

STRUCTURAL DESIGN FOR A TENSTORIED RESIDENTIAL BUILDING WITH ROOFTOP COMMUNITY SPACE AT JATRABARI, DHAKA

Advisor

Dr. Md Naimul Haque
Associate Professor and Chairperson Department of Civil Engineering, East West University.

Contents

Background of the Project

07
Drafting

Objectives of the Study
\qquad
Analysis and Design

03
Review of the Documents Supplied by the Client

06
Verification of the Model

09 Conclusion

09
Submission Files

Background of the Project

A 10 Storied Framed RCC Residential Building of approximately 5 katha at Jatrabari, Dhaka including,
>3 units in each floor
> A parking space
$>$ A space for drivers in the ground floor
$>$ A fully functioning lift
$>$ A rooftop community space

Objectives of the Study

$>$ To investigate the site
$>$ To assess environmental impact (EIA)
$>$ To complete the design and analysis of the building with economy, safety, serviceability, and durability
$>$ Reinforcement detailing of the structural components
> Project planning
$>$ To prepare the Bill of Quantity (BOQ)

Review of the Documents Supplied by the Client

Super- Structure

> Maximum Ground Coverage (MGC)
> Setback
$>$ Floor Area Ratio (FAR)
> Minimum Occupancy Requirements

Cont. Review of the Documents Supplied

 by the Client| | Existing | Required according to Imarat Nirman Bidhimala-2008 | Remarks |
| :---: | :---: | :---: | :---: |
| Maximum Ground Coverage (MGC) | 77.78\% | 62.5\% | Not satisfactory |
| Setback | 1.88 m in south and no setback available in north. | 1.5 meter in front side, 2 meter in the rear side, and 1.25 meter in each side.
 4.5 m or 1.5 m from the plot boundary from the center of the existing road. | Not satisfactory |
| Floor area ratio (FAR) | 2600 sq. ft. | 1400 sq. ft. | Not satisfactory |
| Minimum
 Occupancy Requirements | For unit 1,
 Area of bedroom 1 and 2 are 31.09 m^{2} and $31.58 \mathrm{~m}^{2}$. Width of bedroom 1 and 2 are 2.5 m and 2.87 m . Area of bedroom 3 is $29.178 \mathrm{~m}^{2}$, and width is 2.9 m . | For each unit one room with $9.5 \mathrm{~m}^{2}$ area and minimum width of 2.5 m . other rooms, area should be $5 \mathrm{~m}^{2}$ and width should be 2 m | Satisfactory for all 3 units. |

Review of the Documents Supplied by the Client

Sub- Structure

> Number and location of boreholes for soil investigation
$>$ Depth of Borehole
> Ground Water Table (GWT)
> Factor of Safety (FS)

Cont. Review of the Documents Supplied

 by the Client| | Existing | Required | Remarks |
| :---: | :---: | :---: | :---: |
| Number and location of
 boreholes for soil
 investigation | 3 | 5 | Not satisfactory |
| Depth of Borehole- | At least one
 borehole with a
 depth of 30 m or
 100 ft. | Bore hole-02 has a depth
 of 30 m | Satisfactory |
| Factor of Safety (FS) | 2.5 | 2.5 | Satisfactory |

Feasibility Study

Site Visit

Cont. Feasibility Study

Purposes of the Site Visit

To observe-
> Topography of the site
$>$ Proximity of other buildings
> Most economical routes
> Availability of public utility services.

Site Condition

Cont. Feasibility Study

Drawbacks of the Site

> Narrow road
> Unavailability of lodging units for workers
> Untidy site

Cont. Feasibility Study

Favorable Aspects of the Site

- Easily accessible by rickshaws, private vehicles, pickups and CNGs
> Utility facilities
$>$ Storage space
> Local work force
$>$ Dumping zone

Proposed Storage Space

Cont. Feasibility Study

Environmental Impact Assessment

> Air Pollution
> Soil Pollution
> Water Pollution
> Noise Pollution

Cont. Feasibility Study

Health, Safety and Societal Impact Assessment

Health and Safety Impacts
> Breathing and Lung Problems
> Electric Shock and Burns
$>$ Hearing Deficiency to the Laborers

Societal Impacts

> Employment
> Economic Aspect
> Local Use
> Effects on Traffic Volume

Analysis and Design

Basic Considerations

Dead Load	Floor Finish (Roof and Floor Slab)	20 psf
	Wall load on beam	$0.51 \mathrm{k} / \mathrm{ft}$.
	Parapet wall load	$0.151 \mathrm{k} / \mathrm{ft}$.
	Partition wall load	44.7 psf
	Partition wall load (AB-46 Span)	51.407 psf
Live Load	Floor Slab	41.78 psf.
	Roof Slab (Community Space at Roof)	100.282 psf
Wind Load	Basic wind speed	210 mph .
	Exposure type	B
	Importance factor	1
	Wind pressure for X direction	1.282
	Wind pressure for Y direction	1.572
Earthquake Load	Soil profile type	SD
	Seismic zone factor	0.15
	Overstrength factor	8

Cont. Analysis and Design

Load Combinations

$>$ Dead load + Live load + Super imposed dead load.
> $1.4 \mathrm{DL}+1.7 \mathrm{LL}$.
>0.75 [1.4 DL+1.7 LL+1.7 EQ-x direction].
>0.75 [1.4 DL+1.7 LL+1.7 EQ-y direction].
>0.75 [1.4 DL + 1.7 LL + 1.7 Wind-x Positive].
$>0.75[1.4$ DL + 1.7 LL + 1.7 Wind-x Negative].
>0.75 [1.4 DL + 1.7 LL + 1.7 Wind-y Positive].
>0.75 [1.4 DL + 1.7 LL + 1.7 Wind-y Negative].

Cont. Analysis and Design

Boundary Condition

> Pile foundation fixed support.
Analysis Software
> ETABS

Cont. Analysis and Design

Check for Serviceability

$>$ Serviceability checking includes the storey drift and displacements due to the lateral load.

Displacement check:

Column		Beam		
Corner Column	Side Column	Middle Column	X- Direction	Y-Direction
$10 " \times 26 "$	$10 " \times 28 "$	$12 " \times 28 "$	$10 " \times 15 "$	$10 " \times 18 "$

Cont. Analysis and Design

Load Combinations	Allowable Deflection as per BNBC (inch)	Maximum deflection at the roof (x-direction) Inch	Maximum deflection at the roof (y-direction) inch	Remarks

Cont. Analysis and Design

Changing the sectional properties:

Column		Beam		
Corner Column	Side Column	Middle Column	X- Direction	Y-Direction
$15 " \times 30 "$	$15 " \times 36 "$	$12 " \times 28 "$	$12 " \times 28 "$	$12 " \times 30 "$

Cont. Analysis and Design

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Load Combinations } & \begin{array}{c}\text { Allowable } \\ \text { Deflection as per } \\ \text { BNBC } \\ \text { (inch) }\end{array} & \begin{array}{c}\text { Maximum } \\ \text { deflection at the } \\ \text { roof } \\ \text { (x-direction) } \\ \text { inch }\end{array} & \begin{array}{c}\text { Maximum } \\ \text { deflection at the } \\ \text { roof } \\ \text { (y-direction) } \\ \text { inch }\end{array} & \text { Remarks }\end{array}\right\}$

Cont. Analysis and Design

Deflection graph for S2 (DL+LL+EQ-x)

Deflection graph for S3 (DL+LL+EQ-y)

Cont. Analysis and Design

Deflection graph for S4 (DL+LL+Wind-x Positive)

Deflection graph for $\mathbf{S 5}$ (DL+LL+Wind-x Negative)

Cont. Analysis and Design

Deflection graph for S6 (DL+LL+Wind-y Positive)

Deflection graph for S6 (DL+LL+Wind-y Negative)

Cont. Analysis and Design

Story Drift Check

Story	Height	Drift S2 (DL+LL+EQ-x)	Drift (DL+LL+EQ-y)	Allowable Story drift	Remarks
Roof	110	0.000688	0.000487	0.1257	Safe
Story 9	100	0.000764	0.000581	0.1257	Safe
Story 8	90	0.000842	0.000669	0.1257	Safe
Story 7	80	0.000949	0.000752	0.1257	Safe
Story 6	70	0.001122	0.000821	0.1257	Safe
Story 5	60	00	0.001169	0.000869	0.1257
Story 4	40	0.001108	0.000888	0.1257	Safe
Story 3	30	0.000924	0.000758	0.1257	Safe
Story 2	20	0.001235	0.000587	0.1257	Safe
Story 1	10	SO	0.000665	0.1257	Safe
GF			Safe		

Verification of the Model

We have provided-
$>$ Reinforcement Area of Beam
> Dead Loads and Live Loads
> SFD and BMD for Dead Load and Live Load
> Lateral Load Analysis

Cont. Verification of the Model

Reinforcement Area of Beam

	ETABS (in ${ }^{2}$)	Hand Calculation (in^{2})	Comment
Left Support (Top)	1.08	1.023	5.278% variation only
Left Support (Bottom)	0.9952	1.06	6.511% variation only
Right Support (Top)	1.0454	1.06	1.397% variation only
Right Support (Bottom)	1.1	0.99	10% variation only
Mid Span (Top)	0.3827	0.351	8.283% variation only
Mid Span (Bottom)	0.4146	0.38	8.345% variation only

Cont. Verification of the Model

Live Load Beam SFD

Grid (3-ABDFG)	ETABS (\mathbf{k})	Hand Calculation (\mathbf{k})	Comment
3-AB	8.624	8.44	2.18% variation
3-BD	5.848	6.27	6.511% variation
3-DF	2.74	3.2	14.3% variation
3-FG	5.938	6.178	3.88% variation

Lateral Load Analysis

Grid (A-1346)	ETABS (k)	Hand Calculation (k)	Comment
$\mathbf{A - 1 3}$	0.999	1.08	7.5% variation

Drafting

Beam Column Layout

CORNER COLUMNS = 15"X30"
PERIPHERAL COLUMNS = 15 " X 36
MIDDLE COLUMNS = 12"X28"

Reinforcement Detailing of Slab

Cont. Drafting

Reinforcement Detailing of Stair

Cont. Drafting

Reinforcement Detailing of Beam

Cont. Drafting

Reinforcement Detailing of Column

cOLUMNS	CORNER COLUMNS (A1, A6, G2, G7)	COLUMNS	PERIPHERAL COLUMNS (A3, A4, B1, B6, D1, F2, F7, G3, G4)	COLUMNS	MIDDLE COLUMNS (B3, B4, D3, D4, F3, F4)
BASE TO 1ST FLOOR		BASE TO 1ST FLOOR		$\begin{aligned} & \text { BASE TO 2ND } \\ & \text { FLOOR } \end{aligned}$	
$\begin{aligned} & \text { 2ND TO 9TH } \\ & \text { FLOOR } \end{aligned}$		2ND TO ROOF		3RD TO 6TH FLOOR	
				7TH TO ROOF	

Cont. Drafting

Reinforcement Detailing of Pile Cap

Cont. Drafting

Pile Long Section Detail

Planning of the Project

Construction Scheduling

Bill of Quantity(BOQ)

Bill of Quantity	
Items of Works	Amount (Taka)
Foundation	Approximately sixty three lakhs
Ground Floor	Approximately seventy four lakhs
Typical Floor	Approximately ninety five lakhs
Roof	Approximately twenty one lakhs
Shuttering	Approximately two lakhs
Rates of man, material and mark-ups	Approximately ten lakhs

Total cost of this project will be approximately ten crores BDT.

Conclusion

> Some of the features comply with the rules and others do not
> Main challenge was to finalize suitable beam, column dimensions that cater to serviceability and economy
> Software results checked by manual calculation and found reliable with 10\% error acceptable
> High construction cost due to poor accessibility to trucks
$>$ Estimated project span 11 months
> Estimated total cost 103129002.6 BDT

Submission Files

Submission will contain-
> Report
> Logbook
> Meeting Minutes

THANK YOU

