FEASIBILITY STUDY of the R112 (Demra Staff Quarter to Rampra) ROAD WIDENING PROJECT

Submitted to the Faculty of East West University

by

Farjahana Yeasmin (2017-3-22-027)

Md. Fahim Al Kaiser Tohin (2018-1-22-015)

Tajree Amara Haque (2018-1-22-052)

Azadur Rahim Chowdhury Bilash (2018-3-22-036)

In Partial Fulfillment of the

Requirements for the Degree

of

BSc in Civil Engineering

Acknowledgment

We would like to thank our supervisor Dr. Md. Tawfiq Sarwar, East West University for his continuous help and support in completing this project. We would like to thank Sheikh Sohel Ahmed, Executive officer of RHD for providing us the valuable AADT data. Without this data, the report would not have been possible. We would like to thank Dr. Muhammad Mukhlesur Rahman for his continuous help in collecting the data. Finally, we would like to thank all of the respected faculties of the Department of Civil Engineering of East West University.

.....

••••••

Dr. Md. Naimul Haque, Chairperson

Dr. Md. Tawfiq Sarwar, Advisor

Table of Content

1. Leve	l of Service7	
2. Geor	metric Design	
3. Struc	ctural Design	
4. Tran	sportation Road Safety69	
5. Air (Quality Impact84	
6. Nois	e Impact94	
7. Trav	el Time Cost98	
8. Vehi	cle Operating Cost108	
9. Bene	fit Cost Ratio114	
10.	Decision on the Pavement116	
11.	Ethics120	
12.	Cross Section of the Selected Pavement123	
13.	BOQ124	
14.	Legal Issue and Water Resource132	

Executive Summary

The goal of this report is to find out if a road widening is needed or not. To find that out, level of service (LOS) is calculated in the very beginning. The LOS provides evidence as how long the current pavement can sustain and the expected lifetime of the planned widened road. As the level of service is found to be quite good for the future planned road, so the next task is to choose the type of pavement. Cost benefit analysis helps to choose the best possible pavement.

Introduction

Dhaka is known for having the highest population density, according to a report from Statista Research Department, 2022. Traffic congestion is a common scenario in Dhaka city. To reduce the day-to-day traffic congestion, road widening and construction of new roads are inevitable. However, the budget for this sector is limited. The road construction authorities like RHD, LGED, or city corporations cannot start widening any road due to the strict budget. That is why a feasibility study is required. A feasibility study compares multiple options based on service and budget, and forecasts these for a future time period, and provides the best possible solution.

The R112 is an important highway in Dhaka city. Each lane should be at least 12 ft wide to call it a lane. Following this definition, the R112 highway is a two-lane highway. This highway connects North Dhaka to two major highways in Bangladesh. One is N1, which connects Dhaka to Chattogram. Another one is N2 which connects Dhaka to Sylhet. The R112 is the only road that connects North Dhaka to these two major national highways. Due to it, the demand for this road is increasing exponentially.

The road was able to provide free flow speed even three to four years ago. Nowadays, traffic congestion can often be seen on this road. That is why this road was chosen for this feasibility study. The feasibility study will provide evidence as to if the road width is sufficient for upcoming days and if a road widening is implemented, whether it will be beneficial.

1.2 Problem Statement:

The level of service of the current road and the future anticipated road after widening will provide us with evidence of whether to widen the road. There are several ways to design pavement for a road. In this project, the pavement design is broadly classified into two categories, one is rigid pavement, another one is flexible pavement. Among rigid pavement, two types of pavement design are considered. Among flexible pavement, three types of pavement design are considered. The best possible pavement design will be chosen from the cost-benefit ratio of each pavement. The cost mainly comes from the construction cost, repair and rehabilitation cost, and reconstruction cost. The benefit comes from multiple criteria. Those come from two different types of cost. One is road user cost which includes travel time cost, and vehicle operating cost. The other type is environmental impact cost which includes noise

5

pollution cost, vehicle emission cost, and safety cost. Comparing all these costs in terms of current condition and anticipated widening condition, the benefit can be measured. Using these costs and benefits, a ratio will be calculated to find out the best possible pavement design for this road.

1.3 Objectives of the Study:

- Find out the level of service for current and future anticipated road
- Geometric design to find out the visible portion of the road
- Structural design to find out the thickness of each layer of the pavement
- Cost Analaysis for each type of pavement
- Benefit Analaysis for each type of pavement
- Choosing the best possible pavement based on the cost benefit analysis

Chapter 1

Level of Service

This method of finding Level of Service (LOS) is applicable for highway sections of at least 2 miles (3.22 km). Our road segment is 5.28 mile (8.508 km). So, this method to find LOS is applicable to our road segment.

Estimating FFS:

 $FFS = BFFS - f_{LS} - f_A$ Eq 1

EXHIBIT 20–5. ADJUSTMENT (f_{LS}) FOR LANE WIDTH AND SHOULDER WIDTH

		Reduction in	FFS (mi/h)	
Γ		Shoulder V	Vidth (ft)	
Lane Width (ft)	≥0 < 2	≥ 2 < 4	≥4 < 6	≥6
9 < 10	6.4	4.8	3.5	2.2
≥ 10 < 11	5.3	3.7	2.4	1.1
≥11 < 12	4.7	3.0	1.7	0.4
≥12	4.2	2.6	1.3	0.0

One lane = $3.65 \text{ m} (12 \text{ ft}) \ge 12 \text{ ft}$

Shoulder width = 2ft $\ge 2 < 4$ ft

From Exhibit 20-5, Adjustment for lane width and shoulder width, $f_{LS} = 2.6$

Access Points per mi	Reduction in FFS (mi/h)
0	0.0
10	2.5
20	5.0
30	7.5
40	10.0

EXHIBIT 20-6. ADJUSTMENT (fA) FOR ACCESS-POINT DENSITY

Total access points = 20

Total road length = 5.28 mile

Access point per mile =
$$\frac{20}{5.28}$$
 = 3.79 < 10

From Exhibit 20-6, Adjustment f_A for access point density = 2.5 mi/h

Base FFS, BFFS = 49.71 mi/h (80 km/h)

From Eq 1,

 $FFS = BFFS - f_{LS} - f_A = 49.71 - 2.6 - 2.5 = 44.61 \text{ mi/h}$

Demand Flow Rate:

Demand flow rate, $v_p = \frac{V}{PHF*fG*fHV}$ Eq 2

Assuming, Peak hour factor, PHF = 0.95

EXHIBIT 20-7.	GRADE ADJUSTMENT FACTOR (f _G) TO DETERMINE SPEEDS ON TWO-WAY AND
	DIRECTIONAL SEGMENTS

1		Туре о	f Terrain
Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
0-600	0-300	1.00	0.71
> 600-1200	> 300-600	1.00	0.93
> 1200	> 600	1.00	0.99

Passenger car per hour = $\frac{2916}{24}$ = 121.5 which is between 0-600

Range of directional flow = 60.75 which is between 0-300

Terrain level = Level

From Exhibit 20-7, f_G to determine speeds = 1

EXHIBIT 20-8. GRADE ADJUSTMENT FACTOR (f_G) TO DETERMINE PERCENTTIME-SPENT-FOLLOWING ON TWO-WAY AND DIRECTIONAL SEGMENTS

	5-3 -	Туре о	f Terrain
Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
0-600	0-300	1.00	0.77
> 600-1200	> 300-600	1.00	0.94
> 1200	> 600	1.00	1.00

From Exhibit 20-8, f_G to determine percent-time-spent-following = 1

	05		Type o	f Terrain
Vehicle Type	Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
Trucks, E _T	0-600	0-300	1.7	2.5
	> 600-1,200	> 300-600	1.2	1.9
	> 1,200	> 600	1.1	1.5
RVs, E _R	0-600	0-300	1.0	1.1
IL.	> 600-1,200	> 300-600	1.0	1.1
	> 1,200	> 600	1.0	1.1

EXHIBIT 20-9. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND RVS TO DETERMINE SPEEDS ON TWO-WAY AND DIRECTIONAL SEGMENTS

EXHIBIT 20-10.	PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND RVS TO DETERMINE PERCENT
TI	ME-SPENT-FOLLOWING ON TWO-WAY AND DIRECTIONAL SEGMENTS

	13a		Type of	f Terrain
Vehicle Type	Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
Trucks, E _T	0-600	0-300	1.1	1.8
	> 600-1,200	> 300-600	1.1	1.5
	> 1,200	> 600	1.0	1.0
RVs, E _R	0-600	0-300	1.0	1.0
	> 600-1,200	> 300-600	1.0	1.0
	> 1,200	> 600	1.0	1.0

For Trucks (including buses),

Range of two way flow rates = $\frac{10116}{24}$ = 421.5 pc/h within 0-600

Range of directional flow rate = 210.75 pc/h within 0-300

Type of terrain = Level

From Exhibit 20-9, E_T to determine speeds = 1.7

For RVs (including utility),

Range of two way flow rates $=\frac{276}{24} = 11.5$ pc/h within 0-600

Range of directional flow rates = 5.75 within 0-300

Type of terrain = Level

From Exhibit 20-9, E_R to determine speeds = 1.0

From Exhibit 20-10, Trucks, E_T to determine percent-time-spent-following = 1.1 From Exhibit 20-10, RVs, E_R to determine percent-time-spent-following = 1.0 Heavy vehicle adjustment factor, $f_{HV} = \frac{1}{1+PT(ET-1)+PR(ER-1)}$ Eq 3 Here, proportion of trucks in the traffic stream, $P_T = \frac{10116}{17074} = 0.59$ proportion of RVs in the traffic stream, $P_R = \frac{276}{17074} = 0.016$

Using Eq 3,

For determining speed, $f_{HV} = \frac{1}{1+0.59(1.7-1)+0.016(1-1)} = 0.71$

For determining percent-time-spent-following, $f_{HV} = \frac{1}{1+0.59(1.1-1)+0.016(1-1)} = 0.94$

Flow rate, $v = \frac{17074}{24} = 711.42 \text{ v/hr}$

Demand flow rate, $v_p = \frac{V}{PHF*fG*fHV} = \frac{711.42}{0.95 x1x 0.71} = 1054.74$ veh/hr

As the value of v_p (1682.83) is within than the flow rate range (600-1200), so the v_P should be used.

Two way flow rate = $0.5 v_P = 0.5 x 1054.74 = 527.37 pc/h$

Average travel speed, $ATS = FFS - 0.00776 v_P - f_{np}$ Eq 4

Adjustment for percentage of no-passing zones, $f_{np} = 0$

Using Eq 4, average travel speed, $ATS = 44.61 - (0.00776 \times 1054.74) - 0 = 36.43 \text{ mi/h}$

Percent time spent following, $PTSF = BPTSF + f_{d/np}$ Eq 5

BPTSF = $100 (1 - e^{-0.000879xvp}) = 100 (1 - e^{-0.000879x1054.74}) = 60.43$

No passing zone 0%

EXHIBIT 20-12. ADJUSTMENT (f_{d/np}) FOR COMBINED EFFECT OF DIRECTIONAL DISTRIBUTION OF TRAFFIC AND PERCENTAGE OF NO-PASSING ZONES ON PERCENT TIME-SPENT-FOLLOWING ON TWO-WAY SEGMENTS

		Increa	se in Percent Tir	ne-Spent-Follow	ing (%)	
			No-Passin	g Zones (%)		
Two-Way Flow Rate, v _p (pc/h)	0	20	40	60	80	100
		Direc	tional Split = 50	/50	i	
≤ 200	0.0	10.1	17.2	20.2	21.0	21.8
400	0.0	12.4	19.0	22.7	23.8	24.8
600	0.0	11.2	16.0	18.7	19.7	20.5
800	0.0	9.0	12.3	14.1	14.5	15.4
1400	0.0	3.6	5.5	6.7	7.3	7.9
2000	0.0	1.8	2.9	3.7	4.1	4.4
2600	0.0	1.1	1.6	2.0	2.3	2.4
3200	0.0	0.7	0.9	1.1	1.2	1.4

Directional Split = 50/50

No passing zone 0%

 $v_P \geq 800, \ f_{d/np} = 0$

No passing zone 0%

Percent time-spent-following, PTSF = 60.43+0 = 60.43%

Determining LOS:

LOS	Percent Time-Spent-Following	
А	≤ 40	
В	> 40–55	
С	> 55–70	
D	> 70–85	
E	> 85	

EXHIBIT 20-4. LOS CRITERIA FOR TWO-LANE HIGHWAYS IN CLASS II

Percent tie spent following is almost 60.43%

So, according to Exhibit 20-4, LOS is C.

	Pavement Design Life	Traffic Growth Rate
National Road	20 years	10% pa
Regional Road	20 years	7% pa

Table 2: Pavement Design Life and Traffic Growth Rates

Following the same procedure, future level of service was determined. In the A-Table 1, the AADT forecast is shown. For the forecast, 7% traffic growth rate was considered as mentioned in the RHD pavement guide.

Table 1.1: LOS on current two lane condition

Year	LOS
1	С
8	D
14	Е
20	F

A-Table 5 shows the level of service in the upcoming years. Some important years to note was provided in the figure. It showed, the level of service(LOS) will be worsen in near future. The current LOS is C. The LOS will be D in 10 years, and E in 14 years. Within 20 years, the LOS will be F.

As the LOS will get lower soon, a new road construction can be considered. For trial purpose, widening of two lane roadway was considered. Under that consideration, multilane highway procedure was followed to find out the LOS for the proposed road.

Table 1.2: LOS on expected four lane condition

Year	LOS
1	А
12	В
19	С

25	D
29	E
33	F

This table is a summery of A-Table 8. This table shows the important years to look at. As shown in the table, the level of service will become A if the road is widened. Having a LOS A is desirable in any road.

The level of service will become B in 12 years. LOS will become C in 19 years. As the figure 1 shows, RHD pavement design life is considered to be 20 years. After the expected design life, LOS C is excellent.

The LOS will turn to F after 33 years. The road will be able to accommodate the growing demand till 33 years. So, widening two more lane will be a good decision based on the LOS.

A-Table 1:	AADT Forecast
------------	---------------

Year	AADT Forecast	Year	AADT Forecast
1	18269.18	26	99154.74
2	19548.02	27	106095.6
3	20916.38	28	113522.3
4	22380.53	29	121468.8
5	23947.17	30	129971.6
6	25623.47	31	139069.7
7	27417.11	32	148804.5
8	29336.31	33	159220.9
9	31389.85	34	170366.3
10	33587.14	35	182292

11	35938.24	36	195052.4
12	38453.92	37	208706.1
13	41145.69	38	223315.5
14	44025.89	39	238947.6
15	47107.7	40	255673.9
16	50405.24	41	273571.1
17	53933.61	42	292721
18	57708.96	43	313211.5
19	61748.59	44	335136.3
20	66070.99	45	358595.9
21	70695.96	46	383697.6
22	75644.68	47	410556.4
23	80939.81	48	439295.3
24	86605.59	49	470046
25	92667.98	50	502949.2

A-Table 2: Truck Forecast

Year	Truck Forecast	Year	Truck Forecast
1	10824.12	26	58747.18
2	11581.81	27	62859.48
3	12392.53	28	67259.65
4	13260.01	29	71967.82
5	14188.21	30	77005.57
6	15181.39	31	82395.96
7	16244.09	32	88163.68
8	17381.17	33	94335.14
9	18597.85	34	100938.6
10	19899.7	35	108004.3
11	21292.68	36	115564.6
12	22783.17	37	123654.1
13	24377.99	38	132309.9

14	26084.45	39	141571.6
15	27910.36	40	151481.6
16	29864.09	41	162085.3
17	31954.57	42	173431.3
18	34191.39	43	185571.5
19	36584.79	44	198561.5
20	39145.73	45	212460.8
21	41885.93	46	227333.1
22	44817.94	47	243246.4
23	47955.2	48	260273.6
24	51312.06	49	278492.8

A-Table 3: RV Forecast

Year	RV Forecast	Year	RV Forecast
1	295.32	26	1602.829
2	315.9924	27	1715.027
3	338.1119	28	1835.079
4	361.7797	29	1963.535
5	387.1043	30	2100.982
6	414.2016	31	2248.051
7	443.1957	32	2405.415
8	474.2194	33	2573.794
9	507.4147	34	2753.959
10	542.9338	35	2946.736
11	580.9391	36	3153.008
12	621.6049	37	3373.719
13	665.1172	38	3609.879
14	711.6754	39	3862.57
15	761.4927	40	4132.95
16	814.7972	41	4422.257
17	871.833	42	4731.815

18	932.8613	43	5063.042
19	998.1616	44	5417.455
20	1068.033	45	5796.677
21	1142.795	46	6202.444
22	1222.791	47	6636.615
23	1308.386	48	7101.178
24	1399.973	49	7598.261
25	1497.971	50	8130.139

A-Table 4: Estimating FFS for current condition

Year	BFFS	fLS	fA	FFS
1	49.71	2.6	2.5	44.61
2	49.71	2.6	2.5	44.61
3	49.71	2.6	2.5	44.61
4	49.71	2.6	2.5	44.61
5	49.71	2.6	2.5	44.61
6	49.71	2.6	2.5	44.61
7	49.71	2.6	2.5	44.61
8	49.71	2.6	2.5	44.61
9	49.71	2.6	2.5	44.61
10	49.71	2.6	2.5	44.61
11	49.71	2.6	2.5	44.61
12	49.71	2.6	2.5	44.61
13	49.71	2.6	2.5	44.61
14	49.71	2.6	2.5	44.61
15	49.71	2.6	2.5	44.61
16	49.71	2.6	2.5	44.61
17	49.71	2.6	2.5	44.61
18	49.71	2.6	2.5	44.61
19	49.71	2.6	2.5	44.61
20	49.71	2.6	2.5	44.61

21	49.71	2.6	2.5	44.61
22	49.71	2.6	2.5	44.61
23	49.71	2.6	2.5	44.61
24	49.71	2.6	2.5	44.61
25	49.71	2.6	2.5	44.61
26	49.71	2.6	2.5	44.61
27	49.71	2.6	2.5	44.61
28	49.71	2.6	2.5	44.61
29	49.71	2.6	2.5	44.61
30	49.71	2.6	2.5	44.61
31	49.71	2.6	2.5	44.61
32	49.71	2.6	2.5	44.61
33	49.71	2.6	2.5	44.61
34	49.71	2.6	2.5	44.61
35	49.71	2.6	2.5	44.61
36	49.71	2.6	2.5	44.61
37	49.71	2.6	2.5	44.61
38	49.71	2.6	2.5	44.61
39	49.71	2.6	2.5	44.61
40	49.71	2.6	2.5	44.61
41	49.71	2.6	2.5	44.61
42	49.71	2.6	2.5	44.61
43	49.71	2.6	2.5	44.61
44	49.71	2.6	2.5	44.61
45	49.71	2.6	2.5	44.61
46	49.71	2.6	2.5	44.61
47	49.71	2.6	2.5	44.61
48	49.71	2.6	2.5	44.61
49	49.71	2.6	2.5	44.61
50	49.71	2.6	2.5	44.61
				1

			truck	RV two					
	Pass		two way	way flow					
PHF	car/hr	fg	flow rate	rate	ET	ER	РТ	PR	fHV
0.95	130.005	1	451.005	12.305	1.7	1	0.59248	0.016165	0.706846
0.95	139.1054	1	482.5754	13.16635	1.7	1	0.59248	0.016165	0.706846
0.95	148.8427	1	516.3556	14.08799	1.7	1	0.59248	0.016165	0.706846
0.95	159.2617	1	552.5005	15.07415	1.7	1	0.59248	0.016165	0.706846
0.95	170.41	1	591.1756	16.12934	1.7	1	0.59248	0.016165	0.706846
0.95	182.3387	1	632.5578	17.2584	1.2	1	0.59248	0.016165	0.894058
0.95	195.1024	1	676.8369	18.46649	1.2	1	0.59248	0.016165	0.894058
0.95	208.7596	1	724.2155	19.75914	1.2	1	0.59248	0.016165	0.894058
0.95	223.3728	1	774.9106	21.14228	1.2	1	0.59248	0.016165	0.894058
0.95	239.0089	1	829.1543	22.62224	1.2	1	0.59248	0.016165	0.894058
0.95	255.7395	1	887.1951	24.2058	1.2	1	0.59248	0.016165	0.894058
0.95	273.6413	1	949.2988	25.9002	1.2	1	0.59248	0.016165	0.894058
0.95	292.7962	1	1015.75	27.71322	1.2	1	0.59248	0.016165	0.894058
0.95	313.2919	1	1086.852	29.65314	1.2	1	0.59248	0.016165	0.894058
0.95	335.2223	1	1162.932	31.72886	1.2	1	0.59248	0.016165	0.894058
0.95	358.6879	1	1244.337	33.94988	1.1	1	0.59248	0.016165	0.944066
0.95	383.796	1	1331.441	36.32637	1.1	1	0.59248	0.016165	0.944066
0.95	410.6618	1	1424.641	38.86922	1.1	1	0.59248	0.016165	0.944066
0.95	439.4081	1	1524.366	41.59007	1.1	1	0.59248	0.016165	0.944066
0.95	470.1667	1	1631.072	44.50137	1.1	1	0.59248	0.016165	0.944066
0.95	503.0783	1	1745.247	47.61647	1.1	1	0.59248	0.016165	0.944066
0.95	538.2938	1	1867.414	50.94962	1.1	1	0.59248	0.016165	0.944066
0.95	575.9744	1	1998.133	54.51609	1.1	1	0.59248	0.016165	0.944066
0.95	616.2926	1	2138.003	58.33222	1.1	1	0.59248	0.016165	0.944066

A-Table 5: Finding fHV for current condition

0.95	659.4331	1	2287.663	62.41548	1.1	1	0.59248	0.016165	0.944066
0.95	705.5934	1	2447.799	66.78456	1.1	1	0.59248	0.016165	0.944066
0.95	754.9849	1	2619.145	71.45948	1.1	1	0.59248	0.016165	0.944066
0.95	807.8339	1	2802.485	76.46164	1.1	1	0.59248	0.016165	0.944066
0.95	864.3822	1	2998.659	81.81396	1.1	1	0.59248	0.016165	0.944066
0.95	924.889	1	3208.566	87.54093	1.1	1	0.59248	0.016165	0.944066
0.95	989.6312	1	3433.165	93.6688	1.1	1	0.59248	0.016165	0.944066
0.95	1058.905	1	3673.487	100.2256	1.1	1	0.59248	0.016165	0.944066
0.95	1133.029	1	3930.631	107.2414	1.1	1	0.59248	0.016165	0.944066
0.95	1212.341	1	4205.775	114.7483	1.1	1	0.59248	0.016165	0.944066
0.95	1297.205	1	4500.179	122.7807	1.1	1	0.59248	0.016165	0.944066
0.95	1388.009	1	4815.192	131.3753	1.1	1	0.59248	0.016165	0.944066
0.95	1485.17	1	5152.255	140.5716	1.1	1	0.59248	0.016165	0.944066
0.95	1589.131	1	5512.913	150.4116	1.1	1	0.59248	0.016165	0.944066
0.95	1700.371	1	5898.817	160.9404	1.1	1	0.59248	0.016165	0.944066
0.95	1819.397	1	6311.734	172.2063	1.1	1	0.59248	0.016165	0.944066
0.95	1946.754	1	6753.555	184.2607	1.1	1	0.59248	0.016165	0.944066
0.95	2083.027	1	7226.304	197.159	1.1	1	0.59248	0.016165	0.944066
0.95	2228.839	1	7732.146	210.9601	1.1	1	0.59248	0.016165	0.944066
0.95	2384.858	1	8273.396	225.7273	1.1	1	0.59248	0.016165	0.944066
0.95	2551.798	1	8852.533	241.5282	1.1	1	0.59248	0.016165	0.944066
0.95	2730.424	1	9472.211	258.4352	1.1	1	0.59248	0.016165	0.944066
0.95	2921.553	1	10135.27	276.5256	1.1	1	0.59248	0.016165	0.944066
0.95	3126.062	1	10844.73	295.8824	1.1	1	0.59248	0.016165	0.944066
0.95	3344.886	1	11603.87	316.5942	1.1	1	0.59248	0.016165	0.944066
0.95	3579.029	1	12416.14	338.7558	1.1	1	0.59248	0.016165	0.944066
L	1		· · · ·		I	1.4.	I		

A-Table 6: Finding Level of service (LOS) for current condition

Year	V	vp	ATS	PTSF	
1	761.2158	1133.599	35.81327	63.08063	С
2	814.5009	1212.951	35.1975	65.56801	С

3	871.516	1297.858	34.53862	68.04422	С
4	932.5221	1388.708	33.83363	70.49688	С
5	997.7987	1485.917	33.07928	72.91314	С
6	1067.645	1257.006	34.85563	66.87589	С
7	1142.38	1344.997	34.17282	69.34126	С
8	1222.346	1439.147	33.44222	71.77635	D
9	1307.911	1539.887	32.66048	74.16812	D
10	1399.464	1647.679	31.82401	76.50329	D
11	1497.427	1763.017	30.92899	78.76866	D
12	1602.247	1886.428	29.97132	80.95127	D
13	1714.404	2018.478	28.94661	83.0388	D
14	1834.412	2159.771	27.85018	85.01977	E
15	1962.821	2310.955	26.67699	86.8839	E
16	2100.218	2341.739	26.4381	87.23405	E
17	2247.234	2505.661	25.16607	88.94708	E
18	2404.54	2681.057	23.805	90.52629	E
19	2572.858	2868.731	22.34865	91.96702	E
20	2752.958	3069.542	20.79035	93.26685	F

A-Table 7: FFS for proposed multilane highway

Year	BFFS	fLW	fLC	fM	fA	FFS
1	49.71	0	1.8	0	0	47.91
2	49.71	0	1.8	0	0	47.91
3	49.71	0	1.8	0	0	47.91
4	49.71	0	1.8	0	0	47.91
5	49.71	0	1.8	0	0	47.91
6	49.71	0	1.8	0	0	47.91
7	49.71	0	1.8	0	0	47.91
8	49.71	0	1.8	0	0	47.91
9	49.71	0	1.8	0	0	47.91
10	49.71	0	1.8	0	0	47.91

		1	1			
11	49.71	0	1.8	0	0	47.91
12	49.71	0	1.8	0	0	47.91
13	49.71	0	1.8	0	0	47.91
14	49.71	0	1.8	0	0	47.91
15	49.71	0	1.8	0	0	47.91
16	49.71	0	1.8	0	0	47.91
17	49.71	0	1.8	0	0	47.91
18	49.71	0	1.8	0	0	47.91
19	49.71	0	1.8	0	0	47.91
20	49.71	0	1.8	0	0	47.91
21	49.71	0	1.8	0	0	47.91
22	49.71	0	1.8	0	0	47.91
23	49.71	0	1.8	0	0	47.91
24	49.71	0	1.8	0	0	47.91
25	49.71	0	1.8	0	0	47.91
26	49.71	0	1.8	0	0	47.91
27	49.71	0	1.8	0	0	47.91
28	49.71	0	1.8	0	0	47.91
29	49.71	0	1.8	0	0	47.91
30	49.71	0	1.8	0	0	47.91
31	49.71	0	1.8	0	0	47.91
32	49.71	0	1.8	0	0	47.91
33	49.71	0	1.8	0	0	47.91
34	49.71	0	1.8	0	0	47.91
35	49.71	0	1.8	0	0	47.91
36	49.71	0	1.8	0	0	47.91
37	49.71	0	1.8	0	0	47.91
38	49.71	0	1.8	0	0	47.91
39	49.71	0	1.8	0	0	47.91
40	49.71	0	1.8	0	0	47.91
	1		1	1	1	L

41	49.71	0	1.8	0	0	47.91
42	49.71	0	1.8	0	0	47.91
43	49.71	0	1.8	0	0	47.91
44	49.71	0	1.8	0	0	47.91
45	49.71	0	1.8	0	0	47.91
46	49.71	0	1.8	0	0	47.91
47	49.71	0	1.8	0	0	47.91
48	49.71	0	1.8	0	0	47.91
49	49.71	0	1.8	0	0	47.91
50	49.71	0	1.8	0	0	47.91

A-Table 8: Estimating Vp for proposed multilane highway

TLC	V	PHF	Ν	fHV	fp	vp
1.8	761.2158	0.95	4	0.769543	1	260.3104
1.8	814.5009	0.95	4	0.769543	1	278.5321
1.8	871.516	0.95	4	0.769543	1	298.0293
1.8	932.5221	0.95	4	0.769543	1	318.8914
1.8	997.7987	0.95	4	0.769543	1	341.2138
1.8	1067.645	0.95	4	0.769543	1	365.0987
1.8	1142.38	0.95	4	0.769543	1	390.6556
1.8	1222.346	0.95	4	0.769543	1	418.0015
1.8	1307.911	0.95	4	0.769543	1	447.2616
1.8	1399.464	0.95	4	0.769543	1	478.57
1.8	1497.427	0.95	4	0.769543	1	512.0699
1.8	1602.247	0.95	4	0.769543	1	547.9148
1.8	1714.404	0.95	4	0.769543	1	586.2688
1.8	1834.412	0.95	4	0.769543	1	627.3076
1.8	1962.821	0.95	4	0.769543	1	671.2191
1.8	2100.218	0.95	4	0.769543	1	718.2045
1.8	2247.234	0.95	4	0.769543	1	768.4788
1.8	2404.54	0.95	4	0.769543	1	822.2723

1.8 2572.858 0.95 4 1.8 2752.958 0.95 4 1.8 2945.665 0.95 4 1.8 3151.862 0.95 4	0.769543 1 0.769543 1 0.769543 1 0.769543 1	879.8314 941.4196
1.8 2945.665 0.95 4		941.4196
	0.769543 1	
1.8 3151.862 0.95 4		1007.319
	0.769543 1	1077.831
1.8 3372.492 0.95 4	0.769543 1	1153.279
1.8 3608.566 0.95 4	0.769543 1	1234.009
1.8 3861.166 0.95 4	0.769543 1	1320.39
1.8 4131.448 0.95 4	0.769543 1	1412.817
1.8 4420.649 0.95 4	0.769543 1	1511.714
1.8 4730.094 0.95 4	0.769543 1	1617.534
1.8 5061.201 0.95 4	0.769543 1	1730.761
1.8 5415.485 0.95 4	0.769543 1	1851.915
1.8 5794.569 0.95 4	0.769543 1	1981.549
1.8 6200.189 0.95 4	0.769543 1	2120.257
1.8 6634.202 0.95 4	0.769543 1	2268.675
1.8 7098.596 0.95 4	0.769543 1	2427.482
1.8 7595.498 0.95 4	0.769543 1	2597.406
1.8 8127.183 0.95 4	0.769543 1	2779.225
1.8 8696.086 0.95 4	0.769543 1	2973.77
1.8 9304.812 0.95 4	0.769543 1	3181.934
1.8 9956.148 0.95 4	0.769543 1	3404.67
1.8 10653.08 0.95 4	0.769543 1	3642.997
1.8 11398.79 0.95 4	0.769543 1	3898.006
1.8 12196.71 0.95 4	0.769543 1	4170.867
1.8 13050.48 0.95 4	0.769543 1	4462.827
1.8 13964.01 0.95 4	0.769543 1	4775.225
1.8 14941.49 0.95 4	0.769543 1	5109.491
1.8 15987.4 0.95 4	0.769543 1	5467.156
1.8 17106.52 0.95 4	0.769543 1	5849.856
1.8 18303.97 0.95 4	0.769543 1	6259.346

1.8	19585.25	0.95	4	0.769543	1	6697.501
1.8	20956.22	0.95	4	0.769543	1	7166.326

A-Table 9: Estimating Level of Service for proposed multilane highway

Year	ET	ER	PT	PR	fHV	D	
1	1.5	1.2	0.59248	0.016165	0.769543	5.43332	А
2	1.5	1.2	0.59248	0.016165	0.769543	5.813652	А
3	1.5	1.2	0.59248	0.016165	0.769543	6.220608	А
4	1.5	1.2	0.59248	0.016165	0.769543	6.65605	А
5	1.5	1.2	0.59248	0.016165	0.769543	7.121974	А
6	1.5	1.2	0.59248	0.016165	0.769543	7.620512	А
7	1.5	1.2	0.59248	0.016165	0.769543	8.153948	А
8	1.5	1.2	0.59248	0.016165	0.769543	8.724724	А
9	1.5	1.2	0.59248	0.016165	0.769543	9.335455	А
10	1.5	1.2	0.59248	0.016165	0.769543	9.988937	А
11	1.5	1.2	0.59248	0.016165	0.769543	10.68816	А
12	1.5	1.2	0.59248	0.016165	0.769543	11.43633	В
13	1.5	1.2	0.59248	0.016165	0.769543	12.23688	В
14	1.5	1.2	0.59248	0.016165	0.769543	13.09346	В
15	1.5	1.2	0.59248	0.016165	0.769543	14.01	В
16	1.5	1.2	0.59248	0.016165	0.769543	14.9907	В
17	1.5	1.2	0.59248	0.016165	0.769543	16.04005	В
18	1.5	1.2	0.59248	0.016165	0.769543	17.16285	В
19	1.5	1.2	0.59248	0.016165	0.769543	18.36425	С
20	1.5	1.2	0.59248	0.016165	0.769543	19.64975	С
21	1.5	1.2	0.59248	0.016165	0.769543	21.02523	С
22	1.5	1.2	0.59248	0.016165	0.769543	22.497	С
23	1.5	1.2	0.59248	0.016165	0.769543	24.07179	С
24	1.5	1.2	0.59248	0.016165	0.769543	25.75681	С
25	1.5	1.2	0.59248	0.016165	0.769543	27.55979	D
26	1.5	1.2	0.59248	0.016165	0.769543	29.48898	D

27	1.5	1.2	0.59248	0.016165	0.769543	31.55321	D
28	1.5	1.2	0.59248	0.016165	0.769543	33.76193	D
29	1.5	1.2	0.59248	0.016165	0.769543	36.12527	Е
30	1.5	1.2	0.59248	0.016165	0.769543	38.65403	Е
31	1.5	1.2	0.59248	0.016165	0.769543	41.35982	Е
32	1.5	1.2	0.59248	0.016165	0.769543	44.255	E
33	1.5	1.2	0.59248	0.016165	0.769543	47.35285	F

Chapter 2

Geometric Design

Type 1 : 11 m wide dual -	This is a three-lane carriageway as one half of a dual 3 - lane road.
Type 2 : 7.3 m wide dual -	This is a high standard carriageway as one half of a dual 2-lane road.
Type 3: 7.3 m wide single -	This is a high standard two-lane single carriageway.
Type 4 : 6.2 m wide -	This is the lowest economic cost option for a very wide range of traffic volumes. It allows most vehicles to pass with sufficient clearance to avoid the need to slow down or move aside.
Type 5 : 5.5 m wide –	This is a minimum width two-lane carriageway. Large vehicles can pass each other at slow speed. Appropriate only in constrained circumstances.
Type 6 : 3.7 m wide –	This is the standard single lane carriageway width, and is suitable for the more lightly trafficked Zila Roads. Vehicles traveling in opposing directions can pass each other by putting their outer wheels on the <i>paved</i> shoulder on either side of the pavement within optimum safe width.

According to RHD Geometric design manual, type 3 is a high standard two-lane single carriageway option. As the space available to widen the lanes are limited. The environmental impact was aimed to keep at a minimum. So, this type of road was chosen for the feasibility study.

Design type 3-7.3 m wide carriageway width of sectional element

Table 2.2 Typical Design Speeds

Design Type	Design Speed (km/h)						
10	Plain	Rolling	Hilly				
1-2	80 - 100/	80	- 1				
(3)-	80	65	50				
4	65	50	40				
5-6	50	40	30				

According to table 2.2, design type level 3 and plain terrain should have 80 km/hr velocity. So, this speed limit was chosen for this study.

Trucks are usually 4m high. However, there can be transports of abnormal loads crossing this road. So, a vertical clearance of 5.7m headroom was chosen. This headroom was ensured throughout the length of the road.

Lateral clearance is suggested to be 1 meter in the RHD manual. As there are only waterbody on the side of the road, so lateral clearance is available. Tree plantation was chosen throughout the length of road. However, trees will not be provided in places where there are horizontal curves.

According to RHD manual, standard cross-fall of 3% was chosen for the curved carriageways.

The RHD manual suggests to place the road pavement 1m above the flood level. However, the goal of this extended lanes is to work adjacently to the existing two lanes. So, the flood level calculation is excluded for now. The existing road was built only 9 years ago. So, the same elevation of the extended lanes is considered to be adequate.

											NMT				
Heavy truck	Medium truck	Small truck	Large bus	Medium bus	Micro bus	Utility	Car	Auto rickshaw	Motor cycle	Bi cycle	Cycle	Cart	Total	Total NMT	Percentag e of NMT
606	4258	2204	89	1199	1764	276	2916	1767	1912	17	70) (17078	8	7 0.509427

According to the AADT data, only 0.5% of the vehicles are non-motorized. So, additional nonmotorized lane (NMT) was not provided.

Carriageway = 7.3m

Shoulder paved = 1.5m

Verge = 3.0m

Crest = 16.3 m

Design capacity

Maximum capacity: 2100PCU/hr

Assumed NMT/MV ratio = 0.005

Assuming PCE values for,

bicycle = 0.5

Rickshaw = 2

Car = 4

NMT = $(17 \times 0.5) + (70 \times 2) + (4 \times 0)$

= 148.5 PCU/hr

As NMT 148.5 PCU/hr < 400 PCU/hr

So separate NMT is not required

Horizontal Curves:

Design Speed (km/h)	Single Lane Roads (3.7m carriageway	Carriage	e Single way Road 7.3m carr	Dual Carriagewaý Roads (2 x 7.3)	
	ISD	SSD	ISD	OSD	ISD
30	120	35	120	500	
40	250	65	250	1000	<u>u</u>
50 -	500 🖌	120	500	2000	500
65	1000	(250))	/ 1000	4000	1000
80 - 2	-	1500/	2000	8000	2000
100	-	1000	4000		4000

Table 5.1 Minimum Curve Radii (meters)

According to table 5.1

Assume design speed = 80 km/h

For two lane – single carriageway roads 6.2 an

SSD= 500

ISD = 2000

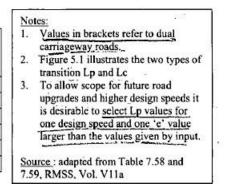
OSD = 8000

Curves were selected according to SSD as such curves are clearly non-overtaken. So, finalized curve radii is 500 m.

Design Speed				Sigl	ht Distan	ice (m)		2.11				
(km/h)	25	30	45	60	90	(120-	180	250	360			
		Curve Radii (m)										
	20	35	65	120	250	500-	1000	2000	4000			
		N.	linimur	n Cunar	alonatio	Denting	mont /0/					
				_		n Réquire	aneire (7	o)				
30	7	5	3	Nil	Nil	-	- -	-	· -			
	7			_		- Nil	- -	-	• •			
30	7 - -	5	3	Nil	Nil	-	- - Nil	•) - - -	-			
30 40	7	5	3	Nil 3	Nil Nil	- Nil	-	- - - Nil	•• 			
30 40 50	7	5	3	Nil 3 5	Nil Nil 3	- Nil	- - Nil	-				

Table 5.2	Minimum	Super-elevation	Requirements	(%)

According to table 5.2,


For curve radii 500 m

Design speed = 80 km/hr

Minimum Super elevation requirement = 5%

Table 5.3 Minimum Design Transition Length (m)

Design	Su	Straight		
Speed	7%	5%	3%	Transition
(km/h)	Plan Tra	nsition L	ength (m) Lp	Length (m) Lc
30	25	15	10	10
40	35	20	13	13
50	45 [55]	25 [35]	15 [20]	15 [20]
65	55 [65]	35 [45]	20 [25]	20 [25]
80	65 [75]	45 [55]	√25 [35]	25 [35]
100	75 [95]	55 [65]	35 [45]	35 [45]

From table 5.3,

For Design speed 80 km/hr and super elevation 5%,

Plan transition length, Lp = 45m

Straight transition length, Lc = 55m

Radius (m)	Single Lane Roads	Two Lane	Roads	Notes: 1 For transitioned curves half the widening
	3.7m wide	6.2m wide	7.3m wide	is applied on each side of the centerline,
15	1.8	2.4 /	2.1	and it is developed uniformly over the
16 to 20	1.5	2.1	1.80	length of the transitions curve.
21 to 35	1.2	1.8	1.5 V	2 For curves without transitions the widening is applied on the inside of the
36 to 65	0.9	1.5	1.2	curve, and it is developed uniformly over
66 to 120.	0.6	1.2	0.9	a 20m length leading up to the start of th
121 to 200	Nil	0.9	0.6	circular curve. Values in brackets refer to
201 to 350	Nil	0.6	Nil	dual carriageway roads.
351 to 600	Nil	0.6	Nil	Source : adapted from Table 7.56,
601 to 1000	Nil	Nil	Nil	Vol. V11a, RMSS

/ Fable 5.4 Extra Carriageway Widths on Curves (m)

Table 5.4

Extra carriageway width on curves for 500 m radius and 7.3 m wide two lane road is = Nil.

So, no extra carriageway width on curve is required.

Vertical curves

Parabolic vertical curve, K=L/A

Here,

K= length required for a 1% change of grade

L= length of vertical curve

A = change of grade in %

Design Speed (km/h)	Single Lane Roads (3.7m carriageway)	Two Lan Roads (6.2 and 2	Dual Carriageway Roads (2 x 7.3)		
/	ISD	SSD	ISD	OSD	ISD
30	. 4	2 .	4	18	
40	9.	4 ,	19	35	-
50	18	19.	(18.)	,70	18
/ 65	35	181	(35)	/ 140	(35)
(80)	-	35/1	70	270	70.
100	(m)	70	140	540	140

Table 6.1 Minimum Vertical Curve "K" Values

From table 6.1

For design speed 80 km/h

K=35 for SSD

Design Speed (km/h)	Maximum Change of Grade Permitted Without Use of a Vertical Curve	Minimum Length of Vertical Curve for Good Appearance (m)
30	1.5	15 -
40	- 1.2	20
50	. 1.0	/30
/65	0.8	(40)
. 80	0.6	50
100	0.5	60

From table 6.2 Vertical Curve Appearance Criteria

Let, A1 = 5%

A2 = - 5%

.'. A = 5% - (-5%) = 10%

L = 35 x 10 = 350 m > 50 m

From table 6.2, L is acceptable

A curve length of 350m is selected

Table 6.3 Maximum Gradients

Design Type	Design Speed	Maximum Gradient %				
1	18	Plain	Rolling	Hilly		
All Design Type	All Design Speeds	0-3	1 - 5	(1-7		

From table 6.3, gradients plain for all design type and speed, maximum gradient in plain terrain should be = 0-3%

Stopping sight distance

$$tr = 2.5s$$

V= 80

Reaction distance, dr = $0.278 \times 80 = 22.24$ m

a = 3.4 m/s2

V=80km/h

Braking distance, $dv = 0.039 \times (30^{2}/3.4) = 10.32m$

.'. Stopping slight distance = (20.85 + 10.32) = 31.17m

Stopping distance on grades,

 $d=0.278.t.v + \{v^2/254(a/9.81+-h)\}$

=($0.278 \times 2.5 \times 30$) +{(30)^2/254(3.4/9.81 + -3/10)}

=30.26 (for downgrade) And , 32.04. (for upgrade)

 \approx 31m (for downgrade)

 \approx 33m (for upgrade)

Horizontal Alignment:

Max side friction, $f = (v^2/127R) - e/100$

=0.14

Determination of Curve radius:

The radius of curvature, R, is the reciprocal of the curvature.

Curve radius = $\frac{a^2 + h^2}{2h}$

Now for radius of curvature R1 = $\frac{1077.78^2 + 213.24^2}{2*213.24} = 2830.34$ m

Where, L1 = 2155.56

$$H1 = 213.24$$

A1 = L1/2

For radius of curvature R2 = $\frac{1591^2 + 556^2}{2*556} = 2554.33$ m

Where, L2 = 3182

$$H2 = 556$$

A2 = L2/2

Fig 2.2 : Location of curvature 2

For radius of curvature $3 = \frac{1636^2 + 346^2}{2*346} = 4041 \text{m}$

Where, L3 = 3272

$$H3 = 346$$

A3 = L2/2

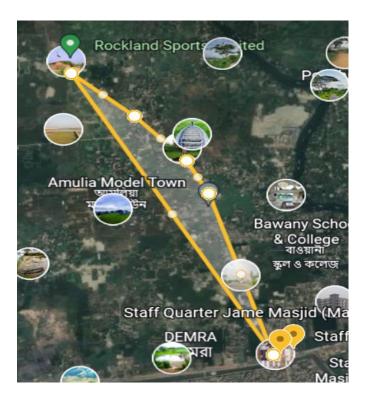
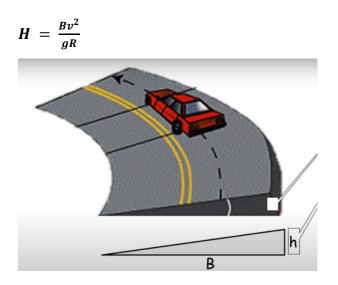


Fig 2.3: radius of curvature 3

Fig 2.4 : total radius of curvature taken

Super-elevation : The rise given to the outer edge of a road on curves is known as super elevation. When a vehicle passes over a curved path centrifugal force acts on the vehicle. The centrifugal force tends to push the vehicle off the road. It is resisted by the friction between the tires and the road. If the frictional force is not sufficient the vehicle skids sideways. To avoid this outer edge of the road at the horizontal curve rose above the inner edge.


Why Super-elevation is needed?

- Super elevation on curves helps keep vehicles on the road.
- Super elevation increases the stability of the fast moving vehicles on horizontal curves.
- Super elevation reduces the accidents in curves (skidding, toppling).
- On super elevated curves the vehicles need not necessarily to slow down.

Fig 2.5 : Super-elevation

Super-elevation Calculation :

Where

- V = speed of vehicle = 80km/hr = 22.22 m/s
- R = Radius of curvature
- g = Acceleration = $9.8 m/s^2$
- B = Breath of the road

For R1,

$$H1 = \frac{7.3 \times 22.22^2}{9.8 \times 2830.34} = 0.13 \text{ m}$$

For R2,

$$H2 = \frac{7.3 \times 22.22^2}{9.8 \times 2554.33} = 0.14 \text{ m}$$

For R3,

$$H3 = \frac{7.3 \times 22.22^2}{9.8 \times 4041} = 0.1 \text{ m}$$

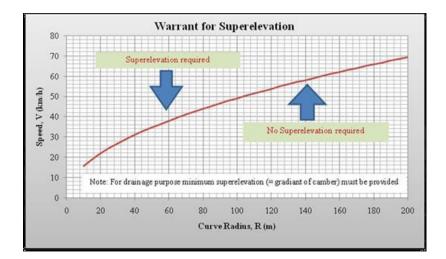


Fig 2.6: Warrant for Super-elevation

From the above calculation of curve we can say that we need to provide super-elevation in our road construction.

Extra widening :Extra widening refers to the additional width of carriageway that is required on a curved section of a road over and above that required on a straight alignment.

When necessary?

In general extra width is provided on the horizontal curves when the radius is less than 300 m.

From calculation we can say that our radius of curvature value is greater than 300 m for that we don't need to provide extra width

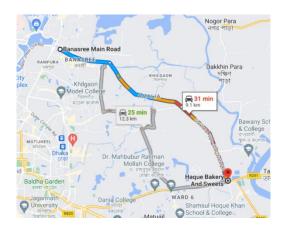
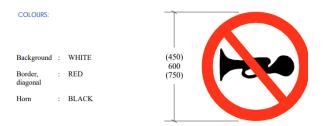


Fig 2.7: Study Area

Traffic Sign: Technical guidance on the design, application, location and production of traffic signs in Bangladesh is offered in the Traffic Signs Manual. Any object, gadget, line, or mark on the road that serves to convey limitations, warnings, or other information to road users or a certain class of road users is referred to as a "traffic sign." any kind of restrictions, alerts, or information. Consequently, the phrase "traffic sign" covers not only signs on posts, but also traffic lights, road studs, delineators, road markings, and other traffic management tools. **General Principles of Traffic Signs:**

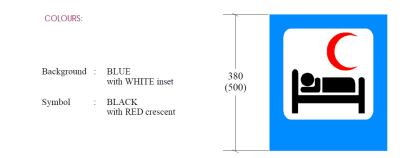

Each traffic sign must fulfill the following criteria in order to be effective:

- Satisfy a demand;
- Command attention;
- Be legible;
- Express a simple, clear meaning at a glance;
 Be positioned to allow for adequate response time from drivers;
- Command respect.

Signs must only be utilized when absolutely necessary. Drivers get annoyed when signs are used incorrectly or unnecessarily, and when this happens repeatedly, drivers lose respect for the sign and it loses its effectiveness when it is actually needed.

Use of traffic sign in our study area :

From the map we can see there is a hospital where we can use the sign "NO USE OF HORN"

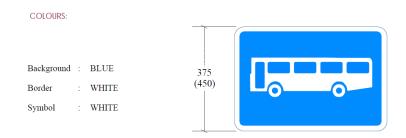


Description: The use of vehicle horns is forbidden, as shown by this circular sign with a red diagonal running from top left to bottom right over a representation of a horn.

Application: This sign is placed outside hospitals and other places where cars are forbidden to honk their horns.

Location: The sign should be posted on the left side of the road at the start of the restriction and again after each significant intersection.

We can also use the sign of "Hospital" which is information sign C9.



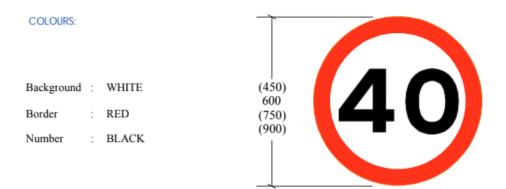
Description:

Square sign with a bed symbol, a red crescent above, and an optional panel The distance to the hospital is indicated below with an arrow or text, respectively.

Application: This sign directs drivers to a hospital's location.

Location: The sign should be placed next to the hospital and on the same side of the street. Another sign we can provide on this road is "BUS STOP" which is information sign C21.

DESCRIPTION:


A rectangular sign with a bus icon heading left.

Application: This sign is placed to show where a bus stop is located. The sign is especially helpful at bus bays because it deters other drivers from parking there in addition to showing passengers where the bus stop is.

Location: Normally, the sign should be put up near where the buses stop.

Where a bus bay exists, though, it may be situated at the beginning of the bay.

As there is a Bazar in that road for that there should be a speed limit in that particular place which can be defined as "Special Speed Limit" which is in Regulatory Sign No A26

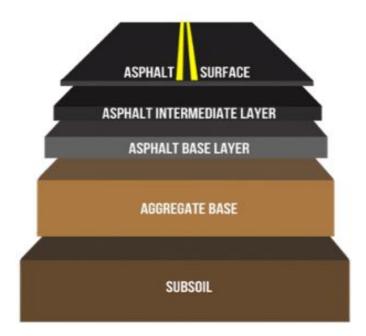
Description:

Circular sign with numbers indicating the speed limit.

APPLICATION:

The maximum speed that is permitted on this road is given by this traffic sign.

LOCATION:


The sign should be positioned on both sides of the road, for maximum impact. The sign should be repeated after every major junction and about every 400 meters between junctions.

These are the traffic signs we can use in our study area.

Chapter 3 Structural Design

3.1 Design analysis for flexible pavement

Flexible pavements are ashphalt making roads where asphalt make roads less susceptible to damage to bends or deflects of roads due to traffic load and it require fewer repairs over time. A flexible pavement structure is composed of several layers of different materials which together enable the road to accommodate this flexing.

Figure: layers of flexible pavement

Sub soil: sub soil or sub grade mainly consist of natural elements like sand. This part needs proper treatment so that road gets proper strength.

Aggregate base: aggregate base or subgrade base consist of stone. It is upper part of sub soil part.

Asphalt base layer: this part consist of granular materials like sand, crushed or uncrushed gravel and crushed or uncrushed slag.

Surface course: this part is the most upper part of a flexible pavement. This part consist of asphalt.

3.1.1 Design of flexible pavement based on RHD manual:

California Bearing Ratio (CBR):

It's measured as the strength of the subgrade of the road. The strength of every layer is expressed as CBR for that proper material should be used and also compaction is needed to get the expected CBR value for every layer.

	Pavement Design Life	Traffic Growth rate
National Road	20 years	10% pa
Regional Road	20 years	7% pa

Determining Cumulative ESAs over the Pavement Design Life:

A standard shaft is taken to be 8,160kg.Supported by shaft load studies antecedently undertaken in Bangladesh

Vehicle Type	Equivalence Factor
Large truck (dual axle)	4.8
Medium truck(single axle)	4.62
Small truck	1.0
Large Bus	1.0
Mini Bus	0.5

 Table 3.2: Vehicle Equivalence Factors

To get the additive ESA loading over the planning lifetime of the road the present annual ESA loading ought to be increased by one of the subsequent factors.

Road Type	Factor
National Road	57.3
Regional Road	41.0

Table 3.3: Cumulative Growth Factors

Cumulative ESA= $\frac{(1+r)^n - 1}{r}$

Where r = annual traffic growth rate

n = design life in years

Note: for national roads r = 10% and foe regional roads r = 7%

Table 3.4:	Calculating	Total ESA
-------------------	-------------	-----------

Vehicle Tpye	Existing	ESA Factors	ESA/day	Annual ESAs
	Flow/day			
Large truck	606	4.8	2909	1061785
Medium truck	4258	4.62	19672	7180280
Small truck	2204	1.0	2204	804460
Large bus	85	1.0	85	31025
Mini bus	1199	0.5	600	219000
Car	2916	0.5	1458	532170
Motor cycle	1912	0.5	956	348940

CNG	276	0.5	138	50370
Micro	1764	0.5	882	321930
			Total	10549960

Cumulative ESAs = 10549960 * 41

= 432548360

=432.54 million ESAs

The estimated cumulative ESAs are then used to determine the various pavement layers from the following design chart:

mm	Surfacing (mm)	Roadbases (Select one			Sub-bases Subgrade		
	Asphalt	Asphalt	Cement-		ar Base	easg.aac	021170	
Traffic	Wearing	Base-	bound	orana		5	8 - 25	> 25
ESA (mill)	Course	Course	Granular	Туре І	Type II			
60 - 80	40	155	1	N/A	N/A	300	150	0
40 - 60	Î	140	8	1	1	Ĩ	Ĩ	Í
30 - 40		125	<u>vi</u>	•	+	•		
25 - 30		110	ad	250	300	250		
17 - 25		105	gu			★		
15 - 17		95	SSI			200		
11 - 15		90	q	•	•			
9 - 11		80	for	200	250			
7 - 9		70	Ц					
6 - 7		65	SR SR					
5 - 6		60	BI					
4 - 5		55	5	•	•	•		
3 - 4		45	er	175	200	175		
< 3	•	35	Refer to BRRL for design advice	150	175	150	•	•
CBR of o	aranular bas	se type I is mi	n. 80%	N/A. = not	applicable			
		e type II is m						
	-	aterial is 25%						

Table 3.1: Thickness Design Table for Flexible Pavements

From the above table we can see that the highest value of ESA is 60 - 80 million ESAs but we got the higher than this for that we cannot use this method for high traffic volume because this method is applicable for low traffic volume.

3.1.2 AASHTHO method for flexible pavement

Figure below is a pavement system with the resilient module, layer co efficient and drainage coefficient as shown. If predicted ESAL =18.6 $x|\dot{0}^6$, R=95%, s.= 0.35 and Δ PSI= 2.1, select thickness D1, D2, D3

$E_2 = 250,000psi a_2 = 0.12 m_2 = 1.2 D_1$

Sol: calculation of D1, here Mr= 250000psi

We have equation: $\log(W18) = Zr^* S + 9.36 \log(SN + 1) - 0.20 + \frac{\log(\frac{\Delta PSI}{4.2 - 1.5})}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log((M_R) - 10.20)$

8.07

here, $w_{18}=18.6$ ^x10⁶ and for R= 95 %, ZR = -1.645, So = 0.35 and APSI=2.1 then putting these values,

we get,

 $\log(18.6 \ ^{x}10^{6})$

 $= -1.645 \ge 0.35 + 9.36 \log(SN_1 + 1) - 0.20 + + \frac{\log\left(\frac{2.1}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log((250000) - 8.07)$

So, SN1=1.420

 $D1 = \frac{SN_1}{a_1} = \frac{1.420^-}{0.36} = 3.944$ inches

calculating D2: here $M_R = 100000$ psi

We have equation: $\log(W18) = Zr^* S_{+} 9.36 \log(SN_{+1}) - 0.20 + \frac{\log(\frac{\Delta PSI}{4.2-1.5})}{0.40 + \frac{1094}{(SN_{+1})^{5.19}}} + 2.32 \log((M_R) - 10.20)$

8.07

here, $w_{18}=18.6$ ^x10⁶ and for R= 95 %, ZR = -1.645, So = 0.35 and APSI=2.1 then putting these values,

we get,

 $\log(18.6 \ x10^6)$

 $= -1.645 \ge 0.35 + 9.36 \log(SN_1 + 1) - 0.20 + + \frac{\log\left(\frac{2.1}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log((100000) - 8.07)$

So, SN2= 2.0359

 $D2 = \frac{SN_2 - a1*D1}{a2*m2} = \frac{2.0359 - 0.36*3.944}{0.12*0.12} = 4.27 \text{ inches}$

calculating D3: here $M_R = 5000$ psi

We have equation: $\log(W18) = Zr^* S + 9.36 \log(SN+1) - 0.20 + \frac{\log(\frac{\Delta PSI}{4.2-1.5})}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log((M_R) - 10.20)$

8.07

here, $w_{18}=18.6$ ^x10⁶ and for R= 95 %, ZR = -1.645, So = 0.35 and APSI=2.1 then putting these values,

we get,

 $\log(18.6 \ x10^{6})$

 $= -1.645 \ge 0.35 + 9.36 \log(SN_1 + 1) - 0.20 + + \frac{\log \left(\frac{2.1}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log((5000) - 8.07)$

So, SN3= 5.377

 $D3 = \frac{SN3 - a1*D1 - a2*D2*M2}{a3*m3} = \frac{5.377 - 0.36*3.944 - 0.12*4.278*1.2}{0.08*1.2} = 34.80 \text{ inches}$

3.1.3 Flexible pavement design:

Design flexible pavement for an undivided rural highway by using Catalogue of Pavement

Structures

Method for the following data.

Table 3.2:

VEHICLE type	AADT
Large truck	606
Small truck	2204
Large bus	85
Small bus	1764
car	2916
Auto rickshaw	1767
Motor cycle	1912
Bi cycle	17

Solution:

Vehicle Types	PCU Factors
Large Truck	3.0
Small Truck	2.0
Large Bus	2.5
Small Bus	1.5
Car/Tempo	1.0
Autorickshaw	0.5
Motor Cycle	0.3
Bicycle	0.3
Rickshaw	2.0
Cart	4.0

Table 3.3:

Vehicle type	AADT	PCU factors	Traffic volume *
			PCU factors
Large truck	606	3.0	1818
Small truck	2204	2.0	4408
Large bus	85	2.5	212.5
Small bus	1764	1.5	2650.5
car	2916	1.0	2916
Auto rickshaw	1767	0.5	883.5
Motor cycle	1912	0.3	573.6
Bi cycle	12	0.3	5.1
			Total= 13467.2

Forecasted design flow= $13467.2*(1 + r)^n$

 $13467.2^{*} (1 + 0.08)^{20} = 62770.04 \text{ pcu} / \text{day}$

	Optimum Maximum	Design year	Applicati	on
Cross-Section	Dosign Capacity (PCU/Hour)	Optimum Demand Flow (PCU/Hour)	New Construction	Widening w.r.t RHD
RHD 5.5 m	750 (Daily 8300) (Note 1)	1 to 750	Not applicable New 6.2m standard already has a better overall economic perform- ance	No widen necessary of demand flows less than 750 PCU/Hour
6.2 m Pre-widening of embankment tu 7.4m stan- dard Shoulder 7.4-6.2=1.2m	PCU/houp 1700 (Daily = I8,500) max PCU/day	1 to 1700 (New Const.) 751 to 1700 (widening)	The standard new minimum width for Regional roads	If traffic demand above 750 FCU/Hour widening can be easily carried out by re-arranging the road layout on the existing embankment width
7.4m + pre-widening of embankment to 11m stand ard.	(1900)	(1700-1900) But, optimal flow range too narrow to be useful	a find design standard but use- ful part of stage	Not applicable due to various optimal flow range and due to practical difficulties of widening 5.5m to 7km under traffic.
11m	2500 (Daily = 28,000)	1701-2500	Not likely that many completely new roads would need to adopt this standard at the out set.	An economical widenin choice for the busie Regional roads an Bangladesh.

So we can see our design forecast flow is not matching with any optimum design capacity so that it is impossible to choose a cross section.

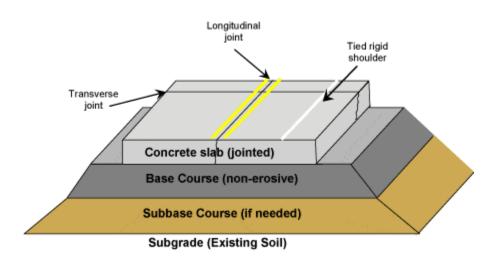
So this method is impossible.

Usefulness of flexible pavement:

Flexible usually applied in thick layer which gives it the ability to withstand heavy load and more traffic flows. So for major roadway engineer chose this pavement system. Flexible pavement requires regular maintainance but it is fairly easy to do.

Problems of flexible pavement:

As we have mentioned flexible pvament needs regular maintainance. If not than there are few problems can be seen. Like-


- Bleeding in Flexible Pavements.
- Block Cracking in Flexible Pavements. This is also called as thermal cracking.
- Bumps and Sags.
- Edge Cracking in Flexible Pavements.
- Joint Reflection Cracking.
- Raveling.
- Cold Joints in Flexible Pavements.

(source : google)

3.1.4 Pavement design for rigid pavement:

Rigid pavements are constructed of portland cement concrete(PCA) slabs resting on a prepared subbase of granular material or directly on a granular subgrade. Load is transmitted through the slabs to the underlying subgrade by flexure of the slabs.

(source: google)

Subgrade: subgrade can be earth or soil. It is the base layer the pavement.

Subbase: it can be hard earth or stone. This part is just over part of subbase layer. This part is not mandatory to give.

Base course: this part consist of granular crushed stone or chip stone.

Concrete slab: this part is RCC structure. This is the top of all the layers.

PCA Design method:

Two types of failure mode considered

1.Fatigue failure

2. Erosion failure

Design parameters:

1. Concrete modulus of rupture (MR)

- 2. Modulus of subgrade reaction (k)
- 3. Design traffic volume
- 4. Axle load spectrum

Design procedure:

- Choose a trial slab thickness
- Calculate the fatigue and erosion failure
- Sum of fatigue and erosion failure of the axle load classes

Data Analysis:

Annual Average Daily Traffic :17074 from which we can assume the data was collected at the month of August for that we can now calculate ADT which is

 $\frac{AADT}{MEF} = \frac{17074}{0.521} = 32772$

Percentage of truck determination:

Vehicle type	Number ofvehicle	Percentage
Large bus	85	0.55
Mini bus	1199	787
Private car	2919	19.17
Motor cycle	1912	12.56
CNG	276	1.81
Micro	1764	11.58
Truck	7068	46
Total	15223	

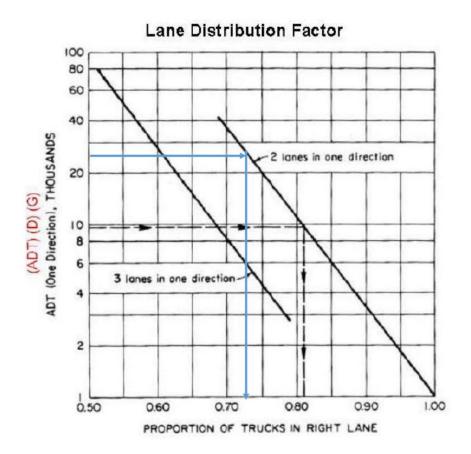
Growth Rate : 7%

Design Year : 20 years

Direction Distribution factor : 0.5

Clay sub-grade, k = 100 psi/in (assume)

Concrete MR = 650 psi (assume)


Use subbase = 4" untreated (assume)

Use Doweled JPCP and Asphalt shoulders

Traffic Growth Multiplier:

$$G = (1+r)^{Y}/_{2} = 1.97$$

Lane Distribution Factor: (ADT)*(D)*(G) = 32772*0.5*1.97 = 32280

Figure: Lane Distribution Factor

From the above figure we can say the of L = 0.73

Design traffic Volume:

V =365 *(ADT)*(T)*(D)*(L)*(G)*(Y)

=78046308 truck

Subgrade		Subbase	Subbase k value,pci				
k value,	4 in	6 in	9 in	12 in			
рсі							
50	65	75	85	110			
100	130	140	160	190			
200	220	230	270	320			
300	320	330	370	430			

Table: Design K value for untreated subbase

When

Subgrade K = 100 psi

Untreated subbase : 4 in

So the subgrade k value from table is : 130 psi

Traffic volume	LSF
High	1.2
(interstates, multilane highways)	
Moderate	1.1
(highways and arterials)	
Low	1.0
(collectors, residential streets)	

Table : Load safety Factor

For Both Axle :

Subbase subgrade $\mathbf{k} = 130 \text{ psi}$

Slab thickness = 9.5 in

Slab thickness.	k of subgrade-subbase, pci									
in.	50	100	150	200	300	500	700			
4 4.5	825/679 699/586	726/585 616/500	671/542 571/460	634/516 540/435	584/486 498/406	523/457 448/378	484/443 417/363			
5 5.5	602/516 526/461	531/435 464/387	493/399 431/353	467/376 409/331	432/349 379/305	390/321 343/278	363/307 320/264			
6 6.5	465/416 417/380	411/348 367/317	382/316 341/286	362/296 324/267	336/271 300/244	304/246 273/220	285/232 256/207			
7 7.5	375/349 340/323	331/290 300/268	307/262 279/241	292/244 265/224	271/222 246/203	246/199 224/181	231/186 210/169			
8 8.5	311/300 285/281	274/249 252/232	255/223 234/208	242/208 222/193	225/188 206/174	205/167 188/154	192/155 177/143			
9	254/254 245/248	232/218	216/195 200/183	205/181 190/170	190/163 176/153	174/144 161/134	163/133 151/124			
10 10.5	228/235 213/222	200/193 167/183	186/173 174/164	177/160	164/144 153/136	150/126 140/119	141/117 132/110			
11 11.5	200/211	175/174 165/165	163/155 153/148	154/143 145/136	144/129 135/122	131/113 123/107	116/98			
12 12.5	177/192	155/158	144/141 136/135	137/130 129/124	127/116 120/111	116/102 109/97	109/93			
13 13.5	159/176 152/168	139/144 132/138	129/129 122/123	122/119 116/114	113/106 107/102	98/89				
14	144/162	125/133	116/118	110/109	102/98	93/85	88/7			

Equivalent Stress – No Concrete Shoulder (Single Axle / Tandem Axle)

Stab hickness,	k of subgrade-subbase, put								
in,	50	100	200	300	500	700			
4	3.74/3.83	3 73/3.79	3.72/3.75	3.71/3.73	3 70/3.70	3.68/3.67			
4.5	3.59/3.70	3.57/3.65	3.56/3.61	3.55/3 58	3.54/3.55	3.52/3.53			
5	3 45/3.58	3.43/3 52	3.42/3.48	3.41/3.45	3 40/3.42	3.38/3.40			
55	3 33/3.47	3.31/3.41	3.29/3 36	3.28/3 33	3.27/3.30	3.26/3.28			
6	3.22/3.38	3.19/3.31	3.18/3.26	3.17/3 23	3 15/3.20	3.14/3.17			
65	3.11/3.29	3 09/3.22	3 07/3 16	3.05/3 13	3 05/3.10	3 03/3 07			
7	3.02/3.21	2 99/3.14	2 97/3 08	2.95/3.05	2 95/3.01	2.94/2.98			
7.5	2 93/3 14	2.91/3 06	2.88/3.00	2.87/2.97	2 86/2.93	2.84/2.90			
8	2.85/3.07	2.82/2.99	2 80/2 93	2 79/2 89	2 77/2.85	2 76/2.82			
85	2 77/3.01	2.74/2.93	2.72/2.86	2.71/2.82	2 69/2.78	2.68/2.75			
9	2.70/2 96	2.67/2.87	2 65/2.80	2.63/2.76	2.62/2.71	2.61/2.68			
95	2.53/2.90	260/281	2 58/2.73	2 56/2 70	2 55/2.65	2.54/2.62			
10	2 56/2.85	2 54/2 76	2 51/2 66	2.50/2 64	2 48/2.59	2.47/2.56			
105	2 50/2.81	2.47/2 71	2 45/2 63	2.44/2.59	2 42/2.54	2.41/2.51			
11	2 44/2.76	2.42/2.07	2 39/2.58	2.38/2.54	2 36/2.49	2 35/2 45			
115	2 38/2.72	2 36/2.62	2 33/2.54	2.32/2 49	2.30/2.44	2 29/2 40			
12	2 33/2 68	2.30/2.58	2.25/2.49	2 26/2 44	2 25/2.39	2.23/2.36			
12 5	2 28/2 64	2 25/2 54	2 23/2 45	2 21/2 40	2 19/2 35	2 18/2 31			
13	2 23/2.01	2.20/2.50	2 18/2.41	2.16/2.36	2 14/2.30	2 13/2 27			
13.5	2 18/2.57	2 15/2 47	2 13/2.37	2.11/2 32	2 09/2 26	2 (18/2 23			
14	2 13/2 54	2 11/2 43	2 08/2.34	2 07/2 29	2 05/2 23	2 03-2 19			
						1			

Erosion Factor – Doweled Joints, No Concrete Shoulder (Single Axle / Tandem Axle)

Single Axle :

- Equivalent Stress : 206 (using interpolation)
- Stress Ration factor : $\frac{206}{Mr} = \frac{206}{650} = 0.317$

Tandem Axle :

- Equivalent Stress : 192 (using interpolation)
- Stress Ration factor $:\frac{190}{Mr} = \frac{190}{650} = 0.295$

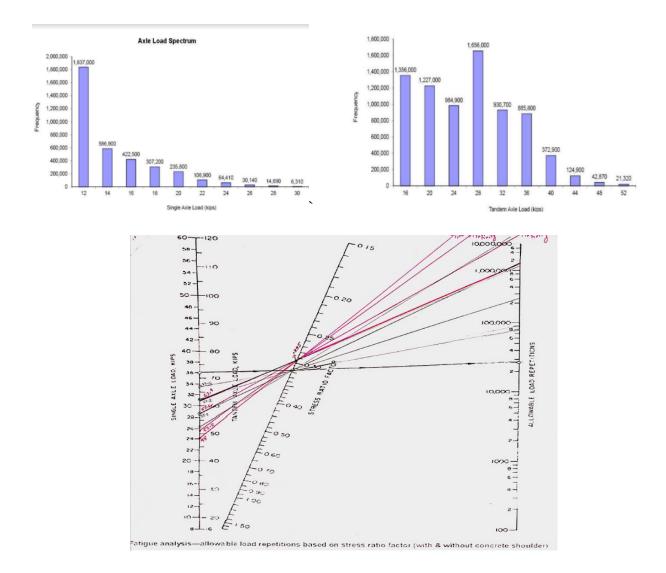


Figure : Fatigue Analysis Based on Stress ratio factor

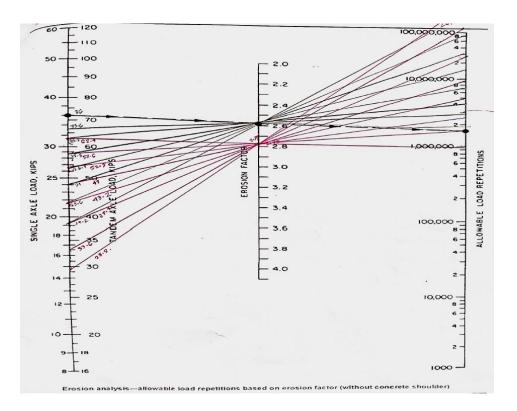


Table :Damage analysis Based on Erosion Factor

Axle load	LSF	Multiplied	Expected	Fatigue Analysis		ected Fatigue Analysis Erosion Analysis			Analysis
kips		By LSF	repetition	Allowable	Fatigue	Allowable	Demage		
				repetition	percent	repetitions	percent		
30	1.2	36	6310	27000	23.34	1900000	0.33		
28	1.2	33.6	14690	79000	18.60	2500000	0.59		
26	1.2	31.2	30140	220000	13.7	7000000	0.75		
24	1.2	28.8	64410	1800000	3.58	15000000	0.92		
22	1.2	26.4	106900	unlimited	0.00	25000000	0.71		
				total	59.28	8000000	0.94		
						Unlimited			
						total	4.62		

Table : Single Axle load

Table : Tandem Axle load

Axle	LSF	Multiplied	ultiplied Expected		Analysis	Erosion Analysis		
load		By LSF	repetition	Allowable	Fatigue	970000	2.19	
kips				repetition	percent			
52	1.2	62.4	21320	1100000	1.9	1900000	2.25	
				unlimited		2500000	5	
				total	61.18	4600000	8.1	
						9500000	9.3	
						24000000	3.9	
						92000000	1.8	
						Unlimited	0.0	
						total	32.57	
				Tot	al	Tot	al	
				61.18		37.19		

Comments :

Total Fatigue and Damage = Fatigue % + Damage %

=61.18 + 37.19

= 98.37 %

Which is acceptable

Therefore Design thickness, t = 9.5 in

Notes :

✤ If total fatigue and damage was << 100%;

which would have implied that the assumed thickness was overestimated. As such, 2nd trial would have been needed with reduced thickness.

 If total fatigue and damage was >>100%;
 which would have implied that the assumed thickness was under-estimated. As such, 2nd trial would have been needed with increased thickness.

3.1.5 AASHTO Rigid Pavement Design

Analysis: A rigid pavement is to be designed to provide a service life of 20 years and has an initial

PSI of 4.4 and a TSI of 2.5. The modulus of subgrade reaction is determined to be 300 lb/in³. For design, the daily car, pickup truck, and light van traffic is 5120; and the daily truck traffic consists of 4864 passes of single-unit trucks with single and tandem axles, and

. The axle

weights are

cars, pickups, light vans = two 2000-lb single axles

single-unit trucks =10,000-lb steering, single axle 22,000-lb drive, tandem axle

Reliability is 95%, the overall standard deviation is 0.45, the concrete's modulus of elasticity is 4.5 million lb/in², the concrete's modulus of rupture is 900 lb/in², the load

transfer coefficient is 3.2, and the drainage coefficient is 1.0. Determine the required slab thickness.

Solution:

Because the axle-load equivalency factors presented in Tables are function of the slab thickness (D), we have to assume a D value to start the problem (later we will arrive at a slab thickness and check to make sure that it is consistent with our assumed value). A typical assumption is to let D = 10 inches. Given this, the 18-kipequivalent single-axle load (18-kip ESAL) for cars, pickups, and light vans is 2-kip single-axle equivalent = 0.0002 (from the table)

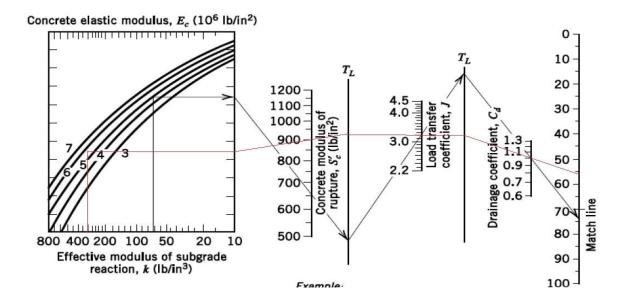
Axle	Slab thickness, D (inches)								
load (kins)	6	7	8	9	10	11	12	13	14
2	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.000
4	0.003	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002
6	0.012	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.010
-	0.039	0.035	0.033	0.032	0.033	0.032	0.032	0.032	0.032
10	0.097	0.089	0.084	0.082	0.081	0.080	0.080	0.080	0.080
12	0.203	0.189	0.181	0.176		0.174	0.174	0.174	0.173
14	0.376	0.360	0.347	0.341	0.338	0.337	0.336	0.336	0.336
16	0.634	0.623	0.610	0.604	0.601	0.599	0.599	0.599	0.598
18	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1.51	1.52	1.55	1.57	1.58	1.58	1.59	1.59	1.59
22	2.21	2.20	2.28	2.34	2.38	2.40	2.41	2.41	2.41
24	3.16	3.10	3.22	3.36	3.45	3.50	3.53	3.54	3.55
26	4.41	4.26	4.42	4.67	4.85	4.95	5.01	5.04	5.05
28	6.05	5.76	5.92	6.29	6.61	6.81	6.92	6.98	7.01
30	8.16	7.67	7.79	8.28	8.79	9.14	935	9.46	9.52
32	10.8	10.1	10.1	10.7	11.4	12.0	12.3	12.6	12.7
34	14.1	13.0	12.9	13.6	14.6	15.4	16.0	16.4	16.5
36	18.2	16.7	16.4	17.1	18.3	19.5	20.4	21.0	21.3
38	23.1	21.1	20.6	21.3	22.7	24.3	25.6	26.4	27.0
40	29.1	26.5	25.7	26.3	27.9	29.9	31.6	32.9	33.7
42	36.2	32.9	31.7	32.2	34.0	36.3	38.7	40.4	41.6
44	44.6	40.4	38.8	39.2	41.0	43.8	46.7	49.1	50.8
46	54.5	49.3	47.1	47.3	49.2	52.3	55.9	59.0	61.4
48	66.1	59.7	56.9	56.8	58.7	62.1	66.3	70.3	73.4
50	79.4	71.7	68.2	67.8	69.6	73.3	78.1	83.0	87.1

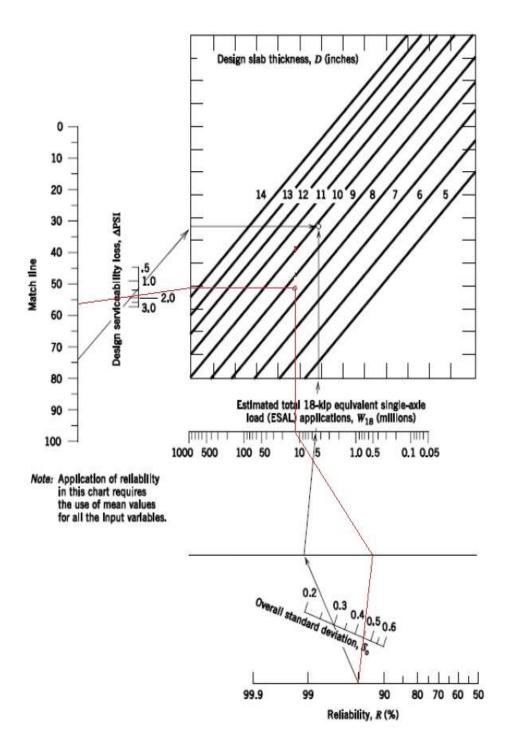
Table 4.6 Axle-Load Equivalency Factors for Rigid Pavements, Single Axles, and TSI = 2.5

Source: AASHTO Guide for Design of Pavement Structures, The American Association of State Highway and Transportation Officials, Washington, DC, 1993. Used by permission.

Axle	Slab thickness, D (inches)								
load (kips)	6	7	8	9	10	11	12	13	14
2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000
4	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.000
6	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
8	0.007	0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.005
10	0.015	0.014	0.013	0.013	0.012	0.012	0.012	0.012	0.012
12	0.031	0.02.8	0.026	0.026	0.025	0.025	0.025	0.02.5	0.025
14	0.057	0.052	0.049	0.048	0.047	0.047	0.047	0.047	0.047
16	0.097	0.089	0.084	0.082	0.081	0.081	0.080	0.080	0.080
18	0.155	0.143	0.136	0.133	0.132	0.131	0.131	0.131	0.131
	0.234	0.220	0.211	0.206		0.203	0.203	0.203	0.203
22	0.340	0.325	0.313	0.308	0.305	0.304	0.303	0.303	0.303
	0.475	0.462	0.450	0.444	0.00	0.440	0.439	0.439	0.439
26	0.644	0.637	0.627	0.622	0.620	0.619	0.618	0.618	0.618
28	0.855	0.854	0.852	0.850	0.850	0.850	0.849	0.849	0.849
30	1.11	1.12	1.13	1.14	1.14	1.14	1.14	1.14	1.14
32	1.43	1.44	1.47	1.49	1.50	1.51	1.51	1.51	1.51
34	1.82	1.82	1.87	1.92	1.95	1.96	1.97	1.97	1.97
36	2.29	2.27	2.35	2.43	2.48	2.51	2.52	2.52	2.53
38	2.85	2.80	2.91	3.03	3.12	3.16	3.18	3.20	3.20
40	3.52	3.42	3.55	3.74	3.87	3.94	3.98	4.00	4.01
42	4.32	4.16	4.30	4.55	4.74	4.86	4.91	4.95	4.96
44	5.26	5.01	5.16	5.48	5.75	5.92	6.01	6.06	6.09
46	6.36	6.01	6.14	6.53	6.90	7.14	7.28	7.36	7.40
48	7.64	7.16	7.27	7.73	8.21	8.55	8.75	8.86	8.92
50	9.11	8.50	8.55	9.07	9.68	10.14	10.42	10.58	10.66
52	10.8	10.0	10.0	10.6	11.3	11.9	12.3	12.5	12.7
54	12.8	11.8	11.7	12.3	13.2	13.9	14.5	14.8	14.9
56	15.0	13.8	13.6	14.2	15.2	16.2	16.8	17.3	17.5
58	17.5	16.0	15.7	16.3	17.5	18.6	19.5	20.1	20.4
60	20.3	18.5	18.1	18.7	20.0	21.4	22.5	23.2	23.6
63	23.5	21.4	20.8	21.4	22.8	24.4	25.7	26.7	27.3
64	27.0	24.6	23.8	24.4	25.8	27.7	29.3	30.5	31.3
66	31.0	28.1	27.1	27.6	29.2	31.3	33.2	34.7	35.7
68	35.4	32.1	30.9	31.3	32.9	35.2	37.5	39.3	40.5
70	40.3	36.5	35.0	35.3	37.0	39.5	42.1	44.3	45.9
72	45.7	41.4	39.6	39.8	41.5	44.2	47.2	49.8	51.7
74	51.7	46.7	44.6	44.7	46.4	49.3	52.7	55.7	58.0
76	58.3	52.6	50.2	50.1	51.8	54.9	58.6	62.1	64.8
78	65.5	59.1	56.3	56.1	57.7	60.9	65.0	69.0	72.3
80	73.4	66.2	62.9	62.5	64.2	67.5	71.9	76.4	80.2
82	82.0	73.9	70.2	69.6	71.2	74.7	79.4	84.4	88.8
84	91.4	82.4	78.1	77.3	78.9	82.4	87.4	93.0	98.1
86	102.0	92.0	87.0	86.0	87.0	91.0	96.0	102.0	108.0
88	113.0	102.0	96.0	95.0	96.0	100.0	105.0	112.0	119.0
90	125.0	112.0	106.0	105.0	106.0	110.0	115.0	123.0	130.0

Table 4.7 Axle-Load Equivalency Factors for Rigid Pavements, Tandem Axles, and TSI = 2.5


Source: AASHTO Guide for Design of Pavement Structures, The American Association of State Highway and Transportation Officials, Washington, DC, 1993. Used by permission. This gives an 18-kip ESAL total of 0.0004 for each vehicle. For single-unit trucks, 10-kip single-axle equivalent = 0.081 (from the table) 22-kip tandem-axle equivalent=0.305 (from the table)


This gives an 18-kip ESAL total of 0.386 for single-unit trucks.

Given the computed 18-kip ESAL, the daily traffic on this highway produces an 18-kip ESAL total of 1879.552 (0.0004 x 5120+ 0.386 x 4864). Traffic (total axl accumulations) over the 20-year design period will be $1879.552 \times 365 \times 20 = 13720729.6$ 18-kip ESAL

```
Here w_{18} = 13720729.6
```

Z= 0.95 $s_0=0.45$ TSI=2.5 Δ PSI = 1.9 $s'_c=900$ $C_d=1$ J=3.2 $E_{c_-}=4.5$ million K= 300

So from the nomograph we can get D= 8.5 inches

Usefulness of rigid pavement:

Since rigid pavement consist of RCC work, it remains more durable over the time. It does not bend for heavy load and regular maintenance is not necessary and it is less expensive.

Disadvantages of rigid pavement:

Since it is RCC work, curing time is 28 days so that road remains off for a long time.

Chapter 4

Transportation Road Safety

Introduction

For predominantly humanitarian, health, and financial reasons, nations place a high focus on the case of road safety. As stated by the 'World Health Organization(WHO)', Around 1.3 million individuals per year perish due to road accidents., just around 3400 deadly accidents everyday, and, in addition, around 30 and 50 million people face non destructive injuries annually . It is possible to pinpoint, and survey the damaging points of accidents ,utilizing resources like the Institution of Highways Transportation's Highway safety protocols: Accident prevention and elimination. This is one of the most effective approaches to the prevention of traffic accidents.

Why is road safety important

Road safety is using all available road safety measures to avoid and protect against traffic accidents. Road safety is ensured when someone is driving on a roadway. All users of the road, including pedestrians and users of two-, four-, multi-, and other transport vehicles, must be protected. It is beneficial and safe for everyone to practice road safety precautions throughout their lives. While driving or walking on the road, everyone should show consideration for others and guarantee their safety. One of the most critical factors in stemming roadside accidents, harm, and fatalities is ensuring that people are safe while driving. Based on national statistical data regarding the total number of reported casualties and fatalities, we may assess the significance of road safety. Road accidents can be significantly reduced by following all traffic safety precautions. Basic vehicle knowledge, defensive driving by weather and roadway conditions, the usage of automotive body lights and horns, using a seat-belt, making good usage of automotive looking glasses , avoiding excessive acceleration , comprehension of road lights, maintaining a safe following distance, knowing how to handle emergencies, broadcasting awareness tv

69

programs on Broadcast, and so on. seem to be some effective methods of road safety. Road Safety regulations are designed to reduce the likelihood of accidents. Every day, millions of automobiles travel the world's roads. Because of this, there ought to rule that must be adhered to when using the roadways.

Humans and automobiles can both benefit from these guidelines. Following all road safety measures will go a long way in preventing all road problems. Some effective road safety measures are basic vehicle recognition, protection, etc. Driving in climatic and street condition, using car light and horns, using Proper seat belts, and vehicle mirrors, avoiding excessive speed, understanding street lights, maintaining vehicle distance on the road, and correct understanding of how to deal with crises, television broadcastingAwareness-raising documentaries on TV, etc. Traffic safety rules are in place to contain opportunities for the traffic accident. Millions of vehicles regularly move on our roads. that's why they're a set of rules that must be observed when using the road. These rules not only applies not only to cars but also to people walking or biking on the street results. Road safety rules are important for many reasons. There are various traffic safety rules for motorcycles, passenger cars, trucks, tractors, etc. Driver's license and car license plate is valid evidence. Properly identified vehicles serve as protection for road transport. Most accidents are caused by the high speed of the vehicle. to reduce irresponsible behavior of driving where traffic safety rules are in place. implemented by the government Various strict rules for vehicles. Drivers must obey traffic lights and signs near schools. hospitals and other public places.

Road safety rules

Vehicle traffic safety regulations state:

- Always stop your vehicle at red lights.
- Avoid using your mobile phone while driving.
- Do not cross before the light turns green.

- Always leave space for unauthorized persons.
- Do not ride on footbridges or sidewalks.
- Wear a helmet when riding a motorcycle.
- Wear seat belts when riding in a four-wheeled vehicle.
- Always carry your driver's license and important vehicle documents with you while driving.

• Do not drive under the influence of alcohol or drugs.• Slow down when crossing pedestrian crossings.

- Obey signs and instructions near hospitals and schools.
- Do not attempt to pass ambulances or other emergency vehicles.

Awareness and traffic safety rules are linked. When people realize the importance of life, The probability of traffic accidents is automatically reduced. Observance of traffic safety rules being a citizen of a particular country also helps reduce the chances of road traffic accidents. Traffic safety rules are also one of the manners that can be incorporated into daily life. when we are time management helps when you run out of time. Need traffic safety rules for all of us. In short, traffic safety rules are life-saving disciplines that must be strictly adhered to Note.

ROAD INFRASTRUCTURE AND STREET PROTOCOLS

Road geometry plays an important role in the frequency and rate of traffic accidents. car accident severity. Various fundamentals of street design are important. However, some boundaries are regarded to be more pronounced and are talked about below.

Road way crosssection

Lane width not only affects driving and maneuvering comfort It is a characteristic of the road surface, but it is also an important parameter that influences the frequency of traffic accidents, and crash seriousness . For each useful classification of road, it may be a trunk road, For each road environment, rural roads, and whether urban or country roads, Lane width narrows, greatly increasing the probability of an accident. for example, A study of safety issues on an undivided two-lane highway found the lanes to be wider and decrease the likelihood of head-on or other related collisions from 2.

75 meters to 3. 65 meters 50% (50%). 5 Increased traffic and narrower lane widths reduce the probability of accidents. In particular, accidents such as head-on collisions and road deviations are increasing.

The significance of wide hard shoulder is even more precise on two lane roads. A paved shoulder is the best shoulder from a traffic welfare wise and is better than gravel. Gravel shoulders are better than composite shoulders (a combination of different types). However, grass shoulders are considered the worst from a traffic safety viewpoint and can result in a 10. Percentage (10%) more crashes.

According to the literature, skidding accidents are a major concern for road safety

Roadside Conditions

The term "free zone" means the unobstructed passable area that extends beyond the edge of a road. moving vehicle. in some places available right-of-way or width to provide clear space is insufficient or impractical, As expected, we can generally recognize the concept of free zones. Lateral offset is allowed for safety consideration of vertical obstacles (signs, poles, etc.) are required to keep away from collisions. The existence of medians is one of serious factor in accidents, mainly frontal crashes . However, for safety and security reasons, medians are highly desirable on multi-lane highways. operational efficiency.

Road Curvature

72

Curve lanes are served with angular features on the curves section of the road known as "Superelevation". i. e. outside the lane Since the curve is higher than the inside, the component of its weight The vehicle prevents the vehicle from moving to the outside.

However, vehicle speed is also an important factor. at a driving speed When the cars crosses the preferred or designated limit of the curve, the car loses control and Serious "runaway" accidents can occur. On the off chance that the progress bend isn't as expected gave, Then a diffusive power is out of nowhere applied to the vehicle, and contingent upon the speed and speedThe weight of your vehicle can make you fail to keep a grip on your vehicle. He could have 15D44 more car crashes on his two-path parkway on steep landscape than on comparable streets on level territory.therefore, Climbing lanes for heavy vehicles (additional lanes) can reduce the chance of an accident on a two-lane section by 25%.

Sight Distance

Sufficient visibility is required for the driver to control the operation Protect your vehicle from hitting unexpected objects on the road. Passing Visibility should be enabled on two-lane roads Drivers use oncoming traffic to overtake (overtake) other vehicles without hindrance coming cars. The concepts of SSD and PSD are most important from a traffic safety point of view, Decision Sight Distance (DSD) is one more significant issue that should be tended to for individuals' wellbeing. street clients.

Be that as it may, under typical conditions, drivers need longer distances to go with complex choices. DSD is the distance it takes a driver to recognize a startling or difficult to-identify occasion. See sources or conditions in the street climate.

Road Construction safety Tips

As transportation is very important without them the finencial condition will collapse in a country roads are the main means of transportation. This are the reason why the structure should be taken very seriously. Still every year road workers risk their life in building them. And if not serious and careful we can suffer a serious loss.

some roadworks safety tips for workers:

A plan

All street development projects require a transportation the executives plan. The arrangement ought to comprise of a brief traffic signal intend to safeguard laborers by securely coordinating traffic around or through the workspace. You likewise need a traffic signal arrangement inside the work zone that controls the progression of weighty gear, development vehicles, and laborers.

Traffic Control

work area ought to comprise a progressed caution region with caution signs cautioning drivers of up-and-coming changes in driving conditions, a move range utilizing activity control gadgets for path closures and activity design shifts, a buffer region, the working range, and an end region to permit activity to continue to ordinary and a signs showing that the construction area has finished.

A separate work space

Street development construction areas are active zones as a rule with a few work exercises taking put at the same time. To maintain a strategic distance from mishaps, utilize cones, barrels, and obstructions to depict particular regions of the work area such as fabric capacity, regions where overwhelming hardware is utilized, car stops, and secure ranges for foot specialists to move approximately in.

Site Safety Program

Every road improvement adventure is different and each work zone has its case of fascinating dangers and difficulties so making a security program prepared especially for the area can go quite far in keeping away from mishaps. The site-explicit security program should consolidate recognizing all dangers and plans to control and direct them, plans to regularly survey all equipment and texture, orchestrate in the first place help and emergency supportive consideration inside the event of a mishap, and security planning plans for all specialists.

Start workers with safety instructions

As well as guaranteeing that all staff at the Place of work have the legitimate preparation required it is likewise really smart to have a speedy security meeting before work starts. Since conditions can change significantly from one day to another in the work zone, laborers ought to be advised on the work movement booked every day and told of every possible risk. This is likewise a great opportunity to guarantee that all laborers have and are wearing the legitimate PPE expected for the work being done that day.

Avoid spots that are not visible

Vehicles and weighty gear, for example, dump trucks, compactors, graders, backhoes, pavers, and rollers are continually traveling through the workspace. The administrator should guarantee that all mirrors and visual guides are appropriately situated and working appropriately including reinforcement alerts and lights. Know that the driver's perceivability might be limited while strolling or working close to these machines when they are in activity. Continuously keep visual contact with the driver. As a guideline, on the off chance that you can't see them, they won't see you by the same token.

Saty Haydrated

Street laborers are inclined to exhaust and heatstroke. Black-top assimilates 95% of the sun's beams and the black-top temperature effectively increases 30°F or more over the encompassing temperature. Laborers ought to drink a lot of water or electrolyte-rich liquids, for example, sports beverages or coconut water. Likewise, avoid the intensity and sun however much as could reasonably be expected, particularly on exceptionally blistering days, to keep away from heat stroke, lack of hydration, and intensity stroke. What other wellbeing tips should street laborers remember? Share your considerations and experiences in the remarks underneath.

Calculation:

3 CASUALTY ACCIDENTS

	number of accidents ¹				population ²	accident rates	
	severity				('000,000)	(no. per 10,000 pop'n)	
Division or City	fatal	grievous	simple injury	total		fatal accidents	fatal + injury accidents
Divisions, excludin	g Cities						
Barisal	95	14	2	111	8.603	0.110	0.129
Chittagong	426	85	42	553	22.055	0.193	0.251
Sylhet	214	60	16	290	8.378	0.255	0.346
Dhaka	680	168	37	885	35.315	0.193	0.251
Khulna	111	7	1	119	14.525	0.076	0.082
Rajshahi	521	118	23	662	31.401	0.166	0.211
Total	2047	452	121	2620	120.278	0.170	0.218
Cities				<i></i>	1.1.1.	2	
Chittagong City	61	28	8	97	3.397	0.180	0.286
Dhaka City	265	140	9	414	5.704	0.465	0.726
Khulna City	12	2	4	18	0.820	0.146	0.220
Rajshahi City	39	9	0	48	0.407	0.959	1.180
Total	377	179	21	577	10.327	0.365	0.559
TOTAL	2424	631	142	3197	130.605	0.186	0.245

Table 3-1 : Recorded Casualty Accidents by Division and City

Notes: 1. This is the recorded number of accidents involving casualties (fatal and injury). Property damage only accidents are not included.

2. Year 2005 populations are extrapolated from statistics published in the 2000 Statistical Yearbook and the Population Census 2001 Preliminary Report.

Figure 4.1

Figure 4.1 was used to calculate the fatal accident per 10000 population. People per square kilometer in Dhaka city was noted from world bank data. Based on these two values people around R112 was calculated by taking the total length of the R112 road. The value was then converted in 10000's.

Table 4.1:

Year	fatal					
	accidents	fatal +		People		
	per 10000	injury	People Per	around	People in	
	population	accidents	km^2	R112	10,000	Fatal

		per 10,000				
		population				
1	0.465	0.726	1278	10873.22	1.087322	5056.049
2				11634.35	1.163435	5409.973
3				12448.75	1.244875	5788.671
4				13320.17	1.332017	6193.878
5				14252.58	1.425258	6627.449
6				15250.26	1.525026	7091.37
7				16317.78	1.631778	7587.766
8				17460.02	1.746002	8118.91
9				18682.22	1.868222	8687.234
10				19989.98	1.998998	9295.34
11				21389.28	2.138928	9946.014
12				22886.53	2.288653	10642.23
13				24488.58	2.448858	11387.19
14				26202.78	2.620278	12184.29
15				28036.98	2.803698	13037.2
16				29999.57	2.999957	13949.8
17				32099.54	3.209954	14926.29
18				34346.51	3.434651	15971.12
19				36750.76	3.675076	17089.1
20				39323.31	3.932331	18285.34
21				42075.95	4.207595	19565.31
22				45021.26	4.502126	20934.89
23				48172.75	4.817275	22400.33
24				51544.84	5.154484	23968.35
25				55152.98	5.515298	25646.14
26				59013.69	5.901369	27441.37
27				63144.65	6.314465	29362.26
28				67564.77	6.756477	31417.62

29		72294.31	7.229431	33616.85
30		77354.91	7.735491	35970.03
31		82769.75	8.276975	38487.94
32		88563.64	8.856364	41182.09
33		94763.09	9.476309	44064.84
				Total Cost

The traffic accident data used in this study were collected by the Accident Research Institute (ARI), BUET. This study used the human capital method to estimate the cost of road accidents in Bangladesh. Estimating the cost of a road accident using the human capital approach includes the economic cost of all casualties, as well as the economic cost considering pain, grief and sufferings, resource of cost like damage of road, damage of vehicleas and medical expenditure.

Table : 4.2

Current Condition:

Table 14: Human Costs

ġ.	per casualty cost	Fatal RTA		Grievous RTA		Simple RTA	
		no.	cost	no.	cost	no.	cost
Fatality	206451	1.7	350967	0	0	0	0
Grievous	2530	1.4	3542	1.7	4301	0	0
Simple	193	1.4	270	2.2	424	1.5	289
Total			354779		4726		289

Table 13: Medical Costs per RTA Casualty

	per casualty cost	Fatal RTA		Grievous RTA		Simple RTA	
		no.	cost	no.	cost	no.	cost
Fatality	100	1.7	170	0	0	0	0
Grievous	4200	1.4	5880	1.7	7140	0	0
Simple	100	1.4	140	2.2	220	1.5	150
Total			6190		7360	1.12	150

	Unit costs
fatal	7000
grievous	52500
simple	3500
pdo	175

These data's were used to forecast the human cost, medical cost, and vehicle related cost for current and future.

Table 4.3:

Human Cost	Medical Cost	Vehicle related cost
1043826405	505604.9	353923441.2
1116894253	540997.3	378698082.1
1195076851	578867.1	405206947.8
1278732231	619387.8	433571434.2
1368243487	662744.9	463921434.6
1464020531	709137	496395935
1566501968	758776.6	531143650.4
1676157106	811891	568323706
1793488103	868723.4	608106365.4
1919032271	929534	650673811
2053364530	994601.4	696220977.7
2197100047	1064223	744956446.2
2350897050	1138719	797103397.4
2515459843	1218429	852900635.2
2691542033	1303720	912603679.7
2879949975	1394980	976485937.3
3081546473	1492629	1044839953
3297254726	1597112	1117978750

3528062557	1708910	1196237262
3775026936	1828534	1279973870
4039278821	1956531	1369572041
4322028339	2093489	1465442084
4624570323	2240033	1568023030
4948290245	2396835	1677784642
5294670562	2564614	1795229567
5665297502	2744137	1920895637
6061868327	2936226	2055358331
6486199110	3141762	2199233415
6940233048	3361685	2353179754
7426049361	3597003	2517902336
7945872816	3848794	2694155500
8502083913	4118209	2882746385
9097229787	4406484	3084538632

Table 2: We calculated 3 types of cost for the road Human Cost, Medical Cost and Vehicle related cost. The total cost for Human Cost, Medical Cost and Vehicle related cost was found to be 166299309926.20 in the current condition.

Table: 4.4

Four Lane Condition:

Human Cost	Medical Cost	Vehicle related cost
521913202.6	252802.5	176961720.6
558447126.7	270498.6	189349041
597538425.6	289433.5	202603473.9
639366115.4	309693.9	216785717.1
684121743.5	331372.5	231960717.3
732010265.5	354568.5	248197967.5
783250984.1	379388.3	265571825.2
838078553	405945.5	284161853
896744051.7	434361.7	304053182.7
959516135.3	464767	325336905.5
1026682265	497300.7	348110488.9
1098550023	532111.7	372478223.1
1175448525	569359.6	398551698.7
1257729922	609214.7	426450317.6
1345771016	651859.8	456301839.8
1439974987	697490	488242968.6
1540773237	746314.3	522419976.4
1648627363	798556.2	558989374.8
1764031278	854455.2	598118631
1887513468	914267.1	639986935.2
2019639411	978265.7	684786020.7
2161014169	1046744	732721042.1
2312285161	1120016	784011515.1
2474145123	1198418	838892321.1
2647335281	1282307	897614783.6
2832648751	1372068	960447818.4
3030934163	1468113	1027679166
3243099555	1570881	1099616707

83149654963					
4548614894	2203242	1542269316			
4251041957	2059105	1441373192			
3972936408	1924397	1347077750			
3713024680	1798502	1258951168			
3470116524	1680843	1176589877			

Benefit: 83149654963.10

In this we calculated the cost for improvement of the road or for the 4 lane condition of the road, in that case we got the total cost as 83149654963 Which is lower than the current condition, calculating which stands that we will save. After improved the road we got Benifite cost 83149654963.10.

Chapter 5 Air Quality Impact

An air pollutant is a gas, liquid droplet, or solid particle that, when released into the atmosphere in high enough concentrations, endangers the health of people, animals, property, and the environment. For millions of urban dwellers throughout the world, air pollution—an obvious environmental side consequence of transportation—has become a health concern (TRB, 1997). Transportation is one of the main causes of air pollution, especially the usage of motor vehicles, which are also the main source of excess regional photochemical oxidant concentrations and a key contributor to local carbon monoxide issues. Typical emissions from transportation vehicles include poisonous gases including carbon monoxide, nitrogen oxides, tiny particulate matter, and others that can be harmful when inhaled. Additionally, rivers, lakes, and forests are negatively impacted by air pollution. As anthropogenic effects on the higher atmosphere grow more obvious, there is still much worry about the role that transportation vehicle use plays in contributing to global warming. For instance, airports are a significant local source of ambient CO breaches and a regional contributor to photochemical oxidant issues. Except in situations where the source of rail energy generation is connected with major pollution, such as coal-based electrical power generation, rail travel is normally not associated with significant air pollution in the modern period.

Pollutant Types and Sources:

Carbon monoxide, hydrocarbons, sulfur oxides, nitrogen oxides, and particulate matter are examples of primary air pollutants that are released directly into the atmosphere. Secondary air pollutants are those that are created in the atmosphere as a result of physical and chemical processes (such as hydrolysis, oxidation, and photochemistry) on primary pollutants. Examples of secondary air pollutants include ozone and acidic depositions. Carbon dioxide and other greenhouse gases are examples of direct emissions. Forest fires and volcanic eruptions are examples of natural sources of air pollution, while power plants, fuel use, slash-and-burn farming methods, and transportation are examples of artificial sources.Vehicles are the source of three main pollutants:

- One in particular is SOX, a combination of solid particles and liquid droplets that is found in the air and contributes to atmospheric haze that can harm our lungs.
- Carbon monoxide (CO) When fuel is consumed in cars, carbon monoxide is released; breathing air with a high CO2 concentration can harm vital organs like the heart. According to a poll, cars account for 95% of all carbon monoxide.
- Nitrogen dioxide (NO2) is produced when fuel burns because of a reaction between nitrogen and oxygen. Nitrogen dioxide is created as a result of vehicles and other

ESTIMATING POLLUTANT EMISSIONS:

• Emission: Pollutants are being released into the atmosphere in this manner. The quantity of emitting sources, the variety of source types, the kind and extent of activity at the polluting source, and the emission characteristics all affect the overall amount of emissions. For instance, at higher elevations, more pollutants are released by moving automobiles as a result of inefficient combustion brought on by thin air.

• Mobile emission: A motorized vehicle is an example of a movable source of air pollution because it has the ability to move from one location to another. Mobile emissions are those produced by moving sources. The ambient concentration of pollutants released by fixed and mobile sources is used to calculate the overall air quality in a given location.

• Emissions factors: In terms of activity levels like VMT (vehicle miles traveled) or VHT (vehicle hours traveled) for motor vehicles, an emission factor is an average estimate of the rate at which a pollutant is emitted into the atmosphere as a result of some activity (such as motor vehicle operating).

Method of Estimation :

From the following equation, we can calculate emission the factor and pollution quantity from particular

- A or VKT = (L x AADT)
- Where,
- A = Activity level for each pollutant source for each grid (km/day)
- VKT = Vehicle Kilometers Traveled (km/day).

- L = Road length (km)
- AADT = Annual Average Daily Traffic (traffic volume/day)
- After calculating the vehicle Kilometer Traveled we will use it on total emission calculation.
- Total emission has been calculated as follows:
- \pounds Emission = (Zi Ek EFij× Aik)
- Where,
- ;= Type of a pollutant
- j= Emission sector like traffic, brick kilns
- k =Grid cell
- Emission i = Emissions of pollutant i
- EF = Emission Factor for each pollutant sector
- A =Activity level for each pollutant sector

The calculation of emission amounts is dependent on numerous factors and secondary data

it is easy to encounter Uncertainties. That's why we assumed a wide range of values to calculate as much as possible to be done accurately.

Emission Calculation :

Table 5.1 : Emission Factors

Vehicle type	SOx	NOx	СО	PM2.5	PM10
Car	0.40	2.77	7.30	0.84	0.84
CNG	0.20	2.77	5.00	1.50	0.75
Motor Cycle	0.02	0.31	6.5	0.23	0.23
Bus	1.75	19.0	5.5	3.0	3.0

Trucks	0.80	9.50	5.5	3.0	1.50

Table 5.2: Transportation mode with VKT

Vehicle type	AADT	Road length (km)	VKT (km/day)
Car	2919	8.508	35903
CNG	276		3395
Motor Cycle	1912		23517
Bus	85		1046
Trucks	7068		86936
		Total	150797

Table 5.3: Emission for this study area

Vehicle type	Emission (gm/day)								
	SOx	NOx	СО	PM2.5	PM10				
Car	14361	99451	262092	30159	30159				
CNG	679	9404	16975	5093	2546				
Motor Cycle	470	7290	152860	5409	5409				
Bus	1831	19874	5753	3138	3138				
Trucks	69549	825892	478148	260808	130404				
total	86890	961911	915828	304607	171656				

Table 5.4: Total VKT for 20 years

Number of vehicles Road length (km) 15222 0.500		Total VKT (km in 20 year)					
15223	8.508	2590346					

Table 5.5 : Taken Maximum	emission	factor	for 20 year
---------------------------	----------	--------	-------------

SOx	NOx	СО	PM2.5	PM10
-----	-----	----	-------	------

1.75	19.0	7.30	3.0	3.0

Table 5.6 : Emission	for this	study Area	for 20 years

Component	Emission factor	Total VKT (km in 20	Emissions
		year)	(ton in year)
SOx	1.75		4.533
NOx	19.0		49.21
СО	7.30	2590346	19.00
PM2.5	3.0]	7.80
PM10	3.0		7.80

Table 5.7:

IRI	Fuel per km	Fuel unit rate	Cost for 1	VKT (km in	Total Fuel Cost
		(taka/litre)	km	20 years)	
8	0.08	130	10.4	2590346	26939598.4
3	-0.27	130	8.02	2590346	18372056.2

As the emission occurs by burning the fuel, so total fuel cost for 20 years had been calculated. The total fuel cost found to be 26939598.4 BDT if the existing road is left unchanged.

In case of the widening, the IRI will become 3. Then cost for 1 km will become 22% less than the previous cost. As a result, the total fuel cost will become 18372056.2.

Total benefit = 26939598.4-18372056.2 = 8567542.15 BDT.

Conclusion:

Air pollution is still mostly caused by transportation, particularly the highway mode. It contributes to global warming, which has negative repercussions not only on a local and regional scale but also on a worldwide one. The dangers of air pollution to human health are well known. It is widely acknowledged that vehicle emissions are the primary factor in both air pollution and health issues. Industrialized nations have been at the forefront of efforts to reduce automotive air pollution through a number of strategies, such as legislation and enforcement, vehicle engine standards, encouraging the use of less polluting modes of transportation, better fuel quality, the use of alternative fuels, and transportation planning and traffic management.

Figure : Air pollution created by vehicles

Appendix:

	Fuel	The World Bank	VAPIS	SIM-air	AQMP	Cai-Asia	UNEP
	Gasoline	0.08			0.05		
LDV	CNG		0.00				
	Disel	0.40	0.30				
Taxis	CNG	0.00		0.10			
	Gasoline			0.12			0.13
	Disel			0.50			
	CNG		0.00	0.08			
Car/Jeep/Microbus/St.Wagon	Gasoline		0.07	0.08			0.13
Curreprinteroous of wagon	CNG						
	Disel		0.40	0.29		0.41	0.38
Autorickshaw/3W	CNG	0.00	0.00			0.20	
Protor Western 5 m	Gasoline		0.02		0.03		
Tem poo	Gasoline						0.05
rem poo	Disel						0.39
Bus	CNG	0.80	0.00		0.40		
500	Disel	0.00	1.00			3.14	1.75
Minibus	Disel					1.08	0.39
Trucks		0.80			1.13	4.27	1.75
HDT	Disel		1.00				
Motorcycle/2w	2-stroke	0.02			0.19		0.02
Motorcyclerzw	4-stroke	0.02				0.22	

Table D.1: Emission Factor (gm/km) of SOx

Vehide Type/	Fuel	The World Bank	VAPIS	SIM-air	Bangkok Case Study		AQMP	URBAIR	Cai-Asia	UNEP	Malé Declaration
					Engine Category						
	Gasoline	1.50					1.57	2.70			
LDV	Disel	8.50	2.00								3.15
	CNG		3.50								
	Gasoline			1.00	Fumi	0.50				2.70	
Taxis	CNG	1.50		0.80	Fumi	1.65					
	Disel			1.50		1.05				1.40	
	Gasoline		0.20	0.98	Fumi	0.50				2.70	1.80
Car/Jeep/Microbus/St.Wagon	CNG		0.20	0.79	Fumi	1.65					2.10
	Disel		1.25	1.47		0.50		1.48			2.77
	Gasoline					0.50					
Pick- Up	NGV_Gasoline				Fumi	0.50					
rick- op	NGV_Dise1				DDF	0.61					
	Disel					0.50					
	Gasoline					0.50					
Van	NGV_Gasoline					.5,.3					
Van	NGV_Disel					0.91					
	Disel					1.05					
	Gasoline		0.10								0.05
Autorickshaws /3W	CNG	1.50	0.35								
	Gasoline I Category I J Gasoline 1.50 I I I J 2.70 Disel 8.50 2.00 I <tdi< td=""></tdi<>			2.77							
Tem poo	Gasoline									0.20	
Tem poo	Disel									13.00	
Buses	CNG	17.00	2.50				2.50				5.70
Duses	Disel	17.00	10.00				2.50	22.5		13.00	19
Minibus	Disel							7.55		13.00	
Trucks	Disel	17.00				8.83	6.48	22	22	13.00	9.50
HDT	Disel		10.00								
Matarauda/Juu	2-stroke	0.30	0.15				0.02	0.11		0.07	0.03
Motorcycle/2w	4-stroke	0.30	0.15				0.02	0.11			0.31

Table D.2: Emission Factor (gm/km) of NOx

	Vehicle Type Fue	The WorldBank	SIdVA	SIM-air	ta a ti otiat ⊽ెat	0	AQMP	Cai-Asia	UNEP	MaléDeclarat ion
					Engine Category					
	Gasoline	25.0					28.1			
LDV	CNG		3.5							
	Disel	5.0	2.5				24.0			8.7
	Gasoline				Fumi	6.0				
Taxis	CNG	5.0			OEM	2.0				4.0
	Disel			sd		1.0				7.3
	Gasoline		5.0		Fumi	6.0				9.8
Car/Jeep/Microbus/St.Wagon	CNG		1.0		Fumi	1.3				4.0
	Disel		2.0			1.0				7.3
	Gasoline					2.8				
Pick- Up	NGV_Gasoline				Fumi	4.0				
rian op	NGV_Disel				DDF	1.3				
	Disel					1.0				
	Gasoline					2.8				
Van	NGV Gasoline				Fumi	4.0				
	NGV_Disel				DDF	4.9				
	Disel					1.0				
	CNG	5.0	3.5			+		$ \rightarrow $		
Autorickshaws /3W	Gasoline		8.0			+				14.0
	Disel					+				7.3
5	CNG		3.5			+		\vdash		12.0
Buses	Disel	10.0	3.5			9.0	1.3			5.5
Trucks	Disel	10.0				2.9	3.4			5.5
HDT	Disel		3.5							
Motorcycle/2w	2-stroke	5.0	2.5				26.0	2.2		6.5
Motorcycle/2w	4-stroke									3.0

Table D.3: Emission Factor (gm/km) of CO

Table D.4: Emission Factor (gm/km) of PM2.5

_

	Fuel	VAPIS	Malé Declaration
LDV	CNG	0.01	
	Disel	0.50	0.80
	Gasoline	0.03	0.06
Car	CNG	0.20	0.01
	Disel	0.60	0.84
	CNG	0.05	
Three wheels	Disel		1.50
	Gasoline	0.08	0.35
Busse	CNG	0.01	0.01
Buses	Disel	0.80	3.00
HDT	Disel	1.00	1.50
Two wheels	2-stroke	0.05	0.23
1 wo wheels	4-stroke		0.07

✓ → ⊆ → = → E 0	Fuel	The World Bank	VAPIS	SIM-air	Bangko k CaseStu dv	2	AQMP	ORBAIR	Cai-Asia	UNEP	Malé Declaration
	<u> </u>			~	Engine						~
	Gasoline	0.10			Category		-	0.06			0.04
LDV	CNG	0.10	0.02			<u> </u>	-	0.00			0.04
LDV	Disel	0.80	1.25			<u> </u>		<u> </u>			0.80
	CNG	0.03	1.25	0.10		<u> </u>		0.01			0.00
Taxis	Gasoline	0.05		0.35				0.01		0.20	0.01
Taxis	Disel			0.90		0.20		0.84		0.20	0.84
	Gasoline	0.10	0.10	0.39		0.20		0.04		0.20	0.04
Car/Jeep/Microbus/St.Wagon	CNG	0.03	0.05	0.39					0.18	0.20	0.00
Car/Jeep/Microous/St. wagon	Disel	0.80	1.00	0.20		0.16			0.10	0.90	0.84
	Gasoline	0.00	1.00	0.95		0.10				0.50	0.04
	NGV Gasoline										
Pick- Up	NGV Disel				DDF	0.08					
	Disel				DDI	0.16					
	Gasoline					0.10					
	NGV Gasoline				MPI	0.00					<u> </u>
Van	NGV Disel				DDF	0.00					
	Disel				DDF	0.20					<u> </u>
	CNG	0.03	0.10	0.10		0.20					
Autorickshaw/3W	Gasoline	0.05	0.10	0.10					0.75		0.35
Autoricksnaw/5 w	Disel		0.20	0.20			0.75	0.50	0.75		0.04
	Gasoline						0.75	0.50		0.21	0.04
Tem poo	Disel					<u> </u>				1.50	
	CNG		0.02			<u> </u>				1.50	0.01
Buses	Disel	1.60	1.50				0.10	2.00		3.00	3.00
Minibus	Disei		1.50					2.00	0.10	1.50	3.00
Trucks	Disel	1.60		2.50		0.66	0.45	2.00	0.45	3.00	1.50
HDT	Disel	1.00	2.00	2.50		0.00	0.45	2.00	0.45	3.00	1.50
Motorcycle/2w	Gasoline	0.10	0.10	0.10			0.75		0.05	0.50	0.23

Table D.5: Emission Factor (gm/km) of PM10

Chapter 6

Noise Impact

Noise has become one of the major defects of road vehicle. When a vehicle runs on a pavement, it creates sound mainly through the engine and the friction of the tire. These noise have health impacts on people living near the roads.

۰.

5.6

		Cos	t per household per dB o	change
Volume LAeq, 18hr dB(A)	Additional risk of AMI	Health value	Current value (amenity/annoyance costs only ³³)	% change in costs (from inclusion of health costs)
55 – 60 dB	0.00010%	£2.70	£40.00	+ 6.75%
60 – 65 dB	0.00168%	£10.47	£53.20	+ 19.68%
65 – 70 dB	0.00336%	£15.71	£66.40	+ 29.29%
70 – 75 dB	0.00504%	£29.62	£79.60	+ 37.21%
75 – 80 dB	0.00720%	£41.01	£92.80	+ 44.19%
80 – 85 dB	0.039%	£53.60	£98.00	+ 54.7%

Table 1: Valuation of AMI impacts of noise

Note: Mid-point marginal values are used for each volume range.

According to this figure, the health value is set in a monetary unit. In the picture, the highest volum level considered is 80-85 dB. Even though Dhaka city junctions usually create more noises.

		N- Of	Sound Pressure Levels, dB					
S.L.	Location	No Of Observations	Peak	Hours	Off Peak Hours			
		Observations	Min.	Max.	Min.	Max.		
01	Jahangir Gate	15	78.0	120.2	54.2	90.5		
02	Bangladesh Air Force Officers' Mess	10	75.5	117.2	53.1	88.5		
03	Awlad Hossain Market	20	71.2	112.5	50.6	84.4		
04	Farmgate Bus Stop	20	73.5	110.5	48.6	81.2		
05	Bijoy Sarani	25	72.6	109.9	48.2	80.6		

Table 6. Traffic sound in the Main Road of Dhaka (peak & off peak hours)

The picture shows, the busy roads of Dhaka city and their produced sound pressure level, dB. During peak hour, the sound pressure level is around 110 or more. However, Rampura Banasree road has fewer vehicle, congestion and noise than these major junctions. So, to work with the data collected through internet to set the noise impact into monetary unit, it is safe to consider 85 dB.

The monetary unit was converted to BDT with the rate of 2010 and then it was converted into present value. Later, the current density of Dhaka city was noted from the world health bank. The density multiplied by 8.508, the total population living close to the R112 road was estimated. It was assumed that each family has four members on average. So, the total population was divided by 4 to get the number of the households. Finally multiplying the household number by the health value, the total health value for current condition was calculated.

Founding on air impact and considering the fact that the congestion will be very less in multilane system as the LOS becomes A, the noise reduction is estimated to be 30% less than the current condition.

Thus the benefit was calculated.

Table 6.1:

	Health	Current		people		
Volume	value in	Health	people per	around	Total	Total health
dB	2010	value	km^2	R112	household	value
85	3958.896	5025.027	1278	10873.22	2718.306	13659560.2
				11634.35	2908.587	14615729.4
				12448.75	3112.189	15638830.5
				13320.17	3330.042	16733548.6
				14252.58	3563.145	17904897
				15250.26	3812.565	19158239.8
				16317.78	4079.444	20499316.6
				17460.02	4365.005	21934268.8
				18682.22	4670.556	23469667.6
				19989.98	4997.495	25112544.3
				21389.28	5347.319	26870422.4
				22886.53	5721.632	28751352
				24488.58	6122.146	30763946.6
				26202.78	6550.696	32917422.9
				28036.98	7009.245	35221642.5
				29999.57	7499.892	37687157.4
				32099.54	8024.884	40325258.5
				34346.51	8586.626	43148026.6
				36750.76	9187.69	46168388.4
				39323.31	9830.828	49400175.6
				42075.95	10518.99	52858187.9
				45021.26	11255.32	56558261.1
				48172.75	12043.19	60517339.3
				51544.84	12886.21	64753553.1
				55152.98	13788.25	69286301.8
				59013.69	14753.42	74136342.9
				63144.65	15786.16	79325886.9

				67564.77	16891.19	84878699
				72294.31	18073.58	90820208
				77354.91	19338.73	97177622.5
				82769.75	20692.44	103980056
				88563.64	22140.91	111258660
				94763.09	23690.77	119046766
					Total Cost	1624578280
30% reduction in multilane systemTotal Cost						1137204796
Benefit						487373484

Chapter 7

Travel time cost

Travel time cost is very important in road construction costing. It is also known as value of time. This time could be used in an alternative activity which has the potential to produce significant 'utility' known as 'benefit'. If the alternative activity can have a monetary value assigned to it, this can be used as a part of Road construction in the economic appraisal of projects, particularly of the transport projects having relation with consumption of time in the use of their output.

Level of service	The average delay (seconds per vehicle)
A	Less than 10
В	10-20
C	20-35
D	35-55
E	55-85

Table 2. Level of services corresponding to delay at the intersection (Highway Capacity Manual, 2010)

This table was used to calculate the delay time extension for each hour.

Total Intersection	LOS	Delay	Hour increase
20	А	10	3.33333333
	В	15	5
	С	25	8.333333333
	D	45	15
	Е	70	23.33333333
	F	80	26.66666667

More than 80

From the above chart we can see how time increases over the time

Now we will show travel time costs of vehicles.

F

Catergory	Occupancy	TTC Per Passenger	TTC per vehicle
		(Tk/hr)	(Tk/Hr)
Ordinary L Bus	47	49	2280

Mini Bus	35	52	1803
Microbus	7	107	749
Car	3	130	390
Auto Rickshaw	5	66	328
Motorcycle	1	86	86

Category	Number of vehicle	TTC of total	TTC of total vehicle
		passenger	
Ordinary L Bus	85	195755	193800
Mini Bus	1199	2182180	2161797
Microbus	1764	1321236	1321236
Car	2916	1137240	1137240
Auto Rickshaw	1767	583110	579576
Motorcycle	1912	164432	164432

category	`occupan		TTC per pa	ssenger(tk/ h	r)		
	су						
Ordinary	47	51.45	53.083333	55.805555	61.25	68.055555	70.777777
L Bus			33 56 56 78				
Mini Bus	35	54.6	56.333333	6.333333 59.222222 65		72.222222	75.111111
			33	22		22	11
Microbus	7	112.3	115.91666	121.86111	133.7	148.61111	154.55555
		5	67	11	5	11	56
Car	3	136.5	140.83333	148.05555	162.5	180.55555	187.77777
			33	56		56	78
Auto	5	69.3	71.5	75.166666	82.5	91.6666666	95.333333
Rickshaw				67		67	33

Motorcyc	1	90.3	93.166666	97.944444	107.5	119.44444	124.22222
le			67	44		44	22

Now we will show travel time cost years by years for two lane:

TTC	of Two	o Lane					
LO	Yea	Ordinary L	Mini Bus	Micro Bus	Car	Autoricksha	Motorcycle
S	r	Bus				W	
С	1	222943.19	4970521.1	3009482	6044220	1859473	2621776.8
		44	11				89
С	2	238549.21	5318457.5	3220145.7	6467315.4	1989636.11	2805301.2
		81	89	4			71
С	3 255247.66 5690749.6 3445555.9 6920027.		6920027.4	2128910.63	3001672.3		
		33	2	42	78	8	6
С	4	273114.99	6089102.0	3686744.8	7404429.4	2277934.38	3211789.4
		98	94	58	01	2	25
С	5	292233.04	6515339.2	3944816.9	7922739.4	2437389.78	3436614.6
		97	4	98	6	9	85
С	6	312689.36	6971412.9	4220954.1	8477331.2	2608007.07	3677177.7
		32	87	88	22	4	13
С	7	334577.61	7459411.8	4516420.9	9070744.4	2790567.57	3934580.1
		86	96	81	07		53
D	8	785849.38	3679309.4	2652020.3	2282698.6	1170434.04	330052.32
		23	33	69	58	6	47
D	9	840858.83	3936861.0	2837661.7	2442487.5	1252364.42	353155.98
		91	94	94	64	9	74
D	10	899718.95	4212441.3	3036298.1	2613461.6	1340029.93	377876.90
		78	7	2	93	9	65
D	11	962699.28	4507312.2	3248838.9	2796404.0	1433832.03	404328.29
		49	66	88	12	5	

D	12	1030088.2	4822824.1	3476257.7	2992152.2	1534200.27	432631.27
		35	25	18	93	7	03
D	13	1102194.4	5160421.8	3719595.7	3201602.9	1641594.29	462915.45
		11	14	58	53	7	92
Е	14	1310386.6	7303771.6	4422186.0	3806350.1	1951673.22	550355.04
		89	15	68	78		59
Е	15	1402113.7	7815035.6	4731739.0	4072794.6	2088290.34	588879.89
		57	28	92	9	5	91
Е	16	1500261.7	8362088.1	5062960.8	4357890.3	2234470.66	630101.49
		2	22	29	19	9	21
Е	17	1605280.0	8947434.2	5417368.0	4662942.6	2390883.61	674208.59
		41	9	87	41	6	65
Е	18	1717649.6	9573754.6	5796583.8	4989348.6	2558245.46	721403.19
		43	9	53	26	9	83
Е	19	1837885.1	10243917.	6202344.7	5338603.0	2737322.65	771901.42
		18	52	23	3	2	22
F	20	2045198.5	11399431.	6901969.2	5940797.4	3046092.64	858971.90
		6	41	07	51	7	26
F	21	2188362.4	12197391.	7385107.0	6356653.2	3259319.13	919099.93
		59	61	52	73	2	58
F	22	2341547.8	13051209.	7902064.5	6801619.0	3487471.47	983436.93
		31	03	45	02	1	13
F	23	2505456.1	13964793.	8455209.0	7277732.3	3731594.47	1052277.5
		79	66	64	32	4	16
F	24	2680838.1	14942329.	9047073.6	7787173.5	3992806.08	1125936.9
		12	21	98	95	8	43
F	25	2868496.7	15988292.	9680368.8	8332275.7	4272302.51	1204752.5
		8	26	57	47	4	29
F	26	3069291.5	17107472.	10357994.	8915535.0	4571363.69	1289085.2
		54	72	68	49		06

F	27	3284141.9	18304995.	11083054.	9539622.5	4891359.14	1379321.1
		63	81	3	03	8	7
F	28	3514031.9	19586345.	11858868.	10207396.	5233754.28	1475873.6
			51	11	08	8	52
F	29	3760014.1	20957389.	12688988.	10921913.	5600117.08	1579184.8
		33	7	87	8	9	08
F	30	4023215.1	22424406.	13577218.	11686447.	5992125.28	1689727.7
		23	98	09	77	5	44
F	31	4304840.1	23994115.	14527623.	12504499.	6411574.05	1808008.6
		81	47	36	11	5	86
F	32	4606178.9	25673703.	15544557	13379814.	6860384.23	1934569.2
		94	55		05	9	94
F	33	4928611.5	27470862.	16632675.	14316401.	7340611.13	2069989.1
		24	8	99	04	5	45
F	34	5273614.3	29393823.	17796963.	15318549.	7854453.91	2214888.3
		3	2	3	11	5	85
F	35	5642767.3	31451390.	19042750.	16390847.	8404265.68	2369930.5
		33	82	74	54	9	72
F	36	6037761.0	33652988.	20375743.	17538206.	8992564.28	2535825.7
		47	18	29	87	7	12
F	37	6460404.3	36008697.	21802045.	18765881.	9622043.78	2713333.5
		2	35	32	35	7	12
F	38	6912632.6	38529306.	23328188.	20079493.	10295586.8	2903266.8
		23	16	49	05	5	58
F	39	7396516.9	41226357.	24961161.	21485057.	11016277.9	3106495.5
		06	6	68	56	3	38
F	40	7914273.0	44112202.	26708443	22989011.	11787417.3	3323950.2
		9	63		59	9	25
F	41	8468272.2	47200056.	28578034.	24598242.	12612536.6	3556626.7
		06	81	01	4		41

F	42	9061051.2	50504060.	30578496.	26320119.	13495414.1	3805590.6
		6	79	39	37	7	13
F	43	9695324.8	54039345.	32718991.	28162527.	14440093.1	4071981.9
		48	04	14	73	6	56
F	44	10373997.	57822099.	35009320.	30133904.	15450899.6	4357020.6
		59	2	52	67	8	93
F	45	11100177.	61869646.	37459972.	32243278	16532462.6	4662012.1
		42	14	96		6	41
F	46	11877189.	66200521.	40082171.	34500307.	17689735.0	4988352.9
		84	37	06	45	4	91
F	47	12708593.	70834557.	42887923.	36915328.	18928016.5	5337537.7
		13	87	04	98		
				Total	281488991		
				TTC=	0		

Now we will show travel time cost years by years for multi lane:

LO	Yea	Ordinary L	Mini Bus	Micro Bus	Car	Autoricksha	Motorcycle
S	r	Bus				w	
А	1	205542.75	2291289	1387297.8	1194102	612265.5	172653.6
А	2	219930.74	2451679.2	1484408.6	1277689.1	655124.085	184739.35
		25	3	46	4		2
А	3	235325.89	2623296.7	1588317.2	1367127.3	700982.771	197671.10
		45	76	51	8		66
А	4	251798.70	2806927.5	1699499.4	1462826.2	750051.564	211508.08
		71	5	59	96	9	41
А	5	269424.61	3003412.4	1818464.4	1565224.1	802555.174	226313.65
		66	79	21	37	5	

А	6	288284.33	3213651.3	1945756.9	1674789.8	858734.036	242155.60
		97	52	3	27	7	55
А	7	308464.24	3438606.9	2081959.9	1792025.1	918845.419	259106.49
		35	47	16	15	2	79
А	8	330056.74	3679309.4	2227697.1	1917466.8	983164.598	277243.95
		06	33	1	73	6	27
А	9	353160.71	3936861.0	2383635.9	2051689.5	1051986.12	296651.02
		24	94	07	54		94
А	10	377881.96	4212441.3	2550490.4	2195307.8	1125625.14	317416.60
		23	7	21	22	9	15
А	11	404333.69	4507312.2	2729024.7	2348979.3	1204418.90	339635.76
		96	66	5	7	9	36
В	12	446371.56	4975929.6	3012756.6	2593198.6	1329640.24	374947.10
		84	53	89	54		09
В	13	477617.57	5324244.7	3223649.6	2774722.5	1422715.05	401193.39
		82	28	57	6	7	8
В	14	511050.80	5696941.8	3449305.1	2968953.1	1522305.11	429276.93
		87	59	33	39	1	58
В	15	546824.36	6095727.7	3690756.4	3176779.8	1628866.46	459326.32
		53	9	92	58	9	13
В	16	585102.07	6522428.7	3949109.4	3399154.4	1742887.12	491479.16
		09	35	46	48	2	38
В	17	626059.21	6978998.7	4225547.1	3637095.2	1864889.22	525882.70
		58	46	08	6		53
В	18	669883.36	7467528.6	4521335.4	3891691.9	1995431.46	562694.49
		09	58	05	28	6	47
С	19	753532.89	8400012.3	5085922.6	4377654.4	2244604.57	632959.16
		86	65	73	84	4	62
С	20	806280.20	8988013.2	5441937.2	4684090.2	2401726.89	677266.30
		15	31	6	98	5	78

С	21	862719.81	9617174.1	5822872.8	5011976.6	2569847.77	724674.94
		56	57	68	19	7	94
С	22	923110.20	10290376.	6230473.9	5362814.9	2749737.12	775402.19
		26	35	69	82	2	58
С	23	987727.91	11010702.	6666607.1	5738212.0	2942218.72	829680.34
		68	69	46	31		95
С	24	1056868.8	11781451.	7133269.6	6139886.8	3148174.03	887757.97
		71	88	47	73	1	4
D	25	1241176.4	13836022.	8377242.2	7210623.2	3697184.86	1042574.3
		91	15	8	43	8	04
D	26	1328058.8	14804543.	8963649.2	7715366.8	3955987.80	1115554.5
		46	7	4	7	8	05
D	27	1421022.9	15840861.	9591104.6	8255442.5	4232906.95	1193643.3
		65	76	86	5	5	2
D	28	1520494.5	16949722.	10262482.	8833323.5	4529210.44	1277198.3
		72	08	01	29	2	53
Е	29	1807699.1	20151336.	12200950.	10501840.	5384727.97	1518446.9
		03	25	84	2		3
Е	30	1934238.0	21561929.	13055017.	11236969.	5761658.92	1624738.2
		4	79	4	01	8	15
Е	31	2069634.7	23071264.	13968868.	12023556.	6164975.05	1738469.8
		03	87	62	84	3	91
Е	32	2214509.1	24686253.	14946689.	12865205.	6596523.30	1860162.7
		32	41	42	82	6	83
F	33	2464305.7	27470862.	16632675.	14316401.	7340611.13	2069989.1
		62	8	99	04	5	45
F	34	2636807.1	29393823.	17796963.	15318549.	7854453.91	2214888.3
		65	2	3	11	5	85
F	35	2821383.6	31451390.	19042750.	16390847.	8404265.68	2369930.5
		67	82	74	54	9	72

F	36	3018880.5	33652988.	20375743.	17538206.	8992564.28	2535825.7
		23	18	29	87	7	12
F	37	3230202.1	36008697.	21802045.	18765881.	9622043.78	2713333.5
		6	35	32	35	7	12
F	38	3456316.3	38529306.	23328188.	20079493.	10295586.8	2903266.8
		11	16	49	05	5	58
F	39	3698258.4	41226357.	24961161. 21485057.		11016277.9	3106495.5
		53	6	68	56	3	38
F	40	3957136.5	44112202.	26708443	22989011.	11787417.3	3323950.2
		45	63		59	9	25
F	41	4234136.1	47200056.	28578034.	24598242.	12612536.6	3556626.7
		03	81	01	4		41
F	42	4530525.6	50504060.	30578496.	26320119.	13495414.1	3805590.6
		3	79	39	37	7	13
F	43	4847662.4	54039345.	32718991.	28162527.	14440093.1	4071981.9
		24	04	14	73	6	56
F	44	5186998.7	57822099.	35009320.	30133904.	15450899.6	4357020.6
		94	2	52	67	8	93
F	45	5550088.7	61869646.	37459972.	32243278	16532462.6	4662012.1
		09	14	96		6	41
F	46	5938594.9	66200521.	40082171.	34500307.	17689735.0	4988352.9
		19	37	06	45	4	91
F	47	6354296.5	70834557.	42887923.	36915328.	18928016.5	5337537.7
		63	87	04	98		
				Total	250907145		
				TTC=	3		

So total save= 305818457.4

So for TTC we can say multilane is more preferable where we can save 305818457.4 taka almost.

Chapter 8

Vehicle Operating Cost

Vehicle operating cost in Multilane

Heavy	Medium		Large					Auto-	
Truck	Truck	Small Truck	Bus	Minibus	Microbus	Utility	Car	Rickshaw	Motorcycle
199686	847970.7	338466.9576	21514.61	183109.6	254537.6	34542.14	454754.982	76972.22	50916.64
213664	907328.7	362159.6446	23020.63	195927.3	272355.2	36960.09	486587.831	82360.27	54480.8
228620.5	970841.7	387510.8198	24632.07	209642.2	291420.1	39547.3	520648.979	88125.49	58294.46
244623.9	1038801	414636.5771	26356.32	224317.1	311819.5	42315.61	557094.408	94294.27	62375.07
261747.6	1111517	443661.1375	28201.26	240019.3	333646.8	45277.7	596091.016	100894.9	66741.32
280069.9	1189323	474717.4172	30175.35	256820.7	357002.1	48447.14	637817.387	107957.5	71413.22
299674.8	1272575	507947.6364	32287.62	274798.1	381992.3	51838.44	682464.605	115514.5	76412.14
320652.1	1361656	543503.9709	34547.75	294034	408731.7	55467.13	730237.127	123600.6	81760.99
343097.7	1456972	581549.2489	36966.1	314616.4	437343	59349.83	781353.726	132252.6	87484.26
367114.6	1558960	622257.6963	39553.72	336639.5	467957	63504.31	836048.486	141510.3	93608.16
392812.6	1668087	665815.735	42322.48	360204.3	500713.9	67949.62	894571.881	151416	100160.7
420309.5	1784853	712422.8365	45285.06	385418.6	535763.9	72706.09	957191.912	162015.1	107172
449731.1	1909793	762292.435	48455.01	412397.9	573267.4	77795.52	1024195.35	173356.2	114674
481212.3	2043478	815652.9055	51846.86	441265.8	613396.1	83241.2	1095889.02	185491.1	122701.2
514897.2	2186522	872748.6089	55476.14	472154.4	656333.8	89068.09	1172601.25	198475.5	131290.3
550940	2339578	933841.0115	59359.47	505205.2	702277.2	95302.85	1254683.34	212368.8	140480.6
589505.7	2503349	999209.8823	63514.64	540569.5	751436.6	101974.1	1342511.17	227234.6	150314.2
630771.2	2678583	1069154.574	67960.66	578409.4	804037.2	109112.2	1436486.96	243141	160836.2
674925.1	2866084	1143995.394	72717.91	618898.1	860319.8	116750.1	1537041.04	260160.9	172094.8
722169.9	3066710	1224075.072	77808.16	662220.9	920542.2	124922.6	1644633.91	278372.1	184141.4
772721.8	3281379	1309760.327	83254.73	708576.4	984980.1	133667.2	1759758.29	297858.2	197031.3
826812.3	3511076	1401443.55	89082.56	758176.7	1053929	143023.9	1882941.37	318708.3	210823.5
884689.2	3756851	1499544.598	95318.34	811249.1	1127704	153035.6	2014747.27	341017.8	225581.2
					•			•	

	r	1					1		
946617.4	4019831	1604512.72	101990.6	868036.5	1206643	163748	2155779.57	364889.1	241371.8
1012881	4301219	1716828.611	109130	928799.1	1291108	175210.4	2306684.14	390431.3	258267.9
1083782	4602304	1837006.613	116769.1	993815	1381486	187475.1	2468152.03	417761.5	276346.6
1159647	4924465	1965597.076	124942.9	1063382	1478190	200598.4	2640922.68	447004.8	295690.9
1240822	5269178	2103188.872	133688.9	1137819	1581663	214640.3	2825787.26	478295.2	316389.2
1327680	5638020	2250412.093	143047.1	1217466	1692379	229665.1	3023592.37	511775.8	338536.5
1420617	6032682	2407940.939	153060.4	1302689	1810846	245741.7	3235243.84	547600.1	362234
1520061	6454970	2576496.805	163774.7	1393877	1937605	262943.6	3461710.91	585932.1	387590.4
1626465	6906817	2756851.581	175238.9	1491448	2073237	281349.6	3704030.67	626947.4	414721.8
1740318	7390295	2949831.192	187505.6	1595850	2218364	301044.1	3963312.82	670833.7	443752.3
1862140	7907615	3156319.375	200631	1707559	2373649	322117.2	4240744.71	717792.1	474814.9
1992490	8461148	3377261.731	214675.2	1827088	2539805	344665.4	4537596.84	768037.5	508052
2131964	9053429	3613670.053	229702.4	1954985	2717591	368792	4855228.62	821800.1	543615.6
2281201	9687169	3866626.956	245781.6	2091834	2907823	394607.4	5195094.63	879326.1	581668.7
2440885	10365271	4137290.843	262986.3	2238262	3111370	422229.9	5558751.25	940879	622385.5
2611747	11090840	4426901.202	281395.4	2394940	3329166	451786	5947863.84	1006741	665952.5
2794570	11867198	4736784.286	301093	2562586	3562208	483411	6364214.31	1077212	712569.2
2990189	12697902	5068359.187	322169.5	2741967	3811562	517249.8	6809709.31	1152617	762449
3199503	13586755	5423144.33	344721.4	2933905	4078372	553457.3	7286388.96	1233300	815820.5
3423468	14537828	5802764.433	368851.9	3139278	4363858	592199.3	7796436.19	1319631	872927.9
3663111	15555476	6208957.943	394671.5	3359027	4669328	633653.3	8342186.72	1412006	934032.8
3919528	16644360	6643584.999	422298.6	3594159	4996181	678009	8926139.79	1510846	999415.1
4193895	17809465	7108635.949	451859.5	3845751	5345913	725469.6	9550969.58	1616605	1069374
4487468	19056127	7606240.465	483489.6	4114953	5720127	776252.5	10219537.4	1729768	1144230
	Total=	793942656.3							

		Mediu							Auto-	
Ye	Heavy	m	Small		Minibu	Microb			Ricksh	Motorcy
ar	Truck	Truck	Truck	Large Bus	S	us	Utility	Car	aw	cle
	20649	882823		22512.59	18861	263992	36068.	463934	78174.	50916.6
1	1.7	.9	351968.1	34	8.2	.7	47	.4	91	4
	22094	944621		24088.47	20182	282472	38593.	496409	83647.	
2	6.1	.6	376605.9	494	1.5	.2	27	.8	15	54480.8
	23641	101074		25774.66	21594	302245	41294.	531158	89502.	58294.4
3	2.4	5	402968.3	818	9	.2	8	.5	45	6
	25296	108149		27578.89	23106	323402	44185.	568339	95767.	62375.0
4	1.2	7	431176.1	496	5.4	.4	43	.6	62	7
	27066	115720		29509.41	24724	346040	47278.	608123	102471	66741.3
5	8.5	2	461358.4	76	0	.6	41	.4	.4	2
	28961	123820		31575.07	26454	370263	50587.		109644	71413.2
6	5.3	6	493653.5	684	6.8	.4	9	650692	.4	2
	30988	132488		33785.33	28306	396181	54129.	696240	117319	76412.1
7	8.4	1	528209.3	221	5	.8	05	.5	.5	4
	33158	141762		36150.30	30287	423914	57918.	744977	125531	81760.9
8	0.6	2	565183.9	547	9.6	.6	09	.3	.8	9
	35479	151685		38680.82	32408	453588	61972.	797125		87484.2
9	1.2	6	604746.8	685	1.2	.6	36	.7	134319	6
	37962	162303		41388.48	34676	485339	66310.	852924	143721	93608.1
10	6.6	6	647079.1	473	6.9	.8	42	.5	.4	6
	40620	173664		44285.67	37104	519313	70952.	912629	153781	100160.
11	0.5	8	692374.6	866	0.5	.6	15	.3	.9	7
	43463	185821		47385.67	39701	555665	75918.	976513	164546	
12	4.5	4	740840.8	617	3.4	.5	8	.3	.6	107172

	16505	100020		50702 (7	10 100	504560	01000	101106	17004	
	46505	198828				594562	81233.	104486	1/6064	
13	8.9	9	792699.7		4.3	.1	12	9	.9	114674
	49761	212746		54251.86	45454	636181	86919.	111801	188389	122701.
14	3	9	848188.6	065	0.6	.5	43	0	.4	2
	53244	227639		58049.49	48635	680714	93003.	119627	201576	131290.
15	5.9	2	907561.8	089	8.4	.2	79	1	.7	3
	56971	243573		62112.95	52040	728364	99514.	128001		140480.
16	7.1	9	971091.2	525	3.5	.2	06	0	215687	6
	60959	260624		66460.86	55683	779349	10648	136961	230785	150314.
17	7.3	1	1039068	212	1.8	.6	0	0	.1	2
	65226	278867		71113.12	59581	833904	11393	146548	246940	160836.
18	9.2	8	1111802	247	0	.1	3.6	3	.1	2
	69792	298388		76091.04	63751	892277	12190	156806	264225	172094.
19	8	5	1189628	104	6.7	.4	9	7	.9	8
	74678	319275		81417.41	68214	954736	13044	167783	282721	184141.
20	3	7	1272902	392	2.9	.8	2.6	2	.7	4
	79905	341625		87116.63	72989	102156	13957	179528	302512	197031.
21	7.8	0	1362006	289	2.9	8	3.6	0	.2	3
	85499	365538		93214.79	78098	109307	14934	192094	323688	210823.
22	1.8	8	1457346	719	5.4	8	3.8	9	.1	5
	91484	391126		99739.83	83565	116959	15979	205541	346346	225581.
23	1.2	5	1559360	3	4.4	4	7.8	6	.2	2
	97888	418505		106721.6	89415	125146	17098	219929	370590	241371.
24	0.1	3	1668515	213	0.2	5	3.7	5	.5	8
	10474	447800		114192.1	95674	133906	18295	235324	396531	258267.
25	02	7	1785312	348	0.7	8	2.5	6	.8	9
	11207	479146		122185.5	10237	143280	19575	251797		276346.
26	20	7	1910283	842	13	3	9.2	3	424289	6
	11991	512687		130738.5	10953	153309	20946	269423	453989	295690.
27	70	0	2044003	751	72	9	2.4	1	.3	9

	12831	548575		139890.2	11720	164041	22412	288282	485768	316389.
28	12	1	2187083	754	48	6	4.7	7	.5	2
	13729	586975		149682.5	12540	175524	23981	308462	519772	338536.
29	30	4	2340179	947	92	5	3.5	5	.3	5
	14690	628063		160160.3	13418	187811	25660	330054	556156	
30	35	6	2503992	763	78	2	0.4	9	.4	362234
	15718	672028		171371.6	14358	200958	27456	353158	595087	387590.
31	68	1	2679271	026	10	0	2.4	7	.3	4
	16818	719070		183367.6	15363	215025	29378	377879	636743	414721.
32	98	1	2866820	148	16	0	1.8	8	.4	8
	17996	769405		196203.3	16438	230076	31434	404331	681315	443752.
33	31	0	3067498	479	59	8	6.5	4	.5	3
	19256	823263		209937.5	17589	246182	33635	432634	729007	474814.
34	05	3	3282222	822	29	2	0.8	6	.6	9
	20603	880891		224633.2	18820	263414	35989	462919	780038	
35	98	8	3511978	13	54	9	5.3	0	.1	508052
	22046	942554		240357.5	20137	281853	38508	495323	834640	543615.
36	26	2	3757816	379	97	9	8	4	.8	6
	23589	100853		257182.5	21547	301583	41204	529996	893065	581668.
37	49	30	4020864	655	63	7	4.2	0	.6	7
	25240	107913		275185.3	23055	322694	44088	567095	955580	622385.
38	76	03	4302324	451	97	6	7.3	7	.2	5
	27007	115466		294448.3	24669	345283	47174	606792	102247	665952.
39	61	94	4603487	193	89	2	9.4	4	1	5
	28898	123549		315059.7	26396	369453	50477	649267	109404	712569.
40	14	63	4925731	016	78	0	1.8	9	4	2
	30921	132198		337113.8	28244	395314	54010	694716	117062	
41	01	10	5270532	807	55	7	5.9	7	7	762449
	33085	141451		360711.8	30221	422986	57791	743346	125257	815820.
42	49	97	5639469	524	67	8	3.3	8	1	5

	35401	151353		385961.6	32337	452595	61836	795381	134025	872927.
43	47	60	6034232	82	19	8	7.2	1	1	9
	37879	161948		412978.9	34600	484277	66165	851057	143406	934032.
44	57	36	6456628	998	79	б	2.9	8	8	8
	40531	173284		441887.5	37022	518177	70796	910631	153445	999415.
45	14	74	6908592	298	85	0	8.6	8	3	1
	43368	185414		472819.6	39614	554449	75752	974376	164186	
46	32	67	7392194	568	44	4	6.4	1	5	1069374
	46404	198393		505917.0	42387	593260	81055	104258	175679	
47	10	70	7909647	328	46	8	3.3	24	5	1144230
			83804123							
		Total=	8.7							

Vehicle Operating cost reduce: 44098582.3

Benefit cost ratio

For flexible pavement:

Accident Benefit	1298207516.20	
VOC	146909646.6	
TTC	305818457.4	
Fuel Benefit	8567542.15	
Noise Benefit	487373484.1	
Total Benefit	2246876646.46	
Cost	131848319.6	
Earth Fill	45203004	
Maintenance	301770095.6	
Total Cost	478821419.2	
B/C ratio	4.692514905	

In previos discussion we have calculated accident benefit, VOC, TOC, fuel benefit, noice benefit. So our total benefit was 2246876646.46, afterthan we calculated cost part. Cost was to

benefit. So our total benefit was 2246876646.46. afterthan we calculated cost part. Cost was total 478821419.2. we got benefit cost ratio 4.692514905.

For rigid pavement:

Accident Benefit	1298207516.20
VOC	146909646.6
TTC	305818457.4
Fuel Benefit	8567542.15
Noise Benefit	487373484.1
Total Benefit	2246876646.46
Cost	322644265.9

Earth Fill	45203004
Total Cost	367847269.9
B/C ratio	6.108178122

Accident Benefit	1298207516.20
VOC	146909646.6
TTC	305818457.4
Fuel Benefit	8567542.15
Noise Benefit	487373484.1
Total Benefit	2246876646.46
Cost	288956949.2
Earth Fill	45203004
Total Cost	334159953.2
B/C ratio	6.723955475

For first method of rigid pavement we have got benefit cost ratio 6.108178122

And for second method we have got 6.723955475.

Since the second ratio is higher. So we will choose this one.

So our selected road thickness is 8.5 inches.

Decision on the Pavement

There were three options to make the final decision. The first one was to do nothing, the second one was to choose rigid pavement, and the final option was to choose the flexible pavement.

First of all, doing nothing will not be feasible at all. The level of service will become F within 20 years. The user cost, safety cost, and environmental cost will keep rising up as the level of service got decrease. So, doing nothing was not a viable option.

So, the option remained to choose between rigid pavement and flexible pavement. To choose between these two, weightages were set. The weightages considered were:

Cost/Benefit	Weightage
Construction and Maintenance Cost	4
Environmental Benefit	3
User Benefit	2
Safety Benefit	3

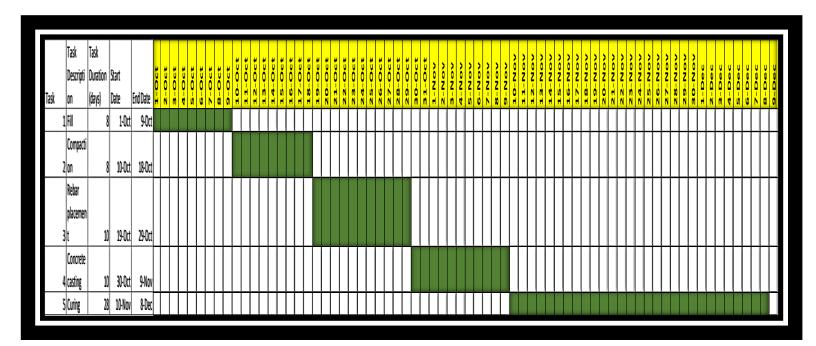
The weightage of construction and maintenance were the highest. This was considered as saving money is extremely important in todays condition. The rate of dollar is high, the heavy constructions like Padma bridge had already reduced the fund available to the government. Apart from these, many other construction work was ongoing like Metro rail. So, having a lower construction cost was extremely important.

The second highest weightage was set to environmental benefit and safety benefit. These criteria cannot be overlooked. The safety is always the first priority. Accident cost falls under it. In terms of environmental benefit, it was high time environmental benefit of Dhaka city should be taken into consideration. So, these two got the weightage as 3.

User benefit is important in the long run. However, the other benefits were considered as more important than this one. So, the user benefit got a weightage of 2.

Table: Rigid Pavement D=8.5 in

Cost/Benefit	Cost/Benefit in			Weighted
Туре	BDT	Weightage Type	Weightage	Amount in BDT
				3894622549
Accident Benefit	1298207516.20	Safety	3	
VOC	146909646.6	User		293819293.2
TTC	305818457.4	Cost/Benefit	2	611636914.7
Fuel Benefit	8567542.15	Environmental		25702626.45
Noise Benefit	487373484.1	Cost/Benefit	3	1462120452
Total Benefit	2246876646.46			6287901835
Cost	288956949.2	Construction and		1155827797
		Maintenance		
Earth Fill	45203004	Cost	4	180812016
	334159953.2			1336639813
Total Cost				
B/C ratio	1		1	4.704260472

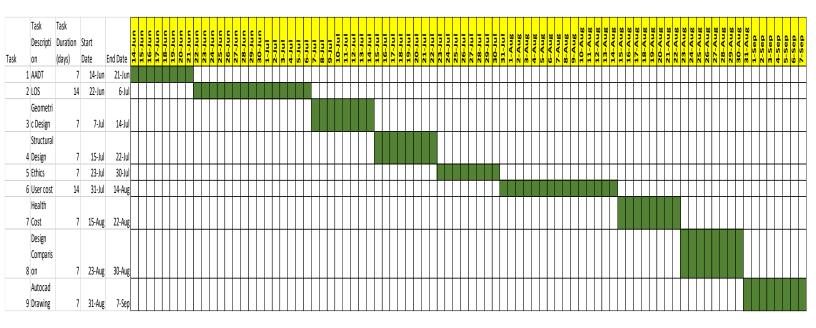

Table: Flexible Pavement

Cost/Benefit	Cost/Benefit in			Weighted
Туре	BDT	Weightage Type	Weightage	Amount in BDT
				3894622549
Accident Benefit	1298207516.20	Safety	3	
VOC	146909646.6	User		293819293.2
TTC	305818457.4	Cost/Benefit	2	611636914.7
Fuel Benefit	8567542.15	Environmental		25702626.45
Noise Benefit	487373484.1	Cost/Benefit	3	1462120452
Total Benefit	2246876646.46			6287901835.42
Cost	131848319.6	Construction and		527393278.3
Earth Fill	45203004	Maintenance		180812016
Maintenance	301770095.6	Cost	4	1207080382

Total Cost	478821419.2		1915285677
B/C ratio			3.283009899

With the defined weightage, it could be noted that Rigid pavement was more beneficial than the rigid pavement. So, rigid pavement with thickness 8.5 in was decided for this study.

Project Timeline:



Project Timeline:

There will be two different works. One is filling earth on the embankment, the other is constructing the pavement. However, before filling the embankment, it will be difficult to construct the pavement as most of the pavement will be built over the filled embankment. So, the 5 tasks are fill, compaction, rebar placement, concrete casting, and curing. None of the work can start before the other gets done.

Total project duration will be 68 days. Among them, all the works have been tentatively set for 8-10 days. The total length of the road is 8.508 km. So, 1 km each day was the idea to make this project timeline.

Feasibility Study Timeline:

Mode of financing with source: (BDT)

Mode	Gob(FE)	PA (RPA)	Own Fund	Others	PA source
Loan/Credit	0	0	0	0	0
Grant	778821419.2	0	0	0	0
Equity	0	0	0	0	0
Others	0	0	0	0	0
Total	778821419.2	0	0	0	0

Ethics

To continue a project perfectly and in diciplened way ethics is a topic that should obey by all mandatorily. From the very beginning of a project to the finishing ethical issues come.

Some issues that cannot be excluded when the topic ethics comes in are quality of work, the tender process, accountability of expense, corruption, etc.

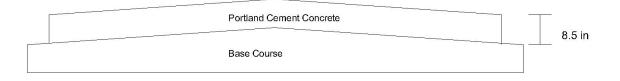
First ethical issue occurred in tendering . tendering is the first process of any project. Tender is the process of any entity inviting suppliers to provide a formal written submission for goods or services. By this process entity can select a contractor for construction work on the basis of best value for money. Since entity select a contractor in this process , entity face a lot of difficulty here. Like he can be threated. Many of the times threat come from political involved persons, even law enforcement agencies can not do anything here. Sometimes it happens that tender selection committee member get influenced by money of a candidate and wrong person get choose which is a serious ethical issue for a contraction site.

Then it comes substandard quality of construction work. A well organized construction site build with well educated workers, errorless perfect number of machines, workers with perfect safety tools, well graded construction material. If any of these get short then it is called substandard quality of contraction work. After getting choose in tendering process it is up to contractor to manage all of these. But sometimes it seen that to theft money he do not ensure all standard needs. It is seen that he use less educated, less experienced worker at working site to theft money. Even he use low quality construction material. This is an serious ethical issue to continue perfectly a construction site perfectly.

In a contraction site it is mandatory to obey all safety measures. Firstly a contractor has to manage all safety tools for his workers and he has to ensure that all workers are using those all all time at working time. Then they have to be the most aware of contraction tools that no one of

120

civil people get hurt. If possible it is high recommended to manage fence around the construction site so that none of a civil people can come in the area. Even security has to be hired for this.


From the contractor to the workers it is most important that they get their money in time. Everyone here do their work for money so that they can manage their life. So it very ethical to give their money in time.

In a project the most threating part is corruption. Corruption is a topic you will see from the very starting of a project to the finish. As we spoke earlier, tender selection committee choose wrong tenderer for money. After that contractor do rest of the damage as we have mentioned earlier. Most of the time we have seen that they give low quality product and less in number. They theft a lot of money from their. Engineers get involved here for money. Sometimes it is seen that contractor, engineer gang use bamboo stick rather than reinforcement. Which is a very serious ethical issue. We see they use low quality and less quantity cement which is suicidal decision. It is sure that accident will occur and we can see lots of accidents in road for road quality. Corruption is a serious ethical issue for a construction side.

Construction project like constructing a road or any big project it is important that everyone become honest and they have to be accountable. In the government project mass people are the main source of investment. So it is responsibility for all the members who are connected with the work to manage media, mass people with proper ethics.

To over overcome all these issues ethics should be taught mandatorily. Everyone related to the project have to know the codes of ethics. Government personnel, tenderer, contractor, workers everyone have to know about the codes of ethics. After then if any one disobey any rule then law enforcement agencies have to be very strict against it.

Cross Section of the Selected Pavement

BOQ

Construction Cost for Rigid Pavement:

Description	Unit	Quantity	Rate in BDT	Amount in
				BDT
ROAD WAY AND				
BORROW				
EXCAVATION				
Capping Layer compacted				
to 95% MDD,AASHTO				
T-180	m^3	19,966.40	205.2359	4097822.1
SUBBASE				
Gravel Sub-base				
layer,97%MDD,AASHTO				
T-180	m 3	12,937.40	333.221	4311013.4
: RIGID PAVEMENT				
Concrete Pavement				
Concrete Trial Pavement				
Manual Construction	m2	300	2581.205	774361.44
Concrete Pavement 216	m2	60	2581.205	154872.29
Concrete Pavement 216				
mm		70,027.80	2581.205	180756093
Texturing and Curing the				
Concrete pavement				0
Burlap dragged and / or				
grooved texture	m2	69,931.90	18.1	1265767.4
Curing	m2	80,064.20	108.6	8694972.1
Joints				0
Expansion Joint complete				
(except Dowels and end				
caps)	m	14	514.5468	7203.6552

Longitudinal joints				
complete (except tie bars	m	9,933.70	42.8789	425946.13
Sealed transverse				
contraction joints as per				
the drawing (except				
Dowels)	m	2,779.40	48.4537	134672.21
Dowel bars (mild steel				
plain bars, epoxy coated)				
(25 mm diameter and 400				
mm long at 300 mm				
spacing):	no	9,565.40	145.9403	1395977.3
Tie Bars (Ø 12 mm high				
strength deformed bars				
,1000 mm long @ 600mm				
spacing, with 15cm long				
protective coating as per				
the drawing)	no	16,689.10	84.0564	1402825.7
End caps for dowels at				
expansion joints with				
compressible fill	no	48	72.4	3475.2
Steel Reinforcement in				
Concrete Pavement				0
High tensile steel bars				
(Ø14 and Ø 12 mm				
deformed bars for the				
concrete reinforcement				
and 39 Anchors(keys) as				
per the drawing)	Ton	429.24	94681.1	40640915
Separation Membrane				
Impermeable plastic				
sheeting 125 microns				
thick	m2	69,931.80		

OR MC-30 prime coat				
material to be used in the				
absence of impermeable				
plastic				
sheeting, application rate				
of 1.25lit/m2	lit	87,414.84	72.5629	6343074.3
Rigid Pavement Total		I	I	250408992
Grand total of the bills wit	hout contingency			255054756
Add 10% for contingency		25505476		
Add 15% VAT	42084035			
Total contract amount (including VAT)				322644266

Construction Cost for Flexible Pavement:

Description	Unit	Quantity	Rate	Amount in BDT
5000 SUBBASE,				
ROAD BASE				
AND GRAVEL				
WEARING				
COURSE				
5100: SUB-				
BASES				
Sub-base layer				
constructed from				
gravel or Crushed				
stone:	m 3	7,377.00	333.221	2458171.3
a) Gravel sub-base				
(unstabilized				
gravel) compacted				
to:				
(i) 95% of				
modified				
AASHTO density				
5200: ROAD				
BASES				

Base layer				
construction a)				
Gravel base taken				
from cut or				
borrow, Gravel				
base (unstabilized				
gravel) compacted				
to:	m 3	29,239.00	725.9548	21226192
(i) 95% of				
modified				
AASHTO density				
6000				
BITUMINOUS				
SURFACINGS				
AND ROAD				
BASES				
6100				
BITUMINOUS				
PRIME COAT				
Prime coat				
(a) MC-30				
cutback bitumen	Lt	40,955.90	72.5629	2971878.9
Tack Coat				
RC -70 Cut back				
bitumenapplied at				
1lit per sq.m	Lt	205,852.51	69.1239	14229328
6300C: DOUBLE				
SURFACE				
TREATMENTS				
Double surface				
treatment using				
(c) Double surface				
treatment using 20	m 2	80,882.68	198.6113	16064214

mm and 10 mm				
chippings (with				
MC 3000 cutback)				
Variations in the				
rate of application				
of Bituminous				
Binder, with MC				
3000 cutback	Lt			
(h) MC 3000				
cutback bitumen	Lt	5,877.00	85.7578	503998.59
Variations in the				
rate of application				
of Chippings				
(a) 20 mm				
chippings	m 3	1,273.38	971.5899	1237203.1
Variations in the				
rate of application				
of Chippings				
(b) 10 mm				
chippings	m 3	587.71		
BITUMINOUS				
Road Bases and				
Surfacing				
Asphalt Surfacing				
(iii)(a)50mm A				
sphaltic Surfacing				
with pentration				
grade 80/100				
Bitemen	m2	50,746.31	385.5481	19565143
(b) Dense				
Bitumen				
Macadam				
	m 3	9,098.77	5890.048	53592189

Total	131848320

Routine Maintenance Cost for Pavements:

Flexible pavement needs to be maintained time to time. If not, the surface may get deteriorated. Once that occurs, the level of service worsen in very short period of time.

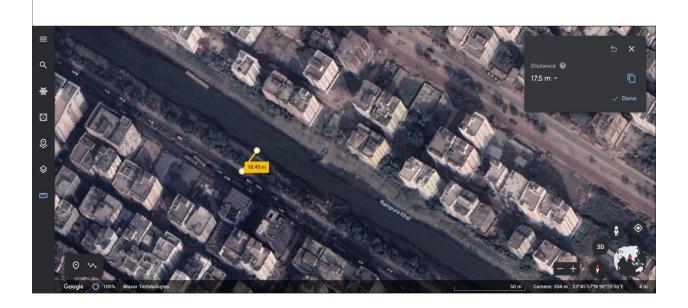
S/No	Activity	Cost (ETB)	Remarks
1	Construction Cost	6,301,638.47	
2	Routine Maintenance Cost	673,176.26	Twice every year
3	Periodic Maintenance Cost	681,856.38	Once every three years
4	Rehabilitation Cost	2,558,500.84	At 15 th and 30 th years
5	Salvage Value	1,705,667.23	After 40 th years

Table 3.6: Agency Cost of Flexible pavement

Yonus et al. (2016) provided this table for the estimated time period for flexible pavement maintenance. Based on this table, a tentative maintenance schedule and related cost was calculated. The rehabilitation cost has been modified as this projects life cycle is 33 years.

Table:

			Rehabilitation	Reconstruction
Year	Routine cost	Periodic Cost	Cost	Cost
1	1361280			
2	1361280			
3	1361280	4202952		
4	1361280			
5	1361280			
6	1361280	4202952		


7	1361280			
8	1361280			
9	1361280	4202952		
10	1361280			
11	1361280			
12	1361280	4202952		
13	1361280			
14	1361280			
15	1361280	4202952	39383532	
16	1361280			
17	1361280			
18	1361280	4202952		
19	1361280			
20	1361280			
21	1361280	4202952		
22	1361280			
23	1361280			
24	1361280	4202952		
25	1361280		39383532	
26	1361280			
27	1361280	4202952		
28	1361280			
29	1361280			
30	1361280	4202952		
31	1361280			
32	1361280			
33	1361280	4202952		49907928
Total		2198	329704	

The total cost for maintenance, rehabilitation, and reconstruction was found to be 219829704 bdt.

In terms of rigid pavement, it does not require any maintenance cost. Once the construction of rigid pavement is completed, it does not require any major maintenance. Thus, the pavement is known as "Fit and Forget".

Legal Issue and Water Resource

Many project report published by the JICA, ADB, and RHD mentioned that the right of way is already owned by the government. On the R112 road, all of the houses, shops, mosque, etc. were built leaving the right of way. So, implementing this project will not produce any legal issue or settlement cost.

As shown in the picture, there are 17.5 m distance left before the water body starts. The road will be only 7.3m. Those embankments will be filled with soil and a retaining wall will be built before the waterbody. So, the waterbody will remain unchanged.

Reference:

- 1. Dr. Muhammad Mukhlesur Rahman, Adjunct Faculty, East West University.
- 2. Sheikh Sohel Ahmed, Executive Engineer, HDM Operation Division, RHD.
- Population density (people per sq. km of land area) Bangladesh. (2022, Sepetember 6). *The world bank.*
- 4. Road Accident Costing : A Draft Discussion Paper, *RHD*. <u>https://www.rhd.gov.bd/Documents/RoadDesignAndSafety/Road%20Safety%20Reports/</u> <u>Bangladesh%20Accident%20Data/Accident%20Cost%20Reporting.pdf</u>
- Ketema Y, Quezon E.T., and Kebede G. (October 2016). Cost and Benefit Analysis of Rigid and Flexible Pavement: A Case Study at Chancho – Debra-Becho Road Project. *International Journal of Scientific and Engineering Research*. 7(10):181-188
- 6. Highway Capacity Manual. (2000). National Research Council Washington, D.C. 2000
- 7. Highway Capacity Manual. (2010). National Research Council Washington, D.C. 2010
- 8. RHD Schedule of Rates 2019. (2019). RHD.
- 9. Rigid and Flexible Pavement Cost Comparison. (October, 2016). *International Journal of Scientific and Engineering*.
- 10. Review of existing Road User Cost (RUC) estimation procedure used in RHD and update the same under BRRL during the year 2017-2017. (2017). *RHD*.
- 11. AASHTO Guide for Design of Pavement Structures 1993. (1993). AASHTO.
- 12. Geometric Design Standards Manual (Revised) 2005. (2005). RHD.
- Elghriany et al. (April 2015). Investigation of the Effect of Pavement Roughness on Crash Rates of Rigid Pavement. *Journal of Transportation Safety & Security*. 8(2):00-00.