un oGl LUIILIUL U1 FI0GUse CQUIpiiioliLe Il a
Distributed Gontrol System

By
Jobair Hasan Subbir and

Noushin Tabassum

\

* | * |

) .'\ \1\? \I l?[
A ™ _\'_ /4
ok ol \‘_-,._\.,;/

Submitted to the

Department of Electrical and Electronic Engineering
Faculty of Sciences and Engineering
East West University

In partial fulfillment of the requirements for the degree of
Bachelor of Science in Electrical and Electronic Engineering

(B.Sc. in EEE)
Fall, 2010
‘W/ Approved By
—’AAA_"’PV!—-
Thesis Advisor Chairperson

Dr. Kazi Mujibur Rahman Dr. Anisul Haque

M1

Abstract

Distributed control systems (DCS) are employed in complex process control systems for
monitoring, supervision, setpoint control and direct equipment control. In this project we
concentrate on direct equipment control using a general purpose data acquisition module.

A software program with a graphical user interface (GUI) is designed using Visual Basic in
.Net environment that involve three processes. Monitoring textboxes, setpoint spin controls
and checkbox/button based direct equipment control is accomplished in the GUI design.
Control signals from the GUI program are sent to the process equipments using an Advantech
USB-4711A DAQ module. Signals from the DAQ module are optically isolated and ON/OFF
signals are passed to the process equipments through relay interface. The proposed technique
of using general purpose DAQ hardware as a control device is supposed to be new in the era

of DCS. The system is tested in the laboratory and is found to work satisfactorily.

Acknowledgements

In our project work we are grateful to those who contributed us with their valuable times and

efforts.

At the very beginning, we will mention the name of our project supervisor Dr. Kazi Mujibur
Rahman . We feel lucky and honored to get the chance of completing our project under his
supervision. We leamt a lot from him regarding program development using visual studio and
especially controlling hardware in real time using a computer. He provided us the information
regarding different aspects of our project. We are also grateful to him also for reading,

checking and reviewing our project report.

Special thanks to Dr. Anisul Haque, Chairperson, EEE, East West University for his

guidelines, support and care.

We wish to express our appreciation to our parents, friends, teachers and lab-officers for their

support.

Suggestions for improvements in the project and the report are always welcome.

Authorization page

I hereby declare that I am the sole author of this thesis. I authorize East West University to

lend this thesis to other institutions or individuals for the purpose of scholarly research.

W Nowrhin

Jobair Hasan Subbir Noushin Tabassum

I further authorize East West University to reproduce this thesis by photocopy or other
means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

é}*m‘i"l__ Novshin

* Jobair Hasan Subbir Noushin Tabassum

Table of Contents

ADSITACE ...evieeveciiiieetee e vaeseeseeasaeerenssenre s e es e eassrnemeeanessearesam e n s s eene b eseen e et s eae shee ke renncen st bras e nte e
ACKNOWIEAZEMENLSuocourmreeioreesireiiaereearsessesessassesssssssvesesrnsssassesessemnintsnesaesinsessesenneainsenasssss 3
PANBTH oT0) o Yo o) 18 o2V OO SRO SRR 4
TabIE Of CONENLSoeevireierriiecee sttt sttt st st eeteste s st st reras e e seeesass s aessesssessassnsaessaenssessrerasn s 5
LISt OF TabBIES...cueetiierieeteeeee ettt ettt e b st e sa s ae e e e e ne e en 7
LISt OF FIGUIES ...cocirmeemriireeeaeeineniesrreemseoeratvssen et raaasonscoat st s smassaesassra nbes b ansaesenas ot sonesoanesansoe O
Chapter 1 INtrOQUCHIONoveereieiiceeeeetiae ettt a et e ceeesbeser e s ae s eata st sabe s satssbessbeesenaesnsevanes 9 *
LT BIEMEILS ..ottt e e e e e b e r e ene e 9 .
AN o) o) Ter: T8) oSSR 10
RN 3 § 151 0) o TSROSO 11
1.3.1 The Network Centric Era of the 19805ccccecviriiiiiniinininireneeeeeeeeeeees 13
1.3.2 The Application Centric Era of the 1990s..........cccccvrverimmrecriennscnrnrresrensesnnnsanns 1 4

1.4 ProbIem StAtEMENTcooeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee et ee e ee e e eeeeeeeeeeeeeeeeeseeaeeeeserereaeeeeaeeeaae 16

1.5 Objectives Of the PIOJECEccevirerieiiieiiserenese ettt saes 17
Chapter 2 Direct Control of Process Equipments in @ DCS...... oo 18 =

2.1 DIrect Contro] SOReIME . oo e eeeee e e eeeerasseseasseneraseeresessassnnannesnneneee 1 8

2.2 Graphic User Interface Development...........cccovveviieviiiirnieienieneriecreseeieecne e 20
2.2.1 DYCING PrOCESS. .. ceviiiieierierieecteeteseesie st st srasaeeste s e e s s ae s ee st e sreete st esseesesseenseans 20

22,2 BOHET wrerrooeoeeeseoe e ees s eescesses s ents oo sesesestaesseressessesssssesesssesesses s eresseseess s 21 -

2. 2.3 OffICE FIOOT ...viiinicircvienrcencene s sesenin e s trseersasensvscnsnsessssnssosnreses 21

Chapter 3 Graphic User Interface for DCS ..ottt 23

3.1 Interfacing the USBAT11 Acvicviiiireirisiircsinrnrrnssesssesierssesn s issssnsss aresssaessassansess 23 «

3.1.1 AdvDIO.WriteDoChannel Method..........cccccciriiiiieneninencccniere e 23
3.1.2 AdvDIO.WriteDoPorts Method........c.ceccemeeieciniinieciieeeeece e 24

3.2 GUI FOIIMN ottt ettt es et sam s s e sme et e nanen s mreesaesa e e secnn DD
3.3 Real Time OPeration.........cviiicriiivecnrineeriisinriieers e ecressrissserranseesessvsssrasesesssranerensassesd |
3.4 Direct Control of Process EQUIPMENLSccveeierieinommiiiinsinmiinisrais v sanens 32
Chapter 4 SOftWare COdes......cccuiiiiiiiiiiiiieie e seteeee et aee e s rresesaeessaessas st e aesre st ssessesssesssseans 33
4.1 Button ClICKed EVENLScocoiiriiimiicntionceieiie et imniescserenieiesa s srena s enersne e cennenne 39
4.2 Complete Program Codesccciviciireinimniniiinimrirmsnisssss s nnssnesssvssssssssssssesssess 3%
4.2.1 DCS Main FOrm Codes......ccc.ovviiiviiniimccmnencinenncceneinnisiissecrenssnssesecnnsersssanecees 34
4.2.2 Process 1 Form in a Separate Windowcceeeeeeieicieecieeeeiicecieeecereeeesnreeeneeens 39

4.2.3 Process 2 Program in a Separate Windowcccceevrvieieieinnenncnieeneescesennenenieene 41

4.2.4 Global Variable Declarations........cvuuurceairieeeariieeeereeesraaeesseeessreseetsssesreeemsrseennseee e b3

Chapter S RESUILSo.ciiriceeiiiiren et srne st enssetnas s esenrneresinesnsersneenesanes

5.1 IDICS SOTEWATE et et et e e ereeeseseaesasseseeesaaaeseasassessesesaasaaanssaaasaeesesasaasaeonasses 44

5.2 DCS INtErface HATAWATE ...t e e et et eeeee e e e e e e e eeee eereanaenenemenens 46

5.3 SyStem OPEIatiONcvvcemeriericirirninrerriesesseceterematerae e seneesassesasenssucssessssceraeassensessarsessens e dbQ

Chapter 6 CONCIUSIONScccvrrriiieriierieeieieesreesie e e eaeseressessserressessasesrsessestevaseesssssnssssassensensass B0

6.1 CONCIUSIONS ..t eee e e e e eeesreeeseeesaeaaesseesasaasaneeassaesanaressasasesaeraeessssneemeesnneseeesaaane 49

6.2 FULUIE W OTKS i ioiiiieetitii ittt ettt ettt e e e ettt teeseeeeeretetnaeeentaeessasseseseseresesataeeeessaresensanes 49

)33 10) D U0Tea 1) 4 | O TSR OU SRRSO SRRRSPRR 50

List of Tables

Table 1: VB.Net codes and associated tasks performed by USB4711A........cccceirieniccnne. 25

Table 2 Process control assignment to digital output line of USB-4711Accccccovvrvnrcnnnne 32

List of Figures

Figure 2.1. Functional block diagram of the direct control arrangement of process equipment

using Advantech USB4711A data acquisition module.............cccecurrverrienienerninenrenreessireeeesnens 19
Figure 2.2. Direct controls interface to process equipment through optical isolation 19
Figure 2.3 Typical dying process used in the DCScccoooiiiiriiniiniininceeeee e 20
Figure 2.4 Boiler process added to the DCS............ooimiiiiiiiieeeeceee e 21
Figure 2.5 Office floor under the control of DCS.......c.cccociiiiiiiiriirieeeee e 22

Figure 3.1 GUI window of the DCS showing three processes, necessary GUI controls and
EVENE LOZ. ...ttt ettt s e s ae st st b ettt naeent s 27

Figure 3.2 DCS showing process 1 operation with all the valves closed and pumps ON........28

Figure 3.3 DCS showing all three processes in Operation.c..ceceeveereereeruenessevnmenreeseenns 29
Figure 3.4 DCS showing whole system operation with event logs for all processes.30
Figure 5.1 All processes in the DCS shown in same window.c.ccc.coeevervinieceninenceneenenn 44
Figure 5.2 DCS operation showing event 10gs...........cccceeieiieriiiciineeceeeieeee e s 45
Figure 5.3 DCS showing process 1 in a separate window linked to the main GUI. 45
Figure 5.4 DCS showing process 2 opened in a separate Window..........cccoeeeveievnnecienreencn. 46
Figure 5.5 Experimental setup of the DCS hardware for direct equipment control. 48

Figure 5.6 DCS running from a laptop and interfaced to relay board.........c.cccccovervverieirnnnnnne 48

Chapter 1 Introduction

A distributed control system (DCS) refers to a control system usually of a manufacturing
system, process or any kind of dynamic system, in which the controller elements are not
central in location (like the brain) but are distributed throughout the system with each
component sub-system controlled by one or more controllers. The entire system of controllers
is connected by networks for communication and monitoring.
DCS is a very broad term used in a variety of industries, to monitor and control distributed
equipment. It has found applications in almost all process industries like,

o Electrical power grids and electrical generation plants

e Environmental control systems

e Water management systems

e Oil refining plants

e Chemical plants

e Pharmaceutical manufacturing

e Dry cargo and bulk oil carrier ships

1.1 Elements

A DCS typically uses custom designed processors as controllers and uses both proprietary

interconnections and communications protocol for communication. Input and output modules

and sends information to output modules. The input modules receive information from input
instruments in the process (e.g., field) and transmit instructions to the output instruments in
the field. Computer buses or electrical buses connect the processor and modules through
multiplexer or de-multiplexers. Buses also connect the distributed controllers with the central
controller and finally to the Human-Machine Interface (HMI) or control consoles.

Elements of a distributed control system may directly connect to physical equipment such as
switches, pumps and valves or may work through an intermediate system such as a SCADA

system.

1.2 Applications

Distributed Control Systems (DCSs) are dedicated systems used to control manufacturing
processes that are continuous or batch-oriented, such as oil refining, petrochemicals, central
station power generation, pharmaceuticals, food & beverage manufacturing, cement
production, steelmaking, and papermaking. DCSs are connected to sensors and actuators and
use setpoint control to control the flow of material through the plant. The most common
example is a setpoint control loop consisting of a pressure sensor, controller, and control
valve. Pressure or flow measurements are transmitted to the controller, usually through the
aid of a signal conditioning Input/Output (I/O) device. When the measured variable reaches a
certain point, the controller instructs a valve or actuation device to open or close until the
fluidic flow process reaches the desired setpoint. Large oil refineries have many thousands of
I/O points and employ very large DCSs. Processes are not limited to fluidic flow through
pipes, however, and can also include things like paper machines and their associated quality
controls, variable speed drives and motor control centers, cement kilns, mining operations,

ore processing facilities, and many others.

A typical DCS consists of functionally and/or geographically distributed digital controllers
capable of executing from 1 to 256 or more regulatory control loops in one control box. The
input/output devices (I/O) can be integral with the controller or located remotely via a field
network. Today’s controllers have extensive computational capabilities and, in addition to
proportional, integral, and derivative (PID) control, can generally perform logic and
sequential control.

DCSs may employ one or several workstations and can be¢ configured at the workstation or
by an off-line personal computer. Local communication is handled by a control network with
transmission over twisted pair, coaxial, or fiber optic cable. A server and/or applications
processor may be included in the system for extra computational, data collection, and

reporting capability.

1.3 History

Early minicomputers were used in the control of industrial processes since the beginning of
the 1960s. The IBM 1800, for example, was an early computer that had input/output
hardware to gather process signals in a plant for conversion from field contact levels (for
digital points) and analog signals to the digital domain.

The first industrial control computer system was built 1959 at the Texaco Port Arthur, Texas,
refinery with an RW-300 of the Ramo-Wooldridge Company [1].

The DCS was introduced in 1975. Both Honeywell and Japanese electrical engineering firm
Yokogawa introduced their own independently produced DCSs at roughly the same time,
with the TDC 2000 and CENTUM [2] systems, respectively. US-based Bristol also
introduced their UCS 3000 universal controller in 1975. In 1980, Bailey (now part of ABB

[3]) introduced the NETWORK 90 system. Also in 1980, Fischer & Porter Company (now

also part of ABB [4]) introduced DCI-<4000 (DCI stands for Distributed Control
Instrumentation).

The DCS largely came about due to the increased availability of microcomputers and the
proliferation of microprocessors in the world of process control. Computers had already been
applied to process automation for some time in the form of both Direct Digital Control
(DDC) and Set Point Control. In the early 1970s Taylor Instrument Company, (now part of
ABB) developed the 1010 system, Foxboro the FOX1 system and Bailey Controls the 1055
systems. All of these were DDC applications implemented within minicomputers (DEC PDP-
11, Varian Data Machines, MODCOMP etc.) and connected to proprietary Input/Output
hardware. Sophisticated (for the time) continuous as well as batch control was implemented
in this way. A more conservative approach was Set Point Control, where process computers
supervised clusters of analog process controllers. A CRT-based workstation provided
visibility into the process using text and crude character graphics. Availability of a fully
functional graphical user interface was a way away.

Central to the DCS model was the inclusion of control function blocks. Function blocks
evolved from early, more primitive DDC concepts of "Table Driven" software. One of the
first embodiments of object-oriented software, function blocks were self contained "blocks"
of code that emulated analog hardware control components and performed tasks that were
essential to process control, such as execution of PID algorithms. Function blocks continue to
endure as the predominant method of control for DCS suppliers, and are supported by key
technologies such as Foundation Fieldbus [5] today.

Digital communication between distributed controllers, workstations and other computing
elements (peer to peer access) was one of the primary advantages of the DCS. Attention was
duly focused on the networks, which provided the all-important lines of communication that,

for process applications, had to incorporate specific functions such as determinism and

12

redundancy. As a result, many suppliers embraced the IEEE 802.4 networking standard. This
decision set the stage for the wave of migrations necessary when information technology
moved into process automation and IEEE 802.3 rather than IEEE 802.4 prevailed as the

control LAN.

1.3.1 The Network Centric Era of the 1980s

The DCS brought distributed intelligence to the plant and established the presence of
computers and microprocessors in process control, but it still did not provide the reach and
openness necessary to unify plant resource requirements. In many cases, the DCS was merely
a digital replacement of the same functionality provided by analog controllers and a panel
board display. This was embodied in The Purdue Reference Model (PRM) that was
developed to define Manufacturing Operations Management relationships. PRM later formed
the basis for ISA9S standards activities today.

In the 1980s, users began to look at DCSs as more than just basic process control. A very
early example of a Direct Digital Control DCS was completed by the Australian business
Midac in 1981-1982 using R-Tec Australian designed hardware. The system installed at the
University of Melbourne used a serial communications network, connecting campus
buildings back to a control room "front end". Each remote unit ran 2 Z80 microprocessors
whilst the front end ran 11 in a Parallel Processing configuration with paged common
memory to share tasks and could run up to 20,000 concurrent controls objects.

It was believed that if openness could be achieved and greater amounts of data could be
shared throughout the enterprise that even greater things could be achieved. The first attempts
to increase the openness of DCSs resulted in the adoption of the predominant operating
system of the day: UNLX. UNIX and its companion networking technology TCP-IP were
developed by the Department of Defense for openness, which was precisely the issue the
process industries were looking to resolve.

13

As a result suppliers also began to adopt Ethernet-based networks with their own proprietary
protocol layers. The full TCP/IP standard was not implemented, but the use of Ethernet made
it possible to implement the first instances of object management and global data access
technology. The 1980s also witnessed the first PLCs integrated into the DCS infrastructure.
Plant-wide historians also emerged to capitalize on the extended reach of automation
systems. The first DCS supplier to adopt UNIX and Ethernet networking technologies was

Foxboro, who introduced the I/A Series system in 1987.

1.3.2 The Application Centric Era of the 1990s

The drive toward openness in the 1980s gained momentum through the 1990s with the
increased adoption of Commercial off-the-shelf (COTS) components and IT standards.
Probably the biggest transition undertaken during this time was the move from the UNIX
operating system to the Windows environment. While the realm of the real time operating
system (RTOS) for control applications remains dominated by real time commercial variants
of UNIX or proprietary operating systems, everything above real-time control has made the
transition to Windows.

The introduction of Microsoft at the desktop and server layers resulted in the development of
technologies such as OLE for Process Control (OPC), which is now a de facto industry
connectivity standard. Internet technology also began to make its mark in automation and the
DCS world, with most DCS HMI supporting Internet connectivity. The '90s were also known
for the "Fieldbus Wars", where rival organizations competed to define what would become
the IEC fieldbus standard for digital communication with field instrumentation instead of 4-
20 milliamp analog communications. The first fieldbus installations occurred in the 1990s.
Towards the end of the decade, the technology began to develop significant momentum, with
the market consolidated around Foundation Fieldbus and Profibus PA for process automation

annlications Some sunnliere built new svetems< from the oround nun to maximize fiinctionalitv

with fieldbus, such as Honevwell with Experion & Plantscape SCADA systems, ABB with
System 800xA [6], Emerson Process Management [7] with the DeltaV control system,
Siemens [8] with the Simatic PCS7 [9] and azbil [10] from Yamatake with the Harmonas-
DEO system.

The impact of COTS, however, was most pronounced at the hardware layer. For years, the
primary business of DCS suppliers had been the supply of large amounts of hardware,
particularly I/0O and controllers. The initial proliferation of DCSs required the installation of
prodigious amounts of this hardware, most of it manufactured from the bottom up by DCS
suppliers. Standard computer components from manufacturers such as Intel and Motorola,
however, made it cost prohibitive for DCS suppliers to continue making their own
components, workstations, and networking hardware.

As the suppliers made the transition to COTS components, they also discovered that the
hardware market was shrinking fast. COTS not only resulted in lower manufacturing costs for
the supplier, but also steadily decreasing prices for the end users, who were also becoming
increasingly vocal over what they perceived to be unduly high hardware costs. Some
suppliers that were previously stronger in the PLC business, such as Rockwell Automation
and Siemens, were able to leverage their expertise in manufacturing control hardware to enter
the DCS marketplace with cost effective offerings, while the stability/scalability/reliability
and functionality of these emerging systems are still improving. The traditional DCS
suppliers introduced new generation DCS System based on the latest Communication and
[EC Standards, which resulting in a trend of combining the traditional
concepts/functionalities for PLC and DCS into a one for all solution—named "Process
Automation System". The gaps among the various systems remain at the areas such as: the
database integrity, pre-engineering functionality, system maturity, communication

transparency and reliability. While it is expected the cost ratio is relatively the same (the

more powerful the systems are, the more expensive they will be), the reality of the
automation business is often operating strategically case by case. The current next evolution
step is called Collaborative Process Automation Systems.

To compound the issue, suppliers were also realizing that the hardware market was becoming
saturated. The lifecycle of hardware components such as I/O and wiring is also typically in
the range of 15 to over 20 years, making for a challenging replacement market. Many of the
older systems that were installed in the 1970s and 1980s are still in use today, and there is a
considerable installed base of systems in the market that are approaching the end of their
useful life. Developed industrial economies in North America, Europe, and Japan already had
many thousands of DCSs installed, and with few if any new plants being built, the market for
new hardware was shifting rapidly to smaller, albeit faster growing regions such as China,
Latin America, and Eastern Europe.

Because of the shrinking hardware business, suppliers began to make the challenging
transition from a hardware-based business model to one based on software and value-added
services. It is a transition that is still being made today. The applications portfolio offered by
suppliers expanded considerably in the '90s to include areas such as production management,
model-based control, real-time optimization, Plant Asset Management (PAM), Real Time
Performance Management (RPM) tools, alarm management, and many others. To obtain the
true value from these applications, however, often requires a considerable service content,

which the suppliers also provide.

1.4 Problem Statement

DCS is a huge and complex system where manufacturers use their own dedicated hardware
and communication protocols. The tasks undertaken by a DCS can be summarized as follows:

i) Process monitoring

ii) Setting of process setpoints
iii) Connect to physical equipment such as switches, pumps and valves or may work
through an intermediate system such as a SCADA system.

iv) Directly connect to physical equipment such as switches, pumps and valves.
An important part of the DCS is direct connection to physical equipments of processes. The
direct control functionality can be programmed and tested in lab without the need for
expensive and sophisticated DCS hardware.
Our focus in this project is to work on the direct physical connection and control part of a

DCS.

1.5 Objectives of the Project

The objectives of this project are to
a) Get familiarization with the literature of DCS,
b) Develop the functional part of a DCS using general purpose hardware,
¢) Implement the direct control function in small scale using an industrial grade data
acquisition module,
d) Design and test the related hardware interface and develop GUI interface using

modern .Net based visual programming.

s, ¢ ba

Chapter 2 Direct Ci;ntrol of Process
Equipments in a DCS

Custom built DCS uses specialized hardware for process access, communication and direct
control purposes. In this project we intend to use a general purpose data acquisition module
that would undertake the direct control part. We consider that other monitoring information
from different processes is available as variables supplied through Activex or Dynamic

Linking Library.

2.1 Direct Control Scheme

Figure 2.1 shows the direct control scheme developed using Advantech USB 4711A data
acquisition (DAQ) module. The DAQ is connected to the laptop PC through USB. Process
equipments direct control is accomplished by the digital output lines. USB 4711A have 8
output and 8 input lines. Upto 8 equipment can be controlled by a single DAQ USB 4711A.
However for more controls, several USB-4711A can be connected to the PC. In case of
limited USB ports in a Laptop/PC, USB hub can be used to add more DAQ modules.

The I/O control lines connect the process equipments through optically isolated drives as
shown in Figure 2.2. The DAQ and the PC have common grounds but the process grounds
are isolated using the 4N25 optical isolator. Relay outputs are used to ON/OFF the process

equipments.

Executive Laptep Master Gentrel Unit

1/0 Contrels
to Precosses

Figure 2.1. Functional block diagram of the direct control arrangement of process equipment

using Advantech USB4711A data acquisition module

ANALOG INPUTS DIGITAL INPUTS
RIO-ANS bio-n

i g
PUEN EN S N

ales
007

.

| Bt (T2 Bty

STk R

Portable Date Acquisition Moduie
s

=

D00-007

+i2v

+12v

oigiTaL outPurs F.L L eotss

Figure 2.2. Direct controls interface to process equipment through optical isolation

The network based hardware is omitted in this project as our work is concentrated on the

direct equipment control only.

2.2 Graphic User Interface Development

We considered two typical processes, one being a Dyeing process and the other one a boiler.

The third one is not a process but a large office floor having spilt air conditioners that are also

controlled from the DCS GUI. Graphic picture of the processes are embedded on the

background of the main GUI form. Control buttons, check boxes, spin control and text boxes

are inserted in appropriate places to demonstrate system monitoring and control clearly.

2.2.1 Dyeing Process

The dyeing process picture is shown in Figure 2.3. It contains dyeing autoclave, separator,

work tank, pressurization pump, circulating pump, heat exchanger and filter. In addition there

are a number of valves.

D1
i3 :
45 P1
&) —- 04 P2
w7
P1

E4 F

E1

Figure 2.3 Typical dying process used in the DCS

Dyeing Awtoclave
Separator

Work Tank

Dyestuff Vessel
Pressurization Pump
Circulation Pump
Heat Exchanger
Filter

The process invariably has monitoring parameters like temperatures in the heat exchanger.

We added direct controls to all the valves and start/stop of the pump motors.

2.2.2 Boiler

The second process is a boiler as shown in Figure 2.4. The boiler has feed water and makeup
water intake pumps, water level control, steam pressure control and associated monitoring as
well as the fuel supply controls. In our DCS we included monitoring of the steam temperature

and pressure, water level setting, water level and two direct controls of the water pumps.

ain leve Waler irlst L
contnzl cistrilisto

svalem
E“m A vert

i

@
§

[

I Steam pross.un
t contcl systemn
|

5 Dome | o ot %
1 |
. s I Bo= L
..I:/ i l:: LY . |
i Steam supply \ :é-
/ kt I | I. (o J Y. ,.T'P_ n
| . A \ a
Leve 1 |
. ; i
Gauge § | Vessel
| ' !
i\ /*' Note: Siramers and
Do, = P stop vaheas fave Leen
- 1 -
e l — .] 4 oettes for Clarnity
L] 3

Feadwaier to baler feedourmp
Figure 2.4 Boiler process added to the DCS
2.2.3 Office Floor

The third process we used is an office floor (Figure 2.5) that contains four AC’s. These AC’s

are also considered under the direct control.

Figure 2.5 Office floor under the control of DCS

Once the processes direct controls from DCS and monitoring parameters are finalized the

next part is the GUI based program development that would interactively communicate in

hardware level without halting process operation.

Chapter 3 Graphic User Interface
for DCS

The graphic user interface (GUI) is a windows form that hosts all the process outline pictures,
data displays and controls accessible by mouse and keyboard. The procedures and key

software codes used in the GUI are illustrated in this chapter.

3.1 Interfacing the USB4711A

The USB 4711A DAQ is the crucial interface used in this work that is primarily responsible
for all direct controls. Since we are developing our GUI in .Net environment we utilized the
.Net driver “AxInterop.AdvDIOLib.dll” supplied by Advantech. This driver communicates to
the DAQ module through the USB port. Advantech supplies this driver through the
ActiveDAQ Pro software utility.

The “AdvDIOLib” DLL supports two types of digital data outputs, (i) accessing channels
independently using “WriteDoChannel” and (ii) accessing few channels together using

“WriteDoPorts” methods.

3.1.1 AdvDIO.WriteDoChannel Method

This method outputs specific digital value on a specified DO channel.

Syntax

BOOL WriteDoChannel (

8 il ol il derdiedg

long channel
)
Parameters

status, IN (The output digital value.)

channel, IN (The specified output DO channel.)
Return Value

True: if successful.

False: if failed.

3.1.2 AdvDIO.WriteDoPorts Method
This method outputs the data of specified DO ports.

Syntax

BOOL WriteDoPorts (
VARIANT* data,
long portStart,
long portCount = 1

)

Parameters

data, IN (The buffer that stores the user specified data.)

portStart, IN (The starting DO port number. It is used to specify the DO port range.)
portCount, IN (The DO channel count. It is used to specify the DO port range.)
Return Value

True: if successful.

False: if failed.

The DLL file has to be included in the VB.Net program using normal procedures. We rename
the device as “AxAdvDIOI” in our program. Table 1 shows a number of instructions

supported by USB4711A in VB.Net.

Table 1: VB.Net codes and associated tasks performed by USB4711A

VB Code Work Performed
AxAdvDIO1.WriteDoChannel(1, 0) Writes 1 to DOO channel
AxAdvDIO1.WriteDoChannel(0, 1) Writes 0 to DOO channel

AdvDIO1.WriteDoPorts(userData, 0, | Writes userData to port from channel 0, total channels 8

8) (DO0-DO?)

Writes Data1 to port from channel 0, total channels 5

AdvDIO1.WriteDoPorts(Data1, 0, 5)
(DOO0-DO4) other channels remain unaffected.

In the “WriteDoChannel” function, the first argument is the status and the second argument
represents the channel. Thus “WriteDoChannel (1, 0)” writes 1 to channel DOO0. On the other
hand “WriteDoPorts” writes parallel data to specified channels. For example

“WriteDoPorts(71,0,7)” writes to DO port bits DO to D6, the bit D7 retains the old state.

3.2 GUI Form

A view of GUI form developed in this project is shown in Figure 3.1. For simplicity the three
processes are outlined in the same window. An event log text box is placed in the form that
displays all events (operasion of any GUI control of any process with time stamp). The event
log helps system administrator to keep track of the centralized command controls. The

following GUI controls are added in the processes:

Process 1 (Dyeing Process)

*» Five checkboxes for valves (assuming the valves are solenoid controlled),
¢ Three textboxes for displaying process temperatures,

*» Two buttons for pump motors.

Process 2 (Boiler)

+« One spin box for setting water level,
> Two textboxes for temperatures with one textbox showing pressure as well,

+»» Two buttons, where one button starts the boiler and the other operates the boiler feed

pump.

Process 3 (Office Floor)

<+ Four buttons for operating split air coolers.

L Distributes Cortrel 5y

£ 35.00°C

Dyeing Awtoclave
Separatos

Work Tank

Dyestuff Vessel
Pressuxization Pump
Circidation Puinp
Heat Exchianger
Filter

Event Log

AC1 of Office Floor Turned ON at 12/9/2010 8:49:15 AM
AC2 of Office Floor Turned ON at 12/9/2010 8:49:21 AM
AC3 of Office Floor Turned ON at 12/9/2010 8:49:21 AM
AC4 of Office Floor Turned ON at 12/9/2010 8:49:31 AM
AC4 of Office Floor Turned OFF at 12/9/2010 8:49:34 AM
AC4 of Office Floor Turned ON at 12/9/2010 8:49:35 AM
AC4 of Office Floor Turned OFF at 12/9/2010 8:49:35 AM

DGS Project, Department of EEE, East WestUnNversity, 2010

12/8/2010 £:50:08 AM Tocl‘tnp‘tatusLaLel-

aler rlet ty
cistritutor

Vvater il
contrd
syslem

40 : f"[
L
hake-up
walet il
eturneg

Leve!
g3ugs

=0 A vent

.36 bar
.59 *C
2]
[~
Steam pressure
control system

Note: Steainers and
slop velves heve been
onitted fer clarity

]

Figure : 3.1 GUI window of the DCS showing three processes, necessary GUI controls and Event Log.

27

& Distritured Contral |

Dyeing Autoclave
Separator

Work Tank

Dyestutl Vessel
Presswrization Punyp
Clrcuiation Pump
Heat Exchanger
Filter

Event Log

AC1 of Office Floor Turned ON at 12/9/2010 8:49:15 AM
AC2 of Office Floor Turned ON at 12/9/2010 8:49:21 AM
AC3 of Office Floor Turned ON at 12/9/2010 8:49:21 AM
AC4 of Office Floor Turned ON at 12/9/2010 8:49:31 AM

AC4 of Office Floor Turned OFF at 12/9/2010 8:49:34 AM

AC4 of Office Floor Turned ON at 12/9/2010 8:49:35 AM

AC4 of Office Floor Turned OFF at 12/9/2010 8:49:35 AM

DCS Project, Deparument of EEE, East West University, 2010

12/2/2010 85114 AM ToolStripStatusLabel2

Veater el ‘Waler inlg2 tn
coritrol cisteibutor
system
40 : ﬁ .02 bar
Lol .96 °C

Jakeup
wales ant
oWiney Steam prasswe

|]

Level .0 inches
gauge

conlred system

& Stezm

Vessel
Nagte: Suainers and
{_l I_I stop vehves heve been
o | d for elasity
by |

Faedveater to bailer feedpump

A

v

Figure: 3.2 DCS showing process 1 operation with all the valves closed and pumps ON.

28

. Distribues Control Systan

Event Log

AC1 of Office Floor Turned ON at 12/9/2010 8:49:15 AM
AC2 of Office Floor Turned ON at 12/9/2310 8:49:21 AM
AC3 of Office Floor Turned ON at 12/9/2010 8:49:21 AM
AC4 of Office Floor Turned ON at 12/9/2010 8:49:31 AM
AC4 of Office Floor Turned OFF at 12/9/2010 8:49:34 AM
AC4 of Office Floor Turned ON at 12/9/2010 8:49:35 AM
AC4 of Office Fioor Turned OFF at 12/9/2010 8:49:35 AM

Dyeing Autoclave
Separator

Work Tank
DyestfY Vessel
Pressusization Pump |
Circuiation Pamp

Heat Exchanger

Filter

DCS Project, Department of EEE, East West University, 2010

12/2/2010 8:51:48 Al ToeolStiipStatusLabel2

Weate: evn!
control
syslem

Waler infet to
distributor

Aiv venl
£ Arven .98 bar
] 23°C
)
Make-up .e
walet anil
ihirncy I] Steam pressure
e contd system
D e -'
Steam supply \ =
. | (,J Ston
Level ||| 32.1 inches
gauge Vessel
Note: Strainers and
I—l sto valeas have been
i : onuttet! for clarity
[__erPOoN | oN < —l | Stad/Stop Boder |

Fe"d' water to berer feedpumg

Figure : 3.3 DCS showing all three processes in operation.

29

;_ Destricuses Cantrol

&5 200230

C Dyeing Autoclave

D1 Work Tank
—_— 1 ork Tan
J |-_| 185.23°C D2 Dyestuff Vessel

¥ P1 Pressurization Pump

67 o P2 Circidation Pump
€ Heat Exchanger
E1 P1 £4 F Filter

Event Log
Pump P1 Turned OFF at 12/9/2010 8:56:45 AM .

Pump P1 Turned ON at 12/9/2010 8:56:50 AM

Pump P1 Turned OFF at 12/9/2010 8:56:54 AM

Pump P1 Turned ON at 12/9/2010 8:56:56 AM

BFP Turned ON at 12/9/2010 8:57:36 AM

Boiler Turned OFF at 12/9/2010 8:57:39 AM

AC1 of Office Floor Turned ON at 12/9/2010 8:57:41 AM E
AC2 of Office Floor Turned ON at 12/9/2010 8:57:43 AM

AC3 of Office Floor Turned ON at 12/9/2010 8:57:43 AM

AC4 of Office Floor Turned ON at 12/9/2010 8:57.44 AM

DCS Project, Deparument of EEE, East West University, 2010

12/2/2010 85755 AM ToolStripStatusLabel2

Wvainr ewel Water wlet Lo
corisol distributor
system .
0 ﬁ’ . e
Ll |) 99 °C
hakavp .
wiale anut []
returned ~-
. Sieam pressure
condensate) “ﬁ : ‘L contrel system
U Steam supply L=
4 [| & Sieem
Level || | 40.0 inches }
Gauge Vessel !
! Nete: Strainers and
r‘l r‘—l / 3op velvas heve Leen
5 L J omitled for clarity
BFP ON X2 - | BoweOFF
- Feedveater o bolcr feedpump —
—
f/

Figure: 3.4 DCS showing whole system operation with event logs for all processes.

30

3.3 Real Time Operation

All GUI controls in a windows form works asynchronously. The operating system assigns
time for each GUI controls by its own. For real time operation of displaying system data
(temperature, pressure etc.) continuously we need to ask the operating system for directing
the processor to specific routines in regular intervals. We accomplished this real time works
using a timer. On each tick, the timer requests the operating system to do its task by the
processor. In our GUI form we used a timer “Timer_Display” to refresh all displays at an
interval of 1 second. The Timer Display Tick subroutine do all the tasks of displaying the

process data. The source code for the Timer Display Tick subroutine are shown below:

Timer Display Tick(#, sender = System.Object, e
System.EventArgs) Handlcs Timer Display.Tick
ButtonBFP.Text = ")
WaterLevel += 0.3
WaterLevel >= NumericUpDownWaterLevel.Value
WaterLevel = NumericUpDownWaterLevel.Value

~ ButtonBFP.Text =
WaterLevel -= 0.1
WaterLevel < 0
WaterLevel = 0

TextBoxWaterLevel.Text = Format (WaterLevel,) &

TextBoxSteam.Text = Format (Rnd (),) & =
& vbCrLf & Format (Rnd(),) &

CheckState.Checked
CheckState.Checked

]

CheckBoxValveZ2.CheckState
CheckBoxValved .CheckState
ButtonP2.Enabled = E

I

ButtonP2.Enabled = :
ButtonP2.BackColor = = .BackColor
ButtonP2.Text = .

btnP2 =

ToolStripStatusLabell.Text = Now
ButtonPl.Text = he
Celsiusl += 2
Celsiusl > 200
Celsiusl = 200 + Rnd()

Celsiusl -=1
Celsiusl <= 35
Celsiusl = 35

exEBox#E3 . Text = Format (Celsiusl, "#g.00™) & "
TextBoxE4.Text = Format(Celsiusl - 5, ° Uk <&,
IT ButtonP2.Text = "“ON" 'Then

Celsius2 = Celsiusl + 10

-Celsiusz = Celsiusl + 5

TextBoxEl.Text = Format (Celsius2, = U e

3.4 Direct Control of Process Equipments

All checkboxes and buttons are used to control process equipments. Due to constraint in the
number of output lines in the USB-4711A module, we assigned output functions to only the

buttons. Here is a list of the button assignment with the digital output lines.

Table 2 Process control assignment to digital output line of USB-4711A

Button Control Digital Output Lines
Pump 1 of Process 1 DOO0
Pump 2 of Process 1 DO1
Boiler Start/Stop of Process 2 DO2
Boiler Feed Pump (BFP) of Process 2 DO3
ACl1 of Office Floor DO4
AC?2 of Office Floor DOS
AC3 of Office Floor DO6
AC4 of Office Floor DO7

Once a process button is operated a text line appears in the status bar showing what data is

communicating to the process equipment.

Chapter 4 Software Codes

The software developed in this work has some key functional parts:
» Subroutines for button clicked events
» Regular update of process information through timer tick events

» Data communication to the process equipment through USB 4711A digital /O

4.1 Button Clicked Events

A user can click a button to operate the associate process equipment. The operation
performed by the click event is visually available to the user by changing the button text and
sometimes by changing button color. A typical subroutine that serves the ButtonP1.Click

event is illustrated here.

Private Sub ButtonPl Click(ByvVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonPl.Click
bitP1 = Not bitPl
If bitP1 = True Then
ButtonPl.BackColor = Color.Green

AxAdvDIOl.WriteDoChannel (1, 0) 'Pump 1, Process 1, DO

! ToolStripStatusLabel2.Text - "Data b &
AxAdvDIOl.ReadDoChannel (0) & " sent to device”

ToolStripStatusLabel2.Text = "Data 1 sent to Pump Pl of
process 1"

ButtonPl.Text = "ON"

TextBox1l.AppendText ("Pump Pl Turned ON at " & Now & vbCrLf)

Else

ButtonPl.BackColor = Me.BackColor
AXAdvDIOl .WriteDoChannel (0, 0) 'Pump 1, Process 1, DO

: ToolStripStatusLabel2.Text = "Data B &
AxAdvDIOl.ReadDoChannel{0) & " sent to device"

ToolStripStatusLabel2.Text = "Data 0O sent to Pump Pl of
process 1"

BhttenkPiNlextl = O R

33

TextZoxl.AppencText ("Pump Pl Turned OFF at " & Now &
vbCrLf)
End If
End Sub

We defined bitP1 as a bit (Boolean variable) that stores the status of the pump 1 of process 1.
Whenever, the user clicks the P1 button, the state of bitP1 changes. The pump is operated
according to the state of bitP1. When bitP1 is assigned 1, the pump 1 is turned ON. When
bitP1 is assigned to 0, pump 1 is turned OFF. For easy of visibility, the button background is
also changed so that the user can confirm that his command is working. In a practical system,
a feedback state (not incorporated in this design) from the process would be needed that

would communicate to the GUI program through the USB4711A digital input lines.

4.2 Complete Program Codes

The whole program code written in VB.Net using Visual Studio 2008 is listed here to
facilitate readers to understand and guide as how to write GUI program that would work

interactively with process hardware.

4.2.1 DCS Main Form Codes

Imports System.Windows.Forms
Imports System.Drawing
Imports System.Drawing.Drawing2D

Public Class DCSForm
Dim ONOFF_bit As Boolean = False
Dim bitP1l As Boolean = False
Dim bitP2 As Boolean = False
Dim Celsiusl As Double = 0
Dim Celsius2 As Do ble = 0
Dim SteamTemp As Double =
Dim SteamPressure As Doubl
Dim WaterLevel As Double = 0
Dim btnPl As Boolean = False
Dim btnP2 As Boolean = False
Dim BFPstate As Boolean = False

0
e =20

/ Private Sub Timer Display Tick(ByVal sender As System.Object, e
As System.EventArgs) Handles Timer Display.Tick
If ButtonBFP.Text = Then
WaterLevel += 0.3
If WaterLevel >= NumericUpDownWaterLevel.Value

~ A

WzzerLevel = NumericUpDownWaterLevel.Value
End ¥If
End If
If ButtonBFP.Text = "BFP OFF" Then
WaterLevel -= 0.1
If WaterLevel < O Then
WaterLevel = 0

End If
Ene Ef
TextBoxWaterLevel.Text = Format (WaterLevel, "##.0") & " inches”
TextBoxSteam.Text = Format (10 + Rnd(), "##.00") & " bar" !

& VvbCrLf & Format (200 + Rnd(), "##.00") & " °C7
I1f CheckBoxValve2.CheckState = CheckState.Checked And
CheckBoxValved.CheckState = CheckState.Checked Then
ButtonP2.Enabled = True
Else !
ButtonP2.Enabled = False 8
ButtonP2.BackColor = Me.BackColor :

ButtonP2.Text = "OFF"
btnP2 = False

Bd e
ToolStripStatusLabell.Text = Now ﬂ
If ButtonPl.Text = "ON" Then
Celsiusl += 2
If Celsiusl > 200 Then
Celsiusl = 200 + Rnd() I
End If i
Else |
Celsiusl -= 1
If Celsiusl <= 35 Then |
Celsiusl = 35 i
End If i
End If
TextBoxE3.Text Format (Celsiusl, "##.00") & " °C" |
TextBoxE4.Text = Format(Celsiusl - 5, "##.00") & " “C”
If ButtonP2.Text = "ON" Then ‘
Celsius2 = Celsiusl + 10 (W
Else ll
Celsius2 = Celsiusl + 5 “
End If
TextBoxEl.Text = Format (Celsius2, "##.00") & " °“C" il

I

End Sub

Private Sub DCSForm load(ByVal sender As System.Object, ByVal e As (R

System.EventArgs) Handles MyBase.load |

AxAdvDIOl. ShowPropertyPages () |
Me.WindowState = FormWindowState.Maximized

End Sub i

Private Sub PictureBoxl Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PictureBoxl.Click |
PictureBox1l.BackColor = Color.DeepSkyBlue
End Sub

Private Sub ButtonP2 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonP2.Click
bitP2 = Not bitP2
If bitP2 = True Then
ButtonP2.BackColor = Color.Green

AxAawDIO]l . WriteDoChannel (1, 1) Pump 2, Process 1, Dl
R Too] St LabelZ.Text = “Data " &
o

gAdvDI 1 .ReadDoChanne] 1] ; ‘_;

dvDICI. aadl annal (1 ent to device
ToolStripStatusLabel2.Text = "Data 1 sent to Pump P2 of process
ButtonPZ.Text = "ON"
TextBoxl.AppendText ("Pump P2 Turmed ON at " & Now & VbCrLf)
Else

ButtonP2.BackColor = Me.BackColor
AxAdvDIOl.WriteDoChannel (0, 1) 'Pump 2, Process 1, D1
ToolStripStatusLabel2.Text = "Data " &
AxAdvDIOl.ReadDoChannel (1) & " sent to device"
ToolStripStatusLabel2.Text = "Data 0 sent tc Pump P2 of process

lll
ButtonP2.Text = "OFF"
TextBox1l.AppendText ("Pump P2 Turned OFF at " & Now & vbCrLf)
End If

End Sub

Private Sub ButtonPl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonPl.Click
bitPl = Not bitPl
If bitPl = True Then
ButtonPl.BackColor = Color.Green

AxAdvDIOl.WriteDoChannel (1, O0) 'Pump 1, Process 1, DO

! ToolStripStatusLabel2.Text = "Data " &
AxAdvDIQl.ReadDoChannel (0) & " sent to device”

ToolStripStatusLabel2.Text = "Data 1 sent to Pump Pl of process
lll

ButtonPl.Text = "ON"

TextBoxl.AppendText ("Pump Pl Turned ON at 7 & Now & vbCrLf)

Else

ButtonPl.BackColor = Me.BackColor

AxAdvDIOl .WriteDoChannel (0, O0) 'Pump 1, Process 1, DO

! ToolStripStatusLabel2.Text = "Data " &

AxAdvDIOl.ReadDoChannel (0) & " sent to device”
ToolStripStatuslLabel2.Text = "Data 0 sent toc Pump Pl of process

lll
ButtonPl.Text = "Org"
TextBoxl.AppendText ("Pump Pl Turned OFEF at " & Now & vbCrLf)
End If

End Sub

Private Sub CheckBoxValvel CheckedChanged (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBoxValvel.CheckedChanged

If CheckBoxValvel.Checked = True Then
ButtonPl.Enabled = True

Else
ButtonPl.Enabled = False
ButtonPl.BackColor = Me.BackColor
ButtonPl.Text = "OFE"

End If

End Sub

Private Sub ButtonBFP_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonBFP.Click
If BFPstate = False Then
BFPstate = True
AXAdvDIOl.WriteDoChannel (1, 2) 'BFP, Process 2, D2

36

oclScripStartusLabel2.Text = "Data " &

aoicLl 1l

]

AxAdvDIOl.RsadDeChannel (2) & " sent to device"
ToolStripStzatusiLabel2.Text = "Data 1 sent to BFP of process 2"
ButtonBFP.Text = "BFP ON"

TextBoxl.AppendText ("BEP Turned ON at " & Now & vbCrLf)
ButtonGas.Enabled = True

Else
BFPstate = False
AxAdvDIOl.WriteDoChannel (0, 2) 'BFP, Process 2, D2
: ToolStripStatusLabel2.Text = "Data " &

AxAdvDIOl.ReadDoChannel (2) & " sent to device”

ToolStripStatusLabel?.Text = "Data O sent to BFP of process 2"
ButtonBFP.Text = "BEP OFF"
TextBox1l.AppendText ("BF'P Turned OFEF at " & Now & vbCrLf)
ButtonGas.Enabled = False

Emd TE

End Sub

Private Sub ButtonGas_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonGas.Click

If ButtonGas.Text = "Boiler OFF" Then
AxXAdvDIOl.WriteDoChannel (1, 3) ‘Boiler Gas, Process 2, D3
! ToolStripStatusLabel2.Text = "Data " &
AxAdvDIOl.ReadDoChannel (3} & " sent to device"
ToolStripStatuslLabel2.Text = "Data 1 sent to Boiler of process
2"
ButtonGas.Text = "Boiler ON"
TextBox1l.AppendText ("Boiler Turned ON at ¥ & Now & vbCrLf)
Else
AxAdvDIOl.WriteDoChannel (0, 3) ‘Boiler Gas, Process 2, D3
y ToolStripStatusLabel2.Text = "Data " &
AxAdvDIOl.ReadDoChannel (3) & " sent to device"”
ToolStripStatusLabel2.Text = "Data 0 sent to Boiler of process
2"
ButtonGas.Text = "Boiler OFF"
TextBoxl.AppendText ("Boiler Turned OFEF at " & Now & vbCrLf)
End If
End Sub

Private Sub BtnACl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtnACl.Click
If BtnACl.Text = "ACl OFF" Then

AxAdvDIOl.WriteDoChannel (1, 4) 'ACl, Office Floor, D4

' ToolStripStatusLabel2.Text = "Data " &
AxAdvDIOl.ReadDoChannel (4) & " sent to device"

ToolStripStatusLabel2.Text = "Data 1 sent to ACl of Office
Floor"

BtnACl.Text = "AC1l ON"

BtnACl.BackColor = Color.Red

TextBoxl.AppendText ("ACl of Office Floor Turned ON at " & Now &
vbCrLf)

Else

BtnACl.Text = "ACL OFE”

AxAdvDIOl.WriteDoChannel (0, 4) 'ACl, Office Floor, D4

4 ToolStripStatusLabel2.Text = "Data " &
AxAdvDIO1.ReadDoChannel (4) & " sent to device"

ToolStripStatusLabel2.Text = "Data 0 sent to ACl of Office
Floor"

BtnACl.BackColor = Me.BackColor

37

—
——=

& vbCrLf
BtnAC2 Click(sender System.Object, e
System.EventArgs) ils BtnAC2.Click
BtnAC2.Text = '
AxXAdvDIOl.WriteDoChannel (1, 5)
ToolStripStatusLabel2.Text =
BtnAC2.Text = "
BtnAC2.BackColor = Color.Red
TextBox1l.AppendText (& Now &
vbCrLf)
AxAdvDIOl.WriteDoChannel (0, 5)
ToolStripStatusLabel2.Text = Office
BtnAC2.Text = "
BtnAC2.BackColor = .BackColor
TextBoxl.AppendText (" " & Now
& vbCrLf)
BtnAC3 Click(1 sender System.Object, e
System.EventArgs) BtnAC3.Click
BtnAC3.Text =
AxAdvDIOl.WriteDoChannel (1, 6)
ToolStripStatusLabel2.Text = "
BtnAC3.Text =
BtnAC3.BackColor = Color.Red
TextBoxl.AppendText (& Now &
vbCrLf)
AxAdvDIOl.WriteDoChannel (0, 6)
ToolStripStatusLabel2.Text =
BtnAC3.Text =
BtnAC3.BackColor = .BackColor
TextBoxl.AppendText (" " & Now
& vbCrLf)
BtnAC4 _Click(1 sender System.Object, e
System.EventArgs) BtnAC4.Click

BtnAC4.Text = " OFE"
AXAdvDIOl.WriteDoChannel (1, 7)

o LL LPO 1 A al) L

38

ToolStripStatusLabelZ2.Text = "Data 1 sent to AC4 of Qffice

e

o
H

BtnAC4.Text = "AC4 ON"
BtnAC4 .BackColor = Color.Red
TextBox1l.AppendText ("AC4 of Office Floor Turned ON at " & Now &

vbCrLf)
Else
AxAdvDIOl.WriteDoChannel (0, 7) '‘AC4, Office Floor, D7
' ToolStripStatusLabel2.Text = "Data " &
AxAdvDIQOl.ReadDoChannel (7) & " sent to device"
ToolStripStatusLabel2.Text = "Data 0 sent to AC4 of Office
Floor"
BtnAC4.Text = "ACL OFFE"
BtnAC4.BackColor = Me.BackColor
TextBoxl.AppendText ("AC4 of Office Floor Turned OFF at " & Now
& vbCrLf)
End Tf
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
FormProcessl.Show ()
End Sub

Private Sub Button2_ Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
FormProcess2.Show ()
End Sub
End Class

4.2.2 Process 1 Form in a Separate Window

Public Class FormProcessl

Private Sub Timer Display Tick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Timer Display.Tick

If CheckBoxValve2.CheckState = CheckState.Checked And
CheckBoxValved .CheckState = CheckState.Checked Then
ButtonP2.Enabled = True
Else
ButtonP2.Enabled = False
ButtonP2.BackColor = Me.BackColor

ButtonP2.Text = "OFEF"
btnP2 = False
End If

ToolStripStatusLabell.Text = Now
If ButtonPl.Text = "ON" Then
Celsiusl += 2
If Celsiusl > 200 Then
Celsiusl = 200 + Rnd()
End If
Else
Celsiusl -= 1
If Celsiusl <= 35 Then
Celsiusl = 35
End If

39

TextBoxE3.Text = Format (Celsiusl, "
BattonP2.Text = "ON"
Celsius2 = Celsiusl + 10

Celsius2 = Celsiusl + 5

"4

TextBoxEl.Text = Format (Celsius2, #.

DCSForm.TextBoxEl.Text = TextBoxEl.Text
DCSForm.TextBoxE3.Text = TextBoxE3.Text

&

&

DCSForm.CheckBoxValvel.Checked = CheckBoxValvel.CheckState

DCSForm.CheckBoxValve2.Checked
DCSForm.CheckBoxValve3.Checked
DCSForm.CheckBoxValved4 .Checked
DCSForm.CheckBoxValve5.Checked

I

I

I

End Sub
ButtonP2 Click(sender
System.EventArgs) ButtonP2.Click
bitP2 = Not bitP2
bitP2 =

ButtonP2.BackColor = Color.Green

DCSForm.AxXAdvDIOl.WriteDoChannel (1, 1)

ToolStripStatusLabel2.Text =

ButtonP2.Text =
DCSForm.TextBox1l.AppendText ("

vbCrLf)
Else
ButtonP2.BackColor = .BackColor
DCSForm.AxAdvDIOl.WriteDoChannel (0, 1)
: ToolStripStatusLabel2.Text =
ToolStripStatusLabel2.Text =
1”
ButtonP2.Text = “ "
DCSForm.TextBox1l.AppendText ("
vbCrLf)

DCSForm.ButtonP2.Text = ButtonP2.Text

DCSForm.ButtonP2.BackColor = ButtonP2.BackColor

ButtonPl Click(sender
System.EventArgs) ButtonPl.Click
bitPl = bitP1l
bitPl =

ButtonPl.BackColor = Color.Green

DCSForm.AxAdvDIOl.WriteDoChannel (1,

ToolStripStatusLabel2.Text =
ButtonPl.Text =

DCSForm.TextBox1.AppendText (
vbCrLf)

AN

System.Object,

System.Object,

CheckBoxValve2.CheckState
CheckBoxValve3.CheckState
CheckBoxValved.CheckState
CheckBoxValve5.CheckState

& Now &

& Now &

& Now &

ButtonPl.BackColor = Me.BackColor

DCSForm.AxAdvDIOl.WriteDoChannel (0, O0) 'Pump 1, Process 1, DO

! ToolStripStatusLabel2.Text = "Data " &
AxAdvDIOl.ReadDoChannel (0) & " sent to device"

ToolStripStatusLabel2.Text = "Data 0 sent to P mp Pl of process
1"

ButtonPl.Text = "OF:"

DCSForm.TextBoxl.AppendText ("Pump Pl Turned OFF at " & Now &
vbCrLf)

End T£

DCSForm.ButtonPl.Text = ButtonPl.Text

DCSForm.ButtonPl.BackColor = ButtonPl.BackColor
End Sub

Private Sub CheckBoxValvel CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBoxValvel.CheckedChanged

If CheckBoxValvel.Checked = True Then
ButtonPl.Enabled = True

Else
ButtonPl.Enabled = False
ButtonPl.BackColor = Me.BackColor
ButtonPl.Text = "OFE"

End If /,?/'f?' ol
End Sub i,\:-;‘ Wi
End Class N il
\ _\ LIBRA
\X\,‘}\I‘ RARY

\W'alha‘“

4.2.3 Process 2 Program in a Separate Window

Public Class FormProcess?2

Private Sub Timer Display Tick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Timer Display.Tick
If ButtonBFP.Text = "BFP ON" Then
WaterLevel += 0.3
1f WaterLevel >= NumericUpDownWaterLevel.Value Then
WaterLevel = NumericUpDownWaterLevel.Value

End If
Enes If
If ButtonBFP.Text = "BEFP OFF" Then

WaterLevel -= 0.1

I1f WaterLevel < 0 Then

WaterLevel = 0

End If
End If
TextBoxWaterLevel.Text = Format (WaterLevel, "##.0") & " inches”
TextBoxSteam.Text = Format (10 + Rnd (), "##.00") & " bar"

& vbCrLf & Format (200 + Rnd(), "##.00") & " °“C"
DCSForm.TextBoxWaterLevel.Text = TextBoxWaterLevel.Text
DCSForm.TextBoxSteam.Text = TextBoxSteam.Text
DCSForm.NumericUpDownWaterLevel.Value =

NumericUpDownWaterLevel.Value

ToolStripStatusLabell.Text = Now

End Sub

ButtonBFP_Click (sender System.Object, e

System.EventArgs) ButtonBFP.Click

vbCrLf)

BFPstate =

BFPstate =
DCSForm.AxAdvDIOl.WriteDoChannel (1, 2)

ToolStripStatuslLabel2.Text =

ButtonBFP.Text =

DCSForm. TextBoxl.AppendText (“ & Now & vbCrLf)
ButtonGas.Enabled =

BFPstate =
DCSForm.AxAdvDIOl .WriteDoChannel (0, 2)

ToolStripStatusLabel2.Text =
ButtonBFP.Text =
DCSForm. TextBoxl.AppendText (& Now &

ButtonGas.Enabled =

DCSForm.ButtonBFP.Text = ButtonBFP.Text
DCSForm.ButtonBFP.BackColor = ButtonBFP.BackColor

ButtonGas_ Click(B sender System.Object, e

System.EventArgs) ButtonGas.Click

vbCrLf)

vbCrLf)

ButtonGas.Text = "

DCSForm.AxAdvDIOl .WriteDoChannel (1, 3)

&
ToolStripStatusLabel2.Text =
ButtonGas.Text =

DCSForm. TextBoxl.AppendText (Turned & Now &

DCSForm.AxAdvDIOl .WriteDoChannel (0, 3)

ToolStripStatuslLabel2. Text =

ButtonGas.Text = "Boiler
DCSForm.TextBoxl.AppendText (& Now &

DCSForm.ButtonGas.Text = ButtonGas.Text
DCSForm.ButtonGas.BackColor = ButtonGas.BackColor

4.2.4 Global Variable Declarations

Modulel
bitP1 =
bitP2 =
Celsiusl =0
Celsius2 =0
SteamTemp =0
SteamPressure

WaterLevel =0}

btnP1l =
btnP2 =
BEFPstate Boolean =

43

Chapter 5 Results

5.1 DCS Software

Few snapshots of the DCS are presented in this chapter that contains all the functionalities. In
areal DCS, all the processes are not displayed in a single window. Rather, the processes are
linked to controls in the main widow, where each processes are opened in separate windows.

The DCS operation in integrated form and processes operation from separate windows are

shown in Figs. 5.1-5.4.

100 vihess Rvebeen |
omiled ‘erciaiy

EventLog N
vdvy T was
W
FTA 2 A

20S Frolect, Deparumont of EEE tast West Sniershy, 2018 | [eonll Joaorll Woorl |fxion

L1 2010 TIE0 P Tostiinpitatuslabell

Figure 5.1 All processes in the DCS shown in same window.

44

veing Ltociave Lo | | 40.0 inches
Woik Tark |

Dyemh Vessel |
Presewzation Punp
CrcitasonPunp |

Filer

EventlLog

Soiler Turned OFF a1 12,9/2010 7:19:47 PM .
BFP Turned OFF 81 12/3/2010 7:19:48 PM

SFP Tumed ON at 12/9/2010 7:19:49 PM

Boiler Turned ON at 12/9/2010 7:13:50 PM

ACH of Office Floor Turned ON at 12/9/2010 7:19:52 PM
AC2 of Offlice Fioor Turned ON at 12/9/2010 7:19:53 PM
AC3 ol Olfice Floor Tuined ON at 12/9/2010 7:19:54 PM
ACA4 aof Office Flaor Tumed ON at 12/3/2010 7:19:55 PM
Pump P2 Turned ON ot 12/9/2010 7:19:57 PM

Pump P1 Turmed ON at 12/9/2010 7:19:58 PM

DCS Projecy, Dapanment of EEE, East West tinlerskty, 2010
A2/8/200 72000 P cmmwmmsﬁm e) E:

Figure 5.2 DCS operation showing event logs.

| : |
EventLog D1 — |
Pump P1 Tumed ON al .
Pump P2 Tumed ON at | A
' |
| 4
C Dyeing Autoclave ' *
S Separatof |
D1 Work Tank
02 DyesunTVessel
P1 Pressurization Pump ——maa b |
nid P2 Circwlation Pump ! ——
BCS Prolect De . £ Heat Exchanger sciofE suosE ,.J
T E1 161.00°C P E4 F Filter ”~
e 1202000 SO747 P Date) e to Pum P2 of grecens L -
L2 11/2000 SO7AT P Teclitids e - —— - - —_—
£ -; B L "'5 !_‘ LYyAay -3 @

Figure 5.3 DCS showing process | in a separate window linked to the main GUI.

Steam pressure
control SyElém

l e
3 Level U | 06 inches | !
Vessel {
.’I + Strwners a . é
A) e vég @~
|
!

i} | . _— : omted for Carity = =
BP Ol A | "_—'_ | | Rat/Bes Eoiw » Y F v 4,
Feadv.nier 10 boles feedmarp v
| LAL/3000 50601 P Data L sent 5 BFP of process 2 ol =
8¢S Project. epartment of EEE, East WestOniversity, 2010 - - ; —

s Frzzem | m Sepewe i “Shom Pacens 11 Sacarme Hiadow
L0 2000 5001 PMY TooliipSes uﬂ.'ﬁl!

Figure 5.4 DCS showing process 2 opened in a separate window.

5.2 DCS Interface Hardware

The DCS interface hardware is shown in Fig. 5.5 and 5.6 respectively. The 12V DC power
supply is given from a laboratory dc power supply. The hardware boards contain relay

interface as well as other electronic devices.

5.3 System Operation

[he system operation of the DCS is tested in the lab. The DCS GUI is run in a laptop while
he Advantech USB4711A is interfaced through the USB port. All combinations of control
iperations are tested and the DCS is found to operate the relays successfully without any
roblem. The digital output from the USB4711A cannot be conductively connected to the
slay circuit as high voltage power backflow may damage the DAQ module. The digital
utput signal is isolated using 4N35 optocoupler and is amplified using BD135 transistor.
he relay operates from a 12V dc supply while the DAQ module is operated from USB

ower that is SV only. The DLL file AxAdvDIOI1.WriteDoChannel(1,0) writes 1 to DOO

A £

channel and AxAdvDIO1.WriteDoChannel(0,1) writes 0 to DOO channel. Relay controls are
also incorporated in the program where the user can individually select a relay and turn it ON
or OFF using mouse clicks on the button. When button ON then Digital output from DOO is 1
and when button OFF then Digital output from DOO is 0.This Digital output go to the
Optocoupler 4N35 in relay control circuit. Optocoupler 4N35 get 1 then relay ON and start
the connecting system operation, Optocoupler 4N35 get O then relay OFF and stop the
connecting system operation. Relay ON/OFF system same for DOO to DO7 Channel. If
boiler, Dyeing process and air conditioners connect with relay output then it is possible to
stop or start all three systems and monitor temperature of Dyeing machine, control water
level of boiler and also monitor boiler temperature and pressure by operating relay control

circuit in Direct Control of Process Equipment in a DCS.

Figure 5.6 DCS running from a laptop and interfaced to relay board.

Chapter 6 Conclusions

6.1 Conclusions

In this project we developed a GUI interface for direct equipment control from a DCS. Detail
procedures of the work are described in this report that would guide future works based on
this project. The developed program can be tested in simulated mode by choosing the
Advantech Demo I/O when the program starts. A user needs to install the Advantech
DAQPro software and include the “Advantech Demo Board” by running the “Advantech
Device Manager”. The developed program works in real mode with DAQ-USB-4711A board

as well. A user has to choose the board from the list once the program starts.

6.2 Future Works

We tested our program and it is found to work satisfactorily, however, we did not implement
it in a real environment where the relay output is set to control pumps, motors, AC etc. Future
work may be focused on implementing this strategy in a real environment. Further,
development of a fully fledged mini DCS with networking, process controller and direct

controls may be undertaken as a major University Project.

3ibliography

Stout, T. M. and Williams, T. J. "Pioneering Work in the Field of Computer Process
Control.". IEEE Annals of the History of Computing 17 (1).1995

Integrated Production Control System CENTUM VP System Overview (Vnet/IP
Edition), Yokogawa Electric Corporation. 2010

INFI 90, http://www.abb.com/controlsystems

DCI-4000, http://www.abb.com/produ

Foundation Fieldbus, http://www. fiel

ABB System 800xA, hitp://www.abb.com/produ

Emerson Process Management, hitp://casydeltav.co

Siemens, http://www.pc

Simatic PCS 7, htip

Yamatake's azbil, hiip://www.azbil.con

50

