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Abstract 
 
 
Design and implementation of automatic gene regulatory network are essential to construct 

and analyze the complex biological system. The recent study shows that Darwinian 

evolution can gradually develop higher topological robustness. In these consequences, this 

thesis presents an integrated scheme to simulate gene expressions dataset for identifyin g 

network topologies to find the robustness based on an evolutionary approach and artific ia l 

neural network. The final outcome is the most robust topology from a gene regulat ion 

dataset. The proposed method was verified using randomly sampled parameter spaces and 

threshold are generated by the network itself. Here, final result shed lights on the 

relationship among genes and corresponding transcription factors. Transcription factors are 

combined to specify the on-and-off states of genes. This binding form a regulatory network 

and constituting the wire diagram for a cell. The proposed network shows the whole 

combinatorial and co-association of transcription factors, co-relation and the robustness of 

human genes. Therefore, this research will play a crucial role in interpreting personal 

genome sequences and understanding basic principles of human health evolution in near 

future. 

 
 

 
 

 



i 
 

Declaration 

I hereby, declare that all the work presented in this project is the outcome of the 

investigation and research performed by us under the supervision of Md. Shamsujjoha, 

senior Lecturer, Department of Computer Science and Engineering, East West Univers ity, 

Dhaka, Bangladesh. I also declare that neither it nor part of it has been submitted for the 

requirement of any degree or diploma or for any other purposes except for publications. 

Signature of the Candidate     Signature of the Candidate  

… … … … … … … … … …   … … … … … … … … …  

Md. Tanvir Aunjum                                                  Md.Nazmul Hasan 
 

ID: 2014-1-60-030      ID: 2014-1-60-041 
 
 

 
 

 
Signature of the Candidate 
 

 

… … … … … … … … … 

Md. Jahidur Rahman 
ID: 2014-1-60-055 

 

 

 
 

 

 

 



ii 
 

Letter for Acceptance 

 

This thesis entitled “Robust Gene Network Topology Construction Based on the 

Evolutionary Algorithm and Artificial Neural Network” submitted by Md. Tanvir 
Aunjum (ID: 2014-1-60-030), Md.Nazmul Hasan (ID: 2014-1-60-041), Md. Jahidur 
Rahman (ID: 2014-1-60-055), to the Department of  Computer Science and Engineering, 

East West University, Dhaka, Bangladesh is accepted by the department in partial 
fulfillment of requirements for the Award of the Degree of bachelor of Science in 

Computer Science and Engineering on August, 2018. 
 

 

Supervisor 

 

 

_______________________ 

Md. Shamsujjoha 

Senior Lecturer 

Department of Computer Science and Engineering, 

East West University, Dhaka, Bangladesh 

 

 

Chairperson 

 

 

___________________ 

Dr. Ahmed Wasif Reza  

Associate Professor and Chairperson, 

Department of Computer Science and Engineering, 

East West University, Dhaka, Bangladesh 

 

 
 

 

 



iii 
 

 

Acknowledgements 

 

First, we are thankful and expressing our gratefulness to Almighty who offers me divine 

blessings, patience, mental and psychical strength to complete this thesis. The progression 

of this thesis could not possibly be carried out without the help of several people who, 

directly or indirectly, are responsible for the completion of this work. We deeply indebted 

to our thesis supervisor Mr. Md. Shamsujjoha. His scholarly guidance, especially for his 

tolerance with our persistent bothers and unfailing support. He gives us the freedom to 

pursue aspects of reversible fault tolerant computing which we found interesting and 

compelling. This helped our thesis to achieve its desired goals.  

 

We wish to thank the great people of Department CSE at East West University. A special 

thank goes to all faculties for their well-disposed instructions and Encouragements.  

 

Finally, we would like to thank our friends and family. Their continued tolerance with our 

moods and tendency to disappear for weeks at a time gave us a much needed break from 

the world computing. 

 

 

 

 

 

 

 

 
 
 

 
 



iv 
 

Table of Contents 

 

Abstract I 

Letter of Acceptance II 

Acknowledgements III 

Chapter 1: Introduction 1 

1.1. Motivation 1 

1.2. Aims and Objectives 
 
1.3. Overview 

3 

 

3 

 

1.4. Methodologies  of the research 3 

1.5. Outline 
 
1.6. Summary 

4 

 

4 

 

 

Chapter 2: Background Study 
 

 

5 

2.1. Gene Regulatory Network 5 

2.2. Transcription Factors 8 

2.3. Robustness 11 

2.4. Summary 13 

                                       

 

Chapter 3: Preprocessing of Dataset 
                                                    

14 

3.1. Collection of Data  
 

3.2. Modification of Data 
 

3.3. Summary 

14 

 

17 

 

17 

 
 

 
 

 

 

 

 

 

 

 



v 
 

Chapter 4: Working Procedure 
 

18 

4.1. Flow Chart 
 

4.2. Scatter Plot 
 

4.3. Algorithm for Robustness 

 
4.4. Dataset with Robustness 

 
 
 

 Chapter 5: Result Analysis 
 

18 

 

19 

 

22 

 

23 

 

 

 

25 

                 5.1. Artificial Neural Network 
 

               5.2. Prediction Model 
 
 

 

Chapter 6: Conclusion 
 
                6.1. Future Work 
 

 

References 

 
 

 
 

25 

 

29 

 

 

 

31 

 

31 

 

 

32 

  

  

  

 
 

 
 

 
 
 

 
 

 



vi 
 

 

List of Tables 
 

 

Table 3.1.1: sample transcription factors of genes 
 

15 

 

Table 3.1.2: sample target genes 15 

 

Table 3.1.3: sample gene sequence data 16 

 

Table  3.1.4: sample case dataset 16 

 

Table 3.1.5: sample gene regulatory network in csv file 17 

 

Table 4.4.1: Training Dataset for Neural Network 23 

 

  
  

 

  

 
 

 
 

 
 

 



vii 
 

 

List of Figures 
 
 

Fig 4.1.1: working flow chart 18 

 

Fig 4.2.1: Scatter Diagram Creation Using Orang3 Anaconda 19 

 

Fig 4.2.2: scatter diagram sample1 vs sample2 20 

 

Fig 4.2.3: Random Topology Selection 21 

 

Fig 4.3.1: algorithm used for calculating robustness 22 

 

Fig 5.1.1: artificial neural network 25 

 

Fig 5.1.2: Example Set Statistics 26 

 

Fig 5.1.3: Example Set Chart (Histogram) 

 

Fig 5.1.4: Improved Neural Network 

 

Fig 5.2.1: Example Set Apply Model 

 

Fig 5.2.2: Prediction Model 

27 

 

28 

 

29 

 

30 

  
 

 



1 
 

Chapter 1 

 

 Introduction  

 

A gene regulatory network is a collection of molecular regulators which are internally 

connected with each other. These molecular regulators are DNA, RNA, PROTEIN or 

complexes of them. The main players of gene regulatory network are transcription 

factors. A gene regulatory network is created by binding these transcription factors of 

genes. Gene regulatory network shows the co-association and co-relation among the 

transcription factors. From the gene regulatory network find out the robustness of the 

network and topology of the human genomic sequence. In this research we find out the 

robust network that causes damage to the human body. It will show us which genes are 

mostly cause diseases and enhance the medical science to prevent them.  

 

 

 1.1 Motivation 

 

Gene regulatory network helps to find the factors which cause diseases like cancer. So it 

plays a vital role in human health research. The most common problem is to understand 

the regulation of the genes that controls gene expression. In recent years many 

researchers have proposed different approach to construct gene regulatory network 

(GRN), e.g. see reviews by Bansal et al. (2007) and Markowetz and Spang (2007). These 

include, among others, approaches that rely on linear models (D'haeseleer et al. 1999), 

information theory (ARACNE) (Margolin et al., 2006), static and dynamic Bayesian 

networks (BANJO; Yu et al., 2004) and Boolean networks and their probabilistic 

extensions (Shmulevich et al., 2002). While these methods have been found useful in a 
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number of applications, they primarily model the data, not the underlying biological 

process. On the other hand, GRNs could be modeled in great detail with chemical 

reaction network models. However, there are major difficulties in inference with this 

modeling approach, e.g. lack of measurements from single cells and computational 

problems in inferring the model parameters and structure from data (Wilkinson, 2006). 

The exact models are commonly approximated by ordinary differential equations (ODE), 

which can be obtained as the expectation of the chemical master equation under certain 

assumptions, and are often coupled with linear, mass action, sigmoidal, Hill or 

Michaelis–Menten kinetics. A number of different modeling approaches using ODEs 

have been proposed, including, among others, estimation of model parameters (Cao and 

Zhao, 2008), inference for unknown transcription factor (TF) levels (Gao et al., 2008), 

coupling ODE models with protein complexes (Wang et al., 2007) and model structure 

inference NIR, TSNI and Inferelator; Bansal et al., 2006; Bonneau et al., 2006; Gardner 

et al., 2003). Other related methods that combine aspects from ODEs and Bayesian 

modeling have been proposed, e.g. in Imoto et al. (2002), Perrin et al. (2003), Nachman 

et al. (2004) and Zou and Conzen (2005). 

All ODE-based methods are essentially parametric, such as those proposed in Gardner et 

al. (2003), Perrin et al. (2003), Nachman et al. 2004), Bansal et al. (2006) and Bonneau 

et al. (2006). The work of Gao et al. (2008), however, shows a departure from standard 

parametric approaches in that latent protein activities are modeled using Gaussian 

processes, although the regulation function has a parametric form. Previously proposed 

non-parametric approaches, on the other hand, are essentially not based on differential 

equation-type modeling, such as those in Imoto et al. (2002) Yu et al. (2004) and Zou 

and Conzen (2005). Finally, most of the ODE-based approaches make use of frequentist 

inference (Bansal et al., 2006; Bonneau et al., 2006; Gardner et al., 2003), which as such 

might have, e.g. the aforementioned problems of making hard decisions (although 

resampling methods can alleviate that problem). 
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 1.2 Aims and objectives 

 

The objectives of the study are summarized below: 

 

 Creation of gene regulatory network using gene-gene interaction and gene-

transcription factor interaction 

 Find the co- relation among the transcription factors and their target genes 

 Find the robust genes from the gene regulatory network which is created in this 

research 

 

 

 1.3 Overview 

 

In this study we will show the robustness of the human genes. This study also shows the 

whole genomic expression of human gene network topology. 

 

 1.4 Methodologies of the research 

 

While working on this research, the following important steps are followed: 

 First understand about gene regulatory network and approaches to find the gene 

expression, robustness of a gene regulatory network and transcription factors. 

 

 Visualized the gene regulatory network by using machine learning tools and find 

the co-association among the transcription factors of the genes. 
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 Lastly in this research we find out the robust network by using algorithms.  

 

1.5 Outline 

 

In next chapter (chapter 2) briefly discusses about gene regulatory network, transcription 

factors and robustness. 

Chapter 3 discusses about background study about gene regulatory network. The study 

includes how gene regulatory networks works and the implementation of GRN. This 

study also includes robustness of genes. 

Chapter 4 discusses preprocessing of dataset and the collection of data. In this chapter 

discusses about the dataset and how it is preprocessed before working with this dataset. 

Chapter 5 discusses robustness of the gene regulatory network and result analysis. 

Chapter 6 finally discusses conclusion and future work. 

 

 1.6 Summary 

 

This chapter demonstrates motivations and objective of this thesis. Then the 

methodologies of the research that is being followed are discussed here. A brief 

elementary instructional text of remaining chapters of this thesis has also been described. 
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Chapter 2 

 

 

 Background studies 

 

In this chapter gene regulatory network, transcription factors and robustness is briefly 

discusses. This chapter helps to understand about gene regulatory network and robustness 

of a gene regulatory network. Here gene regulation and the importance of gene regulation 

is briefly discusses. Lastly methods to find the robust genes are discussed here. 

 

 2.1 Gene regulatory network 

 

Gene expression networks are networks inferred from microarray time series data and 

transcription factor networks are networks obtained from a new genome-wide technique 

that allows an identification of all of the DNA binding sites for each transcription factor 

(TF).While our knowledge of the transcription factor networks is limited, these networks 

provide insights into a regulatory core network of TFs that regulate each other, and drive 

all network interconnectivity. In addition to these global properties, the local properties of 

these gene expression networks can be used in data mining and classification. High 

throughput technologies allow a genome-wide interrogation of biological systems. There 

is a limited literature on transcription factor networks thus far, but early results show 

intriguing network features for these as well. The global network properties are discussed 

and it is seen that these inferred networks are scale free and exhibit small world 

properties. The global properties of such networks show the scale-free distributions of 

node connectivity indicative of a hierarchical network and also exhibit small world graph 

properties. The transcription factor networks, on the other hand, are a direct result of 

experimental observation of a physical association between a TF and a DNA binding site. 
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While these two networks address the same underlying questions, the regulation of gene 

expression, they are, by their nature, very different, and represent different manifestations 

of the underlying regulatory mechanism. To this end, systems-wide investigations have 

focused on specific functional network structures such as metabolic, signaling and gene 

regulatory networks. In this chapter we review progress in inferring and interpreting gene 

expression networks and transcription factor networks. 

 

To understand the mechanism of gene expression, a detailed molecular picture of gene 

regulatory networks is required. The gene expression network, being inferred from 

dynamic analysis of time series data of gene expression profiles, must be considered 

phenomenological, reflecting dynamical observations from the data and an inherently 

incomplete modeling of this data. These networks are derived from a genome-wide 

identification of the entire DNA binding sites for each transcription factor (TF).We 

discuss a network growth model based on gene duplication that provides excellent 

agreement with the global network parameters derived from the analysis of experimental 

expression data. While these networks are of limited size, they also appear to show the 

scale free behavior seen in the expression networks. We conclude with a discussion of 

how these two networks can be compared and used in concert to create more complete 

quantitative models of gene regulation. While addressing the same underlying questions, 

these networks reflect different properties of gene regulation and provide different 

insights. We discuss how gene regulatory networks are inferred from time series data 

using simple linear dynamical models. 

 

However, these networks are silent as to the dynamics of the network; they are strictly 

structural and do not the indication of the extent of control exerted by the TFs. The TF 

networks, on the other hand, are a direct result of experimental observation of a physical 

association between a TF and a DNA binding site, which (except for experimental noise) 

is unique. Two gene regulatory networks inferred from different types of data are 

considered in this chapter. Two very different types of networks associated with gene 

expression are considered here. In addition to the global properties, the local properties of 
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these networks provide powerful data mining tools. The gene expression network is 

inferred from dynamic analysis of time series data of gene expression profiles. These are 

networks derived from microarray data through the measurement of time series of mRNA 

levels on a genome-wide scale. The resulting networks show features that may be 

universal to biological systems. In both cases, the resulting networks show features that 

may be universal to biological systems. First, we consider gene expression networks. A 

network growth model based on gene duplication is described that provides excellent 

agreement with the global network parameters derived from the experimental data. The 

two complementary approaches provide a dynamical, but incomplete, phenomenological 

model of the structure of the network and a precise structural model with unknown 

dynamical properties. The molecular circuitry not only reveals how the expression of 

individual genes is controlled but also how one effectors or agent influences the entire 

network. These are not true, gene regulatory networks in the strict sense because they are 

correlative, and not necessarily causal, networks. No line of inference is required to 

generate these networks and they lead to direct mechanistic interpretation. This network 

allows the direct interaction and control of each gene to be identified from the 

observation of TF binding at elements upstream from DNA coding regions. 

 

The second network to be discussed is the transcription factor network. These networks 

describe how the mRNA level of one gene influences the level of another. Such a picture 

can be developed by probing the interactions between signaling pathways, transcription 

factors and the TF binding sites of the cis regulatory region of a gene. These interactions 

constitute the molecular circuitry that describes how external influences can trigger signal 

transduction pathways to activate transcription factors for a specific set of genes. Thus, 

systems biology invariably means network analysis. These relationships are most easily 

represented by network structures or graphs. The current era of systems biology is 

marked by ongoing efforts to assimilate and integrate this avalanche of information into 

models of biological functions. To do this, the detailed information about molecular 

species cannot be considered in isolation but rather must be related to all of the other 

components of the system. These technologies permit the measurement of the many 

parameters and variables associated with life processes and reveal, in many cases, the 
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inherent complexities of these processes. An emerging problem in bioinformatics is to 

identify the relationships between the various components of a system and infer how one 

component influences another. 

 

2.2 Transcription factors 

 

In addition to controlling the genes and transcription of other transcription factors, these 

protein complexes can also control the genes responsible for their own transcription, 

leading to complex feedback control mechanisms. The basal transcription factors increase 

the rate of transcription for all genes; indeed, RNA polymerase cannot bind to the 

promoter without them. An average gene may have several dozen specific factors 

involved in its regulation, giving the potential for very precise control of its expression. 

Gene-specific factors are known as activators or repressors, depending on whether they 

increase or decrease the rate of transcription. Many gene-specific factors bind to the 

promoter outside of the TATA box, especially near the transcription initiation site, the 

beginning of the DNA sequence that is actually read by RNA polymerase. Transcription 

factors are a very diverse family of proteins and generally function in multi-subunit 

protein complexes. For example, homeotic genes control the pattern of body formation, 

and these genes encode transcription factors that direct cells to form various parts of the 

body. 

 

Transcription factors function in the nucleus, where genes are found, and nuclear 

transport (i.e., import or export) of transcription factors can influence their activity. 

Differential control of gene transcription is facilitated by gene-specific transcription 

factors. Transcription factors can have important roles in cancer, if they influence the 

activity of genes involved in the cell cycle (or cell division cycle).Basal, or general, 

transcription factors are necessary for RNA polymerase to function at a site of 

transcription in eukaryotes. Another important general mechanism controlling the activity 
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of transcription factors is posttranslational modification such as phosphorylation. In 

addition, transcription factors can be the products of oncogenes (genes that are capable of 

causing cancer) or tumour suppressor genes (genes that keep cancer in check).If a 

mutation occurs in any of the homeotic transcription factors, an organism will not 

develop correctly. Transcription factors are vital for the normal development of an 

organism, as well as for routine cellular functions and response to disease. 

Transcription factors control when, where, and how efficiently RNA polymerases 

function. The binding sites of transcription factors can be determined by "DNA 

footprinting." Gene-specific factors work in a variety of ways. During development of 

multicellular organisms, transcription factors are responsible for dictating the fate of 

individual cells. Transcription factors can activate or repress the transcription of a gene, 

which is generally a key determinant in whether the gene functions at a given time. 

Transcription factors are a common way in which cells respond to extracellular 

information, such as environmental stimuli and signals from other cells. By interacting 

directly with DNA, transcription factors can open up otherwise inaccessible regions. 

They are considered the most basic set of proteins needed to activate gene transcription, 

and they include a number of proteins, such as TFIIA (transcription factor II A) and 

TFIIB (transcription factor II B), among others. Transcription factor, molecule that 

controls the activity of a gene by determining whether the gene’s DNA (deoxyribonucleic 

acid) is transcribed into RNA (ribonucleic acid). 

 

For example, in fruit flies (Drosophila), mutation of a particular homeotic gene results in 

altered transcription, leading to the growth of legs on the head instead of antenna; this is 

known as the antennapedia mutation. Growth factors and homeotic proteins also act as 

gene-specific factors or form complexes that do. Substantial progress has been made in 

defining the roles played by each of the proteins that compose the basal transcription 

factor complex. Some influence RNA polymerase's rate of escape from the promoter, or 

its return to it for another round of transcription. A hormone is not a transcription factor 

itself but binds to a receptor to form a gene-specific factor. The number of known gene-

specific factors is currently in the low thousands and inevitably will grow as the genome 
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becomes better known. This arrangement keeps the DNA well ordered but also decreases 

its accessibility for transcription. Some interact with the basal factors, altering the rate at 

which they bind to the promoter. 

 

The factors that bind to them come from elsewhere in the genome and are called "trans" 

acting factors. Some factors physically alter the local structure of the DNA, making it 

more or less accessible. A homoerotic protein can activate one gene but repress another, 

producing effects that are complementary and necessary for the ordered development of 

an organism. In eukaryotic organisms, DNA is wound around protein complexes called 

his tones and is further looped, coiled, and condensed to allow efficient packing in the 

cell nucleus. Since enhancer and silencer sites are on the same DNA sequence as the gene 

they control, they are called "cis" regulatory elements (from the Latin word for "side"). 

 

They may bind directly to special “promoter” regions of DNA, which lie upstream of the 

coding region in a gene, or directly to the RNA polymerase molecule. The DNA 

sequences that activators bind to are called enhancer sites; repressors bind to silencer 

sites. The enzyme RNA polymerase catalyzes the chemical reactions that synthesize 

RNA, using the gene’s DNA as a template. Because of the looped structure of DNA, 

these sequences are physically close to the promoter, despite being far away along the 

double helix. Some bind to DNA sequences hundreds or thousands of nucleotides away 

from the promoter. Others bind to sequences within the coding region of the gene, or 

downstream from it at the termination region. Hormones are an important class of 

molecules that regulate gene expression. Red blood cells should make lots of hemoglobin 

but not the digestive enzyme pepsin, while stomach lining cells should do the opposite. 

Once bound together, the hormone-receptor complex binds to DNA. However, not all 

genes should be transcribed at an equal rate all the time. 
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2.3 Robustness 

 

Together with synthetic network biology, such studies are starting to provide insights into 

the transcriptional mechanisms that cause robust versus stochastic gene expression and 

their relationships to phenotypic robustness and variability. The computational modeling 

and analysis of GRNs, together with the field of synthetic biology, have provided 

numerous insights into the importance of network architecture and topology in generating 

differential gene expression and phenotypic outputs. In the last decade or so, the field of 

systems biology has extensively studied the mechanisms of differential gene expression 

at the level of gene regulatory networks (GRNs). 

 

 Biological robustness and stochasticity can be controlled, at least in part, at the level of 

differential gene expression. We also observed the existence of multiple genotypes giving 

rise to the same phenotype in accordance with the theoretical view that natural selection 

operates on phenotypes thereby accommodating variation in the genotype by fixing those 

changes that are phenotype-neutral.In any given cell, thousands of genes are expressed 

and work in concert to ensure the cell's function, fitness, and survival. Gene regulatory 

networks (GRNs) involving interactions between large numbers of genes and their 

regulators have been mapped onto graphic diagrams that are used to visualize the 

regulatory relationships. Recent advances have enabled the analysis of differential gene 

expression at a systems level. 

 

Here, we describe examples of robustness and stochasticity at the organismal or cellular 

level, as well as at the gene expression level. For instance, developmental gene 

expression is extremely similar in a given cell type from one individual to another. We 

have developed a framework to analyze the effect of objective functions, input types and 

starting populations on the evolution of GRNs with a specific emphasis on the robustness 

of evolved GRNs. Although much work has been done in elucidating the transcriptional 

regulatory network, the underlying mechanisms that have possibly influenced the 
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evolution of these GRNs are still debatable. This study gives a proof-of-concept of the 

fact that robustness is an emergent property of GRNs as well as of the degeneracy of the 

network topology/function relationship analogous to the sequence/structure problem in 

proteins. We observed that robustness evolves along with the networks as an emergent 

property even in the absence of specific selective pressure towards more robust systems. 

The expression of other genes is more variable: Their levels are noisy and are different 

from cell to cell and from individual to individual. Gene Regulatory Networks (GRNs) 

have become a major focus of interest in recent years. Here, we discuss GRNs and their 

topological properties in relation to transcriptional and phenotypic outputs in 

development and organismal physiology. The further characterization of GRNs has 

already uncovered global principles of gene regulation. The regulation and expression of 

some genes are highly robust; their expression is controlled by invariable expression 

programs. Each gene, in turn, must be expressed at the proper time and in the proper 

amounts to ensure the appropriate functional outcome. 

 

In addition, robustness was independent of the selective pressure, input types or the initial 

starting populations. Technological advances in high-throughput molecular biology have 

enabled the characterization of large sets of genes and their regulators. We discuss the 

GRN principles and mechanisms that generate these different types of biological outputs. 

However, responses to stress can be more stochastic, thereby providing a population of 

cells or organisms with different outputs to adapt or survive under adverse conditions. 

Biological processes can be deterministic and robust, or more stochastic and variable. For 

example, in development and differentiation, little deviation is tolerated. This can be 

highly beneficial in physiological responses to outside cues and stresses. 
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2.4 Summary 

 

In this chapter we have discussed about gene regulatory network, transcription factor and 

robustness. This study helps to understand about gene regulatory network.  
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Chapter 3 

 

Preprocessing of dataset 

 

 

Preprocessing data means before using any dataset make that dataset suitable for the 

research. In this research we need numeric dataset of genome but our dataset was in 

polynomial format. So, we need to preprocess for using dataset. 

 

  

3.1 Data collection 

 

In order to create a gene regulatory network first we need corresponding transcription 

factor of gene. We collect our data from website and combined them in a csv file. We 

collect various types of genes from different website and find the corresponding 

transcription factor for all genes. Then preprocess all the data and use that data for 

creating gene regulatory network and find the robust genes as well. We collect data from 

http://bioinfo.icgeb.res.in/APA. In this dataset there are 47721 number of genes, 1024 

number of transcription factors, 9993 number of target genes, 22407 number of gene 

regulatory network, 14360 number of gene sequences.  
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no TF 

1 10002 

2 10009 

3 10014 

4 10113 

5 10127 

6 10153 

7 10168 

8 10194 

9 100062 

10 10173 

 

Table 3.1.1: sample transcription factors of genes 

 

From this transcription factors and target genes we find gene sequences. Sample target 

genes and gene sequences are given below:  

No TG 

1 100 

2 1000 

3 10000 

4 10001 

5 10002 

6 1E+08 

Table 3.1.2: sample target genes 
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ENTREZID SYMBOL 

1 A1BG 

10 NAT2 

100 ADA 

1000 CDH2 

10000 AKT3 

10001 MED6 

10002 NR2E3 

 

Table 3.1.3: sample gene sequence data 

 

From the gene sequence and target genes we create the gene regulatory network from 

applying case data and training dataset. Gene regulatory network I csv file are given 

below: 

ENTREZID Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 

10 
 3.41684 4.255501 3.732269 3.732269 1.646163 2.469886 

100 6.375387 6.536675 12.1454 12.1454 9.038946 7.04756 

1000 11.17589 11.23057 9.384007 9.384007 5.120186 11.24181 

10000 5.684258 6.002928 6.076602 6.076602 3.662206 3.204767 

1E+08 5.029011 5.421223 5.863443 5.863443 3.861955 5.656782 

10001 6.211986 5.64501 6.524816 6.524816 5.76288 5.814807 

Table 3.1.4: sample case dataset 
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TF TG type 

10002 1025 TF-TG 

10002 10514 TF-TG 

10002 10607 TF-TG 

10002 2099 TF-TF 

10002 22907 TF-TG 

10002 25942 TF-TG 

10002 3065 TF-TG 

 

Table 3.1.5: sample gene regulatory network in csv file 

 

 

3.2 Modifying dataset 

 

For creating dataset we need numeric numbers but in our dataset genes are in polynomial 

data. So first we need to modify it. We replace the gene name into their genomic id and 

then create gene regulatory network. 

 

3.3 Summary 

 

In this chapter discusses about dataset and the preprocessing of dataset and reason behind 

the change. In this study it clear that for making gene regulatory network genes are must 

be in numeric format and transcription factor and target genes should be there. 
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Chapter 4  

 

Working procedure 

 

In this chapter we will discuss about the flow chart to describe how the work is done in 

this research. In this study some steps are followed to make the work easier.  

 

4.1 Flowchart 

 

 

Fig 4.1.1: working flow chart 
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4.2 Scatter diagram 

 

Working with neural network is challenging. To use neural network it requires numeric 

value for all attributes.  We have discussed about data preparation in previous chapter. 

Using Orange3 tool available in Anaconda we can show the scatter plot and data 

selection flow chart. Three parts here one is file selection then primary data visualization 

secondly make a scatter plot then selecting data randomly. 

 

 

Fig 4.2.1: Scatter Diagram Creation Using Orang3 Anaconda 
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We used a Gene Regulatory Network Dataset and Orange3 tool available in Anaconda to 

create a scatter plot. From the Scatter plot we randomly selected a topology and marked 

those data.  

 

 

 

Fig 4.2.2: scatter diagram sample1 vs sample2  
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Scatter Plot Represents Data samples used in GRN dataset. Here we can see some human 

gene interactions.  

 

 

 

Fig 4.2.3: Random Topology Selection 

 

We have randomly selected some data from the scatter plot. This will show the 

description of any topology in the scatter plot. 
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4.3 Algorithm for robustness  

 

 

Fig 4.3.1: algorithm used for calculating robustness 

 

Evolutionary Algorithm Used to find the robustness of Created Network Topology. In 

this algorithm we have passed 2 parameter Network Topologies and Approximate 

Threshold value. Network topology is a 2D matrix. And Threshold value confirms the 

network creation is failed or passed. Threshold is to be between 0-1 we used 0.95. 

In order to create higher quality solutions (offspring), crossover and mutatio n operators 

are applied on individuals (parents) selected from current generation based on some 

criteria. 
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Higher quality offspring replaces individuals from the current generation thus creating a 

new generation of population. 

 

Subscript can take one of the values from {1, −1, 0} where 1 represents activation, −1 

represents repression and 0 represents no interaction. 

Even with the Monte Carlo method the fitness estimation becomes very expensive as we 

need to simulate 10,000 network’s behavior to quantify the robustness of each topology. 

In order to accelerate the robustness measurement procedure we utilized a fitness 

approximation technique in our algorithm. 

If the fitness of a topology is reevaluated then we update the archive with the new 

robustness score for that topology if the score is higher than the stored value. 

 

4.4 Dataset with robustness 

In this study a new dataset is created with robustness found from the gene regulatory 

network. From this dataset creates training dataset and test dataset. 

TF TG Robustness  

6.995824 100101629 0.04 

8.700682 100129361 84.51 

7.84089 100130418 99.16 

11.08241 100133941 93.97 

6.907371 100271849 3.59 

6.659496 100101629 78.73 

8.862544 100129361 99.87 

 

Table 4.4.1: Training Dataset for Neural Network 
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In previous we prepared a dataset of topologies and their corresponding robustness .We 

will use that data as our training data. Tool we have used has limit of 2000 data that’s 

why we are taking dataset of 30 elements as our training model. 

Test dataset limit to 5 elements and can be prepared by human gene-gene interaction or 

gene-transcription factor interaction. 
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Chapter 5 

 

Result analysis 

 

In this chapter we will discuss about the robustness of gene regulatory network, creating 

an artificial neural network, show prediction model and linear regression using machine 

learning approach. 

 

 

  5.1 Artificial neural network 

 

An artificial neural network is created by using rapid miner tools. Here is the procedure 

how an artificial neural network is created by rapid miner. 

 

 

Fig 5.1.1: artificial neural network 
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Fig 5.1.2: Example Set Statistics 

 

This is the Example set of generated data we can use this data and visualize it in many 

ways. It is a complete relationship between dataset attributes. And no missing value 

found so our dataset is clean. 
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Fig 5.1.3: Example Set Chart (Histogram) 

 

Label means the type (TF-TF or TG-TF) in GRN .We can show it absolutes values in a 

histogram to find their frequencies. 
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Fig 5.1.4: Improved Neural Net 

 

This is the complete visual of neural network we have created. We can calculate the 

threshold value from here and see if the network creation fails of pass. 

Hidden 1 
======== 

 
Node 1 (Sigmoid) 

---------------- 
B: 1.067 
Bias: -2.160 
 
Node 2 (Sigmoid) 
---------------- 
B: 1.046 
Bias: -2.210 

 
 

Output 
====== 

 
Regression (Linear) 

------------------- 

Node 1: 0.766 
Node 2: 0.767 
Threshold: 0.717 
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5.2 Prediction model 

 

In this study a prediction model is created and shows the prediction values and can find 

the error rating from the prediction model. 

 
 

 
 
 

Fig 5.2.1: Example Set Apply Model 
 

After applying neural net this is our predicted model. In predicted result there are also 

no missing values. We have maximum value for A and minimum for C. So our prediction 

will be over C. 
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Fig 5.2.2: Prediction Model 

Prediction model histogram with absolute value. We can find frequencies for each value 

here. We can calculate error rating in different cases. 
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Chapter 6 

 

 Conclusion 

Finally, through this research we tried to combine machine learning with evolutionary 

algorithm and we did it successfully. There was a challenge to find out the perfect 

dataset for this research but we overcome that anyhow. In future researcher’s can use 

those dataset for their research purposes. This dataset and research will be helpful in 

genetic analysis software in the days ahead. By using our train dataset they can train the 

neural network and test it through test data created in genetic research lab. In the field 

of cancer or any kind of disease detection this research works will be helpful.  

 

 6.1 Future works 

This research will enhance some future works like cancer gene detection and disease 

gene detection. Artificial neural network to indentify the topology of robust gene 

regulatory network can be implemented through code but that was not our approach. 

We tried to proof that this method is applicable. So we used some open source 

software’s to fire up our research. If this method is using for software development then 

using raw code instead of using tool is mandatory. 
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