found better in the entire diagram figure 5.1-5.5 for 12dB case compared to 6dB.

Next, we consider awgn instead of random noise where the performance of BP is found poor as

shown in figure 5.6. The Hopfiled network shows better performance under awgn as shown in

figure 5.7. but poor performance under random noise shown in figure 5.8.

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.1. Comparison of original, noisy and recovered signal under BPN

21

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.2. Error signal of BPN under random noise

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.3. MSE of train and validation

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.4. Comparison of error histogram

22

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.5. Comparison of convergence of original and recovered data

(a) SNR of 12 dB (b) SNR of 6 dB

Figure 5.6. Poor performance of BPN under awgn

23

(a) 12 dB (b) 20 dB

(c) 30 dB (d) 40 dB

Figure 5.7. Good Performance of Hopfield under awgn

SNR of 12 dB (b) SNR of 6 dB

Figure 5.8. Poor performance of Hopfield under random noise

24

Figure 5.9. De-noising of speech signal by deep learning CNN under random noise

Figure 5.10. De-noising of speech signal by deep learning CNN under awgn

25

Finally we apply deep learning CNN on noisy speech signal (2500 samples, which is the

minimum requirement of MATLAB) to recover the original signal. Figure 5.9. shows the

original speech signal, noisy speech signal and de-noised signal under random noise. Similar

results are shown in figure 5.10. under awgn. Here we add awgn of 20 dB and random noise

with amplitude of 50% of peak amplitude of the speech signal. The deep learning CNN can

resolve both awgn and random noise; where we found the cross correlation co-efficient of

84.3% and 85.67% for awgn and random noise case respectively.

26

Chapter 6

Conclusion and Future Works

In this research project, we mainly emphasize on Backpropagation algorithm of Neural

Network and Hopfield Neural Network in de-noising of speech signal and a comparison is

drawn between this two algorithms. Using the same algorithms, we can also de-noise digital

images converting them from 2D matrix to 1D vector. Then a comparison can be made

between these two algorithms in de-noising of different types of noises like Gaussian, Salt-

and-pepper, Shot, Quantization (uniform noise), Anisotropic and Periodic noise etc. We can

also include different types of digital filters like Median, Gaussian, Gabor, Mean and Wiener

filter etc. to observe the improvement of the signal. Then we can measure the quality of the

image/speech signal using SNR and PSNR. In future, we will apply the similar concept on

Convolutional Neural Network (CNN).

27

References:

[1] Wouter Gevaert, Georgi Tsenov, Valeri Mladenov, “Neural Networks used for Speech Recognition”, Journal of

Automatic Control, University of Belgrade, VOL.20, pp.1-7, January 2010.

[2] Soon Ing Yann, “Transform based Speech Enhancement Techniques”, PhD Thesis Nanyang Technological

University, April 2003.

[3] P Krishnamoorthy, Mahadeva Prasanna, “Processing Noise Speech for Enhancement”, IETE Technical Review,

Volume 24, No 5, pp.351-357, Sept-Oct 2007.

[4] S. Boll, “Suppression of acoustic noise in speech using Spectral Subtraction”, IEEE transactions on Acoustic

Speech and Signal Processing, Vol-ASSP.27, pp.113-120, April 1979.

[5] Preet Ind, Gour Sundar Mitra, Thakurer Singh, “Enhanced Password Based Security System Based on User

Behavior using Neural Networks”, Journal of Information Engineering and Electronic Business, Vol.2, pp.29-35,

April 2012.

[6] Learning Artificial Neural Networks (ANN) [Internet].2016 [cited 2016 Aug 9]. Available from: Crossref .

[7] Haque MT, Kashtiban AM, “Application of neural networks in power systems: a review. World Academy of

Science, Engineering and Technology”, International Journal of Electrical, Computer, Energetic, Electronic and

Communication Engineering. Vol-1(6), pp.889–93, 2007.

[8] Adepoju GA, Ogunjuyigbe SOA, Alawode KO. “Application of neural network to load forecasting in Nigerian

electrical power system”, The Pacific Journal of Science and Technology. Vol.8 (1), pp.68–72, 2007.

[9] Hsu YY, Yang L-C. “Design of artificial neural networks for short term load forecasting”, In the Proceedings of

the Institute of Electrical and Electronics Engineers (IEEE)– C Generation, Transmission and Distribution,

Vol.138(5), pp.407–13, 1992.

