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ABSTRACT 

In the field of agriculture information, automatic detection and diagnosis of plant disease and 

pest is highly desirable. Feature extraction technologies play a critical and crucial role in leaf 

disease detection and diagnostic system. Researches in leaf disease detection have used many 

different feature detection techniques like color, texture, shape etc.  Recently very promising 

results are found using deep learning in different types of computer vision problems. Now a 

days deep learning is hot research topic in pattern recognition, machine learning as well as 

artificial intelligence. Deep neural network-based models can be an effective solution to 

vegetable pathology. In this research I have proposed a novel rice disease and pest detection 

model which is based on deep convolutional neural networks (CNN). This model gives a 

training accuracy of 80.11% with 77.68% training accuracy. 
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1.1. Background of Thesis  

Rice is the major food crop in Bangladesh. Rice fills almost 70 percent of the grossed crop area 

and 93 percent of total cereal production in Bangladesh [1]. It is also primary staple food in 

many countries. With the growth of population, demand of rice is increasing as well. 

Unfortunately, a great loss in yield is caused by rice diseases. When a rice disease spread out 

somewhere, Government appoints consultants or agriculture officers to advice the farmers. The 

whole process is time consuming. Farmers in outlier area sometimes do not even get the 

facilities in time. Plant disease is not only a threat to food supply but also bring in horrible 

consequences for small holder farmers. Their livelihood depends on healthy crops, which is 

heavily affected by any kinds of crop perishing epidemic. In developing countries like 

Bangladesh around 80 percent agricultural production is generated by small holder farmers and 

yield loss of almost 50 percent is very common due to pests and diseases [2]. That is why timely 

detection of diseases and pests is one of the major issues in agriculture sector. 

On the other hand, technologies have reached every corner of the world. Using technology to 

solve any problem is not anything surprising anymore. Smart phones in particular can be very 

handy tool to detect plant diseases and pests. The devices possess tremendous computing 

power, high-resolution displays, and extensive built-in sets of accessories such as advanced 

HD camera. There is estimation that there will be around 6 billion smart phones by the end of 

2020. The combined factors of widespread use of such devices and their processing power 

along with HD cameras can lead to a situation where disease and pests detection can be made 

available to an unprecedented scale. 

Deep learning is a very promising technique for image classification. This technique is based 

on feature learning from labeled training dataset. Computer vision and object detection have 

achieved a great advancement in the recent years. The PASCALVOC Challenge, and more 

recently the Large-Scale Visual Recognition Challenge (ILSVRC) based on the ImageNet 

dataset have been widely used as benchmarks for numerous visualization-related problems in 

computer vision including object classification. In 2012, a large, deep convolutional neural 

network achieved a top-5 error of 16.4% for the classification of images into 1,000 possible 

categories.In the following three years, various advances in deep convolutional neural networks 

lowered the error rate to 3.57%. While training large neural networks can be very time-

consuming, the trained models can classify images fairly quickly. 
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In recent years, deep learning techniques have been used to analyze diseases of tea [3], apple 

[4], tomato [5], grapevine, peach, and pear [6]. Most of the cases, they have used leaves or 

fruits to detect the diseases from the images from homogeneous backgrounds. Two studies 

related to rice disease detection can be found in [7] and [8]. Lu et al conducted a study on 

detecting 10 different rice plant diseases using a small handmade Convolutional Neural 

Network architecture inspired by older deep learning frameworks such as LeNet-5 and AlexNet 

[7]. 

 

1.2. Problem Statement 

Generally, farmers in our country have low knowledge about plant diseases. It is very often 

that an epidemic spread over a large area and the farmers have not even idea what has affected 

them. Due to lack of awareness they hesitate to consult an agriculturist concerning their crop 

which is really troublesome for farmers in outlying area. An easy access about the wellbeing 

of their crop will really benefit them. If they get to know what is affecting their plant without 

any hassle then lots of time and money would be saved. 

 

1.3. Objective of Thesis 

The main goal of this thesis is to analyze if it is possible to detect rice leaf diseases from images. 

Although it will help farmers to detect rice leaf diseases without having much knowledge about 

plant diseases.  This will also reduce the time of detecting disease as no need to wait for an 

agriculturist to visit physically. 

 

 1.4. Chapterization Plan 

The following are the overview of chapters and contents of this report, 

Chapter 2 

Chapter 2 includes a detailed literature review of supervised learning, classification model, 

learning types, deep learning, CNN, architecture of Mobilenet, Resnet, rice diseases and insects 

etc. 
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Chapter 3 

Chapter 3 gives the detailed information about methodology, sample data, architecture of the 

proposed model, how the data has been split for training, testing and evaluation 

Chapter 4 

Chapter 4 provides the detailed result of the thesis along with graphs of training, testing 

accuracy and loss. Also provides the table for comparison between training, test and evaluation 

results of the three models. 

Chapter 5 

Chapter 5 is the conclusion chapter which includes summary of findings along with the 

conclusion to the thesis followed by future work for this thesis.  



Page | 9  
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 



Page | 10  
 

The goal of this section is to gather and include the knowledge required to understand the 

methodology of this work in an organized way. In that way, the problem we are working with 

can be understood as well as attempted to solve better. 

 

2.1. Supervised Learning 

Supervised learning, in the context of artificial intelligence (AI) and machine learning, is a type 

of system in which both input and desired output data are provided [9]. Input and output data 

are labeled for classification to provide a learning basis for future data processing. For example, 

in a supervised learning system, we input age, height, weight of a human being and provide 

outputs or labels to these instances whether the person is a male or a female. The machine 

learns from this instance. Studying the pattern of age, height and weight the machine comes up 

with a rule or base on which it will label unknown instances as male or female. After the 

machine has been trained (learned) we give it some 15 inputs and it provides us the outputs, 

i.e. labels the new instance. This is a high-level overview of supervised learning. 

The aim of supervised learning is to build a concise model of the distribution of class labels 

regarding the input features provided. When provided with more observations, the machine 

improves its performance, i.e. learns better. The resulting classifier model is then used to assign 

labels to the test instances where the values of the input features are known, but the value of 

the label is unknown. The whole supervised learning procedure is depicted in the following 

diagram: 

 

Fig 2.1: Process of Supervised Learning 
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2.2. Classification Model 

The process of predicting the class from given data points is called classification. The classes 

are called as categories or targets/labels. Classification predictive modeling is the task of 

approximating a mapping function (f) from input variables (X) to discrete output variables (y). 

For example, spam detection in email service providers can be identified as a classification 

problem. There are only 2 classes, spam and not spam. So, this is a binary classification 

problem. A classifier understands the class by utilizing the training data to understand the input 

variables related to the class. In this case, known spam and non-spam emails are used as training 

data. After the training is done, it can be used to detect an unknown email. 

Classification belongs to the category of supervised learning where the targets also provided 

with the input data. There are many applications in classification in many domains such as in 

credit approval, medical diagnosis, target marketing etc. 

There are two types of learners in classification as lazy learners and eager learners. 

2.2.1. Lazy Learning 

The computation undertaken by a learning system can be viewed as occurring at two 

distinct times, training time and consultation time. Consultation time is the time 

between when an object is presented to a system for an inference to be made and the 

time when the inference is completed. Training time is the time prior to consultation 

time during which the system makes inferences from training data in preparation for 

consultation time. Lazy learning refers to any machine learning process that defers the 

majority of computation to consultation time. Two typical examples of lazy learning 

are instance-based learning and Lazy Bayesian Rules. Lazy learning stands in contrast 

to eager learning in which the majority of computation occurs at training time. [10] 

2.2.2. Eager Learning 

In artificial intelligence, eager learning is a learning method in which the system tries 

to construct a general, input-independent target function during training of the system, 

as opposed to lazy learning, where generalization beyond the training data is delayed 

until a query is made to the system. [11] The main advantage gained in employing an 

eager learning method, such as an artificial neural network, is that the target function 

will be approximated globally during training, thus requiring much less space than 
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using a lazy learning system. Eager learning systems also deal much better with noise 

in the training data. Eager learning is an example of offline learning, in which post-

training queries to the system have no effect on the system itself, and thus the same 

query to the system will always produce the same result. 

The main disadvantage with eager learning is that it is generally unable to provide good 

local approximations in the target function. 

 

2.3. Deep Learning 

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the 

structure and function of the brain called artificial neural networks. It is an artificial intelligence 

function that imitates the workings of the human brain in processing data and creating patterns 

for use in decision making. Deep learning is a subset of machine learning in artificial 

intelligence (AI) that has networks capable of learning unsupervised from data that is 

unstructured or unlabeled. Also known as deep neural learning or deep neural network. 

Deep learning is a key technology behind driverless cars, enabling them to recognize a stop 

sign, or to distinguish a pedestrian from a lamppost. It is the key to voice control in consumer 

devices like phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of 

attention lately and for good reason. It’s achieving results that were not possible before. 

In deep learning, a computer model learns to perform classification tasks directly from images, 

text, or sound. Deep learning models can achieve state-of-the-art accuracy, sometimes 

exceeding human-level performance. Models are trained by using a large set of labeled data 

and neural network architectures that contain many layers. 

Deep learning has evolved hand-in-hand with the digital era, which has brought about an 

explosion of data in all forms and from every region of the world. This data, known simply as 

big data, is drawn from sources like social media, internet search engines, e-commerce 

platforms, and online cinemas, among others. This enormous amount of data is readily 

accessible and can be shared through fintech applications like cloud computing. 

However, the data, which normally is unstructured, is so vast that it could take decades for 

humans to comprehend it and extract relevant information. Companies realize the incredible 
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potential that can result from unraveling this wealth of information and are increasingly 

adapting to AI systems for automated support. 

 

2.4. CNN 

In deep learning, a convolutional neural network (CNN) is a class of deep neural networks, 

most commonly applied to analyzing visual imagery. 

CNNs are regularized versions of multilayer perceptions. Multilayer perceptron usually means 

fully connected networks, that is, each neuron in one layer is connected to all neurons in the 

next layer. The "fully-connectedness" of these networks makes them prone to overfitting data. 

Typical ways of regularization include adding some form of magnitude measurement of 

weights to the loss function. However, CNNs take a different approach towards regularization: 

they take advantage of the hierarchical pattern in data and assemble more complex patterns 

using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity, 

CNNs are on the lower extreme. 

They are also known as shift invariant or space invariant artificial neural networks (SIANN), 

based on their shared-weights architecture and translation invariance characteristics. [12] 

A convolution is the simple application of a filter to an input that results in an activation. 

Repeated application of the same filter to an input results in a map of activations called a feature 

map, indicating the locations and strength of a detected feature in an input, such as an image. 

The innovation of convolutional neural networks is the ability to automatically learn a large 

number of filters in parallel specific to a training dataset under the constraints of a specific 

predictive modeling problem, such as image classification. The result is highly specific features 

that can be detected anywhere on input images. 

 

2.5. Mobilenet 

MobileNet is an architecture which is more suitable for mobile and embedded based vision 

applications where there is lack of compute power. This architecture was proposed by Google. 

This architecture uses depth wise separable convolutions which significantly reduces the 

number of parameters when compared to the network with normal convolutions with the same 

depth in the networks. This results in light weight deep neural networks. The normal 
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convolution is replaced by depth wise convolution followed by pointwise convolution which 

is called as depth wise separable convolution. 

This results in the reduction of number of parameters significantly and thereby reduces the total 

number of floating-point multiplication operations which is favorable in mobile and embedded 

vision applications with less compute power. By using depth wise separable convolutions, there 

is some sacrifice of accuracy for low complexity deep neural network. 

The following table shows the layer level architecture of mobilenet model, 

Layer Type  Configuration 

Input Image Input Raw Image (224 X 224 X 3) 

Convolution  k=3 X 3 X 3 X 32, s=2 X 2  

Convolution dw  k=3 X 3 X 32 dw, s=1 X 1  

Convolution  k=1 X 1 X 32 X 64, s=1 X 1  

Convolution dw  k=3 X 3 X 64 dw, s=2 X 2  

Convolution  k=1 X 1 X 64 X 128, s=1 X 1  

Convolution dw  k=3 X 3 X 128 dw, s=1 X 1  

Convolution  k=1 X 1 X 128 X 128, s=1 X 1  

Convolution dw  k=3 X 3 X 128 dw, s=2 X 2  

Convolution  k=1 X 1 X 128 X 256, s=1 X 1  

Convolution dw  k=3 X 3 X 256 dw, s=1 X 1  

Convolution  k=1 X 1 X 256 X 256, s=1 X 1  

Convolution  k=3 X 3 X 256, s=2 X 2  

Convolution  k=1 X 1 X 256 X 512, s=1 X 1  

5 X (Convolution dw,   

Convolution)  

k=3 X 3 X 512 dw, s=1 X 1  

k=1 X 1 X 512 X 512, s=1 X 1  

Convolution dw  k=3 X 3 X 512 dw, s=2 X 2  

Convolution  k=1 X 1 X 512 X 1024, s=1 X 1  

Convolution dw  k=3 X 3 X 1024 dw, s=2 X 2  

Convolution  k=1 X 1 X 1024 X 1024, s=1 X 1  

Average Pooling  Pool=7 X 7, s=1 X 1  

Fully Connected  Output Shape = 1024 X 1000  

Classifier  1 X 1 X 1000 

Table 2.1: Mobilenet architecture 
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2.6. Resnet 

According to the universal approximation theorem, given enough capacity, we know that a 

feedforward network with a single layer is sufficient to represent any function. However, the 

layer might be massive and the network is prone to overfitting the data. Therefore, there is a 

common trend in the research community that our network architecture needs to go deeper. 

Since AlexNet, the state-of-the-art CNN architecture is going deeper and deeper. While 

AlexNet had only 5 convolutional layers, the VGG network [13] and GoogleNet (also 

codenamed Inception_v1) [14] had 19 and 22 layers respectively. 

However, increasing network depth does not work by simply stacking layers together. Deep 

networks are hard to train because of the notorious vanishing gradient problem — as the 

gradient is back-propagated to earlier layers, repeated multiplication may make the gradient 

infinitively small. As a result, as the network goes deeper, its performance gets saturated or 

even starts degrading rapidly. 

 

 

Fig 2.2: Increasing network depth leads to worse performance 

Before ResNet, there had been several ways to deal the vanishing gradient issue, for instance, 

[14] adds an auxiliary loss in a middle layer as extra supervision, but none seemed to really 

tackle the problem once and for all. 
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The core idea of ResNet is introducing a so-called “identity shortcut connection” that skips one 

or more layers, as shown in the following figure, 

 

Fig 2.3: A residual block 

 

The following table shows the architecture of resnet50, 

Layer Type  Configuration  

Input Image  Input Raw image (224 X 224 X 3)  

Convolution  k=7 X 7 s=2 X 2  

Max Pooling  Pool=3 X 3 s=2 X 2  

Convolution Block  Convolution Block * 1  

Identity Block  Identity Block * 2  

Convolution Block  Convolution Block * 1  

Identity Block  Identity Block * 3  

Convolution Block  Convolution Block * 1  

Identity Block  Identity Block * 5  

Convolution Block  Convolution Block * 1  

Identity Block  Identity Block * 2  

Average Pooling  s=1 X 1 

Table 2.2: Resnet50 architecture 
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The following figure shows what an identity block and convolution block consist of, 

 

Fig 2.4: Convolution Block and Identity Block for resnet 

 

2.8. Rectified Linear Unit (ReLU) 

In a neural network, the activation function is responsible for transforming the summed 

weighted input from the node into the activation of the node or output for that input. 

The rectified linear activation function is a piecewise linear function that will output the input 

directly if is positive, otherwise, it will output zero. It has become the default activation 

function for many types of neural networks because a model that uses it is easier to train and 

often achieves better performance. 

Rectified linear units find applications in computer vision [15] and speech recognition using 

deep neural nets 

 

 



Page | 18  
 

2.9. Softmax 

Softmax function, a wonderful activation function that turns numbers aka logits into 

probabilities that sum to one. Softmax function outputs a vector that represents the probability 

distributions of a list of potential outcomes. It’s also a core element used in deep learning 

classification tasks. 

In mathematics, the softmax function, also known as softargmax or normalized exponential 

function, is a function that takes as input a vector of K real numbers, and normalizes it into a 

probability distribution consisting of K probabilities proportional to the exponentials of the 

input numbers. That is, prior to applying softmax, some vector components could be negative, 

or greater than one; and might not sum to 1; but after applying softmax, each component will 

be in the interval (0,1) and the components will add up to 1, so that they can be interpreted as 

probabilities. Furthermore, the larger input components will correspond to larger probabilities. 

Softmax is often used in neural networks, to map the non-normalized output of a network to a 

probability distribution over predicted output classes. 

 

2.10. Rice Diseases 

Disease damage to rice can greatly reduce yield. They are mainly caused by bacteria, viruses, 

or fungi. Planting a resistant variety is the simplest and, often, the most cost effective 

management for diseases. 

The followings are different types of rice disease: 

  Bacterial Blight 

Bacterial blight is caused by Xanthomonas oryzae pv. oryzae. It causes wilting of 

seedlings and yellowing and drying of leaves. 

 Bacterial Leaf Streak 

Bacterial leaf streak is caused by Xanthomonas oryzae pv. Oryzicola. Infected plants 

show browning and drying of leaves. Under severe conditions, this could lead to 

reduced grain weight due to loss of photosynthetic area. 

 Blast (Leaf and Collar) 
Blast is caused by the fungus Magnaporthe oryzae. It can affect all above ground parts 

of a rice plant: leaf, collar, node, neck, parts of panicle, and sometimes leaf sheath.  

 Brown Spot 
Brown spot has been historically largely ignored as one of the most common and most 

damaging rice diseases. 
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 False Smut 
False smut causes chalkiness of grains which leads to reduction in grain weight. It also 

reduces seed germination. 

 Rice Grassy Stunt 
Rice grassy stunt virus reduces yields by inhibiting panicle production. 

 Rice Ragged Stunt 
Rice ragged stunt virus reduces yield by causing partially exerted panicles, unfilled 

grains and plant density loss. It is vector-transmitted from one plant to another by brown 

plant hoppers. Leaves of infected plants have a ragged appearance. 

 Sheath Blight 
Sheath blight is a fungal disease caused by Rhizoctonia solani. Infected leaves senesce 

or dry out and die more rapidly, young tillers can also be destroyed. 

 Tungro 
Tungro infects cultivated rice, some wild rice relatives and other grassy weeds 

commonly found in rice paddies. 

 Leaf Scald 
Leaf scald is a fungal disease caused by Microdochium oryzae, which causes the 

scalded appearance of leaves. 

 Narrow Brown Spot 
Narrow brown spot (also called narrow brown leaf spot, or rice Cercospora leaf spot) 

is caused by the fungus Sphaerulina oryzina (syn. Cercospora janseana, Cercospora 

oryzae) and can infect leaves, sheaths, and panicles. 

 Red Stripe 
Red stripe causes formation of lesions on leaves. 

 Bakanae 
Bakanae is a seedborne fungal disease. The fungus infects plants through the roots or 

crowns. It then grows systemically within the plant. 

 Sheath Rot 
Sheath rot is caused by Sarocladium oryzae. 

 Blast (Node and Neck) 

Blast is caused by the fungus Magnaporthe oryzae. It can affect all above ground parts 

of a rice plant: leaf, collar, node, neck, parts of panicle, and sometimes leaf sheath.  

 Stem rot 

Stem rot leads to formation of lesions and production of chalky grains and unfilled 

panicles. 

 Bacterial sheath brown rot 
Sheath brown rot is caused by Pseudomonas fuscovaginae. It causes rotting in sheaths 

and grains of seedlings and mature plants. 

 Rice Stripe Virus Disease 
Rice stripe virus disease (RSVD) can cause high yield losses when severe epidemics 

occur. 

 Rice Yellow Mottle Virus 
Rice Yellow Mottle Virus (RYMV) is endemic and largely restricted to the African 

continent, where it has been found in most of the rice-growing countries. The virus has 

also been reported in Turkey. 
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2.11. Insects in Rice Leaf 

Insect pests attack all portions of the rice plant and all stages of plant growth. Feeding guilds 

consist of root feeders, stem borers, leafhoppers and planthoppers, defoliators, and grain 

sucking insects. Insects also attack rice grains in storage 

The followings are different types of insect that attacks on rice: 

 Black Bug 

 Zigzag Leafhopper 
 Rice Skipper 
 Rice Thrips 
 Rice Whorl Maggot 
 Mealy Bug 
 Mole Cricket 
 Ant 
 Armyworm 
 Green Semilooper 
 Greenhorned Caterpillar 

 Rice Bug 
 Planthopper 
 Field Cricket 
 Cutworm 
 Green Leafhopper 
 Rice Caseworm 
 Grasshopper (Short-horned) and Locust 
 Rice Gall Midge 
 Rice Hispa 
 Stem Borer 
 Root Aphid 
 Rice Leaf Folder 
 Root Grub 
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The Methodology section discusses the techniques used to conduct this research work. The 

primary step was to aggregate training and testing data to analyze and learn from. 

 

3.1. Tools 

 Python programming language is used for coding 

 scikit learn, keras, tensorflow etc machine learning based python api are used to create 

the model architecture 

 Mobilenet and resnet50 pre-trained models are used for training 

 

3.2. Data 

Here open data of rice disease and pest image dataset is used for training the model. This dataset 

is a collection of total 3355 images. This collection has four different types of images. Among 

them two are disease, one is pest and healthy type. Brownspot and LeafBlast are the two 

diseases whereas Hispa is the pest. In this collection the number of images per class is as 

following: Brownspot – 523, LeafBlast – 779, Hispa – 565. This dataset has 1488 healthy 

images. 

These images are divided for train and test using the train_test_split method of scikit learning 

api in python. The split ratio is as following: Train 80%, Test 20%. When splitting the images 

are chosen randomly. 

The sample from dataset is given below,
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Fig 3.1: Healthy image 
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Fig 3.2: Brownspot disease image 
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Fig 3.3: LeafBlast disease image 
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Fig 3.4: Hispa infected image 
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3.3. Models for Training 

For training here 3 models are used. Two of them are pre-trained. Another one model is 

developed by myself (Proposed Model). The pre-trained models are mobilenet and resnet 50. 

Both of the models are trained earlier using millions of images from the imagenet dataset. 

These models can classify more than 1000 types of objects. 

 

3.4. Mobilenet 

Mobilenet model consists of total 3,394,116 parameters. Among them 165,252 are trainable 

and 3,228,864 are non-trainable. In this configuration the number of trainable parameters are 

very low as here we have used pre-trained imagenet weights. Here only have trained last 2 

dense layers. 

 

3.5. Resnet50 

Resnet model consists of multiples of identity and convolution blocks. Each of the identity and 

convolution blocks are consist of convolution layers along with normalization and activation. 

In resnet50 total number of layers are 50. Here this model has total 23,884,036 parameters 

where 296,324 are trainable and 23,587,712 non-trainable. 

 

3.6. Proposed Model 

The proposed model consists of 7 layers. Among them 5 are convolution and 2 are fully 

connected dense layers. The following table shows the layer level architecture of the 

proposed model, 
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Layer Type  Configuration  

Input Input Raw Image (256 X 256 X 3) 

Convolution  maps=32, k=3 X 3 s=1 X 1  

Max Pooling  k=3 X 3  

Convolution  maps=64, k=3 X 3  

Convolution  maps=64, k=3 X 3  

Max Pooling  k=2 X 2  

Convolution  maps=128, k=3 X 3  

Convolution  maps=128, k=3 X 3  

Max Pooling  k=2 X 2  

Dense  Output Shape=1024  

Dense  Output Shape=4 

Table 3.1: Architecture of the proposed model 

For all the convolution layers used activation function is Rectified Linear Unit (ReLU). Finally, 

after going through all the layers it has been passed through a softmax activation function to 

get normalized weighted values. 

This model has a total of 58,091,396 parameters. 58,088,516 of the parameters are trainable 

and 2880 parameters are non-trainable. 

As this proposed model has a less layer than both of the mobilenet and resnet50 it will take less 

computation power for training. 

 

3.7. Training 

Both of the 3 models have been trained using the dataset. The dataset has been randomly split 

accordingly 70% for training and 30% for testing. 

For the mobilenet and resnet50 after 20 epochs the model converges to its optimum accuracy, 

and the model is not further trained. 

For the proposed model it needs to run 30 epochs to get the optimum accuracy for this model. 

 

3.8. Testing 

After training the trained model has been saved for highest training accuracy. Then the saved 

model is tested using the 30% testing data to get the test accuracy. 
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CHAPTER 4 

RESULTS & EVALUATION 



Page | 30  
 

4.1. Results 

This section contains the result found by training the models. These results as well as plots are 

based on training, validation accuracy and training, validation loss. 

The following table shows detailed comparison of accuracy and loss for training and validation 

along with testing accuracy for the trained 3 models, 

 

Model 
Training 
Accuracy 
(%) 

Training 
Loss 

Validation 
Accuracy 
(%) 

Validation 
Loss 

Test 
Accuracy 
(%) 

Proposed 
Model 

80.11 0.4321 77.68 0.4790 77.6812 

Mobilenet 76.64 0.5017 74.38 0.5277 74.45 
Resnet50 82.27 0.3867 75.00 0.5332 73.34 

Table 4.1: Table for result comparison 
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Fig 4.1: Training and validation accuracy for the proposed model 
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Fig 4.2: Training and validation loss for the proposed model
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Fig 4.3: Training and validation accuracy for mobilenet



Page | 34  
 

 

Fig 4.4: Training and validation loss for mobilenet
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Fig 4.5: Training and validation accuracy for resnet50
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Fig 4.6: Training and validation loss for resnet50
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4.2. Evaluation 

From the results it is found that when using resnet50 model it gives the best training accuracy 

(82.27%) along with a minimum training loss of 0.3867. But in terms of validation this model 

gives 75% accuracy with a maximum of 0.5332 loss. When testing this model gives 73.34% 

accuracy. This model overfits according to this dataset because it gives better accuracy in 

training. But when testing this model gives the lower accuracy among these three models. 

The mobilenet model gives 76.64% training accuracy, 0.5017 training loss, 74.38% validation 

accuracy and 0.5277 validation loss. For the evaluation this model gives 74.45% test accuracy. 

This model captures the data well enough with a very little difference in training and test 

accuracy. 

The proposed model gives 80.11% training accuracy with 0.4321 loss. In terms of validation 

the accuracy and loss are 77.68% and 0.4790 respectively for this model. This model evaluates 

with a test accuracy of 77.6812%. This model captures the pattern of data precisely with higher 

training, validation and test accuracy along with lower validation loss 

Therefore, we can conclude that the proposed model is by far best model in terms of training, 

test accuracy for this dataset. 
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CHAPTER 5 

CONCLUSION



Page | 39  
 

5.1. Conclusion 

We have proposed deep CNN based classifier for real time rice disease and pest recognition. 

We have conducted a comprehensive study on rice disease and pest recognition, incorporating 

four classes of rice diseases, pests and healthy plant. A dataset of 3355 images were used for 

training. The knowledge of agriculture in solving rice disease classification problem is used 

here. Three types of models are implemented here for training. Proposed model is trained by 

ourselves. Pre-trained mobilenet and resnet50 models are used by transfer learning. From the 

results section we evaluate that the proposed model is best among these models with an training 

accuracy of 80.11%. This model will facilitate automated and accurate disease detection using 

mobile devices.
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5.2. Future Work 

This research has a future potential of being used as a basis for rice disease detection. Different 

mobile applications for rice disease and pest detection can be created using this model. Farmers 

can detect if the plant is infected or not by taking an image only. A number rice can be saved 

if the disease can be detected timely. If apps can be developed there is a minimum need of 

agriculture consultants to visit the infected area. This can save a lot more time and save the 

disease infected plants. 

This model can also be used for detection of diseases of other plants. Model need to be trained 

using the that plants disease image dataset. Finally, model should be evaluated. Although 

without training model can be used for detection, which may not give a good accuracy.
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APPENDIX A 

Abbreviations 

AI – Artificial Intelligence 

ANN – Artificial Neural Network 

CNN – Convolutional Neural Network 

ML – Machine Learning 

Resnet – Residual Network
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APPENDIX B 

Essential Source Code of This Research 

from os import listdir 
 
import cv2 
import pickle 
import numpy as np 
import matplotlib.pyplot as plt 
from keras import backend as K 
from keras.optimizers import Adam 
from keras.callbacks import ModelCheckpoint 
from keras.models import Sequential, load_model 
from sklearn.preprocessing import LabelBinarizer 
from sklearn.model_selection import train_test_split 
from keras.layers.normalization import BatchNormalization 
from keras.layers.convolutional import Conv2D, MaxPooling2D 
from keras.layers.core import Activation, Flatten, Dropout, Dense 
from keras.preprocessing.image import img_to_array, ImageDataGenerator 
 
# Initializing necessary parameters 
EPOCHS = 30 
initial_learning_rate = 1e-3 
batch_size = 32 
default_image_size = tuple((256, 256)) 
directory_root = '../input/rice-diseases-image-dataset/labelledrice/' 
input_width = 256 
input_height = 256 
input_depth = 3 
 

 
# Converting images to np arrays 
def convert_image_to_array(image_dir): 
    try: 
        image_from_directory = cv2.imread(image_dir) 
        if image_from_directory is not None: 
            image_from_directory = cv2.resize(image_from_directory, default_image_size) 
            return img_to_array(image_from_directory) 
        else: 
            return np.array([]) 
    except Exception as e: 
        print(f"Error : {e}") 
        return None 
 

 
# Creating image list and label list 
image_list, image_label_list = [], [] 
try: 
    print("[INFO] Loading images ...") 
    root_dir = listdir(directory_root) 
 
    for plant_folder in root_dir: 
        plant_disease_folder_list = listdir(f"{directory_root}/{plant_folder}") 
 
        for plant_disease_folder in plant_disease_folder_list: 
            print(f"[INFO] Processing {plant_disease_folder} ...") 
            rice_disease_image_list = listdir(f"{directory_root}/{plant_folder}/{plant_disease_folder}/") 
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            for image_from_list in rice_disease_image_list: 
                image_directory = f"{directory_root}/{plant_folder}/{plant_disease_folder}/{image_from_list}" 
                if image_directory.endswith(".jpg") or image_directory.endswith(".JPG"): 
                    image_list.append(convert_image_to_array(image_directory)) 
                    image_label_list.append(plant_disease_folder) 
    print("[INFO] Image loading completed") 
except Exception as e: 
    print(f"Error : {e}") 
 
# Encoding string labels to integers 
label_binarizer_for_image_labels = LabelBinarizer() 
binarized_image_labels = label_binarizer_for_image_labels.fit_transform(image_label_list) 
pickle.dump(label_binarizer_for_image_labels, open('label_transform.pkl', 'wb')) 
n_classes = len(label_binarizer_for_image_labels.classes_) 
 
# Normalizing images 
normalized_image_list = np.array(image_list, dtype=np.float16) / 225.0 
 
# Splitting image list in train and test 
print("[INFO] Spliting data to train, test") 
x_train, x_test, y_train, y_test = train_test_split(normalized_image_list, binarized_image_labels, test_size=0.30, 

random_state=42) 
 
# Creating augmentation object 
image_augmentation = ImageDataGenerator( 
    rotation_range=30, width_shift_range=0.15, 
    height_shift_range=0.15, shear_range=0.15, 
    zoom_range=0.2, horizontal_flip=True, 
    fill_mode="nearest") 
 
# Proposed model building 
proposed_model = Sequential() 
input_shape = (input_height, input_width, input_depth) 
channel_dimension = -1 
if K.image_data_format() == "channels_first": 
    inputShape = (input_depth, input_height, input_width) 
    channel_dimension = 1 
proposed_model.add(Conv2D(32, (3, 3), padding="same", input_shape=input_shape)) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization(axis=channel_dimension)) 
proposed_model.add(MaxPooling2D(pool_size=(3, 3))) 
proposed_model.add(Dropout(0.25)) 
proposed_model.add(Conv2D(64, (3, 3), padding="same")) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization(axis=channel_dimension)) 
proposed_model.add(Conv2D(64, (3, 3), padding="same")) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization(axis=channel_dimension)) 
proposed_model.add(MaxPooling2D(pool_size=(2, 2))) 
proposed_model.add(Dropout(0.25)) 
proposed_model.add(Conv2D(128, (3, 3), padding="same")) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization(axis=channel_dimension)) 
proposed_model.add(Conv2D(128, (3, 3), padding="same")) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization(axis=channel_dimension)) 
proposed_model.add(MaxPooling2D(pool_size=(2, 2))) 
proposed_model.add(Dropout(0.25)) 
proposed_model.add(Flatten()) 
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proposed_model.add(Dense(1024)) 
proposed_model.add(Activation("relu")) 
proposed_model.add(BatchNormalization()) 
proposed_model.add(Dropout(0.5)) 
proposed_model.add(Dense(n_classes)) 
proposed_model.add(Activation("softmax")) 
 
# Compiling model 
optimizer = Adam(lr=initial_learning_rate, decay=initial_learning_rate / EPOCHS) 
proposed_model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"]) 
print("[INFO] training network...") 
 
# Training model 
checkpoint_for_best_model = ModelCheckpoint('best_model.h5', 
                                            verbose=1, monitor='acc', 
                                            save_best_only=True, mode='auto') 
 
model_history = proposed_model.fit_generator( 
    image_augmentation.flow(x_train, y_train, batch_size=batch_size), 
    validation_data=(x_test, y_test), 
    steps_per_epoch=len(x_train) // batch_size, 
    epochs=EPOCHS, verbose=1, 
    callbacks=[checkpoint_for_best_model]) 
 
# Getting accuracy and loss list 
train_acc = model_history.history['acc'] 
val_acc = model_history.history['val_acc'] 
train_loss = model_history.history['loss'] 
val_loss = model_history.history['val_loss'] 
epochs = range(1, len(train_acc) + 1) 
 
# Plotting train and validation accuracy 
plt.plot(epochs, train_acc, 'b', label='Training accuracy') 
plt.plot(epochs, val_acc, 'r', label='Validation accuracy') 
plt.title('Training and Validation accuracy') 
plt.legend() 
plt.show() 
 
# Plotting train and validation loss 
plt.plot(epochs, train_loss, 'b', label='Training loss') 
plt.plot(epochs, val_loss, 'r', label='Validation loss') 
plt.title('Training and Validation loss') 
plt.legend() 
plt.show() 
 
# Loading saved model and evaluating 
best_trained_model = load_model('best_model.h5') 
print("[INFO] Calculating model accuracy") 
scores = best_trained_model.evaluate(x_test, y_test) 
print(f"Test Accuracy: {scores[1] * 100}") 
 


