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Abstract 

 

This paper describes chest X-Ray images classification like Covid-19 infected chest images or 

normal chest images using various types of deep learning model. These are VGG16(Transfer 

learning) and CNN (Convolution Neural Network). Here We made a comparison among VGG16, 

CNN, SVM models and collected results that which deep learning is more accurate to identify 

Covid-19 or normal. These models were applied for same dataset and dataset was randomly chosen 

almost 1350 images (Covid-19 and Normal both) from a website. For this work, at first, we have 

preprocessed the chest X-Ray image. Then we have extracted the distinct features from the chest 

X-Ray images. After that, these features have trained into various Deep Learning algorithm and 

finally classify these images into the category. From the experiment, Convolution Neural Network 

(CNN) model achieving highest accuracy more than others. The CNN models achieving training 

accuracy of up to 100% and validation accuracy 94.5% and the VGG16 models achieving training 

accuracy up to 99.1% and validation accuracy 94.2%. Then validating the CNN model how it 

detects COVID-19 or normal. After that, best fit accurate model can be easily identified. 
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Chapter 1 

Introduction 

 

Covid-19 has become an impactful issue in today's world. This virus has created a pandemic 

situation all over the world. The outbreak began in Wan, Hubei Province, China, in late December 

2019 and has since spread around the world, including to Bangladesh. The first case of the virus 

was discovered in Bangladesh on March 8, 2020, and 10 days later, on March 18, the first person 

was infected. After that, the incidence of infection in Bangladesh rapidly grew. [1]. The patients 

have been infected with the Covid-19, their lungs have been largely devastated, and they will never 

fully recover, according to health professionals. The lungs of Covid-19 are badly injured, with 

severe shortness of breath, coughing, and exhaustion being the most typical symptoms. An X-ray 

of an infected person's chest indicates the state of their lungs and the extent of their damage. There 

has been a lot of study on Covid-19 chest X-Ray images in the last year, including X-Ray image 

classification, lung image, tumor classification, blood cell detection, and so on. Machine learning 

techniques are currently being used in a lot of research on coronavirus infected lung pictures. [2]. 

 

In this paper, we describe automatic COVID-19 detection by using the public database of COVID-

19 cases with chest X-ray images. We believe that this database can dramatically improve 

identification of COVID-19. Notably, this would provide essential data to train and test Few Deep 

Learning based system, likely using some form of Convolution Neural Network (CNN) 

Vgg16(transfer learning). These tools could be developed to identify COVID-19 characteristics as 

compared to other types of pneumonia or in order to predict survival. Currently, all images and 

data are released under the following URL: 

 https://data.mendeley.com/datasets/8h65ywd2jr/3  

Here we randomly chose 720 images of COVID-19 positive and 602 images of normal chest X-

Ray. Because the dataset is huge and almost 17000 images in that website.  

 

https://data.mendeley.com/datasets/8h65ywd2jr/3
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1.1 Motivation 

In this part, we will introduce the COVID-19 problem. There are very less amount of papers 

COVID-19 related tasks that have been published in various international journals. COVID-19 

pandemic is very challenging of our daily lives. Deep learning regression algorithm help to predict 

the corona virus cases in Bangladesh. In deep learning, it can be utilized huge data to predict the 

breakout of the disease and they used remote cloud model to prediction the corona virus. In this 

paper, we have discussed about some deep learning models like CNN, VGG16 that we designed 

to predict number of COVID-19 cases, the affected cases and find out which model will give the 

best accuracy. 

 

1.2 Purpose 

The purpose of this paper is to generate an experimental deep learning model like Convolutional 

Neural Network, with VGG16 (Transfer learning) model which has default layers and training 

them by same dataset. Then making a comparison of their accuracy, loss and checking the training 

accuracy and validation accuracy of them to identify which model will give better performance. 

At last, checking validation of COVID-19 detection of that model because can this model show 

proper output or not. 
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Chapter 2 

Architectures of Deep Learning 

 

2.1 Artificial Neural Network 

An artificial neuron is a computational model that inspired by the biological neurons and artificial 

neural network (ANN) is a set of layers of neurons (It’s called units or nodes). In the case of a fully 

connected ANN, each unit in a layer is connected to each unit in the next layer. Natural neurons 

receive signals through synapses located on the dendrites or membrane of the neuron and artificial 

neuron [3]. ANNs are more effective to solve problems related to pattern recognition and matching, 

clustering and date classification using mathematical algorithms are well suited for linear 

programming, arithmetic and logic calculations [4]. There is an input layer, hidden layers and 

output layers. 

 

 

 

Figure 2.1: Artificial Neural Network Architecture 
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2.2 Multi-layer Artificial Neural Networks and Deep Learning 

Multilayer ANN are used to called Deep learning. Current applications of DNN concern image 

and speech recognition, text recognition in images for real-time translation.  The basic idea of 

DNN is partially inspired to the hierarchical models of our visual system. This consists of neural 

networks distributed with a layered topology. The complex pathways in our brain goes from the 

retinas, to the visual cortex, to the occipital cortex, and finally they reach high-level associative 

areas. Along these paths, the receptive fields at one level of the hierarchy are constructed by 

combining inputs from units at a lower level. There are various types of Deep Neural Networks 

and among the networks addressed to supervised learning, one of them is Convolutional Neural 

Network which is most uses network [4]. 

 

2.3 Convolutional Neural Network (CNN) 

Convolutional neural networks are well suited to tasks such as object recognition, image 

classification, and text analysis. In 1989 CNN have been first introduced and in recent years to the 

increasing of GPU power and to the availability of huge datasets for training, have been largely 

used in computer vision tasks. The key observation is that many natural signals are a composition 

of low-level features [5]. The structures of CNN inspired by the visual cortex in animals [6], where 

groups of cells are sensitive to a small subregion of the input image. Therefore, the image is not 

processed as a single block but as a composition of smaller features. The absence of completely 

connected layers in the initial and central parts of the architecture feed-forward neural networks. 

Only fully connected layers are employed to construct the output, the classification probability 

distribution. From a computational perspective, this translates into models that require a smaller 

number of weights even for a large number of layers, and are therefore more tractable from the 

point of view of memory occupation. The training process is executed with backpropagation as in 

the feed-forward neural network [7]. 
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                                                         Figure 2.2: Architecture of CNN 

 

 

2.4 VGG16 (Transfer Learning)  

VGG16 is one kind of Convolutional Neural Network. VGG16 was created by an investigation of 

the effect in accuracy in increasing the depth of a convolutional network, using mostly 3x3 

convolution filters. This work showed an important improvement on the prior-art architectures 

increasing the depth to 16 weight layers [8]. This Transfer learning improves learning by 

transferring knowledge from related tasks that have been learned, i.e., transferring learned and 

trained parameters to a new model to help with its training. The architecture of deep learning 

models is complex and data dependent requiring much data to train them. Much COVID-19 data 

are published online, but the number of samples is small, making it difficult to train a deep learning 

model from start to finish. Transfer learning can facilitate the training of such a small sample 

dataset to achieve the research purpose [9]. Transfer learning would significantly improve the 

performance of learning. The main idea behind transfer learning is to borrow labelled data or 

knowledge extracted from some related domains to help a machine learning algorithm to achieve 

greater performance in the domain of interest [10]. 
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                                                              Figure 2.3: VGG16 architecture 

 

 

The contrast between the processes of conventional machine learning and transfer learning. As we 

can see in a conventional machine learning, it tries to learn each disparate task separately with 

different learning system, while transfer learning tries to extract the knowledge from previous 

source tasks to a target task where the latter has very few labelled data for supervised learning. 

[10] 
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                                Figure 2.4: Comparative Diagram between ML and Transfer Learning 

 

 

2.5 Convolutional layer  

Convolutional layers are important building blocks which become the backbone of CNNs. A 

convolution is the straightforward use of a filter to an information that results in an activation [11]. 

Convolutional is the first layer to extract features from an input image. The convolutional layer 

plays an essential role in how CNNs operate and the parameters of the layer revolve around the 

usage of learnable kernels. These kernels are usually small in spatial dimensionality, but spreads 

along the entirety of the depth of the input. When the data hits a convolutional layer, the layer 

convolves each filter across the spatial dimensionality of the input to produce a 2D activation map 

[12]. 
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                                                           Figure 2.5: Convolutional layer [11] 

 

2.6 Pooling layer 

Pooling layers aim to gradually reduce the dimensionality of the representation, and thus further 

reduce the number of parameters and the computational complexity of the model. The pooling 

layer operates over each activation map in the input, and scales its dimensionality using the 

“MAX” function. In most CNNs, these come in the form of max-pooling layers with kernels of a 

dimensionality of 2 × 2 applied with a stride of 2 along the spatial dimensions of the input. This 

scales the activation map down to 25% of the original size - whilst maintaining the depth volume 

to its standard size [12]. Max pooling outputs the maximum value of the elements in the portion 

of the image covered by the filter, while average pooling returns the average value. Max pooling 

is better at extracting dominant features and therefore considered more performance [13]. 
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                                                                       Figure 2.6: Max-pooling Layer [5] 

 

2.7 ReLU layer 

The Rectified Linear Unit or ReLU has become very popular in the last few years as activation 

function. This layer is placed always after a convolution layer. It computes the function There are 

some positive and negative aspects in using ReLU as activation function. Instead of using more 

complex functions such as tanh or sigmoid, ReLU simply make a threshold activation at zero. Its 

linear form for x>0 also performs a better propagation than a saturated non-linear function and so 

accelerates the training convergence using the stochastic gradient descent [8][13]. 

                                                      

                                                                        Figure 2.7: ReLU layer 

 

2.8 Dropout layer  

The dropout layer is useful to eliminate the overfitting of the data during the training process and 

it is applied to the fully connected layers at the end of a neural network. In practice it drops out 

randomly an amount of neuron units proportional to its setting parameter. For example, a dropout 

of 0.5 connects only 50% of the units and applying this during training makes that different units 

are trained randomly for each iteration. This can prevent to overfit the data. At inference, all units 

are present in the network, but the output weights are scaled by the probability of its presents 

during training, so in the example 0.5*wi. for other details take reference to the paper [8]. 
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                                                                Figure 2.8: Dropout Layer 

 

   

2.9 Softmax, Loss and Regularization  

The Softmax, also called multinomial logistic regression, is a math function that normalize the 

predicted scores of the classes. The scores are the output values of a convolutional neural network. 

They are placed in a vector form as outputs of the classifier, where each position corresponds to a 

class, and so in an inference test the maximum value of the score vector should correspond to the 

correct output class [8]. Softmax layer uses to classify the features extracted from the FC-layers. 

For the softmax layer which is the last dense layer, the unit number depends on the number of 

categories. The softmax layer outputs the multinomial distribution of the probability scores based 

on the classification performed [14]. 

 

2.10 Epoch 

An epoch is made up for one or more batches and one epoch is done when the whole dataset for 

every training sample is fed forward and backward through the neural network only once [13]. 
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Chapter 3 

Methodology 

 

The detection of COVID-19 chest X-Ray in this paper requires several stages, as shown in Figure 

3.2. The original X-ray image is preprocessed, including size adjustment, rotation, position 

translation, cross-cutting transformation, scaling, and flip processing at CNN and VGG16. The 

dataset is then divided into training and validation (test) sets. The preprocessed data are used to 

extract the modal feature information of the X-ray images through pretraining models by transfer 

learning, and this is input to the fully connected (FC) layer and trained after fusion. At CNN, 256 

convolutional layers included at first convolution layer. Then at VGG16, the first two layers of the 

FC layer contain 512 hidden units, followed by the ReLU activation function, and the last layer 

contains a hidden unit, followed by the sigmoid activation function, which is used to detect 

COVID-19. The performance of the system is evaluated by indices such as training accuracy, 

validation accuracy, precision, and loss score. 

 

3.1 Hardware and Software 

The thesis used own GPUs from Personal Computer. The processor used in the project is Intel core 

i7 8th generation processor, 8GB RAM with GPU Nvidia Geforce 4GB graphics. The deep learning 

framework used by TensorFlow with Keras API. All code was written by Python programming 

language at Jupyter notebook in Anaconda Navigator software.  

 

3.2 Dataset Collection 

Dataset collection is the first step to developing any Deep learning network. Usually COVID-19 

chest X-rays or CT scans designed to be used for computational analysis. We found a huge 

database of CT scan and X-Ray chest images from a website. Almost 17000 images of CT scan 

and X-Ray. But we only use dataset of X-Ray chest images to developing deep learning models. 
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We took 1322 images of chest X-Ray, where COVID-19 positive images are 720 and Normal 

images are 602. At figure 3.1:(a) is displaying few samples of COVID-19 positive and figure 

3.2:(b) is displaying few samples of Normal chest X-Ray of dataset. At table 3.1 represents label 

of COVID-19 positive is 0 and label of Normal images 1.  

The link of the website is https://data.mendeley.com/datasets/8h65ywd2jr/3  

 

                                     

                                                                                   (a) 

                                 

                                                       (b) 

                 Figure 3.1: Few samples of dataset (a) Chest X-Ray of Covid-19 (b) Chest X-Ray of Normal 

 

 

Table 3.1: Details of Chest X-Ray Dataset 

Class Name Label No. of images 

COVID-19 positive 0 720 

Normal 1 602 

Total  1322 

 

 

https://data.mendeley.com/datasets/8h65ywd2jr/3
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3.3 Data Preprocessing and Training of Parameter Settings 

We discuss and analyze the experimental results. Before training the model, we normalized the 

training and validation (test) datasets to decimal values between (0, 1) or (1, 1), so as to make 

training more convenient and faster. Since the experiment used small samples, the training and 

validation datasets were scaled. In the experiment, all images were rotated, zoomed, cut, and 

reversed in an anticlockwise direction to facilitate training. For supervised learning it is necessary 

to identify, instead, a set of examples consisting of appropriate inputs and corresponding outputs 

to be presented to the network so that it learns from them.  The parameter settings for preprocessing 

and training are shown in Table 3.2. Here we propose the use of the softmax outputs of our neural 

networks as estimators [15]. We let the training of our neural networks accomplish the non-trivial 

task of determining a highly-optimized estimator. 

 

 

 

Figure 3.2: The Overall architecture 

 

The overall architecture is at figure 3.1, first COVID-19 chest X-Ray images dataset collection 

including Normal images. The Data preprocessing is an important part where dataset path location, 

resize the images, target size, batch size, reshape, zoom range, shear range, shuffle if needed. In 

CNN, dataset was resized to (100x100), at VGG16 dataset input is fixed (224x224) for the model. 

The validation split, zoom range, shear range was same for each model but image size, shape vary. 

At Table 3.2, optimizer, zoom range, shear range, validation split and epoch same for all models. 
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Optimizer is Adam, zoom range 0.2, shear range 0.2, validation split 0.25, epochs 20. The batch 

size of CNN and VGG16 is same, that is 64. The loss of CNN is Sparse categorical cross entropy. 

The loss of VGG16 is Binary cross entropy. After data preprocessing, dataset training is the next 

step to training every models. The ultimate step is model evaluation. After dataset collection, 

preprocessing, model training the most important part is how model perform. Here we compare 

every model score of training accuracy, training loss and validation accuracy, validation loss.      

 

Table 3.2: Preprocessing and training phase parameters 

Parameters CNN VGG16 

Image size 100,100 224,224 

Batch 64 64 

Optimizer Adam Adam 

Loss Sparse categorical Cross entropy Binary cross entropy 

Epoch 20 20 

Validation Split 0.25 0.25 

Shear range 0.2 0.2 

Zoom range 0.2 0.2 

. 

 

 

3.4 Network Designing 

The most significant part of this thesis is Deep Neural Network designing for every individual 

model COVID-19 chest X-Ray dataset. In figure 3.3:(a) is the designing network of Convolutional 

Neural Network, 3.3:(b) is the deigning network for Transfer Learning Neural Network. 
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The designing of Convolutional Neural Network resized (100x100) input chest X-Ray images. 

Then adding first convolutional layer 2D is (256, 3x3). After Conv 2D layer a maxpooling layer 

and dropout layer inserted. The second Convolutional layer 2D is (128, 3x3). Then another 

maxpooling layer and dropout layer inserted. Now third convolutional layer 2D is (64, 3x3). A 

maxpooling and dropout layer inserted. Here comes the fourth convolutional layer 2D (32, 3x3). 

Then a maxpooling and dropout layer inserted. Then a flatten layer and dense layer inserted. After 

all types of convolutional layers then ReLU activation function and fully connected layer show the 

output COVID-19 or Normal. 

 

The designing of VGG16 (Transfer Learning) starting with fixed (224x224) input chest X-Ray 

images. Usually, the architecture of VGG16 is default and we just implemented it. After input, a 

pair of convolutional layers 2D are (64, 3x3). After Conv 2D layer a maxpooling layer layers 

inserted. The second pair of Convolutional layers 2D are (128, 3x3). Then another maxpooling 

layer inserted. Then third convolutional layer 2D is thrice (256, 3x3). A maxpooling layer inserted. 

The fourth convolutional layer thrice of 2D are (512, 3x3). Then a maxpooling inserted. The fifth 

convolutional layers 2D are also thrice (512, 3x3). Then a maxpooling layer inserted.  Then a 

flatten layer and dense layer inserted. After all types of convolutional layers then ReLU activation 

function and fully connected layer show the output COVID-19 or Normal. 

 

 

(a) 
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(b) 

 

Figure 3.3: (a) Design of CNN, (b) Design of VGG16 
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Chapter 4 

Results and Validations 

 

This project uses CNN, VGG16 models 1 to distinguish between COVID-19 and healthy people. 

These models were trained and tested under the same conditions (dataset, validation split and 

epoch). The performance of the network models was compared according to the accuracy, 

precision, recall, and score of the test set, which, according to Table 4.1, were training accuracy 

100%, 99.09%. respectively, for CNN model were higher for other single models and model 

VGG16 because a single deep learning network will lose some detailed feature information when 

extracting COVID-19 lung modal feature information, eventually leading less amount of 

classification results but almost equal to CNN. However, CNN model designed less amounts of 

layers, less memory and time consuming. This single model to extract the modal features of the 

COVID-19 lung image in parallel, which can effectively retain the detailed feature information of 

the image, for a better final classification effect than a single model.      

                

Table 4.1: Deep Neural Networks Covid-19 classification evaluation accuracy score 

Deep Neural 

Networks 

Training 

Accuracy 

Training loss Validation 

Accuracy 

Validation 

loss 

CNN 1.00 8.2418e-04 0.9456 0.1909 

VGG16 0.9909 0.0390 0.9424 0.1188 

 

 

4.1 CNN Model Summary and Results 

This model is based on the Convolutional Neural Network (CNN) used TensorFlow, Keras API 

with adjustments. There are four convolutional layers, after each is a max pooling layer, and four 

dropout layers with the dropout rate of 0.25 added to prevent overfitting. Then a flatten layer with 

512 units. After that, there is a dense layer with 2 units. The input image resized to (100x100) and 
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convolutional layer started with (256x256).  The batch size is 64 and the number of epochs is 20 

with a validation split 0.25. The optimizer is Adam and loss is sparse categorical binary cross 

entropy. The total trainable parameters were 395490 and non- trainable parameters were 0. 

 

Table 4.2: Summary of CNN Model 

Layer Type Output Shape Parameter 

Conv2D 1st (None, 98, 98, 256) 7168 

MaxPooling2D 1st (None, 49, 49, 256) 0 

Dropout 1st (None, 49, 49, 256) 0 

Conv2D 2nd (None, 47, 47, 128) 295040 

MaxPooling2D 2nd (None, 23, 23, 128) 0 

Dropout 2nd (None, 23, 23, 128) 0 

Conv2D 3rd (None, 21, 21, 64) 73792 

MaxPooling2D 3rd (None, 10, 10, 64) 0 

Dropout 3rd (None, 10, 10, 64) 0 

Conv2D 4th (None, 8, 8, 32) 18464 

MaxPooling2D 4th (None, 4, 4, 32) 0 

Dropout 4th (None, 4, 4, 32) 0 

Flatten (None, 512) 0 

Dense (None, 2) 1026 

Total Parameters: 395490 

Trainable Parameters: 395490 

Non-Trainable Parameters: 0 

 

                               

After summary of CNN, then the evaluation graph of CNN given below at figure 4.1:(a) and 

4.2:(b).  
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   (a) 

 

                                             (b) 

Figure 4.1: (a) Training loss and Validation loss, (b) Training Accuracy and Validation Accuracy 

 

The graph (a) of figure 4.1 represents training loss and validation loss of Convolutional Neural 

Network model. The graph’s vertical line starting with training loss 0.6801 and to ends up to last 

20th epoch 8.2418e-04. The horizontal line represents number of epochs. This graph shows that 

training loss and validation loss decreasing or increasing after every epoch. The training loss of 

this model 8.2418e-04 and validation loss of this model 0.1909. The graph (b) of figure 4.1 
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represents training accuracy and validation accuracy of this CNN model. The red line is training 

accuracy and blue triangular symbolic line is validation accuracy. This graph shows that training 

accuracy and validation accuracy decreasing or increasing after every epoch. The training accuracy 

of this model 1.00 and validation accuracy of this model 0.95. 

 

 

4.2 VGG16 Model Summary and Results 

This model is based on the VGG16 (Transfer learning) used TensorFlow, Keras API with 

adjustments. There are five convolutional layers, after each is a max pooling layer. First two 

convolution layers are paired. Next three convolutional layers are triply. Then a flatten layer with 

25088 units. After that, there is a dense layer with 2 units. The input layer started with (224x224), 

cause at VGG16 it is fixed size. The convolutional layer also started with (224x224). The batch 

size is 64 and the number of epochs is 20 with a validation split 0.25. The optimizer is Adam and 

loss is binary cross entropy. The total trainable parameters were 50178 and non-trainable 

parameters 14714688. 

 

Table 4.3: Summary of VGG16 Model 

Layer Output Shape Parameter 

Input Layer (None, 224, 224, 3) 0 

Conv2D   1st (None, 224, 224, 64) 1792 

Conv2D   2nd (None, 224, 224, 64) 36928 

Maxpooling2D (None, 112, 112, 64) 0 

Conv2D   1st (None, 112, 112, 128) 73856 

Conv2D   2nd (None, 112, 112, 128) 147584 

MaxPooling2D (None, 56, 56, 128) 0 

Conv2D   1st (None, 56, 56, 256) 295168 

Conv2D   2nd (None, 56, 56, 256) 590080 

Conv2D   3rd (None, 56, 56, 256) 590080 
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MaxPooling2D (None, 28, 28, 256) 0 

Conv2D   1st (None, 28, 28, 512) 1180160 

Conv2D   2nd (None, 28, 28, 512) 2359808 

Conv2D   3rd (None, 28, 28, 512) 2359808 

MaxPooling2D (None, 14, 14, 512) 0 

Conv2D   1st (None, 14, 14, 512) 2359808 

Conv2D   2nd (None, 14, 14, 512) 2359808 

Conv2D   3rd (None, 14, 14, 512) 2359808 

MaxPooling2D (None, 7, 7, 512) 0 

Flatten (None, 25088) 0 

Dense (None, 2) 50178 

Total Parameters: 14764866 

Trainable Parameters: 50178 

Non-Trainable Parameters: 

14714688 

 

 

 

After summary of VGG16, then the evaluation graph of VGG16 given below at figure 4.2:(a) and 

4.2:(b).  

                              

 



 

Page 22 of 29 
 

 

(a) 

 

(b) 

Figure 4.2: (a) Training loss and Validation loss, (b) Training Accuracy and Validation Accuracy 

 

The graph (a) of figure 4.2 represents training loss and validation loss of Transfer Learning Neural 

Network model. The graph’s vertical line starting with training loss 0.4909 and end up to 0.0390. 

The horizontal line represents number of epochs. This graph shows that training loss and validation 

loss decreasing or increasing after every epoch. The training loss of this model 0.0390 and 
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validation loss of this model 0.1188. The graph (b) of figure 4.2 represents training accuracy and 

validation accuracy of this transfer learning model. The red line is training accuracy and blue 

triangular symbolic line is validation accuracy. This graph shows that training accuracy and 

validation accuracy decreasing or increasing after every epoch. The training accuracy of this model 

0.9909 and validation accuracy of this model 0.9424. 

 

 

4.3 Validation of COVID-19 Detection 

In previous section we already evaluate all of the network models. In this section we validate the 

highest validation accuracy model. After evaluation, the highest validation accuracy we got from 

CNN and it was 94.5%. That means this model can detect 94.5% true positive and true negative. 

Other 5.5% probability of this model can detect false positive and false negative. COVID-19 

positive detection from this model of input X-Ray chest image of Figure 4.3. 

 
 

 

 

Figure 4.3: Test Input image 1 

 
 

from keras.preprocessing import image 

import numpy as np 

import random 

img_pred=image.load_img(r"F:\_Download\COVID-19 Dataset\X-

ray\COVID\1d435a4b.png",target_size=(100,100)) 

 

img_pred=image.img_to_array(img_pred) 

img_pred=np.expand_dims(img_pred, axis=0) 

 

rslt=model.predict(img_pred) 

 

print(rslt) 
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if rslt[0][0]>rslt[0][1]: 

    prediction="Covid Positive" 

     

else: 

    prediction="Normal" 

print(prediction) 

 

Output: 

[[1. 0.]] 

Covid Positive 

 

                                                                 

In this process, for predicting COVID-19 We import keras, numpy and a function called 

image.load_img to load Chest X-Ray image. The location of predicting image put into this function 

and here the target size of image (100x100). We already know these types of models can’t predict 

a raw image file. Then we convert image to array. The index [0][0] is for COVID-19 positive Chest 

images and index [0][1] is for normal chest images. If the value of index [0][0] is more than [0][1] 

then it will predict COVID-19 positive and else predict normal. At figure 18, index [0][0] was 

showing 1 and [0][1] was showing 0 and then it predicted COVID-19 positive. 

 

 

Figure 4.4: Test input image 2 

 

from keras.preprocessing import image 

import numpy as np 
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import random 

img_pred=image.load_img(r"F:\_Download\COVID-19 Dataset\X-ray\Non-

COVID\Non-COVID-19 (111).jpeg",target_size=(100,100)) 

 

img_pred=image.img_to_array(img_pred) 

img_pred=np.expand_dims(img_pred, axis=0) 

 

rslt=model.predict(img_pred) 

 

print(rslt) 

if rslt[0][0]>rslt[0][1]: 

    prediction="Covid Positive" 

     

else: 

    prediction="Normal" 

print(prediction) 

 

Output: 

[[0. 1.]] 

Normal 

                    

 

The input X-Ray chest image of figure 4.4, A normal (COVID-19 Negative) detection from an 

input chest X-Ray image. Here index [0][1] is more than [0][0]. Index [0][0] was showing 0 and 

[0][1] was showing 1. Then it predicted Normal (COVID-19 negative).  

 

                                                           

                                                         Figure 4.5: Test input image 3 

 

from keras.preprocessing import image 
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import numpy  

as np 

import random 

img_pred=image.load_img(r"F:\_Download\COVID-19 Dataset\X-ray\non-

COVID\non-COVID-19 (28).jpeg",target_size=(100,100)) 

 

img_pred=image.img_to_array(img_pred) 

img_pred=np.expand_dims(img_pred, axis=0) 

 

rslt=model.predict(img_pred) 

 

print(rslt) 

if rslt[0][0]>rslt[0][1]: 

    prediction="Covid Positive" 

     

else: 

    prediction="Normal" 

print(prediction) 

 

Output: 

[[1.0000000e+00 1.1630734e-11]] 

Covid Positive 

 

The validation accuracy of this CNN model better than other like VGG16. But it’s not 100% 

validate model, it’s validation accuracy 94.5%. There is a probability of 5.5% that sometimes it 

might be detect false COVID-19 positive or false COVID-19 negative, an example of input normal 

chest X-Ray image and it detected COVID-19 positive at input chest X-Ray image of figure 4.5.  
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Chapter 5 

Conclusions and Future Goal 

 

Chest X-rays are effective tools for diagnosing and evaluating COVID-19. We used three Deep 

Learning models to divide X-ray samples into two categories: COVID-19 positive and normal 

people. We applied these model architectures for feature extraction and classified categories. The 

results of Experiment showed that, under the same conditions of same dataset, CNN (Convolution 

Neural Network) is the best fit for classifying COVID-19 and normal people. It could significantly 

improve classification performance, with scores of training accuracy of 100% and validation 

accuracy 94.5%. The performance of VGG16 (Transfer Learning) was also good and almost equal 

to CNN, where scores of training accuracy 99.1% and validation accuracy 94.2%. We discussed 

and compared our research and recent work. The results showed that Convolution Neural Network 

is better than other models like VGG16 in classifying and detecting COVID-19 and normal people, 

can accurately classify them, and can assist doctors in the rapid detection of COVID-19. We 

concluded from these two aspects that CNN model is well distinguished between COVID-19 

patients and healthy people and in future it could help to reduce the workload of doctors in 

detecting COVID-19 cases. 
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Appendix 

 

i. Necessary Code for Convolutional Neural Network: 

import numpy as np 

import cv2 

import os 

import random 

import matplotlib.pyplot as plt 

DIRECTORY=r"C:\Users\HP\Desktop\Vgg16_Covid\Dataset" 

CATAGORIES=['COVID','Non-COVID'] 

data=[] 

 

for categories in CATAGORIES: 

    folder=os.path.join(DIRECTORY,categories) 

    label=CATAGORIES.index(categories) 

     

    for img in os.listdir(folder): 

        img=os.path.join(folder,img) 

        img_arr=cv2.imread(img) 

        img_arr=cv2.resize(img_arr,(100,100)) 

         

        data.append([img_arr,label]) 



 

ii 
 

random.shuffle(data) 

x=[] 

y=[] 

 

for features,label in data: 

    x.append(features) 

    y.append(label) 

x=np.array(x) 

y=np.array(y) 

x=x/255 

x.shape 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout,Flatten,Dense,Activation 

model=Sequential() 

model.add(Conv2D(256,(3,3),input_shape=x.shape[1:],activation='relu')) 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Dropout(0.25)) 

model.add(Conv2D(128,(3,3),input_shape=x.shape[1:],activation='relu')) 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Dropout(0.25)) 

model.add(Conv2D(64,(3,3),input_shape=x.shape[1:],activation='relu')) 



 

iii 
 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Dropout(0.25)) 

model.add(Conv2D(32,(3,3),input_shape=x.shape[1:],activation='relu')) 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(2,activation='softmax')) 

model.summary() 

model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy']) 

r=model.fit(x,y,epochs=20,validation_split=0.25) 

from matplotlib import pyplot as plt 

 

plt.plot(r.history['loss'],'r',label='training loss') 

plt.plot(r.history['val_loss'], '^:',label='validation loss') 

plt.xlabel('# epochs') 

plt.ylabel('loss') 

plt.legend() 

plt.show() 

 

plt.plot(r.history['accuracy'],'r',label='training accuracy') 

plt.plot(r.history['val_accuracy'], '^:',label='validation accuracy') 

plt.xlabel('# epochs') 

plt.ylabel('loss') 



 

iv 
 

plt.legend() 

plt.show() 

 

##Prediction 

from keras.preprocessing import image 

import numpy as np 

import random 

img_pred=image.load_img(r"F:\_Download\COVID-

19\Dataset\Xray\COVID\1d435a4b.png",target_size=(100,100)) 

 

img_pred=image.img_to_array(img_pred) 

img_pred=np.expand_dims(img_pred, axis=0) 

rslt=model.predict(img_pred) 

print(rslt) 

if rslt[0][0]>rslt[0][1]: 

    prediction="Covid Positive" 

else: 

    prediction="Normal" 

print(prediction) 

 

ii. Necessary Codes for VGG16 (Transfer Learning): 

import tensorflow as tf 

import os 
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import numpy as np 

base_dir=r"C:\Users\HP\Desktop\Vgg16_Covid\Dataset" 

IMAGE_SIZE=224 

BATCH_SIZE=64 

train_datagen=tf.keras.preprocessing.image.ImageDataGenerator( 

 

    rescale=1./255, 

    zoom_range=0.2, 

    horizontal_flip=True, 

    validation_split=0.25) 

 

validation_datagen=tf.keras.preprocessing.image.ImageDataGenerator( 

    rescale=1./255, 

    validation_split=0.25 

) 

train_generator=train_datagen.flow_from_directory( 

    base_dir, 

    target_size=(IMAGE_SIZE,IMAGE_SIZE), 

    batch_size=BATCH_SIZE, 

    subset='training' 

 ) 

validation_generator=validation_datagen.flow_from_directory( 

    base_dir, 
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    target_size=(IMAGE_SIZE,IMAGE_SIZE), 

    batch_size=BATCH_SIZE, 

    subset='validation' 

 ) 

from tensorflow.keras.layers import Input,Flatten,Dense 

from tensorflow.keras.models import Model 

from tensorflow.keras.applications.vgg16 import VGG16 

from tensorflow.keras.models import Sequential 

from glob import glob 

IMAGE_SIZE=[224,224] 

vgg=VGG16(input_shape=IMAGE_SIZE+[3],weights='imagenet',include_top=False) 

vgg.output 

for layer in vgg.layers: 

    layer.trainable=False 

folders=glob(r"C:\Users\HP\Desktop\Vgg16_Covid\Dataset\*") 

print(len(folders)) 

x=Flatten()(vgg.output) 

prediction=Dense(len(folders),activation='softmax')(x) 

model=Model(inputs=vgg.input,outputs=prediction) 

model.summary() 

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy']) 

epoch=20 
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history=model.fit(train_generator, 

                  steps_per_epoch=len(train_generator), 

                  epochs=epoch, 

                  validation_data=validation_generator, 

                  validation_steps=len(validation_generator) 

) 

 

from matplotlib import pyplot as plt 

plt.plot(history.history['loss'],'r',label='training loss') 

plt.plot(history.history['val_loss'],'^:',label='validation loss') 

plt.xlabel('# epochs') 

plt.ylabel('loss') 

plt.legend() 

plt.show() 

 

plt.plot(history.history['accuracy'],'r',label='training accuracy') 

plt.plot(history.history['val_accuracy'], '^:',label='validation accuracy') 

plt.xlabel('# epochs') 

plt.ylabel('loss') 

plt.legend() 

plt.show() 

 

 


