

Rice Disease and Pest Detection Using

Deep Learning

Md. Minhaz Ul Karim

ID: 2017-3-96-003

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science

Department of Computer Science & Engineering

East West University

ii

DECLARATION

I hereby declare that I have completed thesis on the topic entitled "Rice Disease and Pest

Detection Using Deep Learning" as well as prepared the thesis report under the supervision of

Dr. Ahmed Wasif Reza, Associate Professor, Department of Computer Science Engineering.

This report is submitted to the department of Computer Science Engineering, East West

university in partial fulfillment of the requirement for the degree of MS in CSE, Under the

course "MS Thesis (CSE 599)".

I further assert that this report in question is based on my original exertion having never been

produced fully and/or partially anywhere for any requirement.

Countersigned

…....................................

Dr. Ahmed Wasif Reza

Associate Professor,

Department of Computer Science & Engineering

Signature

..….................................

Md. Minhaz Ul Karim

ID: 2017-2-96-003

iii

LETTER OF ACCEPTANCE

This thesis report “Research on Rice Disease and Pest Detection using Deep Learning” is the

outcome of the original work carried out by Md. Minhaz Ul Karim, ID: 2017-2-96-003, under

my supervision to the Department of Computer Science & Engineering, East West University,

Dhaka–1212

Supervisor

…...................................

Dr. Ahmed Wasif Reza

Associate Professor,

Department of Computer Science & Engineering,

East West University

Chairperson

…...................................

Dr. Taskeed Jabid

Associate Professor and Chairperson,

Department of Computer Science & Engineering,

East West University

iv

ABSTRACT

In the field of agriculture information, automatic detection and diagnosis of plant disease and

pest is highly desirable. Feature extraction technologies play a critical and crucial role in leaf

disease detection and diagnostic system. Researches in leaf disease detection have used many

different feature detection techniques like color, texture, shape etc. Recently very promising

results are found using deep learning in different types of computer vision problems. Now a

days deep learning is hot research topic in pattern recognition, machine learning as well as

artificial intelligence. Deep neural network-based models can be an effective solution to

vegetable pathology. In this research I have proposed a novel rice disease and pest detection

model which is based on deep convolutional neural networks (CNN). This model gives a

training accuracy of 80.11% with 77.68% training accuracy.

..….................................

Md. Minhaz Ul Karim

ID: 2017-2-96-003

v

ACKNOWLEDGEMENT

First and foremost, with all my heartiest devotion I am grateful to almighty Allah for blessing

me with such opportunity of learning and ability to successfully complete the research.

A special thanks with the honor to my respected supervisor Dr. Ahmed Wasif Reza who was

kind enough to allocate his valuable time to provide me with his humble guidance, motivating

thought and encouragement. Without his guidance this work would not have been possible.

Page | 1

Table of Contents

ABSTRACT ... iv

ACKNOWLEDGEMENT .. v

LIST OF FIGURES .. 3

LIST OF TABLES .. 4

CHAPTER 1 .. 5

INTRODUCTION ... 5

1.1. Background of Thesis .. 6

1.2. Problem Statement ... 7

1.3. Objective of Thesis .. 7

1.4. Chapterization Plan ... 7

CHAPTER 2 .. 9

LITERATURE REVIEW ... 9

2.1. Supervised Learning .. 10

2.2. Classification Model .. 11

2.2.1. Lazy Learning ... 11

2.2.2. Eager Learning ... 11

2.3. Deep Learning ... 12

2.4. CNN .. 13

2.5. Mobilenet ... 13

2.6. Resnet .. 15

2.8. Rectified Linear Unit (ReLU) .. 17

2.9. Softmax .. 18

2.10. Rice Diseases .. 18

2.11. Insects in Rice Leaf .. 20

CHAPTER 3 .. 21

METHODOLOGY.. 21

3.1. Tools ... 22

3.2. Data .. 22

3.3. Models for Training ... 27

3.4. Mobilenet ... 27

3.5. Resnet50... 27

3.6. Proposed Model ... 27

3.7. Training .. 28

Page | 2

3.8. Testing .. 28

CHAPTER 4 .. 29

RESULTS & EVALUATION ... 29

4.1. Results .. 30

4.2. Evaluation ... 37

CHAPTER 5 .. 38

CONCLUSION ... 38

5.1. Conclusion .. 39

5.2. Future Work ... 40

REFERENCES.. 41

APPENDIX.. 44

APPENDIX A .. 45

Abbreviations .. 45

APPENDIX B .. 46

Essential Source Code of This Research .. 46

Page | 3

LIST OF FIGURES

Figure No. Title Page

Figure 2.1 Process of Supervised Learning 10

Figure 2.2 Increasing network depth leads to worse performance 15

Figure 2.3 A residual block 16

Figure 2.4 Convolution Block and Identity Block for resnet 17

Figure 3.1 Healthy image 23

Figure 3.2 Brownspot disease image 24

Figure 3.3 LeafBlast disease image 25

Figure 3.4 Hispa infected image 26

Figure 4.1 Training and validation loss for the proposed model 31

Figure 4.2 Training and validation loss for the proposed model 32

Figure 4.3 Training and validation accuracy for mobilenet 33

Figure 4.4 Training and validation loss for mobilenet 34

Figure 4.5 Training and validation accuracy for resnet50 35

Figure 4.6 Training and validation loss for resnet50 36

Page | 4

LIST OF TABLES

Table No. Title Page

Table 2.1 Mobilenet architecture 14

Table 2.2 Resnet50 architecture 16

Table 3.1 Architecture of the proposed model 28

Table 4.1 Table for result comparison 30

Page | 5

CHAPTER 1

INTRODUCTION

Page | 6

1.1. Background of Thesis

Rice is the major food crop in Bangladesh. Rice fills almost 70 percent of the grossed crop area

and 93 percent of total cereal production in Bangladesh [1]. It is also primary staple food in

many countries. With the growth of population, demand of rice is increasing as well.

Unfortunately, a great loss in yield is caused by rice diseases. When a rice disease spread out

somewhere, Government appoints consultants or agriculture officers to advice the farmers. The

whole process is time consuming. Farmers in outlier area sometimes do not even get the

facilities in time. Plant disease is not only a threat to food supply but also bring in horrible

consequences for small holder farmers. Their livelihood depends on healthy crops, which is

heavily affected by any kinds of crop perishing epidemic. In developing countries like

Bangladesh around 80 percent agricultural production is generated by small holder farmers and

yield loss of almost 50 percent is very common due to pests and diseases [2]. That is why timely

detection of diseases and pests is one of the major issues in agriculture sector.

On the other hand, technologies have reached every corner of the world. Using technology to

solve any problem is not anything surprising anymore. Smart phones in particular can be very

handy tool to detect plant diseases and pests. The devices possess tremendous computing

power, high-resolution displays, and extensive built-in sets of accessories such as advanced

HD camera. There is estimation that there will be around 6 billion smart phones by the end of

2020. The combined factors of widespread use of such devices and their processing power

along with HD cameras can lead to a situation where disease and pests detection can be made

available to an unprecedented scale.

Deep learning is a very promising technique for image classification. This technique is based

on feature learning from labeled training dataset. Computer vision and object detection have

achieved a great advancement in the recent years. The PASCALVOC Challenge, and more

recently the Large-Scale Visual Recognition Challenge (ILSVRC) based on the ImageNet

dataset have been widely used as benchmarks for numerous visualization-related problems in

computer vision including object classification. In 2012, a large, deep convolutional neural

network achieved a top-5 error of 16.4% for the classification of images into 1,000 possible

categories.In the following three years, various advances in deep convolutional neural networks

lowered the error rate to 3.57%. While training large neural networks can be very time-

consuming, the trained models can classify images fairly quickly.

Page | 7

In recent years, deep learning techniques have been used to analyze diseases of tea [3], apple

[4], tomato [5], grapevine, peach, and pear [6]. Most of the cases, they have used leaves or

fruits to detect the diseases from the images from homogeneous backgrounds. Two studies

related to rice disease detection can be found in [7] and [8]. Lu et al conducted a study on

detecting 10 different rice plant diseases using a small handmade Convolutional Neural

Network architecture inspired by older deep learning frameworks such as LeNet-5 and AlexNet

[7].

1.2. Problem Statement

Generally, farmers in our country have low knowledge about plant diseases. It is very often

that an epidemic spread over a large area and the farmers have not even idea what has affected

them. Due to lack of awareness they hesitate to consult an agriculturist concerning their crop

which is really troublesome for farmers in outlying area. An easy access about the wellbeing

of their crop will really benefit them. If they get to know what is affecting their plant without

any hassle then lots of time and money would be saved.

1.3. Objective of Thesis

The main goal of this thesis is to analyze if it is possible to detect rice leaf diseases from images.

Although it will help farmers to detect rice leaf diseases without having much knowledge about

plant diseases. This will also reduce the time of detecting disease as no need to wait for an

agriculturist to visit physically.

 1.4. Chapterization Plan

The following are the overview of chapters and contents of this report,

Chapter 2

Chapter 2 includes a detailed literature review of supervised learning, classification model,

learning types, deep learning, CNN, architecture of Mobilenet, Resnet, rice diseases and insects

etc.

Page | 8

Chapter 3

Chapter 3 gives the detailed information about methodology, sample data, architecture of the

proposed model, how the data has been split for training, testing and evaluation

Chapter 4

Chapter 4 provides the detailed result of the thesis along with graphs of training, testing

accuracy and loss. Also provides the table for comparison between training, test and evaluation

results of the three models.

Chapter 5

Chapter 5 is the conclusion chapter which includes summary of findings along with the

conclusion to the thesis followed by future work for this thesis.

Page | 9

CHAPTER 2

LITERATURE REVIEW

Page | 10

The goal of this section is to gather and include the knowledge required to understand the

methodology of this work in an organized way. In that way, the problem we are working with

can be understood as well as attempted to solve better.

2.1. Supervised Learning

Supervised learning, in the context of artificial intelligence (AI) and machine learning, is a type

of system in which both input and desired output data are provided [9]. Input and output data

are labeled for classification to provide a learning basis for future data processing. For example,

in a supervised learning system, we input age, height, weight of a human being and provide

outputs or labels to these instances whether the person is a male or a female. The machine

learns from this instance. Studying the pattern of age, height and weight the machine comes up

with a rule or base on which it will label unknown instances as male or female. After the

machine has been trained (learned) we give it some 15 inputs and it provides us the outputs,

i.e. labels the new instance. This is a high-level overview of supervised learning.

The aim of supervised learning is to build a concise model of the distribution of class labels

regarding the input features provided. When provided with more observations, the machine

improves its performance, i.e. learns better. The resulting classifier model is then used to assign

labels to the test instances where the values of the input features are known, but the value of

the label is unknown. The whole supervised learning procedure is depicted in the following

diagram:

Fig 2.1: Process of Supervised Learning

Page | 11

2.2. Classification Model

The process of predicting the class from given data points is called classification. The classes

are called as categories or targets/labels. Classification predictive modeling is the task of

approximating a mapping function (f) from input variables (X) to discrete output variables (y).

For example, spam detection in email service providers can be identified as a classification

problem. There are only 2 classes, spam and not spam. So, this is a binary classification

problem. A classifier understands the class by utilizing the training data to understand the input

variables related to the class. In this case, known spam and non-spam emails are used as training

data. After the training is done, it can be used to detect an unknown email.

Classification belongs to the category of supervised learning where the targets also provided

with the input data. There are many applications in classification in many domains such as in

credit approval, medical diagnosis, target marketing etc.

There are two types of learners in classification as lazy learners and eager learners.

2.2.1. Lazy Learning

The computation undertaken by a learning system can be viewed as occurring at two

distinct times, training time and consultation time. Consultation time is the time

between when an object is presented to a system for an inference to be made and the

time when the inference is completed. Training time is the time prior to consultation

time during which the system makes inferences from training data in preparation for

consultation time. Lazy learning refers to any machine learning process that defers the

majority of computation to consultation time. Two typical examples of lazy learning

are instance-based learning and Lazy Bayesian Rules. Lazy learning stands in contrast

to eager learning in which the majority of computation occurs at training time. [10]

2.2.2. Eager Learning

In artificial intelligence, eager learning is a learning method in which the system tries

to construct a general, input-independent target function during training of the system,

as opposed to lazy learning, where generalization beyond the training data is delayed

until a query is made to the system. [11] The main advantage gained in employing an

eager learning method, such as an artificial neural network, is that the target function

will be approximated globally during training, thus requiring much less space than

Page | 12

using a lazy learning system. Eager learning systems also deal much better with noise

in the training data. Eager learning is an example of offline learning, in which post-

training queries to the system have no effect on the system itself, and thus the same

query to the system will always produce the same result.

The main disadvantage with eager learning is that it is generally unable to provide good

local approximations in the target function.

2.3. Deep Learning

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the

structure and function of the brain called artificial neural networks. It is an artificial intelligence

function that imitates the workings of the human brain in processing data and creating patterns

for use in decision making. Deep learning is a subset of machine learning in artificial

intelligence (AI) that has networks capable of learning unsupervised from data that is

unstructured or unlabeled. Also known as deep neural learning or deep neural network.

Deep learning is a key technology behind driverless cars, enabling them to recognize a stop

sign, or to distinguish a pedestrian from a lamppost. It is the key to voice control in consumer

devices like phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of

attention lately and for good reason. It’s achieving results that were not possible before.

In deep learning, a computer model learns to perform classification tasks directly from images,

text, or sound. Deep learning models can achieve state-of-the-art accuracy, sometimes

exceeding human-level performance. Models are trained by using a large set of labeled data

and neural network architectures that contain many layers.

Deep learning has evolved hand-in-hand with the digital era, which has brought about an

explosion of data in all forms and from every region of the world. This data, known simply as

big data, is drawn from sources like social media, internet search engines, e-commerce

platforms, and online cinemas, among others. This enormous amount of data is readily

accessible and can be shared through fintech applications like cloud computing.

However, the data, which normally is unstructured, is so vast that it could take decades for

humans to comprehend it and extract relevant information. Companies realize the incredible

Page | 13

potential that can result from unraveling this wealth of information and are increasingly

adapting to AI systems for automated support.

2.4. CNN

In deep learning, a convolutional neural network (CNN) is a class of deep neural networks,

most commonly applied to analyzing visual imagery.

CNNs are regularized versions of multilayer perceptions. Multilayer perceptron usually means

fully connected networks, that is, each neuron in one layer is connected to all neurons in the

next layer. The "fully-connectedness" of these networks makes them prone to overfitting data.

Typical ways of regularization include adding some form of magnitude measurement of

weights to the loss function. However, CNNs take a different approach towards regularization:

they take advantage of the hierarchical pattern in data and assemble more complex patterns

using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity,

CNNs are on the lower extreme.

They are also known as shift invariant or space invariant artificial neural networks (SIANN),

based on their shared-weights architecture and translation invariance characteristics. [12]

A convolution is the simple application of a filter to an input that results in an activation.

Repeated application of the same filter to an input results in a map of activations called a feature

map, indicating the locations and strength of a detected feature in an input, such as an image.

The innovation of convolutional neural networks is the ability to automatically learn a large

number of filters in parallel specific to a training dataset under the constraints of a specific

predictive modeling problem, such as image classification. The result is highly specific features

that can be detected anywhere on input images.

2.5. Mobilenet

MobileNet is an architecture which is more suitable for mobile and embedded based vision

applications where there is lack of compute power. This architecture was proposed by Google.

This architecture uses depth wise separable convolutions which significantly reduces the

number of parameters when compared to the network with normal convolutions with the same

depth in the networks. This results in light weight deep neural networks. The normal

Page | 14

convolution is replaced by depth wise convolution followed by pointwise convolution which

is called as depth wise separable convolution.

This results in the reduction of number of parameters significantly and thereby reduces the total

number of floating-point multiplication operations which is favorable in mobile and embedded

vision applications with less compute power. By using depth wise separable convolutions, there

is some sacrifice of accuracy for low complexity deep neural network.

The following table shows the layer level architecture of mobilenet model,

Layer Type Configuration

Input Image Input Raw Image (224 X 224 X 3)

Convolution k=3 X 3 X 3 X 32, s=2 X 2

Convolution dw k=3 X 3 X 32 dw, s=1 X 1

Convolution k=1 X 1 X 32 X 64, s=1 X 1

Convolution dw k=3 X 3 X 64 dw, s=2 X 2

Convolution k=1 X 1 X 64 X 128, s=1 X 1

Convolution dw k=3 X 3 X 128 dw, s=1 X 1

Convolution k=1 X 1 X 128 X 128, s=1 X 1

Convolution dw k=3 X 3 X 128 dw, s=2 X 2

Convolution k=1 X 1 X 128 X 256, s=1 X 1

Convolution dw k=3 X 3 X 256 dw, s=1 X 1

Convolution k=1 X 1 X 256 X 256, s=1 X 1

Convolution k=3 X 3 X 256, s=2 X 2

Convolution k=1 X 1 X 256 X 512, s=1 X 1

5 X (Convolution dw,

Convolution)

k=3 X 3 X 512 dw, s=1 X 1

k=1 X 1 X 512 X 512, s=1 X 1

Convolution dw k=3 X 3 X 512 dw, s=2 X 2

Convolution k=1 X 1 X 512 X 1024, s=1 X 1

Convolution dw k=3 X 3 X 1024 dw, s=2 X 2

Convolution k=1 X 1 X 1024 X 1024, s=1 X 1

Average Pooling Pool=7 X 7, s=1 X 1

Fully Connected Output Shape = 1024 X 1000

Classifier 1 X 1 X 1000

Table 2.1: Mobilenet architecture

Page | 15

2.6. Resnet

According to the universal approximation theorem, given enough capacity, we know that a

feedforward network with a single layer is sufficient to represent any function. However, the

layer might be massive and the network is prone to overfitting the data. Therefore, there is a

common trend in the research community that our network architecture needs to go deeper.

Since AlexNet, the state-of-the-art CNN architecture is going deeper and deeper. While

AlexNet had only 5 convolutional layers, the VGG network [13] and GoogleNet (also

codenamed Inception_v1) [14] had 19 and 22 layers respectively.

However, increasing network depth does not work by simply stacking layers together. Deep

networks are hard to train because of the notorious vanishing gradient problem — as the

gradient is back-propagated to earlier layers, repeated multiplication may make the gradient

infinitively small. As a result, as the network goes deeper, its performance gets saturated or

even starts degrading rapidly.

Fig 2.2: Increasing network depth leads to worse performance

Before ResNet, there had been several ways to deal the vanishing gradient issue, for instance,

[14] adds an auxiliary loss in a middle layer as extra supervision, but none seemed to really

tackle the problem once and for all.

Page | 16

The core idea of ResNet is introducing a so-called “identity shortcut connection” that skips one

or more layers, as shown in the following figure,

Fig 2.3: A residual block

The following table shows the architecture of resnet50,

Layer Type Configuration

Input Image Input Raw image (224 X 224 X 3)

Convolution k=7 X 7 s=2 X 2

Max Pooling Pool=3 X 3 s=2 X 2

Convolution Block Convolution Block * 1

Identity Block Identity Block * 2

Convolution Block Convolution Block * 1

Identity Block Identity Block * 3

Convolution Block Convolution Block * 1

Identity Block Identity Block * 5

Convolution Block Convolution Block * 1

Identity Block Identity Block * 2

Average Pooling s=1 X 1

Table 2.2: Resnet50 architecture

Page | 17

The following figure shows what an identity block and convolution block consist of,

Fig 2.4: Convolution Block and Identity Block for resnet

2.8. Rectified Linear Unit (ReLU)

In a neural network, the activation function is responsible for transforming the summed

weighted input from the node into the activation of the node or output for that input.

The rectified linear activation function is a piecewise linear function that will output the input

directly if is positive, otherwise, it will output zero. It has become the default activation

function for many types of neural networks because a model that uses it is easier to train and

often achieves better performance.

Rectified linear units find applications in computer vision [15] and speech recognition using

deep neural nets

Page | 18

2.9. Softmax

Softmax function, a wonderful activation function that turns numbers aka logits into

probabilities that sum to one. Softmax function outputs a vector that represents the probability

distributions of a list of potential outcomes. It’s also a core element used in deep learning

classification tasks.

In mathematics, the softmax function, also known as softargmax or normalized exponential

function, is a function that takes as input a vector of K real numbers, and normalizes it into a

probability distribution consisting of K probabilities proportional to the exponentials of the

input numbers. That is, prior to applying softmax, some vector components could be negative,

or greater than one; and might not sum to 1; but after applying softmax, each component will

be in the interval (0,1) and the components will add up to 1, so that they can be interpreted as

probabilities. Furthermore, the larger input components will correspond to larger probabilities.

Softmax is often used in neural networks, to map the non-normalized output of a network to a

probability distribution over predicted output classes.

2.10. Rice Diseases

Disease damage to rice can greatly reduce yield. They are mainly caused by bacteria, viruses,

or fungi. Planting a resistant variety is the simplest and, often, the most cost effective

management for diseases.

The followings are different types of rice disease:

 Bacterial Blight

Bacterial blight is caused by Xanthomonas oryzae pv. oryzae. It causes wilting of

seedlings and yellowing and drying of leaves.

 Bacterial Leaf Streak

Bacterial leaf streak is caused by Xanthomonas oryzae pv. Oryzicola. Infected plants

show browning and drying of leaves. Under severe conditions, this could lead to

reduced grain weight due to loss of photosynthetic area.

 Blast (Leaf and Collar)
Blast is caused by the fungus Magnaporthe oryzae. It can affect all above ground parts

of a rice plant: leaf, collar, node, neck, parts of panicle, and sometimes leaf sheath.

 Brown Spot
Brown spot has been historically largely ignored as one of the most common and most

damaging rice diseases.

Page | 19

 False Smut
False smut causes chalkiness of grains which leads to reduction in grain weight. It also

reduces seed germination.

 Rice Grassy Stunt
Rice grassy stunt virus reduces yields by inhibiting panicle production.

 Rice Ragged Stunt
Rice ragged stunt virus reduces yield by causing partially exerted panicles, unfilled

grains and plant density loss. It is vector-transmitted from one plant to another by brown

plant hoppers. Leaves of infected plants have a ragged appearance.

 Sheath Blight
Sheath blight is a fungal disease caused by Rhizoctonia solani. Infected leaves senesce

or dry out and die more rapidly, young tillers can also be destroyed.

 Tungro
Tungro infects cultivated rice, some wild rice relatives and other grassy weeds

commonly found in rice paddies.

 Leaf Scald
Leaf scald is a fungal disease caused by Microdochium oryzae, which causes the

scalded appearance of leaves.

 Narrow Brown Spot
Narrow brown spot (also called narrow brown leaf spot, or rice Cercospora leaf spot)

is caused by the fungus Sphaerulina oryzina (syn. Cercospora janseana, Cercospora

oryzae) and can infect leaves, sheaths, and panicles.

 Red Stripe
Red stripe causes formation of lesions on leaves.

 Bakanae
Bakanae is a seedborne fungal disease. The fungus infects plants through the roots or

crowns. It then grows systemically within the plant.

 Sheath Rot
Sheath rot is caused by Sarocladium oryzae.

 Blast (Node and Neck)

Blast is caused by the fungus Magnaporthe oryzae. It can affect all above ground parts

of a rice plant: leaf, collar, node, neck, parts of panicle, and sometimes leaf sheath.

 Stem rot

Stem rot leads to formation of lesions and production of chalky grains and unfilled

panicles.

 Bacterial sheath brown rot
Sheath brown rot is caused by Pseudomonas fuscovaginae. It causes rotting in sheaths

and grains of seedlings and mature plants.

 Rice Stripe Virus Disease
Rice stripe virus disease (RSVD) can cause high yield losses when severe epidemics

occur.

 Rice Yellow Mottle Virus
Rice Yellow Mottle Virus (RYMV) is endemic and largely restricted to the African

continent, where it has been found in most of the rice-growing countries. The virus has

also been reported in Turkey.

Page | 20

2.11. Insects in Rice Leaf

Insect pests attack all portions of the rice plant and all stages of plant growth. Feeding guilds

consist of root feeders, stem borers, leafhoppers and planthoppers, defoliators, and grain

sucking insects. Insects also attack rice grains in storage

The followings are different types of insect that attacks on rice:

 Black Bug

 Zigzag Leafhopper
 Rice Skipper
 Rice Thrips
 Rice Whorl Maggot
 Mealy Bug
 Mole Cricket
 Ant
 Armyworm
 Green Semilooper
 Greenhorned Caterpillar

 Rice Bug
 Planthopper
 Field Cricket
 Cutworm
 Green Leafhopper
 Rice Caseworm
 Grasshopper (Short-horned) and Locust
 Rice Gall Midge
 Rice Hispa
 Stem Borer
 Root Aphid
 Rice Leaf Folder
 Root Grub

Page | 21

CHAPTER 3

METHODOLOGY

Page | 22

The Methodology section discusses the techniques used to conduct this research work. The

primary step was to aggregate training and testing data to analyze and learn from.

3.1. Tools

 Python programming language is used for coding

 scikit learn, keras, tensorflow etc machine learning based python api are used to create

the model architecture

 Mobilenet and resnet50 pre-trained models are used for training

3.2. Data

Here open data of rice disease and pest image dataset is used for training the model. This dataset

is a collection of total 3355 images. This collection has four different types of images. Among

them two are disease, one is pest and healthy type. Brownspot and LeafBlast are the two

diseases whereas Hispa is the pest. In this collection the number of images per class is as

following: Brownspot – 523, LeafBlast – 779, Hispa – 565. This dataset has 1488 healthy

images.

These images are divided for train and test using the train_test_split method of scikit learning

api in python. The split ratio is as following: Train 80%, Test 20%. When splitting the images

are chosen randomly.

The sample from dataset is given below,

Page | 23

Fig 3.1: Healthy image

Page | 24

Fig 3.2: Brownspot disease image

Page | 25

Fig 3.3: LeafBlast disease image

Page | 26

Fig 3.4: Hispa infected image

Page | 27

3.3. Models for Training

For training here 3 models are used. Two of them are pre-trained. Another one model is

developed by myself (Proposed Model). The pre-trained models are mobilenet and resnet 50.

Both of the models are trained earlier using millions of images from the imagenet dataset.

These models can classify more than 1000 types of objects.

3.4. Mobilenet

Mobilenet model consists of total 3,394,116 parameters. Among them 165,252 are trainable

and 3,228,864 are non-trainable. In this configuration the number of trainable parameters are

very low as here we have used pre-trained imagenet weights. Here only have trained last 2

dense layers.

3.5. Resnet50

Resnet model consists of multiples of identity and convolution blocks. Each of the identity and

convolution blocks are consist of convolution layers along with normalization and activation.

In resnet50 total number of layers are 50. Here this model has total 23,884,036 parameters

where 296,324 are trainable and 23,587,712 non-trainable.

3.6. Proposed Model

The proposed model consists of 7 layers. Among them 5 are convolution and 2 are fully

connected dense layers. The following table shows the layer level architecture of the

proposed model,

Page | 28

Layer Type Configuration

Input Input Raw Image (256 X 256 X 3)

Convolution maps=32, k=3 X 3 s=1 X 1

Max Pooling k=3 X 3

Convolution maps=64, k=3 X 3

Convolution maps=64, k=3 X 3

Max Pooling k=2 X 2

Convolution maps=128, k=3 X 3

Convolution maps=128, k=3 X 3

Max Pooling k=2 X 2

Dense Output Shape=1024

Dense Output Shape=4

Table 3.1: Architecture of the proposed model

For all the convolution layers used activation function is Rectified Linear Unit (ReLU). Finally,

after going through all the layers it has been passed through a softmax activation function to

get normalized weighted values.

This model has a total of 58,091,396 parameters. 58,088,516 of the parameters are trainable

and 2880 parameters are non-trainable.

As this proposed model has a less layer than both of the mobilenet and resnet50 it will take less

computation power for training.

3.7. Training

Both of the 3 models have been trained using the dataset. The dataset has been randomly split

accordingly 70% for training and 30% for testing.

For the mobilenet and resnet50 after 20 epochs the model converges to its optimum accuracy,

and the model is not further trained.

For the proposed model it needs to run 30 epochs to get the optimum accuracy for this model.

3.8. Testing

After training the trained model has been saved for highest training accuracy. Then the saved

model is tested using the 30% testing data to get the test accuracy.

Page | 29

CHAPTER 4

RESULTS & EVALUATION

Page | 30

4.1. Results

This section contains the result found by training the models. These results as well as plots are

based on training, validation accuracy and training, validation loss.

The following table shows detailed comparison of accuracy and loss for training and validation

along with testing accuracy for the trained 3 models,

Model
Training
Accuracy
(%)

Training
Loss

Validation
Accuracy
(%)

Validation
Loss

Test
Accuracy
(%)

Proposed
Model

80.11 0.4321 77.68 0.4790 77.6812

Mobilenet 76.64 0.5017 74.38 0.5277 74.45
Resnet50 82.27 0.3867 75.00 0.5332 73.34

Table 4.1: Table for result comparison

Page | 31

Fig 4.1: Training and validation accuracy for the proposed model

Page | 32

Fig 4.2: Training and validation loss for the proposed model

Page | 33

Fig 4.3: Training and validation accuracy for mobilenet

Page | 34

Fig 4.4: Training and validation loss for mobilenet

Page | 35

Fig 4.5: Training and validation accuracy for resnet50

Page | 36

Fig 4.6: Training and validation loss for resnet50

Page | 37

4.2. Evaluation

From the results it is found that when using resnet50 model it gives the best training accuracy

(82.27%) along with a minimum training loss of 0.3867. But in terms of validation this model

gives 75% accuracy with a maximum of 0.5332 loss. When testing this model gives 73.34%

accuracy. This model overfits according to this dataset because it gives better accuracy in

training. But when testing this model gives the lower accuracy among these three models.

The mobilenet model gives 76.64% training accuracy, 0.5017 training loss, 74.38% validation

accuracy and 0.5277 validation loss. For the evaluation this model gives 74.45% test accuracy.

This model captures the data well enough with a very little difference in training and test

accuracy.

The proposed model gives 80.11% training accuracy with 0.4321 loss. In terms of validation

the accuracy and loss are 77.68% and 0.4790 respectively for this model. This model evaluates

with a test accuracy of 77.6812%. This model captures the pattern of data precisely with higher

training, validation and test accuracy along with lower validation loss

Therefore, we can conclude that the proposed model is by far best model in terms of training,

test accuracy for this dataset.

Page | 38

CHAPTER 5

CONCLUSION

Page | 39

5.1. Conclusion

We have proposed deep CNN based classifier for real time rice disease and pest recognition.

We have conducted a comprehensive study on rice disease and pest recognition, incorporating

four classes of rice diseases, pests and healthy plant. A dataset of 3355 images were used for

training. The knowledge of agriculture in solving rice disease classification problem is used

here. Three types of models are implemented here for training. Proposed model is trained by

ourselves. Pre-trained mobilenet and resnet50 models are used by transfer learning. From the

results section we evaluate that the proposed model is best among these models with an training

accuracy of 80.11%. This model will facilitate automated and accurate disease detection using

mobile devices.

Page | 40

5.2. Future Work

This research has a future potential of being used as a basis for rice disease detection. Different

mobile applications for rice disease and pest detection can be created using this model. Farmers

can detect if the plant is infected or not by taking an image only. A number rice can be saved

if the disease can be detected timely. If apps can be developed there is a minimum need of

agriculture consultants to visit the infected area. This can save a lot more time and save the

disease infected plants.

This model can also be used for detection of diseases of other plants. Model need to be trained

using the that plants disease image dataset. Finally, model should be evaluated. Although

without training model can be used for detection, which may not give a good accuracy.

Page | 41

REFERENCES

Page | 42

1. T. Coelli, S. Rahman, C. Thirtle, Technical, allocative, cost and scale efficiencies in

Bangladesh rice cultivation: A non-parametric approach, Journal of Agricultural

Economics 53 (3): 607–626, 2002.

2. Harvey CA et al., Extreme vulnerability of smallholder farmers to agricultural risks and

climate change in madagascar, Philosophical Transactions of the Royal Society of London

B: Biological Sciences, 369(1639), 2014.

3. B. C. Karmokar, M. S. Ullah, M. K. Siddiquee, K. M. R. Alam, Tea leaf diseases

recognition using neural network ensemble, International Journal of Computer

Applications, 114 (17).

4. G. Wang, Y. Sun, J. Wang, Automatic image-based plant disease severity estimation using

deep learning, Computational intelligence and neuroscience, 2017.

5. A. Fuentes, S. Yoon, S. C. Kim, D. S. Park, A robust deep-learning-based detector for real-

time tomato plant diseases and pests recognition, Sensors 17 (9):2022, 2017.

6. S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, Deep neural networks-

based recognition of plant diseases by leaf image classification, Computational intelligence

and neuroscience, 2016.

7. Y. Lu, S. Yi, N. Zeng, Y. Liu, Y. Zhang, Identification of rice diseases using deep

convolutional neural networks, Neurocomputing, 267: 378–384, 2017.

8. R. R. Atole, D. Park, A multiclass deep convolutional neural network classifier for

detection of common rice plant anomalies, International Journal of Advanced Computer

Science and Applications, 9 (1): 67–70, 2018.

9. What is the difference between supervised and unsupervised learning?

https://medium.com/@gowthamy/machine-learning-supervised-learningvs-unsupervised-

learning-f1658e12a780.

10. G.I. Webb, Lazy Learning. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine

Learning. Springer, Boston, MA, 2011.

11. Iris Hendrickx, Antal Van den Bosch, "Hybrid algorithms with Instance-Based

Classification", Machine Learning: ECML, Springer. pp. 158–169, 2005.

12. Wei Zhang, "Parallel distributed processing model with local space-invariant

interconnections and its optical architecture", Applied Optics. 29 (32): 4790-7, 1990.

13. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition”, arXiv:1409.1556, 2014.

Page | 43

14. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. “Going deeper with convolutions”. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

15. Xavier Glorot, Antoine Bordes and Yoshua Bengio, Deep sparse rectifier neural networks,

14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

Page | 44

APPENDIX

Page | 45

APPENDIX A

Abbreviations

AI – Artificial Intelligence

ANN – Artificial Neural Network

CNN – Convolutional Neural Network

ML – Machine Learning

Resnet – Residual Network

Page | 46

APPENDIX B

Essential Source Code of This Research

from os import listdir

import cv2
import pickle
import numpy as np
import matplotlib.pyplot as plt
from keras import backend as K
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential, load_model
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.core import Activation, Flatten, Dropout, Dense
from keras.preprocessing.image import img_to_array, ImageDataGenerator

Initializing necessary parameters
EPOCHS = 30
initial_learning_rate = 1e-3
batch_size = 32
default_image_size = tuple((256, 256))
directory_root = '../input/rice-diseases-image-dataset/labelledrice/'
input_width = 256
input_height = 256
input_depth = 3

Converting images to np arrays
def convert_image_to_array(image_dir):
 try:
 image_from_directory = cv2.imread(image_dir)
 if image_from_directory is not None:
 image_from_directory = cv2.resize(image_from_directory, default_image_size)
 return img_to_array(image_from_directory)
 else:
 return np.array([])
 except Exception as e:
 print(f"Error : {e}")
 return None

Creating image list and label list
image_list, image_label_list = [], []
try:
 print("[INFO] Loading images ...")
 root_dir = listdir(directory_root)

 for plant_folder in root_dir:
 plant_disease_folder_list = listdir(f"{directory_root}/{plant_folder}")

 for plant_disease_folder in plant_disease_folder_list:
 print(f"[INFO] Processing {plant_disease_folder} ...")
 rice_disease_image_list = listdir(f"{directory_root}/{plant_folder}/{plant_disease_folder}/")

Page | 47

 for image_from_list in rice_disease_image_list:
 image_directory = f"{directory_root}/{plant_folder}/{plant_disease_folder}/{image_from_list}"
 if image_directory.endswith(".jpg") or image_directory.endswith(".JPG"):
 image_list.append(convert_image_to_array(image_directory))
 image_label_list.append(plant_disease_folder)
 print("[INFO] Image loading completed")
except Exception as e:
 print(f"Error : {e}")

Encoding string labels to integers
label_binarizer_for_image_labels = LabelBinarizer()
binarized_image_labels = label_binarizer_for_image_labels.fit_transform(image_label_list)
pickle.dump(label_binarizer_for_image_labels, open('label_transform.pkl', 'wb'))
n_classes = len(label_binarizer_for_image_labels.classes_)

Normalizing images
normalized_image_list = np.array(image_list, dtype=np.float16) / 225.0

Splitting image list in train and test
print("[INFO] Spliting data to train, test")
x_train, x_test, y_train, y_test = train_test_split(normalized_image_list, binarized_image_labels, test_size=0.30,

random_state=42)

Creating augmentation object
image_augmentation = ImageDataGenerator(
 rotation_range=30, width_shift_range=0.15,
 height_shift_range=0.15, shear_range=0.15,
 zoom_range=0.2, horizontal_flip=True,
 fill_mode="nearest")

Proposed model building
proposed_model = Sequential()
input_shape = (input_height, input_width, input_depth)
channel_dimension = -1
if K.image_data_format() == "channels_first":
 inputShape = (input_depth, input_height, input_width)
 channel_dimension = 1
proposed_model.add(Conv2D(32, (3, 3), padding="same", input_shape=input_shape))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization(axis=channel_dimension))
proposed_model.add(MaxPooling2D(pool_size=(3, 3)))
proposed_model.add(Dropout(0.25))
proposed_model.add(Conv2D(64, (3, 3), padding="same"))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization(axis=channel_dimension))
proposed_model.add(Conv2D(64, (3, 3), padding="same"))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization(axis=channel_dimension))
proposed_model.add(MaxPooling2D(pool_size=(2, 2)))
proposed_model.add(Dropout(0.25))
proposed_model.add(Conv2D(128, (3, 3), padding="same"))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization(axis=channel_dimension))
proposed_model.add(Conv2D(128, (3, 3), padding="same"))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization(axis=channel_dimension))
proposed_model.add(MaxPooling2D(pool_size=(2, 2)))
proposed_model.add(Dropout(0.25))
proposed_model.add(Flatten())

Page | 48

proposed_model.add(Dense(1024))
proposed_model.add(Activation("relu"))
proposed_model.add(BatchNormalization())
proposed_model.add(Dropout(0.5))
proposed_model.add(Dense(n_classes))
proposed_model.add(Activation("softmax"))

Compiling model
optimizer = Adam(lr=initial_learning_rate, decay=initial_learning_rate / EPOCHS)
proposed_model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"])
print("[INFO] training network...")

Training model
checkpoint_for_best_model = ModelCheckpoint('best_model.h5',
 verbose=1, monitor='acc',
 save_best_only=True, mode='auto')

model_history = proposed_model.fit_generator(
 image_augmentation.flow(x_train, y_train, batch_size=batch_size),
 validation_data=(x_test, y_test),
 steps_per_epoch=len(x_train) // batch_size,
 epochs=EPOCHS, verbose=1,
 callbacks=[checkpoint_for_best_model])

Getting accuracy and loss list
train_acc = model_history.history['acc']
val_acc = model_history.history['val_acc']
train_loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
epochs = range(1, len(train_acc) + 1)

Plotting train and validation accuracy
plt.plot(epochs, train_acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')
plt.title('Training and Validation accuracy')
plt.legend()
plt.show()

Plotting train and validation loss
plt.plot(epochs, train_loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()

Loading saved model and evaluating
best_trained_model = load_model('best_model.h5')
print("[INFO] Calculating model accuracy")
scores = best_trained_model.evaluate(x_test, y_test)
print(f"Test Accuracy: {scores[1] * 100}")

