
Study of Different TCP Protocols in Wireless
Network

Name: Sayem Kabir
ID: 2017-1-55-023

Name: Sadia Rahman
ID: 2018-2-55-006

Name: Akash Chandra Biswas
ID: 2018-1-55-019

Supervised By

Dr. Anup Kumar Paul
Associate Professor, Department of Electronics & Communications

Engineering

This Thesis Paper is Submitted in Partial Fulfillment of the Requirements
of the Degree of Bachelor of Science in

“Electronic & Telecommunication Engineering”,
Department of Electronics & Communications Engineering

EAST WEST UNIVERSITY

1

Approval
The thesis titled “Study of different TCP protocols in wireless network” submit-

ted by Sayem Kabir (ID: 2017-1-55-023), Sadia Rahman (ID: 2018-2-55- 006) and
Akash Chandra Biswas (ID: 2018-1-55-019) to the Department of Electronics and
Communications Engineering, East West University, Dhaka, Bangladesh has been
accepted as satisfactory for the partial fulfillment of the requirements for the de-
gree of Bachelor of Science in Electronic and Telecommunication Engineering and
approved as to its style and contents.

Approved By

Supervisor

Dr. Anup Kumar Paul
Associate Professor
ECE Department
East West University
Dhaka, Bangladesh

2

DECLARATION
We declare that our work has not been previously submitted and approved for the
award of a degree by this or any other University. As per our knowledge and belief,
this thesis contains no material previously published or written by another person
except where due reference is made in the thesis itself. We hereby declare that
the work presented in this thesis is the outcome of the investigation performed by
us under the supervision of Dr.Anup Kumar Paul, Associate Professor, Depart-
ment of Electronics & Communications Engineering, East West University, Dhaka,
Bangladesh.

Countersigned

Supervisor

Dr. Anup Kumar Paul

Signature

Sayem Kabir

ID:2017-1-55-023

Signature

Sadia Rahman

ID:2018-2-55-006

Signature

Akash Chandra Biswas

ID:2018-1-55-019

3

ACKNOWLEDGEMENT
We offer our genuine thanks to our supervisor, Dr. Anup Kumar Paul for his sig-
nificant direction and guidance from the proposed idea to the implementation of
that in our research. His tendency to offer his works and time is extraordinarily re-
freshing. We might likewise want to express gratitude toward him for his supportive
interactive behavior and extraordinary inclination. Throughout our research, we
gained numerous important experiences and ideas about TCP protocols and their
implementations from our supervisor. His persevering consolation gave us the cer-
tainty to manage our task. Ultimately, we thank the Almighty and our supervisor
for the overwhelming support. This thesis would not have been possible without
our supervisor’s judicious support throughout the research work.

4

ABSTRACT
Today’s world is extremely dependent on the internet, and so as a result, the usage
of the internet in all aspects of our life is rapidly rising. The congestion control
algorithm is a crucial component of TCP, and it was built on the idea that packet
loss is generally relatively minimal, and that packet loss is consequently an indi-
cator of network congestion. The congestion control algorithm used by a specific
version of TCP determines its performance characteristics. This thesis will give an
overview of different TCP variants, and their characteristics in the wireless network.
In this paper, we have experimented with four TCP variants (TCP CUBIC, TCP
Vegas, TCP Yeah, TCP Westwood Plus) and noticed their performance for increas-
ing nodes. For the increasing nodes, the throughput decreases. The performance of
TCP protocols are experimentally evaluated with an implementation in Linux using
Network Simulator Version-3 (NS3). We have chosen the desired file of wifi-tcp.cc
from NS3 and edited it according to our experimental need. The performance of
throughput in CUBIC gives the best result according to our simulation.

5

Contents

1 Introduction 8
1.1 Introduction . 8
1.2 Problem Statement . 9
1.3 Motivation . 10

2 Methodology 11

3 TCP Fundamentals 12
3.1 TCP Fundamentals . 12

3.1.1 TCP Datagram . 13
3.1.2 Working Principle of TCP 14
3.1.3 Congestion Control . 16

4 TCP Variants 18
4.1 TCP Cubic . 18

4.1.1 Window Growth Function of CUBIC 18
4.1.2 TCP-friendly Region . 19
4.1.3 Convex Region: . 19
4.1.4 Concave Region . 20
4.1.5 Fast Convergence . 20
4.1.6 Pluggable Congestion Module 20
4.1.7 Advantages of TCP CUBIC 21

4.2 TCP Vegas . 21
4.2.1 Fast Retransmit . 21
4.2.2 Congestion Avoidance Mechanism 22
4.2.3 Slow-start Mechanism . 22
4.2.4 Window Control of TCP Vegas 22
4.2.5 Rerouting . 23
4.2.6 Continuous Congestion . 24

4.3 YeAH-TCP . 24
4.3.1 Congestion-Control: . 25
4.3.2 Congestion-Control Algorithms in YeAH-TCP: 25
4.3.3 YeAH-TCP: ALGORITHM DESIGN 25
4.3.4 DCE(Direct-Code-Execution) for validation of YeAH-TCP: . . 27
4.3.5 Goals of YeAH-TCP: . 27

4.4 TCP Westwood PLUS: . 27
4.4.1 Congestion-Control Algorithms in TCP Westwood plus: 28
4.4.2 TCP WESTWOOD: ALGORITHM GUIDELINES 29
4.4.3 TCP WESTWOOD: ALGORITHM IMPLEMENTATION . . 31

6

4.4.4 Goals of Westwood Plus . 32

5 Results and Discussion 33
5.1 Network Diagram . 33
5.2 Simulation Parameters . 33
5.3 Variant Performance Graphs . 35

5.3.1 Simulation Result . 36
5.3.2 TCP Vegas . 36
5.3.3 TCP YEAH . 37
5.3.4 TCP Westwood Plus . 37
5.3.5 TCP Cubic . 38

5.4 Discussion . 38

7

Chapter 1

Introduction

1.1 Introduction
Van Jacobson’s TCP congestion control system is based on a sliding window mech-
anism and uses an Additive Increase Multiplicative Decrease (AIMD) algorithm to
match transmission rate to available network resources [12]. The sender identifies
packet losses and changes the transmission rate depending on the acknowledgment
(ACK) feedback provided by the receiver. In a wired network, the TCP congestion
control algorithm is meant to reduce congestion losses. The adoption of the TCP
congestion control algorithm improves TCP’s performance as a reliable end-to-end
data transport in wired networks. When the TCP congestion control algorithm
is used in a wireless network, however, TCP performance suffers [11]. The TCP
protocol, which supports the bulk of Internet services (Web, FTP, Telnet), is one
of those mechanisms that is intrinsically inefficient on wireless networks due to its
architecture. This thesis paper focuses on evaluating and comparing the throughput
performance of four TCP variants: TCP Cubic, TCP Vegas, TCP Yeah, TCP West-
wood Plus. The ultimate objective is to figure out which TCP protocol in wireless
works best. The capability of the protocol to differentiate between various forms of
packet loss and respond accordingly is the core emphasis of all TCP solutions for
wireless and heterogeneous networks. TCP-based Internet applications are expected
to continue to do so in the future. With the widespread adoption of wireless net-
works, it’s critical to support these applications in both wired and wireless contexts.
So the desired throughput and performance are hence an important part.

CUBIC’s Linux implementation has gone through multiple revisions. The most
noteworthy improvement is the improved efficiency with which cubic root calcula-
tions are performed. Implementing it in the kernel necessitates some integer approx-
imation because it involves a floating-point operation. It started with the bisection
approach and then switched to the Newton-Raphson method, which cuts the com-
puting cost by approximately tenfold. The removal of window clamping was another
adjustment made to CUBIC after its creation. BIC-TCP introduced window clamp-
ing, in which window increments are limited to a maximum increment, which was
inherited by CUBIC for the first version. When the goal mid-point is substantially
greater than the current window size, this compels the window expansion to be
linear.

Every new TCP protocol invents due to the drawback of the previous protocol.
So, for some issues of TCP Reno, TCP Vegas was introduced. The loss of segments

8

is used by TCP Reno’s congestion detection and control methods as a warning that
the network is congested. As a result, TCP Reno lacks the means to identify the
early stages of congestion before losses occur and hence is unable to avoid such losses
[12]. As a result, TCP Reno is reactive, as it must induce losses in order to determine
the connection’s available bandwidth. TCP Vegas congestion detection system, on
the other hand, is proactive, in that it seeks to identify impending congestion by
analyzing changes in the throughput rate. TCP Vegas may be able to cut the
transmitting rate before the connection suffers losses since it infers the congestion
window adjustment strategy from such throughput metrics. TCP Westwood’s issues
in the presence of compressed/delayed ACKs prompted a change in the ACK filter
used in bandwidth calculation, resulting in the formation of the Westwood plus
protocol [12]. In our simulation with the increasing number of nodes, we find TCP
CUBIC to work more efficiently. Though the differences in throughputs among TCP
CUBIC, Westwood plus, and Yeah are almost similar while simulating in Linux, TCP
CUBIC performs a bit better. That’s the desired result as in Linux, TCP CUBIC
has been implemented.

1.2 Problem Statement
Everyone uses a network enable devices in today’s era. The network follows a model
called the OSI model. In the OSI model Transmission control protocol performs
a vital rule[3]. To establish TCP on a network, we choose different variants of
TCP like TCP Vegas, TCP Cubic, TCP YEAH, and TCP WestwoodPlus. These
variants perform their best with fewer nodes or devices. When the number of the
device increases throughput of the variants decreases. Some variants’ throughput
decreases rapidly, some show constant throughput after two or three nodes. This is
the problem that we are worrying about. TCP Cubic and TCP Yeah show higher
throughput compare to TCP Vegas. But, TCP Vegas shows a constant throughput
as the station node or device increases in the network. On the other hand, TCP
Westwood plus shows high throughput but decreases sharply as the node increases.
The goal of this thesis can be started as

• Increasing Station Node or devices.

• Finding out the best variants.

• Calculating the throughput of the variants.

• Comparing the throughput.

• Finding out the best variants on purpose

9

1.3 Motivation
There are enormous possibilities for Transmission control protocol. Transmission
Control Protocol/Internet Protocol model is to permit communication over enor-
mous distances[25]. We can not replace TCP, and its variant’s from a network
system. The variants of TCP can be used for reliable and fast communication. The
throughput of different variants like TCP Vegas, TCP Cubic, TCP YEAH, and TCP
WestwoodPlus shows that communicating can be faster by twerking or altering some
parameters. The future of communication can be more flexible and faster. We can
ensure the security as well as reliability of a network by using the different variants
of TCP. As we know, TCP Cubic used in the Linux Operating system. It shows us
how reliable a TCP variant can be. If we do more research on different variants of
TCP, we can get higher throughput which will ensure faster communication with a
large amount of devices connected[26].

10

Chapter 2

Methodology

This section of the thesis refers to the chosen methods for justification or analysis
of a given data or required scenario. This thesis paper is simulation-based. At
first, we installed Linux Operating System. Then we installed version-3 of Network
Simulator (NS3). We chose the file wifi-tcp.cc, for our desired simulation. In this file
we had to edit some important parameters. The default file is given for one Access
point (Ap) one Stationary point (STA) for a 10-second simulation time.As it is not
possible to understand the throughput behavior of TCP protocols from only 1 node,
so

• We increased the number of Stationary points. We have taken up to 7 station-
ary points to understand the average throughput of our four TCP variants.

• We increased the simulation time to 60 seconds to observe the throughput for
a longer time.

• As we decided to increase the stationary points, so we had to add a different
IPv4 address for each stationary points.

• We set the data rate of 100Mbps to observe the changes and compare effectively

From the Terminal of Linux, we ran the simulation for 60 seconds and achieved each
variant of TCP with different throughput result. The output looks like below figure:

Figure 2.1: Throughput

11

Chapter 3

TCP Fundamentals

3.1 TCP Fundamentals
Transmission Control Protocol(TCP) enables application programs and computing
devices to exchange messages over a network [15]. This operation can execute in
two way

1. Full Duplex

2. Reliable Delivery

The reliability is ensured by using Connection-oriented service. Then, we can
use error detection using checksum. Then, we can use error control using go-back
N ARQ(Automatic Repeat Request) technique. Then, we can use flow control us-
ing sliding window protocol. After that, we can use congestion avoidance protocol
(Multiplicative Decrease and Slow Start)

12

3.1.1 TCP Datagram

Figure 3.1: TCP Datagram Format

1. Source Port (16 bits): It defines the port number of the application program
in the host of the sender.

2. Destination Port(16 bits): It defines the port number of the application pro-
gram in the host of the receiver.

3. Sequence Number(32 bits): It conveys the receiving host which octet in this
sequence comprises the first byte in the segment.

4. Acknowledgement Number(32 bits): This specifies the sequence number of the
next octet that receiver expects to receive.

5. HLEN(4 bits): Header Length mainly specify the number of 32 bit words
present in the TCP header.

6. URG: Urgent Pointer

7. ACK: Indicates whether acknowledge field is valid.

8. PSH: Push the data without buffering.

9. RST: Resent the connection.

10. SYN:Synchronize sequence numbers during connection establishment.

11. FIN: Terminate the connection.

12. Window(16 bits): Specifies the size of window.

13. Checksum(16 bits): Checksum used for error detection.

14. Option: Optional 40 bytes of information

13

3.1.2 Working Principle of TCP

We know that TCP operates in two ways from our earlier knowledge.

• Full Duplex

• Reliable Communication For connection establishment in full-duplex mode, a
four-way protocol can be used. However, the second and third steps can be
combined to form a three-way handshaking protocol with the following three
steps: [7]

1. Step-1:The client sends SYN segment, which includes, source and destina-
tion port numbers, and an Initialization Sequence Number (ISN), which is
essentially the byte number to be sent from the client to the server.

2. Step-2:The server sends a segment, which is a two-in-one segment. It ac-
knowledges the receipt of the previous segment and it also acts as initialization
segment for the server.

3. Step-3:The sends an ACK segment, which acknowledges the receipt of the
second segment.

Figure 3.2: Connection Establishment Protocol in TCP

To terminate the connection in both direction a four way hand shaking protocol
is necessary [18]. The four steps are as follows:

14

1. Step-1:The client sends a FIN segment to the server.

2. Step-2:The server sends an ACK segment indicating the receipt of the FIN
segment and the segment also acts as initialization segment for the server.

3. Step-3:The server can still continue to send data and when the data transfer
is complete it sends a FIN segment to the client.

4. Step-4:The client sends an ACK segment, which acknowledges the receipt of
the FIN segment sent by the server.

Figure 3.3: Connection Termination Protocol in TCP

To ensure reliable communication,[20] TCP performs the following methods:

1)Flow Control

TCP uses byte-oriented sliding window protocol, which allows efficient transmis-
sion of data and at the same time the destination host is not overwhelmed with
data. The receiver has a buffer size of 8 K bytes. After receiving 4 K bytes, the
window size is reduced to 4 K bytes. After receiving another 3 K bytes, the window
size reduces to 1 K bytes. After the buffer gets empty by 4 K bytes, the widow size
increases to 7 K bytes. So, it may be noted that the window size is totally controlled
by the receiver window size, which can be increased or decreased dynamically by
the destination. The destination host can send acknowledgement any time.

15

Figure 3.4: Flow Control

2) Error Control

TCP includes mechanism for detecting corrupted segment with the help of check-
sum field. Acknowledgement method is used to confirm the receipt of un-corrupted
data. There is no negative acknowledgement in TCP. If the acknowledge is not re-
ceived before the timeout, it is assume that the data has been corrupted of lost.

To keep track of lost or discarded segments and to perform the operations
smoothly, the following four timers are used by TCP:

• Re-transmission:It is dynamically decided by Round Trip Time (RTT) .

• Persistence:This is used to deal with window size advertisement.

• Keep-alive:Used in situations where there is long idle connection between
two processes.

• Time-waited:It is used during the connection termination.

3.1.3 Congestion Control

Congestion occurs when bandwidth is insufficient and network data traffic exceeds
capacity. Congestion window determines the number of the bytes that can be sent

16

out at any time [24]. To avoid congestion, the sender process uses two strategies
known as

1. Slow start and Additive Increase

2. Multiplicative Decrease

Slow Start and Additive Increase At the beginning, the congestion is set to
the maximum segment size. For each segment that is acknowledged, the size of the
congestion window size is increased by maximum segment size until it reaches one
half of the allowable window size. Ironically, this is known as slow start [21].

In the additive increase, the rate of the increase is exponential. After reaching
the threshold, the window size is increased by one segment for each acknowledge-
ment. This continues till there is no time out.

Multiplicative Decrease Multiplicative decrease happens when a time out
occurs, the threshold is set to one half of the last congestion window size [9].

Figure 3.5: Congestion Control in TCP

17

Chapter 4

TCP Variants

4.1 TCP Cubic
In order to increase TCP scalability across rapid and long distance networks, the
protocol alters the linear window growth function of existing TCP standards to be
a cubic function.In linux, by default Cubic is used as TCP algorithm. Cubic is a
more advanced form of TCP BIC.Cubic converted the normal TCP’s linear window
growth function to a cubic function. Cubic reduces the size of congestion windows
(cwnd) during communication in Saturation-States and in Stable-states it raises it’s
size instantaneously.This characteristic enables Cubic to be very scalable when the
network’s capacity and delay product is enormous, while simultaneously being very
reliable and fair to regular TCP flows.The window growth function in Cubic is a
cubic function with a form that is remarkably similar to the growth function in
BIC.Cubic is intended to simplify and improve BIC’s window control.

4.1.1 Window Growth Function of CUBIC

Figure 4.1: Window Growth Function of Cubic

The window growth function of CUBIC, as the name implies, is a cubic function
with a form quite similar to that of BIC-TCP. CUBIC employs a cubic function

18

of the time elapsed since the last congestion incident. CUBIC employs both the
concave and convex profiles of a cubic function for window increase, whereas most
alternative algorithms to Standard TCP use a convex increase function where the
window increment is constantly growing following a loss event [6].The following
function determines CUBIC’s congestion window:

W (t) = C(t−K)3 +Wmax (4.1)

where C is a scaling factor, t is the elapsed time from the last window reduction,
Wmax is the window size just before the last window reduction and k is the time
period that the above function takes to increase W to Wmax. We can find k by
following equation:

K =
3

√
Wmaxβ

C
(4.2)

CUBIC uses the first equation to calculate the window growth rate for the follow-
ing RTT interval after getting an ACK during congestion avoidance.It chooses W(t
+ RTT) as the congestion window’s candidate target value. Consider the current
window size of cwnd. CUBIC operates in three modes depending on the value of
cwnd.CUBIC is in TCP mode if cwnd is less than the window size that (standard)
TCP would reach at time t following the previous loss event. Otherwise, CUBIC is
in the concave region if cwnd is less than Wmax, and in the convex region if cwnd is
more than Wmax.

4.1.2 TCP-friendly Region

When we get an ACK in congestion avoidance, we first determine whether or not the
protocol is in the TCP area. This is accomplished as follows. We can calculate the
TCP window size in terms of the elapsed time t. We can discover the average window
size of additive increase and multiplicative decrease (AIMD) with an additive factor,
α and a multiplicative factor,β using a basic analysis in to be the following function:

cwnd(t) =
1

RTT

√
α

2

2− β
β

1

p
(4.3)

By the same analysis, the average window size of TCP with α=1 and β=0.5 is
(1/RTT)*

√
((3/2)(1/P)). Thus, for the above equation to be the same as that of

TCP, α must be equal to 3β
2−β .If TCP increases its window by α per RTT, we can

get the window size of TCP in terms of the elapsed time t as follows:

Wtcp(t) = Wmax(1− β) + 3
β

2− β
t

RTT
(4.4)

If cwnd is less than Wtcp(t), then the protocol is in the TCP mode and cwnd is
set to Wtcp(t) at each reception of ACK.

4.1.3 Convex Region:

When the window size of CUBIC is greater than Wmax, it passes through the cubic
function’s plateau, after which it follows the cubic function’s convex profile.Because
cwnd is more than the previous saturation point Wmax, it is possible that network

19

circumstances have changed since the last loss event, signaling that there is more
available bandwidth after some flow departures. Because the Internet is extremely
asynchronous, changes in available bandwidth are unavoidable. The convex shape
guarantees that the window grows slowly at first and then progressively expands in
size.We also call this phase as the maximum probing phase since CUBIC is searching
for a new Wmax.Because we do not change the window growth function simply for
the convex region, the window growth function for both regions stays unchanged.

4.1.4 Concave Region

If the protocol is not in TCP mode and cwnd is smaller than Wmax upon getting an
ACK in congestion avoidance, the protocol is in the concave region.

4.1.5 Fast Convergence

CUBIC incorporates a heuristic into the protocol to increase the pace of convergence.
Existing CUBIC flows can use this heuristic to release (share) bandwidth to incom-
ing flows. With this extra bandwidth, incoming flows can expand.When a packet
loss event happens and the fast convergence mechanism is activated, the algorithm
compares the prior Wmax to the current Wmax. If the current Wmax is lower than
the previous Wmax, it means that the connection has less available resources.If the
current value of Wmax is smaller than the previous value, Wlast−max, during a loss
event, this indicates that the saturation point encountered by this flow is decreasing
due to the change in available band-width. Then we reduce Wmax even further to
allow this flow to release additional bandwidth. Because the reduced Wmax drives
the flow to plateau sooner, this action effectively extends the time for this flow to
grow its window. This gives the new flow more time to adjust its window size.

4.1.6 Pluggable Congestion Module

CUBIC is a pluggable traffic control module that has been implemented. The hooks
that CUBIC uses for its implementation are listed below:

1. bictcp_init: It initializes private variables used for CUBIC algorithm. If initial
ssthresh is not 0, then set ssthresh to this value.If initial ssthresh is properly
set by users when there is no history information about the end-to-end path,it
can improve the start-up behavior of CUBIC significantly.

2. bictcp_cong_avoid: It raises cwnd by determining the difference between the
current cwnd value and the expected value of the next RTT round, which is
calculated using the cubic root.

3. bictcp_set_state: It resets all the variables when a timeout happens.

4. bictcp_undo_cwnd: It returns the maximum between the current cwnd value
and the last max (which is the congestion window before the drop).

5. bictcp_acked: It maintains the minimum delay observed so far. The minimum
delay is reset when a timeout happens.

20

6. bictcp_recalc_ssthresh: If the fast convergence mode is turned on and the
current cwnd is smaller than last_max, set last_max to cwnd∗(1-β/2).Else
set last_max to cwnd∗(1-β). ssthresh always set to cwnd∗(1-β) because TCP
needs to back off for congestion [8].

4.1.7 Advantages of TCP CUBIC

It has a high bandwidth utilization rate, particularly for small bandwidth-delay
product networks. Even in the midst of background traffic,it operates admirably.CUBIC
improves on BIC’s fairness features while keeping its scalability and stability.Because
the growth function is independent of RTT, it guarantees RTT fairness because var-
ious RTT flows will still expand their windows at the same rate.When the buffer size
is less than the bandwidth-delay product,CUBIC gives good throughput.CUBIC has
intra fairness protocol among the same protocol.

4.2 TCP Vegas
TCP Vegas was proposed in 1994 as an alternate source-based Internet congestion
control mechanism [10]. Unlike the TCP Reno method, which produces congestion
to learn about available network capacity, a Vegas source predicts the start of con-
gestion by monitoring the difference between the rate it expects to observe and the
rate it sees. Vegas’ method is to change the sending rate of the source (conges-
tion window) to retain a limited number of packets delayed in the routers along
the transmission line. TCP Vegas identifies congestion at an early stage by raising
the Round-Trip Time (RTT) values of the packets in the connection, as opposed
to other flavors such as Reno, New Reno, and others, which detect congestion only
after it has occurred through packet loss. The algorithm is strongly reliant on an ac-
curate estimate of the Base RTT value. If the number is too little, the connection’s
throughput will be less than the available bandwidth, while too big will overrun the
connection.

Vegas uses a more advanced bandwidth estimate approach that seeks to prevent
congestion rather than react to it. It precisely calculates the number of data pack-
ets that a source may deliver based on the measured RTT. Its window adjustment
method is divided into three stages: slow start, congestion avoidance, fast retrans-
mit, and fast recovery. The congestion window is updated based on the current
phase of execution.

4.2.1 Fast Retransmit

TCP Vegas makes three modifications to TCP’s (fast) retransmission technique.
TCP Vegas first calculates the RTT for each segment transmitted. Fine-grained
clock values are used in the measurements. A timeout duration for each segment is
calculated using the fine-grained RTT values. When TCP Vegas receives a duplicate
acknowledgment (ACK), it checks to see if the timeout period has elapsed. If this
is the case, the section is retransmitted. Second, when TCP Vegas receives a non-
duplicate ACK that is the first or second after rapid retransmission, it checks for the
timer’s expiry and may retransmit another segment. Third, when several segments

21

fail and more than one fast retransmission is attempted, the congestion window is
decreased only for the first fast retransmission [4].

4.2.2 Congestion Avoidance Mechanism

TCP Vegas does not continuously increase the congestion window throughout the
congestion avoidance phase. Instead, it attempts to detect potential congestion by
comparing actual throughput to expected throughput. Vegas calculates the appro-
priate amount of excess data to keep in the network pipe and adjusts the conges-
tion window size accordingly. It logs the RTT and sets BaseRTT to the shortest
round-trip time ever measured. The quantity of additional data (4) is calculated
as follows:

4 = (Expected− Actual)×BaseRTT (4.5)

where Expected throughput is the current congestion window size (CWND) di-
vided by BaseRTT, and Actual throughput represents the CWND divided by the
newly measured.When 4 is between two thresholds α and β, the CWND remains
constant. If 4 is more than β, it is interpreted as an indicator of impending con-
gestion, and the CWND is decreased. If, on the other hand, 4 is less than α, the
connection may be under-utilizing its available bandwidth.As a result, the CWND
will be raised. CWND is updated on a per-RTT basis. The rule for adjusting the
congestion window is as follows:

CWND =

CWND + 1, if4 < α

CWND − 1, if4 > β

CWND ifα ≤ 4 ≤ β

(4.6)

4.2.3 Slow-start Mechanism

Vegas plans for a connection to rapidly ramp up to the available bandwidth during
the slow-start period. To identify and prevent congestion during slowstart, however,
Vegas increases the size of its congestion window only every other RTT. In the
interim, the congestion window remains constant, allowing a realistic comparison
of expected and actual throughput. During the slow start, a similar congestion
detecting process is used to determine when to transition the phase.

4.2.4 Window Control of TCP Vegas

Figure 4.2 illustrates the behavior of TCP vegas.Consider a basic network with
a single connection and a single link of capacity C. BaseRTT be the minimum
round trip delay.When window < C∗BaseRTT the throughput of this connection is
window
baseRTT

.Here w corresponds to window size where window= C ×BaseRTT . When
window > w, queue starts to build up and (Expected-Actual)> 0.If window < w+α,
TCP Vegas increases the window size by one during the next round trip time. And if
window > w+β, it decreases the window size by one. TCP Vegas tries to keep at least
α packets but no more than β packets in the queues. The reason behind this is that
TCP Vegas attempts to detect and utilize the extra bandwidth whenever it becomes
available without congesting the network.When there is only one connection, TCP
Vegas’s window size converges to a position between w +α and w + β. TCP Vegas

22

does not cause any oscillation in window size once it converges to an equilibrium
point [1].

Figure 4.2: Window Control of TCP Vegas

4.2.5 Rerouting

Because TCP Vegas adjusts its window size based on an estimate of the propagation
delay, baseRTT, it is critical for a TCP Vegas connection to have an accurate esti-
mation. Rerouting a path may modify the propagation latency of the connection,
resulting in a significant drop in throughput.Another critical problem is TCP Ve-
gas’s stability. Because each TCP Vegas connection seeks to maintain a few packets
in the network, when their estimated propagation delay is o, the connections may
accidentally store many more packets in the network, producing continuous conges-
tion [16]. If a switch changes the path of a connection, the end host cannot notice
it without an explicit indication from the switch. If the new route has a reduced
propagation delay, TCP Vegas is unaffected since certain packets will most likely
have a shorter round trip delay and BaseRTT will be modified. However, if the
new route for the connection has a longer propagation delay, the connection will
be unable to determine whether the increase in round trip time is due to network
congestion or a change in the route.Without this knowledge, the end host would per-
ceive an increase in round trip latency as a hint of network congestion and reduce
the window size. This, however, is the inverse of what the source should do. When
connection i is propagation delay is di, the expected number of backlogged packets
is wi - ri∗di , where wi is connection i’s window size ri is the flow rate.Because
TCP Vegas tries to retain between α and β packets in the switch buffers, if the
propagation delay rises, the window size should be increased to maintain the same
amount of packets in the buffer. As TCP Vegas relies on delay estimate, this might
have a significant influence on performance. Because network switches do not inform
connections of changes in routes, it is necessary for connection sources to be able
to detect such changes. The following modification has been proposed by La et al
[17]. The modified protocol behaves similarly to TCP Vegas for the first K packets,
where k is a prefixed parameter. The sources maintain track of the minimum round
trip delay of N successive packets once the ACK for the Kth packet arrives. If the

23

minimum round trip time of the last L.N packets is significantly more than the cur-
rent baseRTT, the source updates the baseRTT to the minimum round trip time of
the latest N packets and resets the congestion window size based on this baseRTT.
The essential idea underlying this process is as follows. If the minimum round trip
time determined for N packet is regularly substantially more than baseRTT, then
the real propagation delay is likely to be greater than the measured baseRTT, and it
makes sense to raise baseRTT. However, it is feasible that the rise is due to network
congestion. Because the increase in delay leads the source to reduce its window
size, the trip delay is mostly caused by the propagation delay of the new route. As
a result, the lowest round trip delay of the preceding N packets provides a solid
approximation of the new propagation delay [19].

4.2.6 Continuous Congestion

Because TCP Vegas employs baseRTT to estimate route propagation time, its per-
formance is affected by baseRTT correctness. As a result, if the connections overesti-
mate the propagation delay owing to improper baseRTT, it might have a significant
influence on TCP Vegas performance. We begin with a situation in which the links
overestimate the propagation delays, potentially driving the system into a continu-
ously congested condition [5] Assume that a connection begins when there are many
other existing connections, the network is congested, and the queues are full. The
packets from the new connection may then encounter round trip delays that are
far longer than the path’s actual propagation delay due to the queuing delay from
other backlogged packets. As a result, the new connection will set the window size
to a value that leads it to assume that its expected number of backlogged packets
is between α and β, while in fact it has many more backlogged packets due to an
incorrect estimate of the path’s propagation delay.This situation will be repeated
for each new connection, and it is feasible that the system may be under permanent
congestion as a result. This is the total opposite of a favorable circumstance. When
the network is overloaded, we don’t want additional connections to exacerbate the
situation. The same thing might happen with TCP Reno or TCP Tahoe. TCP
Vegas, on the other hand, is more likely to happen because to its fine-tuned conges-
tion avoidance mechanism. When the network remains consistently congested, the
connections perceive the constant rise in round trip time as an increase in propaga-
tion delay and update their baseRTT accordingly. This causes a momentary spike
in network congestion, and most, if not all, connections fail when they notice the
congestion. The congestion level decreases when connections decrease their window
widths, allowing the connections to estimate the right baseRTT. Congestion will
stay low after most connections have a good measurement of propagation delay.

4.3 YeAH-TCP
One more high speed TCP congestion control algorithm uses a mixed loss/delay
approach to calculate congestion windows. Its goal is to maximize efficiency, fairness,
and minimize link loss while minimizing the load on the network elements. Several
factors are considered, such as bandwidth exploitation efficiency, average packet
delay, fairness internal and external, friendliness to Reno, robustness to random
loss.

24

4.3.1 Congestion-Control:

The congestion window (CWND) sets the maximum number of bytes that can be
sent out at any given time in TCP. The sender maintains the congestion window,
which prevents a link between the sender and the receiver from becoming over-
burdened with traffic. This is not to be confused with the sender’s sliding window,
which exists to keep the receiver from becoming overloaded. The congestion window
is determined by assessing the amount of traffic on the network.When a connection
is established, the congestion window, which is maintained independently by each
host, is set to a tiny multiple of the connection’s maximum segment size (MSS)
[23]. An additive increase/multiplicative decrease (AIMD) strategy dictates more
variation in the congestion window. This means that if all segments are received and
acknowledgements are received on time, the window size is increased by a constant.
Different algorithms will be used.As part of TCP tuning, a system administrator can
change the maximum window size limit or the constant introduced during additive
increase. The use of the receive window advertised by the receiver also controls the
flow of data over a TCP connection. A sender is limited to sending data within its
congestion window and the receive window.

4.3.2 Congestion-Control Algorithms in YeAH-TCP:

YeAH-TCP, the data transmission protocol utilized by many Internet services, em-
ploys congestion control measures (or algorithms). A TCP algorithm’s principal
purpose is to avoid transferring more data than the network can handle, or to
avoid network congestion. Different algorithms react to network loads in different
ways, but they all follow the same premise of preventing network congestion. It is
a sender-side high-speed enabled TCP congestion control technique that computes
the congestion window using a mixed loss/delay approach. The goal is to provide
high efficiency, a minimal RTT and Reno fairness, and link loss resilience while
minimizing the strain on network nodes [2]

4.3.3 YeAH-TCP: ALGORITHM DESIGN

We considered several goals when designing YeAH-TCP:
The network’s capacity should be fully utilized. This is the most obvious goal,

which may be accomplished by changing the congestion window update rules; as
explained below, YeAH TCP can use any of the increment rules from other proposals
(e.g., STCP, H-TCP, etc.).

The network stress should be less than or equivalent to that caused by Reno
TCP. Most high-speed TCPs cause frequent congestion events at the bottleneck
router, with a substantially higher number of packet drops in a single congestion
event than traditional Reno congestion control, reducing the performance of other
traffic sharing the path. Additionally, queue delays and delay jitter are impacted
[11].

Non-congestion related (random) packet loss events should not degrade perfor-
mance significantly; random packet loss cannot be ruled out even in high-speed
optical backbones. Although reasonable estimates of this loss depend on the tech-
nological situation, we show that even a loss rate of 10−7 can cause significant
performance reduction. Internally, the algorithm should be RTT fair.

25

High performance should not be hampered by small network buffers. In high
BDP links, a buffer size equal to the bandwidth-delay product, as required by typical
Reno congestion control, is not possible. This goal can be achieved by following the
Westwood algorithm’s reduction policy in the event of packet loss [22].

All of the listed difficulties are addressed with YeAH-TCP. Like Africa TCP,
it envisions two separate modes of operation:Fast and Slow. During in the "Fast"
mode, YeAH-TCP increases the congestion window based on an aggressive rule (we
used the STCP rule since it is relatively easy to build). It works as Reno TCP in Slow
mode. According to the projected amount of packets in the bottleneck queue, the
state is determined.Let RTT base be the sender’s minimum RTT (i.e., a propagation
delay estimate) and RTTmin be the minimal RTT estimated in the current data
window of cwnd packets. RTT queue = RTTmin - RTT base is the total expected
queuing delay. The number of packets enqueued by the flow can be calculated using
RTT queue as follows:

Q = RTT queue.G = RTT queue.(CWDN/RTTmin) here, G stands for goodput.
The ratio of the queuing RTT to the propagation delay

L= (RTT queue/RTT base) can also be calculated, this reflects the level of network
congestion. RTTmin is only updated once for each data window.[1]

If Q < Qmax and L < 1/ϕ the algorithm is in the Fast mode otherwise it is in
the Slow mode. Here, Qmax and ϕ are two adjustable parameters. The maximum
number of packets that a single flow can keep in the buffers isQmax. In terms of BDP,
1/ϕ represents the highest level of buffer congestion.A precautionary decongestion
algorithm is used in the Slow mode. When Q > Qmax, Q reduces the congestion
window and ssthresh is set to cwnd/2. The decongestion granularity is one RTT
because RTTmin is computed once every RTT.

Q is an estimate of the excess quantity of packets in relation to the minimum
cwnd required to exploit the available bandwidth when a single YeAH-TCP competes
for the bottleneck link. Without reducing goodput, this number of packets can be
eliminated from the actual congestion window. When the number of competing flows
grows, each one tries to fill the buffer with the same amount of packets (at maximum
Q), regardless of the observed RTT, to achieve internal RTT fairness.Furthermore,
preventative decongestion prevents the bottleneck queue from becoming too clogged,
minimizing queuing times and packet losses due to buffer overflow. Only when the
flows that implement it do not compete with "greedy" sources, such as Reno TCP,
is cautious decongestion ideal. When competing with "greedy" flows, precautionary
decongestion reduces capacity of the conservative flow by releasing bandwidth to
greedy sources.

YeAH-TCP implements a technique to identify if it is competing with "greedy"
sources to avoid unfair rivalry with older flows. Consider the example of Reno
flows that do not have queue decongestion implemented. Because Reno flows are
"greedily" filling up the buffer, the queuing delay increases when Q is bigger than
Qmax YeAH-TCP attempts to remove packets from the queue. In this scenario,
YeAH-TCP will infrequently be in "Fast" mode and will be in "Slow" mode more
often.With non-greedy competing flows, on the other hand, the YeAH algorithm will
change the state from Fast to Slow anytime buffer content exceeds Qmax and then
back as soon as the precautionary decongestion kicks in. By calculating the number
of RTTs that the algorithm is in each of the two states, it is feasible to discriminate
between the two different competition situations [2]

26

Last but not least, what happens if a packet is lost. When three duplicate
ACKs indicate a loss, the current estimate of the bottleneck queue Q can be used to
determine the number of packets that should be taken from the congestion window
to clear the bottleneck buffer while keeping the pipe full. In principle, this rule is
similar to the one employed by Westwood TCP.

4.3.4 DCE(Direct-Code-Execution) for validation of YeAH-
TCP:

The goal of the project was to compare the results achieved by simulating linux
YeAH with those obtained by ns-3 YeAH implementation utilizing DCE (a module
built on top of ns-3). Direct Code Execution (DCE) is a ns-3 module that allows
you to run existing implementations of userspace and kernelspace network protocols
or programs without having to update the source code.

Features of Direct-Code-Execution:√
Except for recompiling the code, there is no need to update the source code.√
The simulation is completed in one step.√
Direct-Code-Execution uses less RAM.√
It has two different modes of operation:

DCE employs the ns-3 TCP stacks in basic mode.√
Advanced mode, in which DCE instead employs a Linux network stack.√
C, C++, and POSIX socket programs are supported.

4.3.5 Goals of YeAH-TCP:

The network capacity is efficiently utilized by utilizing congestion window rules
and other proposals such as STCP , H-TCP. The network strain must be less than
or equivalent to that imposed by Reno TCP. This implies that transmission loss
should be minimized. TCP friendliness with Reno traffic. YeAH-algorithm TCP’s
should be able to compete fairly with Reno TCP. Internally, the algorithm must be
RTT fair. Lossy links should not affect performance. High performance should not
be hampered by small network buffers. Most of the issues raised here should be
addressed by YeAH-TCP.

4.4 TCP Westwood PLUS:
TCP Westwood (TCPW) is a sender-only modification to TCP New Reno designed
to handle high bandwidth-delay product pathways (big pipes), packet loss due to
transmission or other problems (leaky pipes), and dynamic demand (dynamic pipes).
TCP Westwood uses information from the ACK stream to properly determine the
congestion control parameters: Slow Start Threshold and Congestion Window .
TCP Westwood calculates a "Eligible Rate" that the sender uses to adjust Slow
Start Threshold and Congestion Window upon loss indication or during its "Ag-
ile Probing" phase, a proposed modification to the well-known Slow Start phase.
Furthermore, a system known as Persistent Non Congestion Detection (PNCD) has
been developed to identify persistent lack of congestion and initiate an Agile Probing
phase to efficiently use big dynamic bandwidth [14].

27

TCP Westwood+ is the next step in the development of TCP Westwood. TCP
Westwood+ is a sender-only modification of the TCP Reno protocol stack that im-
proves TCP congestion control performance over wired and wireless networks.After
a congestion occurrence, such as three duplicate acknowledgments or a timeout,
TCP Westwood+ uses end-to-end bandwidth estimation to establish the conges-
tion window and slow start threshold. By suitably low-pass filtering the rate of
returned acknowledgment packets, the bandwidth is approximated.The logic behind
this method is straightforward: unlike TCP Reno, which blindly halves the conges-
tion window after three duplicate ACKs, TCP Westwood+ adaptively establishes a
sluggish start threshold and a congestion window that considers the bandwidth con-
sumed at the moment congestion occurs. In wired networks, TCP Westwood+ con-
siderably improves throughput and fairness across wireless lines when compared to
TCP Reno/New Reno. TCP Westwood, unlike TCP Reno, which blindly halves the
congestion window after three duplicate ACKs, tries to choose a slow start threshold
(ssthresh) and congestion window (cwin) that are commensurate with the effective
bandwidth consumed at the time congestion occurs.This method is known as quicker
recovery. The suggested approach is especially useful over wireless networks, where
intermittent losses caused by radio channel issues are sometimes misconstrued as a
symptom of congestion by conventional TCP schemes, resulting in excessive window
reduction. Throughput performance and fairness have both improved in experimen-
tal tests.TCP Reno friendliness was also observed in a series of trials, indicating that
TCP Reno connections are not starved by TCPW connections. TCPW is particu-
larly effective in mixed wired and wireless networks, with throughput gains of up to
550 percent reported. Finally, TCPW performs nearly as well as localized link layer
techniques like the well-known Snoop scheme, but without the O/H of a specific link
layer protocol.

4.4.1 Congestion-Control Algorithms in TCP Westwood plus:

TCP-Westwood is a sender-side-only TCP Reno modification designed to manage
huge bandwidth-delay product paths with probable packet loss due to transmission
or other problems, as well as dynamic demand. TCPWestwood looks for information
in the ACK stream to properly determine the congestion control parameters, such
as the Slow Start Threshold (ssthresh) and the Congestion Window (cwin).TCP-
Westwood calculates a ’eligibility rate,’ which the sender uses to adjust ssthresh and
cwin when a loss is detected, or during its ’agile probing’ phase, which is a proposed
modification to the slow start phase. Furthermore, a system known as Continuous
Non Congestion Detection was designed to identify a persistent lack of congestion
and induce an agile probing phase to use high dynamic bandwidth [13].

TCP Westwood+ is a sender-only modification of the TCP Reno/ NewReno con-
gestion control protocol stack that improves TCP congestion control performance,
particularly over wireless networks. After a congestion occurrence, such as three du-
plicate acknowledgments or a timeout, TCPW uses end-to-end bandwidth estima-
tion to define the congestion window and slow start threshold.By suitably low-pass
filtering the rate of returned acknowledgment packets, the bandwidth is approxi-
mated. The logic behind this method is straightforward: unlike TCP Reno, which
blindly halves the congestion window after three duplicate ACKs, TCP Westwood+
adaptively establishes a sluggish start threshold and a congestion window that con-

28

siders the bandwidth consumed at the moment congestion occurs. TCP Westwood
improves fairness in wired networks and throughput over wireless lines when com-
pared to TCP (New) Reno.

Figure 4.3: Congestion control in TCP Westwood

4.4.2 TCP WESTWOOD: ALGORITHM GUIDELINES

In this part, we’ll look at how the congestion management algorithm on the sender
side of a TCP connection can leverage bandwidth estimate to achieve a speedier
recovery after a congestion event. First, we sketch down the algorithm in its most
basic form. Then we’ll go over the specific form we’ve used. The congestion win-
dow dynamics during slow start and congestion avoidance are unchanged, since they
rise exponentially and linearly, respectively, as in current TCP Reno, as will be dis-
cussed. After a congestion episode, the congestion window (cwin) and the slow start
threshold (ssthresh) are configured using the estimated bandwidth BWE. Remember
that the basic job of cwin and ssthresh in TCP congestion control is to increase and
decrease cwin to track the available bandwidth–delay product that ssthresh should
reflect [13].

The fact that network routers may simply enforce fair queueing on FIFO queues
by implementing simple queueing rules such as RED, WRED, or FRED is another
important advantage of using BWE as an implicit feedback to set cwin and ssthresh.
Several academics have proposed droppers in the past to assign available bandwidth
to different flows based on queueing policies. While TCP Westwood does not rely
on intermediate node information, it can still benefit from these queueing schemes
if they exist, thanks to the exact flow-by-flow bandwidth allocation that results.
Overall, if some type of fair sharing is included in the network, TCPWestwood
performance increases, albeit this issue will be examined in a separate paper.After
n duplicate ACKs and a coarse timeout expiration, we begin by detailing the basic
algorithm behavior.√

Algorithm after n duplicate ACKS
if (n DUPACKs are received)
if (cwin > ssthresh) /* congestion avoid. */
ssthresh = f1(BWE*RTTmin);
cwin = ssthresh;
endif

29

if (cwin<ssthresh) /*slow start */
ssthresh= f2(BWE*RTTmin)
if (cwin > ssthresh)
cwin = ssthresh
endif
endif
endif
We probe for extra available bandwidth during the congestion avoidance phase.

As a result, receiving n DUPACKS indicates that the network capacity has been
reached (or that, in the case of wireless links, one of more segments were dropped due
to sporadic losses). Thus, the congestion window is set equal to the ssthresh, the slow
start threshold is set equal to the available pipe size, which is BWE RTTmin, and
the congestion avoidance phase is initiated again to gently probe for fresh available
bandwidth. The f1 function adds one degree of freedom to the algorithm, which
can be used to fine-tune it. We’re still probing for available bandwidth throughout
the slow start phase. As a result, the slow start threshold is set using the BWE
obtained after n duplicate ACKs. The congestion window is made equal to the slow
start threshold only if cwin>ssthresh after ssthresh has been set. In other words, as
in the current implementation of TCP Reno, cwin still has an exponential increase
during slow start. The f2 function adds another degree of freedom to the algorithm,
which we may utilize to fine-tune it [13].√

Algorithm after coarse timeout expiration
if (coarse timeout expires)
if (cwin>ssthresh) /* congestion avoid. */
ssthresh = f3(BWE*RTTmin);
if (ssthresh < 2)
ssthresh = 2;
cwin = 1;
else
cwin = f4(BWE*RTTmin);
endif
endif
if (cwin<ssthresh) /* slow start */
ssthresh = f5(BWE*RTTmin)
if (ssthresh < 2) ssthresh = 2;
cwin = 1;
else
cwin = f6(BWE*RTTmin)
endif
endif
endif
The algorithm’s logic is straightforward once more. Following a timeout, the cwin

and ssthresh are set using one of the functions fi, i=3,6 depending on the phase the
algorithm is in at the time of the timeout. It’s worth noting that employing the
general functions fi, i=1,6 gives the algorithm six degrees of freedom to tweak. In
the next sections, we’ll look into and simulate a sampling of these functions, as well
as provide default values.

30

4.4.3 TCP WESTWOOD: ALGORITHM IMPLEMENTA-
TION

In this part, we show how to create a simple fi function implementation.
√

Algorithm
after 3 duplicate ACKS

if (3 DUPACKs are received)
if (cwin<ssthresh) /* slow start */
a = a + 0.25;
if (a > 4)
a = 4;
endif
endif
if (cwin > ssthresh) /* congestion avoid. */
a = 1;
endif
ssthresh = (BWE*RTTmin)/(pktsize ∗ 8 ∗ a);
reset cwin to ssthresh, if larger
if (cwin > ssthresh)
cwin = ssthresh;
endif
endif
Inspection of the code reveals that f1 is simply chosen as an identity function

during congestion avoidance, i.e. f1(x) = x. During a slow start, however, f2 is
chosen as f2(x) = x=a. When 3 DUPACKs are received in slow start, an increases
from 1 to 4 in 0.25 increments, however when 3 DUPACKs are received in congestion
avoidance, an is set to 1. A is set to 1 during connection setup. The goal of the
threshold reduction factor an is to prevent an overestimation of available bandwidth,
which happens frequently during protracted periods of congestion. Indeed, the larger
the reduction factor gets when a triple DUPACK is received during slow start (an
signal that ssthresh was set too high). Following the same logic, if congestion is
discovered during congestion avoidance, an is returned to 1: plainly, ssthresh was
set correctly, and there is no need to lessen BWE’s impact.√

Algorithm after coarse timeout expiration
if (coarse timeout expires)
if (cwin > ssthresh) /* slow start */
a = a + 1;
if (a < 4)
a = 4;
endif
endif
if (cwin > ssthresh) /* congestion avoid. */
a = 1;
endif
ssthresh = (BWE*RTTmin)/(pktsize*8*a);
if (ssthresh < 2)
ssthresh = 2;
cwin = 1;
endif

31

endif
In this scenario, f3(x) = x is picked for the function f3, which is used to set

ssthresh when a timeout occurs during congestion avoidance. f4(x) = 1 is the value
of the function f4. When a timeout occurs during the slow start phase, the function
f5 is chosen as f5(x) = x=a, where an increases from 1 to 4, in steps of 1 (as opposed
to 0.25 in the triple DUPACK instance), and an is set to 1 when a timeout occurs in
congestion avoidance. f6 has also been set to 1. After a timeout, the congestion win-
dow is reset to 1, like TCP Reno does. This option is cautious since it does not fully
utilize the BWE information to prevent the congestion window from shrinking to 1
in the event of intermittent losses caused by wireless connection interference rather
than congestion. This decision was made for a reason: fairness. We believe it is
critical to keep TCP’s cyclic nature when using drop-tail FIFO queuing, permitting
traffic load oscillations on each TCP connection. Indeed, this behavior ensures that
bandwidth resources are shared fairly amongst different connections bottle necked
at the same FIFO queue without compromising the algorithm’s stability. When net-
work nodes implement RED or WRED, different values for cwin and ssthresh may
be proposed after a timeout, however this is a topic for future research. New mecha-
nisms can also be invented to transition between congestion avoidance and sluggish
start, i.e., a technique to boost ssthresh, by employing a bandwidth estimation filter
during network under-utilization.

4.4.4 Goals of Westwood Plus

We presented a new version of the TCP protocol in this task, with the goal of
increasing its performance in the face of random or occasional losses. Simulated
testing of the new version revealed a significant increase in goodput in almost all
cases. Our changes can be seen as a step forward in the transition from TCP Tahoe
to TCP Reno. TCP Tahoe was changed to TCP Reno by adding fast recovery, which
allows the congestion window to be shrunk after three repeated ACKs. After a loss,
TCP Tahoe resets cwin to one, while TCP RENO halves cwin after three duplicate
ACKs. TCPWestwood now includes "faster" recovery to avoid over-shrinking cwin
after three duplicate ACKs by taking into consideration TCP’s end-to-end band-
width estimation. As a result, the changes needed to implement TCP Westwood
are similar to those made to shift from TCP Tahoe to TCP Reno. More work is
being done, particularly in terms of compatibility with other TCP Tahoe or Reno
connections. Furthermore, improvements to the bandwidth estimation method as
well as various algorithm tuning factors are being investigated.

32

Chapter 5

Results and Discussion

5.1 Network Diagram

Figure 5.1: Network Topology

This network topology is designed to compare different variants of TCP, where
end devices work as station nodes and the router works as an Access point node.
The router is connected to the internet. So that the station devices or nodes can
send or receive throughput over the router.

5.2 Simulation Parameters
NS3 or Network Simulator version 3 is software program which replicates the be-
haviour of real network. It is achieved by calculating the interaction by different
network devices such as routes, switches, Nodes, Access Points, Links etc. There is
no windows operating version of this software. It can be install in Linux operating
system. There are lots of example in NS3 which can be used for different networks
design and simulation. We choose wifi-tcp.cc file from NS3 examples. There are
some basic details of this code. They are

1. There are two nodes n1 and n2 . N1 is access point node and N2 is station
node.

2. There are some command values which can be changed.

3. It is 64 bit.

33

4. The counting time or simulation time is initiated with simulator time of NS3.

5. The wifi standard of this code is 802.11n which is a dual band standard. It
can support both 5GHz and 2.4 GHz.

After the basic details, we learned about the command and command line arguments
of the code. Some of the command are changeable, some are not. Now we will see
the changeable commands of the code using terminal.

• payloadSize:- It determines how much data bits the protocol can carry.

• datarate:- It determines the rate of data.Usually we kept it 100Mbps.

• tcpVariant:- It determines the variant of TCP.

• simulationTime:- It is the running time of a simulation.

• pcaptracing:- It will generate packet capture file after a simulation.

Now we will see the command arguments that is not changeable through terminal.
We can not change them. We can modify them as our needs. They are

• "Double Cur" here Cur is the variable name.

• "argc" it means arguments count.

• "argv" it means argument Vector.

• ’segmentsize" It is based on payloadSize.

• "Legacy channel" it means existing wifi channel.

• "Yanswifi" it means Yet another network simulator wifi. It is mainly used for
giving name purpose.

• "ConstantRateWifi Manager" It means everyone will get equal data rate.

• "Constant Position Mobility" It means that the nodes are constant.

• "Sink" It means there are destination nodes and ports.

• "Wifi helper" It helps in setting a wifi for particular modem.

• "uin32" unsigned integer of 32 bits.

• "P2P Devices" it determines the ethernet ports

To run the code of NS3, we have to type some command lines in terminal. We can
not open NS3 application by clicking any icon. We have to open the terminal and
put some commands for accessing NS3.The commands are

• ./waf

• ./waf –run scratch/wifi-tcp

• ./waf –run "scratch/wifi-tcp–tcpvariant=TcpCubic

34

• ./waf –run"scratch/wifi-tcp–payloadSize=1472"

• ./waf –run"scratch/wifi-tcp–simulationTime=60"

After that, we will learn to modify the NS3 code to maximize the station point. We
want to see the performance variation of different variants of Transmission control
protocol. We have to change many things of the code to set the station points. We
saw only one station node in this code. The procedure of increasing nodes are

• Creating the nodes.

• Creating the channels.

• Installing the channels on top of the node.

• Installing internet toots on top of the node.

• Allocating IP addresses with subnet musk.

• Creating interface for Ip addresses.

• Selecting port of the server.

• Installing server on top of the node.

• Specifying the the attributes of the clients.

• Installing the client app on node individually.

By following above instruction, we modified the code wifi-tcp.cc. Then, we got the
variation of TCP variants. Before modifying, all the throughput of the variants
were same except TCP Vegas. After increasing station point, we got the desire
throughput.

5.3 Variant Performance Graphs

Number of Nodes Cubic Vegas Westwood Plus YEAH
1 52.8324 54.441 52.4974 52.8326
2 51.7418 44.7767 51.4566 51.6962
3 50.101 42.4786 49.6445 50.0853
4 48.6414 42.1528 48.5083 48.5709
5 48.1981 41.7053 48.1638 48.1646
6 47.3642 41.9106 47.2439 47.2539
7 46.9861 41.7012 46.6981 46.831

This is the average throughput data for different variants of TCP. We took
throughput for seven different nodes. We plotted all four variants with seven nodes.
The difference was quite good.

35

5.3.1 Simulation Result

Figure 5.2: Node Vs Throughput

This is the throughput comparison graph for different variants of TCP for differ-
ent station nodes. Here, we took throughput for every single node for four different
variants.

5.3.2 TCP Vegas

Figure 5.3: Node Vs Throughput

TCP Vegas maintains high throughput as node increases.It decreases slowly.After
node 3, the throughput is almost constant.The simulation time was 60 seconds.

36

5.3.3 TCP YEAH

Figure 5.4: Node Vs Throughput

TCP Yeah shows high throughput for single node. As the node increase, the
throughput decreases. But, It keeps high throughput compare to other variants.
The simulation time was 60 Seconds.

5.3.4 TCP Westwood Plus

Figure 5.5: Node Vs Throughput

TCP Westwood Plus shows high throughput as the number of node decreases.
The simulation time was 60 Seconds. It maintains high speed as the node increases.
Though the throughput decrease as node increases, but not severely.

37

5.3.5 TCP Cubic

Figure 5.6: Node Vs Throughput

TCP Cubic is the default protocol of Linux operating system. Throughput is
decreasing as node increasing. It keeps the high throughput value as node increases.
The simulation time was 60 Seconds.

5.4 Discussion
The simulation findings do not demonstrate a clear winner among the methods
studied. Because each tested context had its own set of unique characteristics, it
was believed that various protocols would be better suited to dealing with diverse
network situations. However, one apparent benefit of these findings is a decent sense
of which methods are dominating.

BIC-TCP has been improved into CUBIC. It increases TCP friendliness and RTT
fairness by simplifying BIC-TCP window management. In terms of the amount of
time since the last loss occurrence, CUBIC employs a cubic rise function. When the
cubic window growth function is slower than Standard TCP, CUBIC operates like
Standard TCP to be fair. Furthermore, because of the protocol’s real-time nature,
the window expansion rate is unaffected by RTT, making it TCP-friendly on both
short and long RTT channels. For each stationary node, TCP CUBIC works better.
Though the difference in throughput among the variants is very little, still TCP
CUBIC wins.

In TCP Vegas, the throughput is quite low compared to the other variants. But
from our simulation result, we can observe that in spite of being lower through-
put, with the increasing stationary nodes, the throughput did not drop much. In
TCP Westwood Plus and TCP Yeah, the throughput decreases with the increasing
stationary nodes quite sharply. We find that CUBIC addresses the limitations of ex-
isting TCPs and provides appropriate throughput for the data rate of 100Mbps.In
future work, we may try to extend our research on establishing some algorithms
which may increase the throughput of the variants.

38

Bibliography

[1] Ghassan A Abed, Mahamod Ismail, and Kasmiran Jumari. Characterization
and observation of (transmission control protocol) tcp-vegas performance with
different parameters over (long term evolution) lte networks. Scientific Research
and Essays, 6(9):2003–2010, 2011.

[2] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. Yeah-tcp: yet
another highspeed tcp. In Proc. PFLDnet, volume 7, pages 37–42, 2007.

[3] Steven M Bellovin. Security problems in the tcp/ip protocol suite. volume 19,
pages 32–48. ACM New York, NY, USA, 1989.

[4] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas:
New techniques for congestion detection and avoidance. In Proceedings of the
conference on Communications architectures, protocols and applications, pages
24–35, 1994.

[5] Lawrence S Brakmo and Larry L Peterson. Performance problems in bsd4.
4tcp. ACM SIGCOMM Computer Communication Review, 25(5):69–86, 1995.

[6] Han Cai, DY Eun, Sangtae Ha, Injong Rhee, and Lisong Xu. Stochastic ordering
for internet congestion control and its applications. In IEEE INFOCOM 2007-
26th IEEE International Conference on Computer Communications, pages 910–
918. IEEE, 2007.

[7] Douglas E Comer. Internetworking with TCP/IP. Addison-Wesley Professional,
2013.

[8] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed
tcp variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008.

[9] Nelson E Hastings and Paul A McLean. Tcp/ip spoofing fundamentals. In Con-
ference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix
Conference on Computers and Communications, pages 218–224. IEEE, 1996.

[10] Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer
communication review, 18(4):314–329, 1988.

[11] Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, architecture,
algorithms, performance. In IEEE INFOCOM 2004, volume 4, pages 2490–
2501. IEEE, 2004.

[12] M Kalpana and T Purusothaman. Performance evaluation of exponential tcp/ip
congestion control algorithm. IJCSNS, 9(3):312, 2009.

39

[13] Vasudev I Kanani and Mr Krunal J Panchal. Performance analyses of tcp
westwood 1. 2014.

[14] Ehab A Khalil. Simulation-based comparisons of tcp congestion control. Inter-
national Journal of Advances in Engineering & Technology, 4(2):84, 2012.

[15] Bruno YL Kimura, Demetrius CSF Lima, and Antonio AF Loureiro. Packet
scheduling in multipath tcp: Fundamentals, lessons, and opportunities. IEEE
Systems Journal, 15(1):1445–1457, 2020.

[16] Richard J La, Jeonghoon Mo, Jean Walrand, and Venkat Anantharam. A case
for tcp vegas and gateways using game theoretic approach, 1998.

[17] Richard J La, Jean Walrand, and Venkatachalam Anantharam. Issues in TCP
vegas. Citeseer, 1999.

[18] Peter Loshin. TCP/IP clearly explained. Elsevier, 2003.

[19] Jeonghoon Mo, Richard J La, Venkat Anantharam, and Jean Walrand. Analysis
and comparison of tcp reno and vegas. In IEEE INFOCOM’99. Conference on
Computer Communications. Proceedings. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No. 99CH36320), volume 3, pages 1556–1563. IEEE, 1999.

[20] Esmond Pitt. Fundamental Networking in Java. Springer Science & Business
Media, 2005.

[21] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in linux tcp. In
USENIX Annual Technical Conference, FREENIX Track, pages 49–62, 2002.

[22] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A compound
tcp approach for high-speed and long distance networks. In Proceedings-IEEE
INFOCOM, 2006.

[23] IETF TSVWG. Highspeed tcp for large congestion windows. 2003.

[24] Curtis Villamizar and Cheng Song. High performance tcp in ansnet. ACM
SIGCOMM Computer Communication Review, 24(5):45–60, 1994.

[25] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. Fast tcp: mo-
tivation, architecture, algorithms, performance. IEEE/ACM transactions on
Networking, 14(6):1246–1259, 2006.

[26] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. Fast tcp: mo-
tivation, architecture, algorithms, performance. IEEE/ACM transactions on
Networking, 14(6):1246–1259, 2006.

40

