
N ew Loasi Wa&arzcfrwg V$ethwd
om Wyrzarwie ffi&wstwr

struetiCIn ffwr &glutti,wn-
Finite Elernent ffirapfus tam

ibuted t4emavy Mwltie.arnpwters
Maheen hhm

Conpurcr Sciene dd Ensineding Depa.mlot
Easr \rst Uniresiry, Dh.la, Bansladesh.

Upanu Kabir
Conputer Sciflce ad Engineering Depannenr, Universit/ ofDhal<a

Mossadch Hossain Kamal
Comprter Scienc€ od Engin€€ring Depdtm€nr, Univesity ofDhala

de load imbalarce problern of a soludon-adapdre finite elemor apptietion
oo e disuibuted nemory mulricomputea the load of a refined finite elernent

he rdistibuted, bared on rhe ment load of ach processor For &is purpose a

ilg algoritbrn can be applied to balme the compurarional load of each

ID this paper, a distribur€d rnethod for load balancing is proposed, which is

a tle global load balmcing informadon and curent load distriburion of the
A simularion model has been dweloped m conpare the pdormance of the

Eedod *'ith previously smed methods tike Ma:rimum Cost Spanning liee
ins (McsTLB) Merhod, Binary T;e Load Balmcing @TLB) Merhod aad
Binary TEe Load Balancing (CBTLB) Method. Two criteria, rhe decutioh

6c aumber of proes migration required by diferent load balancing medrodr
used for paformmce eraluation. The experimenml result shows dnt the

time md dre number of procs migration required by rhe proposd nedrod is

fr at of *isting method-s.

'/i'//:a,l;////t/!,Y./,:t;W

l it i r ,lt,

'Ihe frnite element method is widely used for the stmcmrd modeling of
physical systems. In rhe finite elcmcnt model, an object can be viewed as a finite

element graph, s'hich is a connectcd and undirected graph that consists of a

number of finite clenents. Each flnite element is composed of a number of
nodes. Due ro rirc properties of computation-intclsir-cncs and computa.ion-

localitv, to implement the finite clcment nerhod on distributed memory

multicomputers (,Arrgus, Fox, Kim & \italkcr, 1990; Fox, Johnson, Lyzenga,

Srlman & Valkcr 1988r Simon, 1991, p. 135; \filliams, 1990; \filliams, 1991,

p. 457) appears as an attracti\.c proposition.

In thc contexc of paralleLizing a finire elemcnt application program that

uses irerarive techliqucs to solve a system of equations ({1'kanat, Doraivelu,
Martin & Ozgfner 1987, p.662). a parallel program mry be viewed as a

collection of tasks representcd by nodes of a finire elemenr graph. Each node

represents a particular amourr of comprrtation and can be executed

independently. To efficientlv execute a finite clement application program on a

disrribured mcrnolv -ulticonputer, we need to rnap nodes of the

correspondnrg finite clcmcnt graph to processors of a distributed memorv
multicomputer in such a *av drat each processor has approximateLy the same

amount ol computational load and so that the communication anong
processors is rninimized. Since this mappnrg problem is klorvn ro be NP-
complete (Garey & Johnson, 1979), mani' heuristic methods h.rve been

proposed to find satislacroLy suboprinal solutions (B.rrnard & Simon, 1994,

p.101; Barnard & Simon, 1995. p. 527; Ercal, Ramanujam & Sadayappan.

1990, p.35i FidLrcci.r & ivlattheyes, i982, p.175i Gilbert & Znijewski, 1987,

p. 427; Gilbert, Miller & Teng, 1995, p. 418r Hendrickson & Leland, 1995,

p.469; HendricLson & Leland. 1995; Karypis & KumaL, 1995r Karl.pis &
Kumar, 1995; Kcrnigham & Lin, 1970, p. 292; Simon, 1991, p.135;
\Xrilliams, 1991, p. 457).

For a solLrtion-adaptir.e finie elernent application progmmi thc numbcr of
nodes increases dlscretelv due to the refinem€nt ol somc finitc clcncnts durhg
the execution. fhis nay result in load imtral,rnce ofprocessors. A node remeppnrg

or a load-balanchg aLgolithm has to be perlirmed trenv rimes nr order to balance

the computarional load of processors ivLile keeplng the communication cost

among processors as lor-as possiblc. FoL thc load b;lancing approach, somc load-

balancing Jgorlthms can be used to perfonn the load balancing proccss accordnrg

ro the current load ol processors. Load-balancing algorithms arc pertbrmcd at

tun-timer their erecution rnust be lasr and efficicnt.

16

T!i//]:/,:4///lxkt:tt'tt

In rhis papea a cluster based load-b:lancing method has been proposed to
.j:::ndr deal wirh the load imbalance problems of solutiol-adaptive finitc
..::ar application programs on distributed memory multicomputers. \ Len
::::: oi a solution-adapdve finire element graph were evenly distributcd ro
-:-::r.ors by some mapping algorithms, according ro the comnunication
:::::::. of che 6nire element graph, we can ger a processor graph from thc
r-:::on. For example, Figure 1 shows a partition of a 21 node finite elemclt

: : r, ir Flgure 2. In a processor graph, nodes represent the processors and edges

::::::::: rhe communication needed among processors. The weights associared
::: -rles ard edges denote rhe compurarion and the communication costs

-:::: :i Liao, 1999, p.360). As all the nodes are homogeneors, they have rh€
:-::.: ::.rie cornputation cosr, n, associat€d with them. The neighbor processors
::-,:-::.rt: rvith each other through message passing. The iveighted edge
-.- :':-: neighbor processors shows the normalized cost relared wirh message

':i:en a finite element graph is refined during run dme, it will rcsuh nr
::: :::::nce of processors. To balance the computational load of processors,
:-. - ::::r method first builds up clusters of proccssors. Based on clusters. thc
::::- ,:; balancing information is clculated bv the tree rvalking algorithm
- .. .,, u. 1997, p. 173). According to the global load b:lancing infrrmation

Ioad disriburion, a load translir algorithn is performed to
: r!-:: - : .ompurarionat load of processors and mnrimize the cotrrnrLnication
:: : r: a: irocessors,

-:r :lu:ter based load balancing algorithm is considered to be run at
: - ::-::r 1..,€l lrlich is independenr ofthe lower la1,er protocols. As this load
::r-:.: :.:ocess is platforn indcpendenr, it can run on processors rvherc rhe

- :::. .-: :-:nr ork ropology varies.

- :r:luate rhe performance ol the proposed method, ir has been

-r :-:.::i :1ong *ith three other tree- based parallel load balancing methods,
(iost Spanning Tree Load Balancing (MCSTLB) method (Chung

r- -.:: :::r9. p.360), Binary Tiee Load Balancing (BTLB) merhod (Chung &

-:--:.- -rrns & Liao. 1999, p.360). The experinental results sho*- drar the
r:.:,: :. :,i. and dre number ofproces migrarion ofan application program

- ::: : : -r:r- based load,balancing method is ahva,vs shorter than those of the

17

The Parallel Load Balancing Methods
Tlte Maximum Cost SpaxxingTi"ee Load-Balanci g (MCSTLB) Method

The main idea of the MCSTLB method (Chung & Liao, 1999, p.360) is to find
a maximum cost spanning tree from rhe processor graph that is obtained from the
initial partitioned Iinite elemenr graph. The MCSTLB method crr be divided
into the fullowing four phases:

Phase 1: Obtain a processor graph G lrom the initial partirion.

Phase 2: Use a similar Kruskal's (Ktuskal,, 1956, p. 48) algorithm to find a

maximum cost spanning tree T = (V, E) from G. There are many ways to
determine the shape ofT. In this method, rhe shape ofT is constructed as follows:

1. The processor with the largest degree in V is selecred u the root ofT

2. For each nonterminal processor v in 1l if iu1 , ..., um I are the m children
ofv and lu1 I , luZ] ,... , lum , then u1 will be the leftmost child ofv, u2
will be the second leftmost child of1 and so on, where ui] is rhe degree of
ui and i = 1, ..., m. Ifthe depth ofTis greater dran logM, where M is the
number of processors, we will try to adjust the depth ofT. The adjusted
method is first to find the longest path (from a terminal processor to
another terminal processor) ofT. Aier the long€st path is determined, the
middle processor ofthe pa*r is selected as rhe root ofthe tree arld the tree

h recoostructed according to the above construction process. If the depth
of the reconstructed tree is less than that ofT rhe reconstructed tr€e is ihe
desired rree. Orherwise, T is the desired tree. The purpose of rhe
Jdju.rmenr i. ro -edr, e rl.e load balln.irg .rep. Jrrong proce\.or\

Phase 3: Calculate the global load balancing inlormation and schedule $e load
transler sequence of processors by using the T\(A fVu 1997, p. 173). Assume

that there are M processors in a tree and N nodes in a refined finite element
graph. \fe defrne N/M as the average weight ofa processor. In the T\VA method,
the quota::rrd the load of each processor in a rree are calculated, where the quora
is the sum of the average weighrs of a processor and its children processors and
the load is the sum of the weights of a processor :l:ld its chiidren processors. The
difference ofthe quota and rhe load of a processor is dre number ofnodes that a
processor should send to or receive from its parent. Ifthe difference is negative, a

processor should send nodes to its parent. Otherwise, a processor should receive

nodes liom its parent. According to the global load balancing information, a

schedule can be determined.

18

'//tll7.lil4//t!.////ni/J.l/k

triIlr.ii'i 1.l.

Phase 4: Perform load transfer (send/receive) based on rhe global load baiancing
::ormation, the schedde, and T. Assume rhat processor Pi needs to send m

-:Jes ro processor Pj and let N denote rhe ser ofnodes in Pi thar are adjacent to
:--,.'e ol Pj. In order to keep the communication cost as low as possible, in the
::r uarrsfer, nodes in N are rransferred first. Il Nl is less than m, then nodes

::'::ent to those in N are tralrsferred. This orocess h continred until the number
,: -ades rransferred to Pj is equal to m.

17e Bixary Tiee Load Balaneing (BTLB) Method

1: 3ILB merhod (Chung & Liao, 1999, p.36ct) is similar to dre MCSTLB
:'---:d (Chung & Liao, 1999, p.360). The only difference between these tlvo

,:-:-:* is *rar $e MCSTLB method is based on a maximum cost spanning tree
:: :r:;rce rhe computational load ofprocessors while the BTLB method is based

: : : :ar uee. The BTLB method carr be divided inro rhe foilowing four phases:

:-!r- 1: Obtain a processor graph G from the initial pardrion.

:-:r- l: Lse a similar Kruskal's algorithm to find a binary tree T = (V E) from G,
--::: -t' :rd E denote the processors and edges ofl respectively. The method ro
::::,--:: rne shape ofa binary tree is the same as that ofthe MCSTLB method.

!L.e l: Calculate the global load balancing information and schedule the load
:= :: ::quence ofprocessors by using the TWA.

i:< +: l:t'orm load trarsfer ftend/receive) based on the global load balancing
-i::-:-:on- ihe schedule, and T. The load transfer method is the same as that of
: :.1-:laB method.

. :z C.:-tiatsed Binary Tree Load Bakncing (CBTLB) Method

-:: -. :a:a oithe CBTLB rnethod (Chung & Llao, 1999, p.360) is to group
:-:r=:,:: oi rhe proc€ssor graph inro metaprocessors. Each metaprocessor is a
::-:.,-::: -e CBTLB method car be divided into the following five phxes:

i\-< i: lrrJn a procesor graph G from the initial parrition.

!::- l: croup procesrors of G into metaprocessors to obtain a condensed
: :\:::i:: ::-:p. Cc iocrementally. The meraprocessors in Gc are consrructed as

-: :.: : -r:. a processor Pi with the smallest degree in G and a processor Pj rhat

- i -::.:-i: rrocessor ofPi and has the sm::llest degree amorg rhose neighbor
:-r:--:r::: :: l! are grouped into a meraprocessor. Then, the same consrruction is

19

applied to o*Ier ungrouped processors until there are no pro€essors rhat can be

grouped into a hypercube. Repeat the grouping process to each metaprocessor

until tiere are no metaprocessors that cal be grouped into a higher order
hlpercube.

Phase 3: Find a binary tree T = (V E) from Gc , where V and E denote the
metaprocessors and edges ofl respectively. The method ofconstructing a binary
tree is the same as thar of the BTLB method.

Phase 4: Brsed on 1' cJ.uJ:re Lhe global load balan.ing informarion and *hedule
the load tnrxfer sequence by using a similar T!trA method for metaprocesson. To
obtah the global load balancing information, rhe quota and the load of each
processor in a tree are calculared. The quota is defined as the sum of the average

weights of processon in a metaprocessor Ci arrd processors in children processors
of Ci. The load is defined as rhe sum of the weights of processors in a

metaprocessor Ci and processo$ in childr€n metaprocesson of Ci. The difference
of the quota and the load of a metaprocessor is the number of nodes that a

metaprocessor should send to or receive from its parent metaprocessoi Aft€r
calculating the global load balancing information, t}le schedule is determined as

follows. Assume that m is the number of nodes that a metaprocessor Ci needs to
send to another metaprocessor Cj . \Ve have dre following two r:ases:

l Case 1: If the weight of Ci is less rhar m, rhe schedule of these two
metaprocessors is postponed until rh€ w€ight ofCi is greater tharr or equal

2. Case 2: If the weight of Ci is greater than or equal to m, a schedule can be

made between processo* of Ci and Cj . Assume that ADJ denotes dre set

of processors in Ci that are adjacent to those in Cj . If the sum of dre
weights ofprocessors in ADJ is less than m, a schedule is made to transfer
nodes of proc€ssors in Ci to processors in ADJ such that the weights of
processors in ADJ is greater than or equal to m. If the sum of the weights
of processors in ADJ is greater rhan or equal to m, a schedule is made to
send m nodes lrom processors in ADJ to those in C.

Phase 5: ?erform load transfer (send-/receive) among metaprocessors based on the
global load balancing informarion, the schedule, arrdT The load tralrsGr method
is similar to that of the BTLB method. After performing the load transfer process

arnong metaprocessors, a dimension exchange method (DEM) is performed to
balance Ihe compurrrional load olpro.eson in meLapro(ersor\.

20

Load Balancing Method

main idea of the cluster-based m€thod is to construct an arrangement of
where th€ processors are combined into clusters. Ailer the
of processor cluster, the load information for each processor is

and the load balarrcing algoridrm is performed in such a marner that
processor can balance dreir load by transferring minimum number of

and the overall load balancing time is also improved.

l: Cluster corxtruction.

Sq 1: Divide N nurnber ofprocessors into N/3 number ofclusters. In a

duster there might be orre or two or three processors. In each case the
duster might be constructed as following:

Case 1: If a duster has three nodes, then one of them is called the parent

node, and the other two are called the left and right child, respectively.

Gse 2: If a dusrer has two nodes, then one of them is called the parent

node, and the other is c{led the left child.

C.ase l: lfa clusrer has only one node. chen it ir <aJled the parenr node.

dustet the children nodes send their state information to the parent node

*ey try to balance the load.

is only one cluster, then go ro Phase 3.

Srtp 2: Rearrange three local clusters to form a large cluster In this large cluster,

@e node acis as paftnt rnd other two as left and right child respectiveb'.

process ofconsrru.ring r lajge clu.rer t conrinued unLil Lhere is onJy one

2 Load F-stimation.

pmcessor in the system has varying numb€r of proce$er ard each process

urying amount ofload. To find the average weight or Quota ofa processor

lce to fust calculate the sum of loads of all processors and then we must

qmre for €ach prccessor and from the quota we calculate the high threshold
!m dreshold w.lue for each processor, wh€re

6reshol& quota + x (where x = 5olo of quota)

Srtshold= quota x (where x = !o/o of quota)

de total sum by the number of processors of dre system. Thus we obtain

aprocessork state is defined as follows:

21

2.

3.

1. Case 1: The processor is in a normal stare ifits load is grearer tharr the low
threshold and less than the high threshold.

Case 2: The proc€ssor is in underloaded state if its load is beiow the low
dreshold

Case 3: The processor is in overloaded state if irs load is above the high
threshold

Phase 3: Load distriburion

. Step 1: In this level, lor each cluster, the cluster load and rhe cluster quora
are calculated. The cluster load is defined as rhe sun of loads of each
processor in a cluster, which is not in normal state, and the clusrer quota
is defined as the sum ofthe quota for each processor in the cluster, which
is not in normal state. From the cluster quota, the high threshold and low
rhreshold is also calcuiated for the cluster Now depending on rhe cluster
load and threshold values ol the clusrea the following two cases may

l. (aie l: Ilrhe clu.rer lo"d '. grearer rhar r\e or Lhre.hold :rld es,,hall rhe
high rhreshold, then it is possible to balance rhe load of the cluster
inrernally. For each member node of the cluster, the difference of quota
and load is the number of processes thar a node should send or receive
from other nodes. If rhe dillerence is negarive, a node should transfer the
1oad, otherwise it should receive loads.

2. Case 2: If the cluster load is greater than the high threshold v::tue or less

thar the low rhreshold value, dren load balancing is not possible within the
cluster. In this case the parent will contain the cluster load information.

If the load of all clusters in this level is balanced, then *re ioad disrribution
process will be terminated. Orherwise step 1 should be repeated unril a higher
level large cluster exists.

r Step 2: When the largest cluster has been reached, the cluster load should
be ditributed among the members of the cluster, which is not in the
normal srare. For each member node of the cluster, rhe difference of
quota and load is the number of processes that a node should send or
receive lrom other nodes. lf the difference is negarive, a node should
transfer load; otherwise ii should receive loads. Then, each cluster of the
nexr low€r level distribures rhe load among th€ proc€ssors of rhar cluster
in the same rvay.

22

Fo€€ss ofload distribution is repeated until any lower level cluster erdsts.

results

compares the peformance of the load-balancing merhods by
the algorithm with some simulation prognms. The criteria used to

the performance are execution time and the number of pmcesses to be

to balance the wstem load.

ofeteeution tine of difetmt had balzncitg methods

@.rr.iod time of diff€rent load balancing methods, with 7, '15, 25, 30, and.

BTLB ar:d CBTLB merhod, rhe er,ecurion rime ofCBTLB method is

6an the other two. Thrs is because the CBTLB method c:rr reduce the size

vith a large ratio so that the overheads to do the load trarsfer among the
are less than those of the MCSTLB and BTLB method- Thts it

the load rransfer rime efiiciendy. \7e al.o observe rhrr che erecution
5r de Cluster merhod is less than that of dre CBTLB method. This is

are shown in Thble-l. Ftom Table-l, it is evident *rat among

ic the CBTLB method does not try to balance the load within a

after forming the cluster. As a result a metaprocessor, which can be

locally, is grouped into a higher level hlpetcube. This makes fruitl€ss
tansfer possible arrd thus it will take more time to balance the load.
in de Cluster medrodr, grouping is performed in each refinement, it
rime to balance the sr.'stem load.

in oftle number ofprocess migration of different methods

of prcc€sses to b€ mi$ared in different load balalcing methods,

7,1O,15,20,25, 30,35, 40 and 45 processors are shown in Table 2.

typ€s of load-ba-larcing algorithm for solution-adaptive finite element
program on distributed memory multicomputers were propos€d.

MCSTLB nedrod, the BTLB method, the CBTLB method. and *re
nedod- In MCSTLB method, BTLB medrod, and CBTLB method, a

E (a maximum cost spanning tree for MCSTLB method, a binary tree
method, and a condensed binary tree for CBTLB merhod) is

tom a processor graph. Based on the tree structure and *re curent
6e Vstem, the existing method has been trying to balarce the system

in &ose methods, th€ static nature of the logiel tree makes a huge

)3

number of process mitrations which consume not only
communication network bandwidth.

but also rhe

In this paper, a new, improved group based method has been proposed to

balarce the load among the sites ofa distributed memory multicomputer system

to overcome the problems associated with dre previous medrods. In $is method,

the processors have been grouped so that dre members of a goup can try to
balance their load within the group without knowing the stat€s of the other

processors belonging to a different group. Otherwise, when balarcing the load

within the group is not possible, this group tries to balarce the load in a large

group. Thus, in this method a process is migrated only when it finds its suitable

destination. If we consider load balancing without grouping the processors in a

cluster, then a huge nurnber of messages have to be uansferred among all the

processors to balance their loads, as every processor will try to balance its load

with every other processor If we consider clusters consisting of nvo processors

other than considering three, again a huge number of message passing will be

required to balance the system load. So the discussion concludes that the

proposed method requires fewer process migrations and l€ss execution time than

the existing methods.

To evaluate th€ performance of *re existing load balarcing methods and

the proposed one, the algorithms are implemented with some simuladon

programs. Two criteria ro do so are (i) execution time and (ii) the number of
process migration of different algorithms required for an application Prograrn is

used for performance evaluation. The experiment result shows that the execution

time and number ofprocess to be migrated ofthe proposed method is better than

that ofdre existing methods.

References

Angx, I.G, Fox, G.C., Kim, J.S., & \(alher, D.Wi (t990\. Soh,ins Problans on

Concurtmt llotessors, vol. 2. Englewood Cliffs, NJ.: Prentice Hall.

Aykanat, C., Ozguner, F., Martin, S., & Doraivelu, S.M. (1987). Parallelization

of a Finite Element Application Program on a Hypercube Multiprocessor.

Hlpercube Mubiprocasot pp. 662-673.

Barnard, S.T, & Simon, H.D. (1994, April). Fast Muldlevel lmplementation of
Recursive Spectral Bisection for Partitioning UnsutcaredProblar.s. ConcanenE:

Practice and Expeiente, vol. 6, no. 2, pp. 101- 117.

24

t

& Simon, H.D. (1995, February). A Parallel Implementation of
ive Specual Bisection for Application to Adaptive Unstructured

Satmtb SIAM Conf Paulbl Pncetsingfor Sciennfc Conpunng, pp.
F:rancisco.

& Liao, CJ. (1999). Tiee-Based Parallel Ioad Balancing Medrodr
A&ptive Finite Element Graphs on Distributed Memory
* IEEE Tiauaction on Paralbl and Distributed Systens, vol. 10, No.

rmalujam, J., & Sadayappan, P 0990). TasL Allocation onto a

by R€cursive Mincut Bipartitioning. J. Parallel and Disttbated
voJ,),0, pp.35-44.

C.M., & Mattheyes, R.M. (1982). A Linear-Time Heuristic for
Network Partitions. Proc. 19th IEEE Daign Aunmation Conf, pp.

JoLnson, M., Lyzenga, G., Otto, S., Salman, J., & W'alker, D.Wt (1988).
Pmblzms on Concanmt Processox, vol. 1 Englewood Cliffs, N.J.: Prentice

M.R., & Johrrson, D.S. (1979). Conp&ten and Intrttabtlilf, A GidE to
of NP- C o m p I e te n ess. Srr, Francisr:o: Freeman.

& Zmijewski, E.(1987). A Pa-rallel Graph Panitioning Algorithm
Passing Multiprocessor Int'l J. Parallel Prognnning rcL 16, r.o. 6,

449, 1987.

J.R., Miller, c.L., 6. Teng, S.H. .(1995). ceometric Mesh Partitioning:
tatiotr and Experiments. Proc. Ninth Inll Paralbl Procexing gmp,

Barbara, Calii, pp. 41 8-427.

B., & l€land, R (1995). An Improved Spectral Graph Panitioning
for Mapping ?arallel Computations. SIAlul J. Sciennftc C,on? t;ng,

16, n'o. 2, pp. 452-469 .

n, B., & Lelarrd, R. (1995). "An Multilevel Algorithm for Parritioning
," Prcc. Supercomputing'95, Dec. 1995.

G., & Kuma4 V 0995). Muldlevel h,way Partitioning Scheme for
Graphs. Technical Report 95-064, Dept. of Computer Science, Univ of

Minnesota, Minneapolis.

Karypis, G., & Kumar, V (1995). MeTiS-Unwacturcd GrapL ?artitioning and
Spar* Matix Ordering S1saz. Univ. ofMinnesota.

Kernigham, B.\(, & Lin, 5.(1970, February). Ar Efficient Heuristic Procedure
for Partitioning Graphs . Bell g:tens T2chnology J., vol. 49, no. 2, pp. 292,370.

Kruskal, J.B. (1056). On the Shortest Spanning Subtree ofa Graph and the
Tiaveling Salseman ProbIem. Proc. AM$ vol.7, pp. 48-50.

Simon, H.D. (1991). Parririoning of Unstructured Problems lor Parallel
Processing. Camputing Systems in Eng, vo|.2, nos.213, pp.135, 148.

Villiams, R.D. (1990). DIME: Distributed hregalar Mesh Enuironment.
California Inst. of Technologli.

\fu, M.Y (1997, February). On Runtime Parallel Scheduling for Processor Load
Balancing, IEEE Ti-ant. Parallel and Distributed Systems, volL.8, no. 2, pp. 173,
186.

\7i11iams, R.D. (1991, October). Performance of Dynamic Load Balancing
Algorithms for Unstructured Mesh Calculations," Concarrency: ?ractite and
Experience, vol.3, no. 5, pp.457-481.

Merhods 7

1.500549

t5 25:3040

MCSTLS t.500549 1.500549) r.500549 r.554396

BTLB r.500549 1.500549 \.500549 1.500549 t.500549

CBTI-B 1.103846 t.t0549 1.100000 1.154396 1.100000

Cluster 0.659340 0.692308 0.714286 0.714286 0.7t4286

26

l: A partition of 2l-node finite element graph on 7 processors.

ftore 2: The corresponding processor graph of Figure 1 .

