MINING ASSOCIATION: A CASE STUDY OF BREAST CANCER DATA

by

Asmaul Hosna (2014-1-60-057)

and

Nasim Ahmed Sazzad (2014-1-60-096)

Supervised by Dr. Shamim H Ripon

A thesis presented in partial fulfillment of the Bachelor of Science in Computer Science in the Department of computer Science and Engineering

East-West University, Aftabnaghar, Dhaka-1212, Bangladesh April 2018

MINING ASSOCIATION: A CASE STUDY OF BREAST CANCER DATA

Asmaul Hosna (2014-1-60-057)

and

Nasim Ahmed Sazzad (2014-1-60-096)

Department of Computer Science and Engineering

Aftabnaghar, Dhaka-1212, Bangladesh April 2018

Declaration

We, Asmaul Hosna Mumu and Nasim Ahmed Sazzad, declare that the work presented in this thesis is the outcome of the investigation performed by us under the supervision of DR Shamim H Ripon, Associate Professor, Department of Computer Science and engineering, East West University. We confirm that:

No part of this thesis/project has been or is being submitted elsewhere for the award of any degree or diploma.

Where we have quoted from the work of others, the source is always given.

We have acknowledge all main sources of help.

Signature

Asmaul Hosna 2014-1-60-057

Signature

Nasim Ahmed Sazzad 2014-1-60-096

Abstract

In breast cancer field early detection of breast cancer can provide potential advantages in the treatment of this diseases .Data mining algorithm can provide a great assistance in prediction of early age breast cancer that has always been an challenging research problem. The main objective of this research is to find how precisely can this data mining algorithms predict the probability of recurrence of the diseases among the patients on the basis of their clinical data.

Keywords: breast cancer, recurrence, data mining, probability.

Acknowledgments

Our science gratitude goes to our parents for their all kindness and encouragement during our studies, without them this thesis would have been very hard to finish.

We would like to thank our supervisor DR. Shamim H Ripon for his utmost direction, constant help, support and feedbacks.

We are grateful to the Kaggle dataset providers, without the dataset it could not be easy to accomplish our work.

We also thank the researchers for their works that helped us a lot to learn new this and helped us to enrich our self.

LETTER OF ACCAPTENCE

WE HEREBY DECLARE THAT THIS THESIS IS THE STUDENT'S OWN WORK AND BEST EFFORT OF MINE.ALL OTHER SOURCES OF INFORMATION USED HAVE BEEN ACKNOWLEDGED. THIS THESIS HAS BEEN SUBMITTED WITH MY APPROVAL.

Approved by:

Dr. Shamim H Ripon , supervisor

Associate professor Department of Computer Science of Engineering EAST WEST UNIVERSITY

Dr. Ahmed Wasif Reza Associate Professor and Chairperson

Department of Computer Science of Engineering EAST WEST UNIVERSITY

Date Approved: [April 18, 2018]

Table of Contents

Declaration	of Authorship	Ι
Abstract		II
Acknowledg	ment	III
Letter of Acce	ptance	IV
List of Figu	res	
List of Table	es	
List of Algo	rithms	
Chapter 1 Ir	ntroduction	2
1.1 Backgr	round	2
1.1.1	Rapid Miner	2
1.1.2	Weka	4
Chapter 2 Me	ethodology	5
2.1 Training	Dataset Description	5
2.2 Attribute	Section	7
2.3 Data Mir	ning Algorithms Used	7
	on Algorithms:	
2.3.1	Decision Tree(j48)	7
2.3.2	Naïve Baye's	14
2.3.3	SMO	
2.3.4	Random Forest	
Clustering A	Algorithms:	
2.3.5	K-means	22
2.3.6	ЕМ	23

	2.4 Association Rules For breast cancer observation	.25
	2.5 Correlation Analysis	. 26
Chapter	3 Result and Analysis	29
	3.1 Performance Evolution of all classification models	.29
	3.2 Performance Evolution of two clustering models	.31
	3.3 Performance Evolution of association rules mining	.32
Conclus	ion	35
Bibliog	raphy	36

List of Figures

Figure 1: shows the user interface of Rapidminer.	.3
Figure 2: The features of Weka are shown.	.4
Figure 3: Weka applications interface are shown	4
Figure 4: Configuration of the process	8
Figure 5: J48 algorithm using cross-validation.	9
Figure 6: J48 algorithm using percentage split.	10
Figure 7: J48 algorithm using training set.	10
Figure 8: J48 algorithm model design on Rapidminer tool	11
Figure 9: Visualization of decision tree.	12
Figure 10: Accuracy by taken metastasis as a target attribute.	12
Figure 11: Visualization of tree by tumor	13
Figure 12: Accuracy taken by tumor as a target attribute	13
Figure 13: Naïve Bayes using percentage split	14
Figure 14: Naïve Bayes using cross validation.	15
Figure 15: Result of SMO algorithm by using cross-validation.	15
Figure 16: Result of SMO algorithm by using percentage split	16
Figure 17: Result of SMO using training set.	17
Figure 18: Result of Random forest algorithm by using cross-validation.	18
Figure 19: Result of Random forest algorithm by using percentage split.	18
Figure 20: Result of Random forest algorithm by using training set.	19
Figure 22: Design of random forest model in Rapidminer.	19
Figure 23: Accuracy measurement by using metastasis as a target attribute.	20
Figure 24: K means (metastasis) clustering using percentage split.	22
Figure 25: K means (tumor) clustering using percentage split.	22
Figure 26: EM (tumor) clustering using percentage split.	23
Figure 27: EM (metastasis) clustering using percentage split.	24
Figure 28: Design of association rule in Rapidminer.	25
Figure 29: Rules given by Association model.	25

Figure 30: Model of correlation matrix in Rapidminer.	26
Figure 31: Correlation matrix	27
Figure 32: Performance evaluation of J48, Naïve Bayes, SMO and Random forest.	.30
Figure 33: Performance evaluation of J48, Naïve Bayes, SMO ,Random forest	30
Figure 34: performance evaluation of two clustering model	31
Figure 35: linked list of the association rules	33
Figure 36: Tree of the association rules we get from result	33
Figure 37: Scatter diagram of correlation matrix	34

List of Tables

Table1. Description of Dataset.	.6
Table2. Correlation attributes.	28
Table3. Analysis between different algorithms.	.29
Table4. Analysis between 2 clustering.	.31

List of Algorithms

Classification Algorithm:

- 1. Decision tree(j48)
- 2. Naïve Baye's
- 3. SMO(sequential model optimization)
- 4. Random Forest

Clustering Algorithm:

- K-means
 EM (Expectation-Maximization)

Chapter 1 Introduction

The most dangerous disease in the world is cancer and one of the cancer that kills the women is breast cancer. Detecting the breast cancer manually takes lot of time and it is very difficult for the physician to classify it. Hence for easy classification, detecting the cancer thought various automatic diagnostic techniques is necessary. There are a various methods for detecting breast cancer such as Biopsy, Mammogram, MRI and Ultrasound. Breast cancer happens due to uncontrolled growth of cells and this growths of cells must be stopped as soon as possible by detecting it earlier. There are two classes of tumor: one is beginning tumor and the other is malignant tumor, in which benign tumor is noncancerous the latter is cancerous. Many researcher are still performing research for developing a proper diagnostic system for detecting the tumor as early as possible and also in an easier way, so that the treatment can be started earlier and the rate of survive ability can be increased. For developing the computerized diagnostic system machine learning algorithm plays an important rule. There are many machine learning algorithm which are used to classify the tumor easily and in effective way. This work deals with the comparative analysis of association rules and correlation matrix.

1.1 Background

The past and current research reports on medical data using data mining techniques have been studied. All these reports are taken as a base of this paper. On the other hand all the medical term was learned for getting knowledge about the different cause and stages of breast cancer.

In our paper, we used two tools for our process; one is 'WEKA" and another one is 'Rapidminer'.

1.1.1 RapidMiner

RapidMiner is a data science software platform developed by the company of the same name that provides an integrated environment for data preparation, machine learning, deep learning, text mining, and predictive analytics. It uses a client/server model with the server offered as either on premise, or in public or private cloud infrastructures. According to Bloor Research, RapidMiner provides 99% of an advanced analytical solution through template-based frameworks that speed delivery and reduce errors by nearly eliminating the need to write code.

The features of RapidMiner are like:

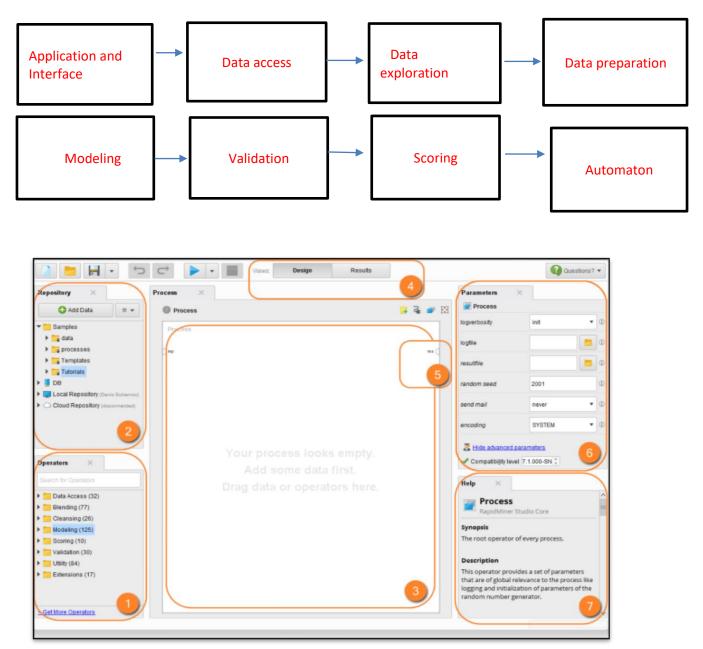
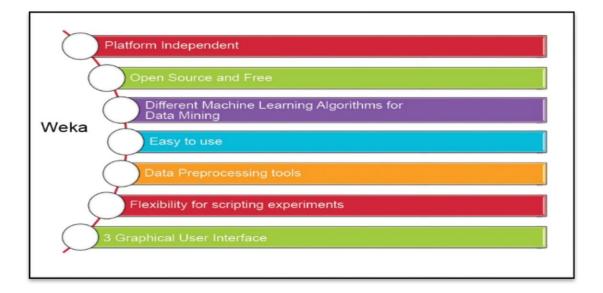



Fig 1.Shows the user interfaces of Rapidminer.

1.1.2 Weka:

Weka is data mining software that uses a collection of machine learning algorithms. These algorithms can be applied directly to the data or called from the Java code.

Fig 2.The features of Weka

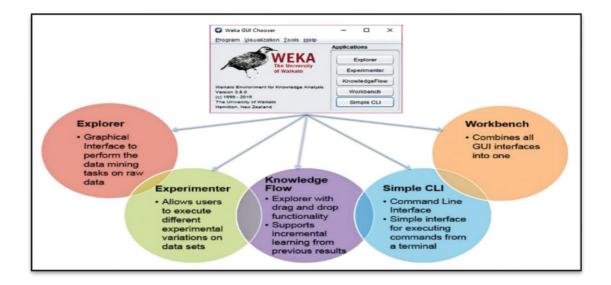
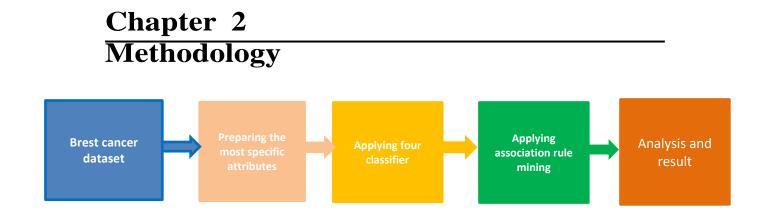



Fig 3: Interface of Weka

The proposed method of breast cancer detection consists of two main parts: select attribute/s and applying machine learning algorithms.

2.1 Training dataset description:

"Clinical_data_breast_cancer.csv" was collected from the most popular site 'kaggle'.The dataset contains clinical data and various breast cancer classifications from 105 breast cancer patients.

Variables: Complete TCGA ID', 'Gender', 'Age at Initial Pathologic Diagnosis', 'ER Status', 'PR Status', 'HER2 Final Status', 'Tumor', 'Tumor--T1 Coded', 'Node', 'Node-Coded', 'Metastasis-Coded', 'AJCC Stage', 'Converted Stage', 'Survival Data Form', 'Vital Status', 'Days to Date of Last Contact', 'Days to date of Death', 'OS event', 'OS Time', 'PAM50 mRNA', 'SigClust Unsupervised mRNA', 'SigClust Intrinsic mRNA', 'miRNA Clusters', 'methylation Clusters', 'RPPA Clusters', 'CN Clusters', 'Integrated Clusters (with PAM50)', 'Integrated Clusters (no exp)', 'Integrated Clusters (unsup exp)'.Among all this attributes we took only 7 attributes for training dataset.

S/N	Training attributes	Values
1	Age	38-88
2	HER2 Final Status	Positive, Negative
3	Tumor	T1,T2,T3,T4
4	Node	N0,N1,N3
5	Metastasis	M0, M1
6	AJCC Stage	IA, IB, IIA ,IIB, IIIA, IIIB, IIIC, IV
7	Converted stage	No-conversion, IA, IB, IIA ,IIB,
,		IIIA, IIIB, IIIC, IV

More details about the dataset:

Table 1: Description of Dataset

2.2 Attribute selection:

Among all attributes we had to find out the most significant attributes which would give us a perfect accuracy over all algorithms. By testing in various finally we came into a decision that metastasis is the attribute which the reason behind the highest accuracy in our dataset. Metastasis (M) category tells whether or not there is evidence that the cancer has traveled to other parts of the body.

2.3 Data mining algorithms used:

Machine learning is one of the branch of computer science, which is useful to pattern recognition and computational learning. Machine learning can be used to construct algorithms which can learn and make relationship with mathematical and computational statistics. By using machine learning, the user can create new algorithms which can learn and predict the data without explicitly being programmed. In our research we applied four classification method like – J48, SMO, Naïve Bayes and two clustering EM and K means. Our main implementation part was applying association rule over the dataset and make a relation between them by using correlation algorithm; which we applied in the last part our implementation.

2.3.1 Decision Tree (J48):

J48 classifier is a simple decision learning algorithm, it accepts only categorical data for building model. Sometimes it can handle both categorical and data.

Choose J	🜍 weka.gui.Generi	cObjectEditor		×
Test options	weka.classifiers.trees.J	48		
🔵 Use training	About			
O Supplied te	Class for generati	ng a pruned or unp	runed C4.	More
Cross-valida				Capabilities
O Percentage				
М	binarySplits	False		~
(Nom) Converted	confidenceFactor	0.25		
	debug	False		~
Start Result list (right-	minNumObj	2		
23:09:14 - trees. 01:32:26 - trees	numFolds	3		
	reducedErrorPruning	False		~
	saveInstanceData	False		~
	seed	1		
	subtreeRaising	True		~
	unpruned	True		~
	useLaplace	False		~
	Open	Save	ОК	Cancel

Fig 4: Configuration of the process J48

In fig 4 first we started with the configuration panel of J48. Where mainly "subtreesting" and "unpruned" can change the result in various issue. SubtreeRaising increases the complexity of the algorithm and it was then controlled by true/false. On the other hand unpruned option is for pruning or unpruning the tree. If the unpruned option is set true then J48 will show the bigger true than before. For our research purpose we test the data for both case. After set all the configuration we started our process with cross validation approach where we set the fold number equals to 10; where fold= 10 means dataset is divided into 10 paths for testing purpose.

After running the process we get the accuracy nearly 89% .In algorithm section there is a part called subtreeraising which increases the complexity of the algorithm. In this process

we use 6 attribute to find the accuracy and find maximum 89%, then try to remove some attribute to check whether it changes the accuracy level or not. When we remove the two attribute 'Node' and 'AJCC stage' individually and tested again, they made a huge change in the accuracy.

Weka Explorer	Select attributes Visualize							
Classifier	Visualize							
Choose 348 -C 0.25 -M 2								
lest options	Classifier output							
O Use training set								
Supplied test set Set	Time taken to buil	d model: 0.02 se	conds					
Cross-validation Folds 10	=== Stratified cro	ss-validation ==	=					
O Percentage split % 66	=== Summary ===							
More options	Correctly Classifi	ed Instances	69		65.7143	,		
	Incorrectly Classi	fied Instances	36		34.2857			
Nom) Converted Stage	Kappa statistic		0.51	57				
51-11 ST.	Mean absolute erro		0.12					
Start Stop	Root mean squared		0.27					
Result list (right-click for options)	Relative absolute		56.39					
3:09:14 - trees.348	Root relative squa		84.37	59 %				
	Total Number of In	stances	105					
	=== Detailed Accur	acy By Class ===	:					
	TP	Rate FP Rate	Precision	Recall	F-Measure	ROC Area	Class	
		.732 0.344			0.645	0.669	No_Conversion	
		.821 0.065			0.821			
		.563 0.056			0.6	0.896	Stage IIB	
	0	.875 0.021 0.01		0.875	0.824		Stage I	
	0		0	0	0	0.94		
	0		-	0		0.845	Stage IIIC Stage IIIB	
			0.602		0.625	0.728	stage IIIB	
	"olgheed Avg. 0	.007 0.162	0.002	0.037	0.023	0.006		
	=== Confusion Matr	ix ===						
	abcdef	g < classi	fied as					
	30 5 4 1 1 0	$0 \mid a = No_{CO}$	nversion					
		0 b = Stage						
	7 0 9 0 0 0							
		0 d = Stage						
		0 e = Stage						
		1 f = Stage						
	2 0 0 0 0 0	0 g = Stage	IIIB					

Fig 5: J48 algorithm using cross-validation

Then we used the training set and percentage split to test again for comparing whether it changes the accuracy level than cross validation process or not. Training set gave the accuracy of 78% and the percentage split 62%. So from 3 of this test we can evaluate that training test showed the best result.

O Supplied test set Set	Time taken to b	uild mode	1: 0 secor	ds					
Cross-validation Folds 10	=== Evaluation	on test :	plit ===						
Percentage split % 66	=== Summary ===		priv						
More options	Correctly Class	ified In:	stances			61.1111 %			
	Incorrectly Cla		Instances			38.8889 9			
(Nom) Converted Stage	Kappa statistic			0.46					
Start Stop	Mean absolute e			0.12					
	Root mean squar			0.30					
Result list (right-click for options)	Relative absolu			58.96					
05:07:08 - trees.348 05:08:05 - trees.348	Root relative s Total Number of			92.30	12 8				
0.00.00-0.000.010	Total Number of	instance		36					
	=== Detailed Ac	CUTACU B	Class III						
	Decurred Ac	curuey by	CIUDO						
		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class	
		0.714	0.364	0.556	0.714	0.625	0.675	No_Conversion	
		0.7	0	1	0.7	0.824	0.844	Stage IIA	
		0.6	0.097	0.5	0.6				
		1	0.029	0.667		0.8	0.985	Stage I	
			0.059		0				
		0	0	0	0		0.943	Stage IIIC	
		0	0	0	0		0.5	Stage IIIB	
	Weighted Avg.	0.611	0.16	0.6	0.611	0.592	0.758		
	=== Confusion M	atrix ===							
	abcde	fa	< classi	fied as					
	10 0 2 0 2								
	1 7 1 1 0								
	2 0 3 0 0	0 0 1	c = Stage	IIB					
	0 0 0 2 0								
	2 0 0 0 0	0 0 1	e = Stage	AIIIA					
	1 0 0 0 0								
	2 0 0 0 0	0 0 1	g = Stage	IIIB					
	0.15								

Fig 6: J48 algorithm using percentage split

Use training set								
O Supplied test set Set	Time taken to bu	ild model	l: 0 secon	ds				
Cross-validation Folds 10	=== Evaluation o	n trainir	ng set ===					
O Percentage split % 66	=== Summary ===							
More options	Correctly Classi	fied Trat		81		77.1429 %		
	Incorrectly Classi			24		22.8571 %		
(Nom) Converted Stage 🗸 🗸	Kappa statistic			0.685	2			
	Mean absolute er	ror		0.094	4			
Start Stop	Root mean square	d error		0.217	3			
Result list (right-click for options)	Relative absolut			44.092				
05:07:08 - trees.J48	Root relative sq			66.702	3 %			
	Total Number of	Instances	3	105				
	=== Detailed Acc	Product Pro	Class					
	Detailed Acc	штасу Бу	CIASS					
	т	P Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
		0.805	0.219	0.702	0.805	0.75	0.84	No_Conversion
			0.039	0.885			0.962	Stage IIA
		0.75	0.045			0.75	0.962	Stage IIB
		1	0.021		1		0.994	Stage I
		0.333	0.01				0.965	Stage IIIA
		0.5	0	1	0.5		0.99	Stage IIIC
		0.5	0.105	1 0.781	0.5		0.995	Stage IIIB
	Weighted Avg.	0.771	0.105	0.781	0.771	0.766	0.918	
	=== Confusion Ma	trix ===						
	abcde	fg <	classi	fied as				
	33 3 3 1 1	0 0 1	a = No_Co	nversion				
	3 23 1 1 0	0 0	b = Stage	IIA				
	4 0 12 0 0	0 0	c = Stage	IIB				
	0 0 0 8 0		-					
			e = Stage					
	2 0 0 0 0		-					
	1 0 0 0 0	0 1	g = Stage	IIIB				
	[L							
- Status OK								

Fig 7: J48 algorithm using training set

As we said we took another tool for comparing or getting the best accuracy purpose we used our dataset on Rapidminer tool for further analysis. In WEKA, we kept metastasis as a target value for our testing; keeping the same thing on mind first we set the role to "tumor" and then "metastasis" to see the difference.

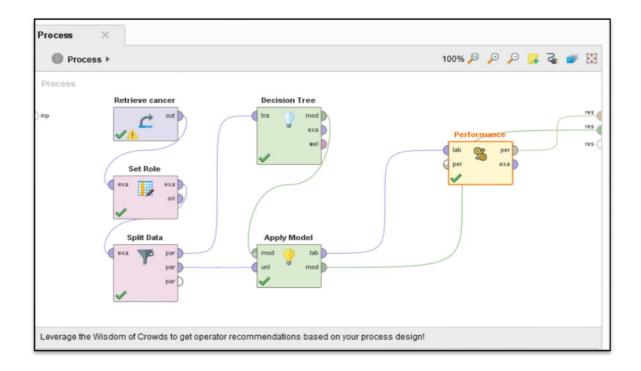


Fig 8: J48 algorithm model design on rapidminer tool

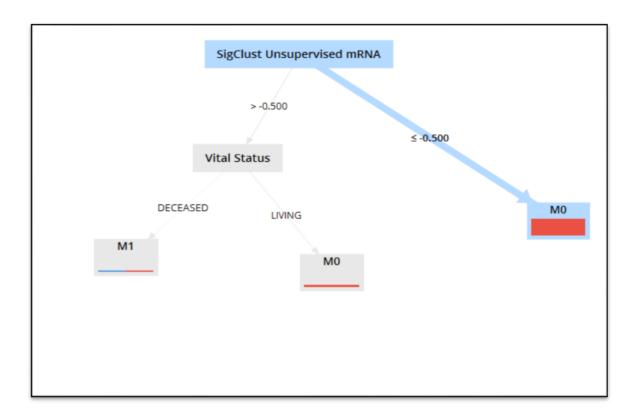


Fig 9: visualization of decision tree

ccuracy: 97.62%			
	true M1	true M0	class precision
red. M1	0	0	0.00%
red. MO	1	41	97.62%
ass recall	0.00%	100.00%	

Fig 10: Accuracy by taken metastasis as a target attribute

Metastasis showed the best accuracy based on sigClust unsupervised mRNA values and made a tree with five nodes.

On the hand when we set 'tumor' as target value, it made a big tree than the "metastasis" was formed but accuracy was less than the previous one.

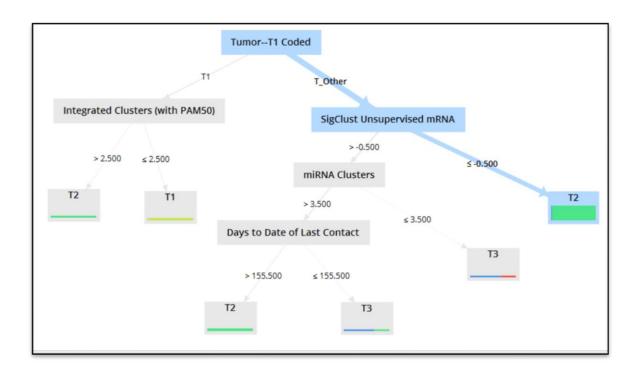


Fig 11: Visualization of tree by tumor

ccuracy: 87.80%	true T3	true T2	true T1	true T4	class precision
red. T3	0	0	0	0	0.00%
red. T2	3	35	2	0	87.50%
red. T1	0	0	1	0	100.00%
red. T4	0	0	0	0	0.00%
ass recall	0.00%	100.00%	33.33%	0.00%	

Fig 12: Accuracy taken by tumor as a target attribute

Considering the both tools; decision tree (J48) shows the best accuracy in RapidMiner. So it can be said that it is possible to find the best accuracy from J48 by using this dataset.

2.3.2 Naïve Baye's classifier:

Naïve Baye's classifier is one of the method of supervised learning. It provides an efficient way of handling any number of attributes or classes which is purely based on probabilistic theory.* To find out the most probability constraints we applied naïve baye's classifier on our data set in WEKA. First we tested for cross-validation, then we tested for percentage split and next for training set

est options	Classifier output							
O Use training set	classifier output							
	Time taken to I	build mode	el: 0 secor	ids				
Supplied test set Set								
Cross-validation Folds 10	=== Evaluation	on test	split ===					
Percentage split % 66	=== Summary ===	=						
More options								
	Correctly Class			21		58.3333		
iom) Converted Stage	Incorrectly Cl. Kappa statistic		Instances	15	0.5	41.6667	•	
ing contended plage *	Mean absolute			0.40				
Start Stop	Root mean squar			0.14				
sult list (right-click for options)	Relative absolu			69.00				
1:04:39 - bayes.NaiveBayes	Root relative			84.36				
	Total Number of	-		36				
	=== Detailed A	ccuracy B	Class ===	0				
				Precision				
		0.714	0.455	0.5	0.714		0.706	No_Conversion
		0.7	0.038		0.7	0.778	0.919	
		0.2	0.065	0.333	0.2	0.25	0.861	
		0.5	0.029	1	0.5	0.667	1	Stage I Stage IIIA
		1	0.029	0.5	1	0.667	1	Stage IIIC
		0	0.029	0.5	0	0.007	0.441	
	Weighted Avg.	0.583	0.199	0.581	0.583		0.806	couge alan
	and a start and a start a						21000	
	=== Confusion 1	Matrix ===	-					
	abcd	e f g	< classi	fied as				
	10 1 1 0	1 1 0	a = No_Co	nversion				
			b = Stage					
			c = Stage					
			d = Stage					
			e = Stage					
	0 0 0 0							
	2000	0 0 0 1	g = Stage	IIIB				

Fig 13: Naïve Bayes using percentage spli

Classifier									
Choose NaiveBayes									
Test options	Classifier output								
O Use training set									
O Supplied test set Set	Time taken to build mo	del: 0.02 s	econds						
0									
Cross-validation Folds 10	=== Stratified cross-v.	alidation =							
O Percentage split % 66	Summary								
More options	Correctly Classified I	istances	52		49.5238	•			
	Incorrectly Classified	Instances	53		50.4762	•			
(Nom) Converted Stage	Kappa statistic		0.30						
Start Stop	Mean absolute error		0.15						
Result list (right-click for options)	Root mean squared erro Relative absolute erro		0.28						
Result list (right-click for options) (2:53:58 - bayes.NaiveBayes	Root relative squared		88.40						
contraction of the second second	Total Number of Instan		105						
	=== Detailed Accuracy	By Class ==	=						
			Precision		F-Measure				
	0.415		0.405	0.415		0.601	No_Conversion Stage IIA		
	0.053			0.093		0.932	Stage IIA Stage IIB		
	0.875		1	0.875		1	Stage I		
	0.167	0.04	0.2	0.167	0.182	0.848	Stage IIIA		
	0	0.03	0	0	0	0.723	Stage IIIC		
	0	0	0	0	0	0.097	Stage IIIB		
	Weighted Avg. 0.495	0.216	0.45	0.495	0.465	0.766			
	=== Confusion Matrix =								
	Confusion Matrix =	-							
	abcdefg	< class	ified as						
	17 11 6 0 4 3 0								
	2 25 1 0 0 0 0								
	13 1 2 0 0 0 0								
	0 1 0 7 0 0 0 5 0 0 0 1 0 0								
	4000000								
	1 1 0 0 0 0 0								
ibbs									
DK									

Fig 14: Naïve Bayes using cross validation

Test options	Classifier output							
Use training set	Classiner output							
	Time taken to	build mode	el: 0 secor	ds				
O Supplied test set Set								
O Cross-validation Folds 10	=== Evaluation		ing set ===					
O Percentage split % 66	=== Summary ==							
More options	Correctly Clas	saified In	stances	74		70.4762		
	Incorrectly Cl			31		29.5238		
(Nom) Converted Stage ~	Kappa statisti			0.60	12			
	Mean absolute			0.12				
Start	Root mean squa			0.24				
Result list (right-click for options)	Relative absol			58.23				
18:04:39 - bayes.NaiveBayes	Root relative			74.57	4 8			
18:05:59 - bayes.NaiveBayes	Total Number of	of Instance	0.5	105				
	=== Detailed #	Accuracy B	y Class ===					
		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
		0.61	0.203	0.658	0.61	0.633	0.78	No_Conversion
		0.893	0.117	0.735	0.893	0.806	0.963	Stage IIA
		0.625	0.056	0.667	0.625	0.645	0.917	Stage IIB
		1	0	1	1	1	1	Stage I
		0.5	0.02	0.6	0.5	0.545	0.968	Stage IIIA
		0.75	0.02	0.6	0.75	0.667	0.98	Stage IIIC
	Weighted Avg.	0.705	0.121	0.688	0.705	0.693	0.981	Stage IIIB
	and and and and	-1700					41005	
	=== Confusion	Matrix ==						
	abcd	e f q	< classi	fied as				
			a = No Co					
			b = Stage					
			c = Stage					
	0 0 0 8	0 0 0 1	d = Stage	I				
	3 0 0 0	3 0 0 1	e = Stage	AIIIA				
			f = Stage					
	1 1 0 0	0 0 0 1	g = Stage	IIIB				

Fig 15: Naïve Bayes using training set

Overall we can recognize that training set gave the best accuracy in this algorithm.

2.3.3. SMO: (sequential model optimization) :

Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a_time-consuming numerical QP optimization as an inner loop. The amount of memory required for SMO is linear in the training set size, which allows SMO to handle very large training sets.

Because matrix computation is avoided, SMO scales somewhere between linear and quadratic in the training set size for various test problem. As we are using different algorithm on our dataset; we used SMO for another testing purposes. Same as before testing divided into three part - cross validation, percentage split and training set. They accordingly gave the accuracy

Use training set Supplied test set Cross-validation Folds Percentage split % 66 More options	Time taken t === Stratifi === Summary	ed cross-va	el: 0.17 s	sconds				
Cross-validation Folds 10 Percentage split % 66 More options	=== Stratifi	ed cross-va	el: 0.17 s	econds				
Percentage split % 66 Nore options								
Percentage split % 66 Nore options			lidation =					
More options								
	Correctly Cl			62		59.0476		
Nom) Converted Stage	Incorrectly Kappa statis		Instances	43	26	40.9524	•	
tony contenue sage	Mean absolut			0.21				
Start Stop	Root mean so			0.31				
esult list (right-click for options)	Relative abs			98.74				
3:23:23 - functions.5MO	Root relativ			96.12	39 %			
	Total Number	of Instanc		105				
	=== Detailed	Accuracy B	y Class ==					
		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
		0.61	0.406	0.49	0.61	0.543	0.577	No_Conversion
		0.821	0.117	0.719	0.821	0.767	0.854	Stage IIA
		0.375	0.022	0.75	0.375	0.5	0.912	Stage IIB
		1	0.01	0.889	1	0.941	0.995	Stage I
		0	0.01	0	0	0	0.913	Stage IIIA
		0	0.02	0	0	0	0.965	Stage IIIC Stage IIIB
	Weighted Avg		0.196	0.565	0.59	0.565	0.775	benge 1110
	in the second strip							
	=== Confusio	n Matrix ==	-					
	abcd	e f g	< class	ified as				
	25 9 1 1	1 2 2 1	a = No_C	onversion				
	4 23 1 0							
	10 0 6 0		c = Stag					
	0 0 0 8							
		0 0 0 1						
		0 0 0 1						

Fig 16: Result of SMO algorithm by using cross-validation

reprocess Classify Cluster Associate Se	elect attributes Visualize							
Classifier								
Choose SMO -C 1.0 -L 0.001 -P 1.0E-1	2 -N 0 -V -1 -W 1 -K "wek	a.classifiers.function	ns.support/ec	tor.PolyKernel -	С 250007 -Е	1.0"		
Test options	Classifier output							
O Use training set								
O Supplied test set Set	Time taken to k	uild model:	0.08 seco	nds				
Cross-validation Folds 10	=== Evaluation							
	=== Summary ===		c					
Percentage split % 66	- Cumulary							
More options	Correctly Class	ified Instan	ces	22		61.1111 9		
	Incorrectly Cla	ssified Insta	ances	14		38.8889 9		
(Nom) Converted Stage 🗸 🗸	Kappa statistic			0.398				
Start Stop	Mean absolute e			0.215				
Result list (right-click for options)	Root mean squar Relative absolu			0.319				
3:23:23 - functions.SMO	Root relative absolu			100.12 97.887				
3:24:31 - functions.SMO	Total Number of			36				
	=== Detailed Ac	curacy By Cla	ass ===					
						F-Measure		
			0.591	0.519	1	0.683	0.692	No_Conversion
			0.032	1	0.7	0.824	0.867	Stage IIA
			0.032	0.5	0.2	0.286	0.842	Stage IIB Stage I
		-	0	ő	ő	ő	0.941	Stage IIIA
			0	ō	0	ō	0.971	Stage IIIC
		0	0	0	0	0	0.5	Stage IIIB
	Weighted Avg.	0.611	0.234	0.549	0.611	0.534	0.789	
	=== Confusion M	Matrix ===						
	abcde	£	classifi					
		fg <						
		0 0 1 6						
	4 0 1 0 0							
	20000	0 0 1 4	= Stage I					
		0 0 1 6						
		0 0 f						
	20000	0 0 1 9						

Fig17: Result of SMO algorithm by using percentage split

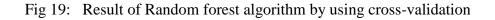

reprocess Classify Cluster Associate Classifier Choose SMO -C 1.0 -L 0.001 -P 1.0			inctions.support	Vector .PolyKernel ·	-C 250007 -E	1.0"		
Test options	Classifier output							
Use training set								
O Supplied test set Set	Time taken to	build mode	sl: 0.08 se	sconds				
Cross-validation Folds 10	=== Evaluatio	on traini	ng set ===					
O Percentage split % 66	=== Summary =		ing boo					
· · ·								
More options	Correctly Cla	ssified Ins	stances	80		76.1905	•	
	Incorrectly C		Instances	25		23.8095	•	
Nom) Converted Stage	Kappa statist			0.66				
Start Stop	Mean absolute Root mean squ			0.20				
esult list (right-click for options)	Root mean squ Relative abso			97.05				
3:23:23 - functions.SMO	Root relative			94.22				
3:24:31 - functions.SMO	Total Number			105				
3:25:21 - functions.SMO								
	=== Detailed	Accuracy By	Class ===	=				
				Precision				
			0.297		0.878		0.777	No_Conversion
			0.039			0.852		
		1	0.01			0.941		Stage I
		0.5	0	1	0.5		0.975	Stage IIIA
		0.5	0	1	0.5	0.667	0.988	Stage IIIC
		0	0	0	0	0	0.99	Stage IIIB
	Weighted Avg.	0.762	0.131	0.776	0.762	0.749	0.889	
	=== Confusion	Matrix ===						
	abcd	e f q	< classi	ified as				
		0 0 0 1						
		0 0 0 1						
		0 0 0 1						
		0 0 0 1						
		3 0 0 1						
		0 0 0 1						
			, cougo					

Fig 18: Result of SMO using training set

2.3.4 RandomForest classification:

Random forest algorithm is mostly used for both classification and regression task. The main advantages of this algorithm is that it can handle the missing values so it can be easily used for featured engineering. In WEKA we applied random forest to check how it works with our dataset; and we set out the best accuracy among all the algorithm we have used.

Test options	Classifier output					
O Use training set						
O Supplied test set Set	Time taken to build model	: 0.03 seconds				
Cross-validation Folds 10	=== Stratified cross-valid	dation ===				
O Percentage split % 66	=== Summary ===					
More options	Correctly Classified Inst	ances 56		53.3333 %		
	Incorrectly Classified Inst			46.6667 %		
(Nom) Converted Stage	Kappa statistic	0.366				
	Mean absolute error	0.142				
Start Stop	Root mean squared error	0.302	9			
Result list (right-click for options)	Relative absolute error	66.259	6 8			
21:07:26 - trees.RandomForest	Root relative squared erro	or 92.825	6 8			
	Total Number of Instances	105				
	=== Detailed Accuracy By (Class ===				
	TP Rate	FP Rate Precision	Recall	F-Measure	ROC Area	Class
	0.463	0.375 0.442	0.463	0.452	0.599	No_Conversion
	0.679	0.104 0.704	0.679	0.691	0.912	Stage IIA
	0.5	0.101 0.471	0.5	0.485	0.866	Stage IIB
	1	0.01 0.889	1	0.941	0.995	Stage I
	0	0.04 0	0	0	0.919	Stage IIIA
	0.5	0.01 0.667	0.5	0.571	0.906	Stage IIIC
	0	0.019 0	0	0	0.966	Stage IIIB
	Weighted Avg. 0.533	0.193 0.525	0.533	0.528	0.79	
	=== Confusion Matrix ===					
	abcdefg <-					
	19 6 8 1 4 1 2 4					
	8 19 1 0 0 0 0 1 1					
	6 2 8 0 0 0 0 1 4					
	0 0 0 8 0 0 0 1 4					
	6000001					
	2 0 0 0 0 2 0 1 :					
	20000000	g = Stage IIIB				

Weka Explorer									
Preprocess Classify Cluster Associate	Select attributes Visualize								
Classifier									
Choose RandomForest -I 100 -K 0	-S 1								
Test options	Classifier output								
 Use training set 	Out of bag erro	r: 0.485	7						
O Supplied test set Set									
O Cross-validation Folds 10									
Percentage split % 66	Time taken to h	uild mode	al: 0.03 a	econds					
More options	=== Evaluation	on test :	split ===						
	=== Summary ===								
(Nom) Converted Stage 🗸 🗸							-		
Start Stop	Correctly Class Incorrectly Cla			17 19		47.2222 52.7778	*		
Result list (right-click for options)	Kappa statistic			0.25	33		-		
21:07:26 - trees.RandomForest	Mean absolute e	rror		0.14					
21:08:19 - trees.RandomForest	Root mean squar			0.29					
	Relative absolu			64.97					
	Root relative s Total Number of			91.35 36	45 %				
	Total Number of	Instance		36					
	=== Detailed Ad	curacy B	y Class ==						
		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class	
		0.571	0.545	0.4	0.571		0.661	No_Conversion	
		0.6	0				0.915		
		0.6	0.129	0.429	0.6	0.5	0.874	Stage IIB Stage I	
		0	0.059		0		0.926		
		0	0.029		ő	0	0.914		
		0	0	0	0			Stage IIIB	
	Weighted Avg.	0.472	0.234	0.493	0.472	0.461	0.793		
	=== Confusion M	latrix ==:	-						
	abcdefg	< cla	assified a						
	8030210								
	3610000								
	2030000								
	2000000								
	2000000								
	1000000	f f = Sta	age IIIC						

Fig 20: Result of Random forest algorithm by using percentage split

	51								
Test options	Classifier output								
Use training set									
O Supplied test set Set	Time taken to bu	uld mode	1: 0.03 se	conds					
Cross-validation Folds 10	=== Evaluation of	n traini	ng set ===						
O Percentage split % 66	=== Summary ===								
More options									
Hore options	Correctly Classi					99.0476 4			
(Nom) Converted Stage v	Incorrectly Clas Kappa statistic	sified 1	nstances	1		0.9524 9			
	Mean absolute er	ror		0.05					
Start Stop	Root mean square			0.11					
Result list (right-click for options)	Relative absolut			24.66					
1:07:26 - trees.RandomForest 1:08:19 - trees.RandomForest	Root relative so			35.58	67 🕏				
1:08:19 - trees.RandomForest	Total Number of	Instance		105					
	=== Detailed Acc	uracy By	Class ===						
		, -,							
	7	P Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class	
		1	0.016	0.976	1	0.988	1	No_Conversion	
		1	0	1	1 0.938	1 0.968	1	Stage IIA	
		0.938			1	0.968	1	Stage IIB Stage I	
		1	0	1	1	1	1	Stage IIIA	
		1	0	1	1	1	1	Stage IIIC	
		1	0	1	1	1	1	Stage IIIB	
	Weighted Avg.	0.99	0.006	0.991	0.99	0.99	1		
	=== Confusion Ma								
	Confusion Ma	UTIX ===	-						
	abcde	fq	< classi	fied as					
	41 0 0 0 0								
	0 28 0 0 0								
	1 0 15 0 0								
	0 0 0 8 0								
	0 0 0 0 0								
	~ ~ ~ ~ ~ ~	- v i	- Staye	IIIB					

Fig 21: Result of Random forest algorithm by using training set

From overall results we can see that when we used training set it gave the most accuracy over the data.

Next we moved on to the RapidMiner tool to check whether this tool give any different result on same algorithm or not. And the result showed less accuracy then WEKA.

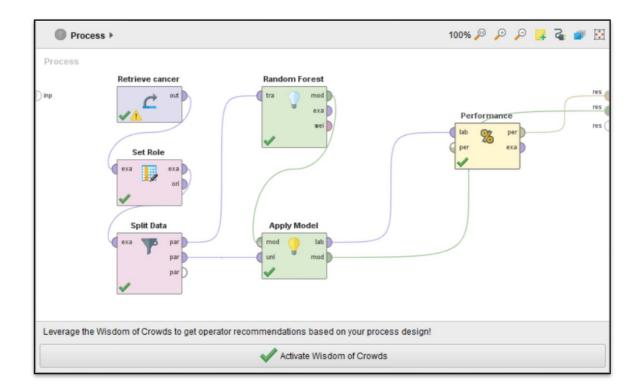


Fig 22: Design of random forest model in Rapidminer

Criterion	Table View O Plot View			
	accuracy: 97.62%			
		true M1	true M0	class precision
	pred. M1	0	0	0.00%
	pred. MO	1	41	97.62%
	class recall	0.00%	100.00%	

Fig 23: Accuracy measurement by using metastasis as a target attribute

The above figure shows us that, though there was no huge difference between "WEKA" and "RapinMiner" over RandomForest algorithm; but here 'WEKA' set the best accuracy over this dataset.

2.3.4 Clustering algorithm:

In order to predict the best predictor model we again apply two clustering process; Kmeans and EM. They both are iterative algorithms. EM(Expectation-maximizations) is a statistical model that depends on unobserved latent variables to estimate the parameters using maximum likelihood; where K-means clustering algorithm works by partitioning n observation into k sub classes.

a. The output of k-means over dataset:

We got two clusters, each cluster has two instances. The clustering produced by k-means shows 67% (24instances) in cluster 0 and 33% (12 instances) in cluster 1, in figure 23 and figure 24 shows 8% (3 instances) in cluster 0 and 92% (33 instances)

Weka Explorer					
Preprocess Classify Cluster Associate Select attributes	lisualize				
Clusterer					
Choose SimpleKMeans -N 3 -A "weka.core.EuclideanD	stance -R first-last" -I 500 -S 8				
Cluster mode	Clusterer output				
O Use training set	Clusterer output				
0					
O Supplied test set					
Percentage split % 66					
 Classes to clusters evaluation 	Time taken to build	model (full trai	.ning data) : (0 seconds	
(Nom) Converted Stage 🗸 🗸					
Store clusters for visualization	=== Model and evalue	ation on test spl	.it ===		
	kMeans				
Ignore attributes	======				
Start Stop	Number of iteration	a: 3			
Result list (right-click for options)	Within cluster sum			7660819	
21:54:13 - SimpleKMeans	Missing values glob	ally replaced wit	h mean/mode		
22:01:42 - SimpleKMeans 22:03:27 - SimpleKMeans					
22.03.27 - Simplekiteans	Cluster centroids:		Cluster#		
	Attribute	Full Data	Cluster#	1	
	Accribuce	(69)	(50)	(19)	
	Age	60.2609	62.44	54.5263	
	HER2 Final Status	Negative	Negative	Negative	
	Tumor	т2	т2	т2	
	Node	NO	NO	NO	
	Metastasis	MO	MO	MO	
	AJCC Stage Converted Stage	Stage IIA	Stage IIA	Stage IIB Stage IIB	
	Converted Stage	NO_CONVEISION NO	_Conversion	Stage IIB	
	Time taken to build	model (percentag	e split) : 0.0	01 seconds	
	Clustered Instances				
	0 24 (67%)				
	1 12 (33%)				
Status					
OK Status					
Vn.					

Fig 24: K means (metastasis) clustering using percentage split

Cluster mode			Clusterer output					
O Use training set O Supplied test set	Set		Cluster cer	ntroids:		Cluster		
Percentage split	%	66	Attribute		Full Data		1	
Classes to clusters evaluation					(69)	(2)	(67)	
0								
(Nom) AJCC Stage			HER2 Final	Status	Negative	Negative	Negative	
Store clusters for visualization			Tumor		т2	тЗ	т2	
			Node		NO	N3	NO	
Ignore attribut	es		Metastasis		M0			
Start	Stop				Negative			
Result list (right-click for options)	3000		AJCC Stage		Stage IIA	Stage IV	Stage IIA	
22:55:16 - SimpleKMeans								
			Time taken	to build	model (per	centage s	plit) : 0 s	seconds
			Clustered 1	Instances				
			0 3	(8%)				
			1 33	(92%)				
			<					>

Fig 25: K means (tumor) clustering using percentage split

b. The output of EM over dataset:

Like K means got two clusters in EM also; here they have two instances too. The clustering produced by k-means shows 58% (21instances) in cluster 0 and 42% (15 instances) in cluster 1, in figure 25 and figure 26 shows 67% (24 instances) in cluster 0 and 33% (12 instances)

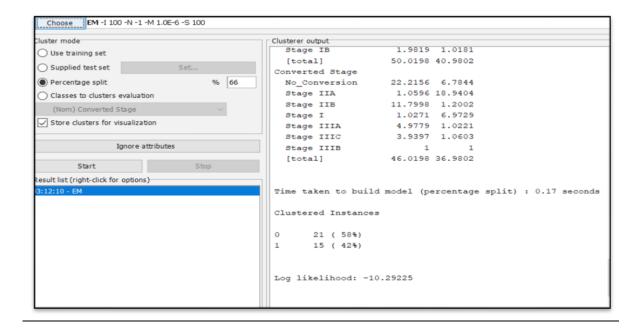


Fig26: EM (tumor) clustering using percentage split

Choose EM -I 100 -N	12 -M 1.0E-6 -S 100						
Cluster mode			Clusterer output				
			Stage IB 2 1				
 Use training set 			[total] 53 38				
O Supplied test set	Set		Converted Stage				
Percentage split	%	66	No_Conversion 25 4				
 Classes to clusters eval 	luation		Stage IIA 1 19				
(Nom) Converted Stag	10		Stage IIB 12 1				
			Stage I 1 7				
Store clusters for visua	alization		Stage IIIA 5 1				
			Stage IIIC 4 1				
Igno	ore attributes		Stage IIIB 1 1				
			[total] 49 34				
Start	Stop						
 Result list (right-click for opt 	tions)						
03:17:35 - EM			Time taken to build model (percentage split) : 0.01 seconds				
03:19:29 - EM							
			Clustered Instances				
			0 24 (67%)				
			1 12 (33%)				
			Log likelihood: -6.11815				

Fig27: EM (metastasis) clustering using percentage split.

2.4 Association rules for breast cancer observation:

Association rules can be define as the process of finding valuable association rules and/or relationship among amount of data. Through this technique is possible to quantify the value of each feature by evaluation its frequency within the dataset, thus allowing to capture all possible rules that explain the presence of some features according to the features of another features.

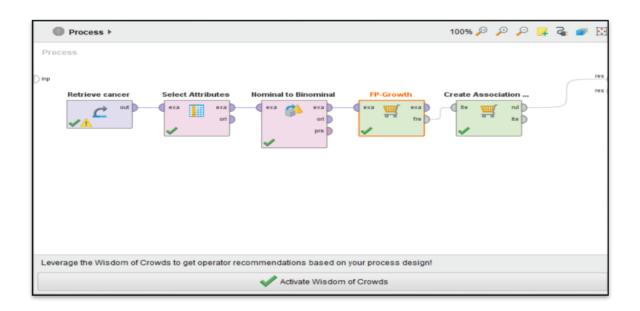


Fig 28: Design of association rule in Rapidminer.

Show rules matching	Premises	Conclusion	Support	Confidence	LaPlace	Gain	p-s	Lift	Convicti
all of these conclusions:	HER2 Final Status = Negative	Metastasis, Tumor = T2	0.629	0.857	0.940	-0.838	0.021	1.034	1.200
lletastasis Fumor = T2	Node = N0	Tumor = T2	0.438	0.868	0.956	-0.571	0.015	1.036	1.226
ER2 Final Status = Negative	Node = N0	Metastasis, Tumor = T2	0.438	0.868	0.956	-0.571	0.020	1.047	1.298
	Metastasis, Node = N0	Tumor = T2	0.438	0.868	0.956	-0.571	0.015	1.036	1.226
	HER2 Final Status = Negative	Tumor = T2	0.638	0.870	0.945	-0.829	0.023	1.038	1.247
	Metastasis, HER2 Final Status = Negative	Tumor = T2	0.629	0.880	0.950	-0.800	0.030	1.050	1.349
	HER2 Final Status = Negative	Metastasis	0.714	0.974	0.989	-0.752	-0.005	0.993	0.733
	Tumor = T2, HER2 Final Status = Negative	Metastasis	0.629	0.985	0.994	-0.648	0.003	1.004	1.276
	Tumor = T2	Metastasis	0.829	0.989	0.995	-0.848	0.006	1.008	1.676
	Node = N0	Metastasis	0.505	1	1	-0.505	0.010	1.019	00
	Tumor = T2, Node = N0	Metastasis	0.438	1	1	-0.438	0.008	1.019	00
	HER2 Final Status = Negative, Node = N0	Metastasis	0.419	1	1	-0.419	0.008	1.019	00

Fig 29: Rules given by Association model

We got 12 rules (fig28) after applying association mining on our dataset. We picked 'Metastasis' as our target attribute as in earlier case, classification and clustering algorithm gave us the best accuracy with it. Among the 12 rules 7 rules set the relationship with metastasis. So now considered all that rules for our process.

Relations between the attributes getting from rules:

Figure 28 shows the relationship between tumor =2, HER2 final status = negative and metastasis. We got various confidence in this three relation. This three attribute relate that this three stage of cancer can be act as a risk factor of breast cancer.

2.5 Co-relation analysis:

RapidMiner this is very easy to do using the Correlation Matrix operator. In order to use it however we first need to join the two Example sets that we created separately, so we'll have the words and the aspect: polarity pairs in one dataset. We took that attributes to create co-relation which we had get in the association rule for building the relation between the cause and risk factor of breast cancer.

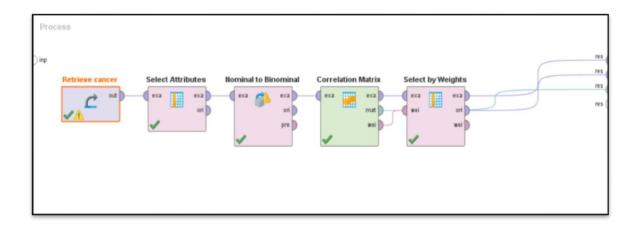


Fig 30: Model of correlation matrix in rapidminer

Attribut	HER2 Fi	HER2 Fi	HER2 Fi	Tumor	Tumor	Tumor	Tumor	Node =	Node =	Node =	Node =	Metasta
HER2 Fi	1	-0.976	-0.163	-0.152	0.144	-0.070	0.059	-0.046	0.221	-0.157	-0.080	-0.084
HER2 Fi	-0.976	1	-0.058	0.077	-0.096	0.077	-0.058	0.053	-0.202	0.173	0.026	0.082
HER2 Fi	-0.163	-0.058	1	0.341	-0.223	-0.028	-0.010	-0.030	-0.099	-0.061	0.250	0.014
Tumor =	-0.152	0.077	0.341	1	-0.653	-0.082	-0.028	0.425	-0.146	-0.177	0.099	-0.223
Tumor =	0.144	-0.096	-0.223	-0.653	1	-0.653	-0.223	-0.235	0.082	0.098	-0.056	0.128
Tumor =	-0.070	0.077	-0.028	-0.082	-0.653	1	-0.028	-0.088	-0.003	0.063	-0.007	0.040
Tumor =	0.059	-0.058	-0.010	-0.028	-0.223	-0.028	1	-0.030	0.097	-0.061	-0.038	0.014
Node = N3	-0.046	0.053	-0.030	0.425	-0.235	-0.088	-0.030	1	-0.309	-0.189	-0.120	-0.206
Node = N0	0.221	-0.202	-0.099	-0.146	0.082	-0.003	0.097	-0.309	1	-0.624	-0.396	0.141
Node = N1	-0.157	0.173	-0.061	-0.177	0.098	0.063	-0.061	-0.189	-0.624	1	-0.242	0.086
Node = N2	-0.080	0.026	0.250	0.099	-0.056	-0.007	-0.038	-0.120	-0.396	-0.242	1	-0.150
Metastas	-0.084	0.082	0.014	-0.223	0.128	0.040	0.014	-0.206	0.141	0.086	-0.150	1

Applied Correlation Matrix resembled the one below:

Fig 31: correlation matrix

The higher the correlation coefficient (the values in the matrix), the stronger the correlation, with 1 being the highest and -1 the lowest, i.e. an inverse correlation.

Using the matrix table we filtered and identify words extracted from reviews that correlate with a certain aspect

First Attribute	Second Attribute	Correlation \downarrow
Tumor = T3	Node = N3	0.425
HER2 Final Status = Equivocal	Tumor = T3	0.341
HER2 Final Status = Equivocal	Node = N2	0.250
HER2 Final Status = Negative	Node = N0	0.221
HER2 Final Status = Positive	Node = N1	0.173
HER2 Final Status = Negative	Tumor = T2	0.144
Node = N0	Metastasis	0.141
Tumor = T2	Metastasis	0.128
Tumor = T3	Node = N2	0.099
Tumor = T2	Node = N1	0.098
Tumor = T4	Node = N0	0.097
Node = N1	Metastasis	0.086
HER2 Final Status = Positive	Metastasis	0.082
Tumor = T2	Node = N0	0.082
HER2 Final Status = Positive	Tumor = T3	0.077
HER2 Final Status = Positive	Tumor = T1	0.077
Tumor = T1	Node = N1	0.063
. HER2 Final Status = Negative	Tumor = T4	0.059

Table2: correlation attributes

Chapter 3

Result and Analysis

3.1 Performance evaluation of all classification models:

Performance Criteria			J48			Naïve Bayes			SMO		Random Forest			
	Unlik ely	Like	ely	Average	Unlike	Likely	Avera ge	Likely	Like ly	Avera ge	Likely	Likely	Average	
FP rate	0.021	0.21	19	0.039	0	0.203	0.117	0.01	0.297	0.039	0	0.16	0	
TP rate	1	0.80)5	0.821	0	0.61	0.893	1	0.878	0.821	1	1	1	
Precision	0.8	0.70	02	0.885	<u>1</u>	0.658	0.735	0.889	0.655	0.885	1	0.976	1	
ROC Area	0.994	0.8	4	0.962	1	0.78	0.963	0.995	0.777	0.961	1	1	1	
				J48 Naïve Bayes			es	S	МО		Random Forest			
	Correct Classification			81			74			80		104		
	Incorrect Classification			24			31		25			1		
Aco	curacy (%)			76.	.6		69.3		74.9			99.04		
E	Error rate			0.09	94		0.124		0.207			0.053		

Table 3: Analysis between Different Algorithms

From the four models developed for the prediction of breast cancer risk, we can see the difference between their accuracy, error rates, correct and incorrect classification.

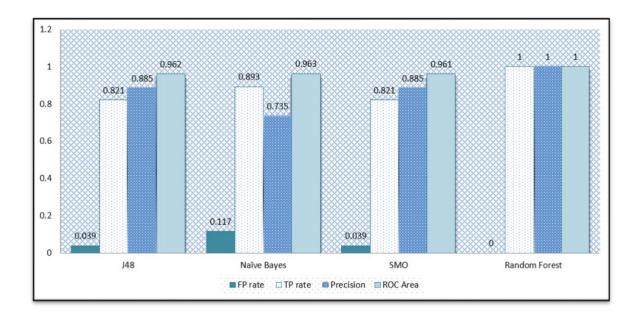


Fig 32: Performance evaluation of J48, Naïve Bayes, SMO and Random forest

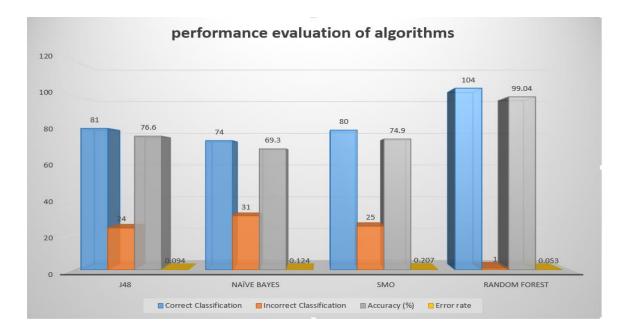


Fig 33: Performance evaluation of J48, Naïve Bayes, SMO and Random

3.2 Performance evaluation table of two clustering models:

Cluster type	k-means	EM	k-means	EM
	(tumor)	(tumor)	(metastasis)	(metastasis)
Cluster instances				
0	8%	67%	67%	58%
1	92%	33%	33%	42%

 Table 4: Analysis between 2 clustering

From the table we can evaluate that according to the dataset when we set the target attribute (tumor) k means gave the best result and when we set the target attribute (metastasis) EM gave the best result.

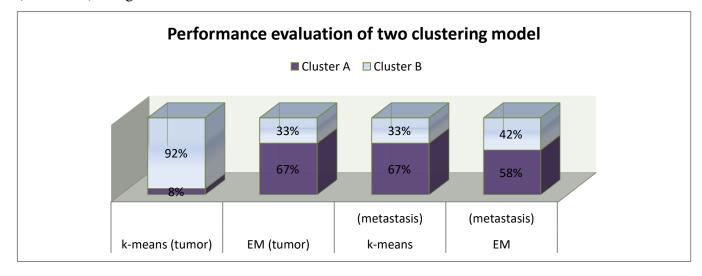


Fig 34 : performance evaluation of two clustering model

3.3 Performance evaluation of association rules mining:

TNM (Tumor, Node, Metastasis) is another staging system researchers use to provide more details about how the cancer looks and behaves. In figure 34, we can see that we have 100% confidence when there is a relationship between Tumor=T2, Node = N0, HER2 final status = negative and Metastasis. The relation between tumor size and lymph node status was investigated in detail. Tumor diameter and lymph node status were found to act as independent but additive prognostic indicators. As tumor size increased, survival decreased regardless of lymph node status; and as lymph node involvement increased, survival status also decreased regardless of tumor size.

T0; means there isn't any evidence of the primary tumor. T1, T2, T3 and T4: These numbers are based on the size of the tumor and the extent to which it has grown into tissue. The higher the T number, the larger the tumor and/or the more it may have grown into the breast tissue.

N0 means nearby lymph nodes do not contain cancer. N1, N2, and N3: These numbers are based on the number of lymph nodes involved and how much cancer is found in them. The higher the N number, the greater the extent of the lymph node involvement.

The M (metastasis) category tells whether or not there is evidence that the cancer has traveled to other parts of the body: M0 means there is no distant metastasis; M1 means that distant metastasis is present.

As from our analysis we had the relationship between T2 ->N0->MO; it would mean that the primary breast tumor is equal to 2 centimeters across (T2), has not involved the lymph nodes (N0), and has not spread to distant parts of the body (M0). This cancer would be grouped as stage I. Which can be considered as invasive breast cancer and can be cured.

AssociationRules

```
Association Rules
[Node = N0] --> [HER2 Final Status = Negative] (confidence: 0.830)
[Node = N0] --> [Metastasis, HER2 Final Status = Negative] (confidence: 0.830)
[Metastasis, Node = N0] --> [HER2 Final Status = Negative] (confidence: 0.830)
[Metastasis] --> [Tumor = T2] (confidence: 0.845)
[HER2 Final Status = Negative] --> [Metastasis, Tumor = T2] (confidence: 0.857)
[Node = N0] --> [Tumor = T2] (confidence: 0.868)
[Node = N0] --> [Metastasis, Tumor = T2] (confidence: 0.868)
[Metastasis, Node = N0] --> [Tumor = T2] (confidence: 0.868)
[HER2 Final Status = Negative] --> [Tumor = T2] (confidence: 0.870)
[Metastasis, HER2 Final Status = Negative] --> [Tumor = T2] (confidence: 0.880)
[HER2 Final Status = Negative] --> [Metastasis] (confidence: 0.974)
[Tumor = T2, HER2 Final Status = Negative] --> [Metastasis] (confidence: 0.985)
[Tumor = T2] --> [Metastasis] (confidence: 0.989)
[Node = N0] --> [Metastasis] (confidence: 1.000)
[Tumor = T2, Node = N0] --> [Metastasis] (confidence: 1.000)
[HER2 Final Status = Negative, Node = N0] --> [Metastasis] (confidence: 1.000)
```

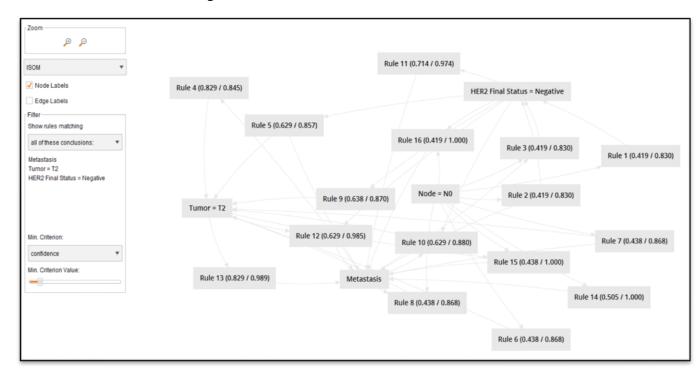


Fig 35: linked list of the association rules.

Figure 36: Tree of the association rules we get from result.

If we set the result of association rule in correlation we can get the following scatter graph of the correlation matrix. Which specifically showed us the exact target attributes relationship to identify the stage of breast cancer from our result.

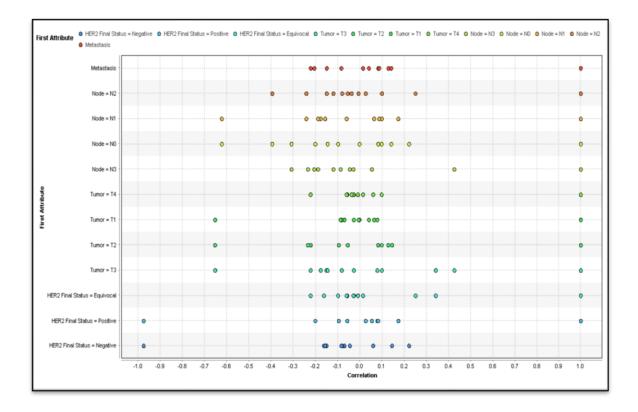


Figure 37: Scatter diagram of correlation matrix

Conclusion

Using prediction model to classify recurrent or noncurrent cases breast cancer is a research that is statically in nature. Still this work can be linked to biomedical evidence. In this paper CANCER.csv dataset is used for finding an efficient predictor algorithm to predict the recurring or non-recurring nature of the diseases. This might help Oncologists to differentiate a good prognosis (non-recurrent) from a bad one (recurrent) and can treat the patients more effectively.

Bibliography

- AMITAY, M., HONOHAN, A. M., TRAUTMAN, M., and GLEZER, A., "Use of small caps in numerical citation," AIAA Paper 97-2004, Presented at the AIAA Shear Flow Control Conference, Snowmass, CO, 1997.
- [2] BROWN, G. L. and ROSHKO, A. "The effect of names in full upper case in numerical references," J. Fluid Mech., vol. 26, pp. 225–236, 1966.
- [3] Maslen, P.E. and Gordon, M. Head., Chem. Phys. Lett. 283, 102 (1998)..
- [4] Anon., "Example of a web citation", www.thesis.gatech.edu/web_citation.html (Accessed June 30, 2005). [To remove the color and underline from the url name (required) you can either select Insert/Hyperlink and "Remove Link" or go into the Format/Style menu and modify the style named "hyperlink".] The latter will leave the actual link intact.