

Design and Implementation of Real Time Bi-directional

Traffic Management Support System with GPS and

WebSocket

A project submitted

by

MD. Rahatur Rahman (ID: 2008-2-96-005)

Under the supervision of

Dr. Md. Shamim Akhter

Department of Computer Science & Engineering

Faculty of Science & Engineering

East West University

May 2015

Design and Implementation of Real Time Bi-directional

Traffic Management Support System with GPS and

WebSocket

A project report submitted to the Computer Science & Engineering department of the

science faculty, East West University in partial fulfillment of the requirements for the

degree of Master of Science in Computer Science and Engineering.

MD. Rahatur Rahman (ID: 2008-2-96-005)

Department of Computer Science & Engineering

Faculty of Science & Engineering

East West University - Bangladesh

May 2015

i

Declaration

This is to certify that this project is my original work. No part of this work has been

submitted elsewhere partially or fully for the ward of any other degree or diploma

program. Any material reproduce in this project has been properly acknowledged.

Students’ names & signatures:

1. MD. Rahatur Rahman (ID: 2008-2-96-005) _________________

ii

Approval

The project report titled “Design and implementation of Real Time Bi-directional Traffic

Management Support System with GPS and WebSocket” has been submitted to the

following respected members of the Board of Examiners of the faculty of Science in

partial fulfillment of the requirements for the degree of Master of Science in Computer

Science and Engineering on 10th May 2015 by the following student and has been

accepted as satisfactory.

1. MD. Rahatur Rahman (2008-2-96-005)

Dr. Md. Shamim Akhter

Supervisor & Assistant Professor

Department of Computer Science &

Engineering, EWU

Dr. Shamim Hasnat Ripon

Chairperson & Associate Professor

Department of Computer Science &

Engineering, EWU

iii

Acknowledgements

First of all I express our gratefulness to the Almighty, without His divine blessing it

would not be possible for me to complete this project successfully. I sincerely like to

thank my honorable project supervisor Dr. Md. Shamim Akhter sir, Assistant Professor,

Department of Computer Science & Engineering, East West University (EWU) for his

great inspiration and proper guidance throughout the whole project work. I am also

grateful to all of my respected teachers without whom I would never reach at this

educational stage. I am thankful for their time and ideas and appreciate their availability

whenever I turned to them.

Contents

Declaration... i

Approval ... ii

Acknowledgements .. iii

Index of Figures and Tables ... vi

Abstract ... vii

Chapter 1 - Introduction ... 1

1.1 Introduction ... 1
1.2 Background of the project ... 2
1.3 Objective ... 3

1.4 Organization of the project .. 3

Chapter 2 - Analysis... 5

2.1 WebSocket and the http protocol .. 5
2.1.1 Polling .. 5

2.1.2 Long Polling... 6
2.1.3 Server-Sent Events ... 6

2.1.4 WebSocket ... 7
2.1.5 Browser supports for WebSocket .. 8

2.2 Performance .. 9

2.2.1 Payload .. 9
2.2.2 Latency .. 10

2.3 WebSocket based System Design Overview .. 11
2.3.1 Hardware Requirements .. 12

2.3.2 Software Requirements .. 12
2.3.3 Description of the system components .. 12

2.3.3.1 Google Map ... 12
2.3.3.2 API ... 13

2.3.3.3 Licensing .. 13
2.3.3.4 GPS .. 13
2.3.3.5 How GPS Works .. 13

2.3.3.6 GPS Accuracy .. 14
2.3.4 Fallback Mechanism .. 14

2.3.5 User Authentication ... 15

Chapter 3 - Implementation .. 16

3.1 Class Diagrams .. 16
3.1.1 Data Models ... 16

3.1.2 Application Services .. 18

3.1.3 Application Data Access .. 19
3.1.4 Application Controllers .. 20

3.2 Use Case Diagrams ... 21

3.2.2 Application Services .. 21
3.3 Screen Shots .. 22
3.3.1 Home Screen .. 22
3.3.2 Get Route Suggestions... 23

3.3.3 Find Places ... 24

3.3.4 Create an Alert/Event .. 25
3.3.5 Alert Notification ... 25
3.3.6 Alert/Event List ... 26
3.3.7 Dashboard .. 26

Chapter 4 - Test Input-Output ... 27

Chapter 5: Conclusion ... 32

5.1 Conclusion ... 32
5.2 Future Work .. 32

Appendices .. 33

Appendix A: Acronyms ... 33

Appendix B: Source Code ... 34

References ... 54

Index of Figures and Tables

Figure 1: System Architecture ... 2
Figure 2: Polling [10] ... 5

Figure 3: Long-polling [10] ... 6
Figure 4: Server-Sent Event ... 6
Figure 5: WebSocket connection [8] ... 8
Table 1: Browser Support for WebSocket ... 8
Figure 6: Polling vs WebSocket overhead [5] ... 10

Figure 7: Polling vs Websocket latency [5] ... 11
Figure 8: Google map .. 12
Figure 9: Satellites in orbits [12] ... 14
Figure 10: Preferred fallback stack [16] .. 14
Figure 11: Graph Model... 16

Figure 12: Data Models ... 17
Figure 13: Services .. 18

Figure 14: Data Access & Core ... 19
Figure 15: Application Controller .. 20

Figure 16: Application Use case diagram .. 21
Figure 17: Home Page ... 22

Figure 18: Route Suggestions .. 23
Figure 19: Find Places ... 24
Figure 20: Add Alert/Event ... 25

Figure 21: Alert/Event Notification ... 25
Figure 22: Alert/Event List .. 26

Figure 23: Dashboard ... 26
Table 2: Test inputs for account registration ... 27

Table 3: Test inputs for Login operation ... 27
Table 4: Test inputs for Route operation ... 28

Table 5: Test inputs for Find Place operation .. 29
Table 6: Test inputs for Alerts/Events ... 29
Table 7: Test inputs for Alert/Event Creation.. 30

Table 8: Test inputs for Alert Notification .. 30
Table 9: Test inputs for logout operation ... 30

vii

Abstract

In this paper, I present the principles of a low operational-cost but flexible Internet-based

traffic management support system. The main core of the system is an extensible web

server created by Microsoft called Internet Information Services (IIS, formerly Internet

Information Server). The server application runes on IIS.

The Traffic Management Support System is a smart system to assist the personnel

involved in the management of the traffic system. It provides vital information to the

management to make better decisions. As the traffics are growing rapidly (day by day)

but the road systems/resources are not increasing in the same way to meet necessary

demands, so it is important to manage the traffic system properly, with better utilization

of the existing roads and resources.

In the past various systems were proposed and implemented to overcome the problems

stated above. Most of the systems were implemented with machine vision (image

processing), RFID gateways, areal surveillance, and/or remote sensors technologies. But

the major drawback of the above mentioned systems are their installation difficulties,

maintenance over the time, error handling, coverage and cost effectiveness. Nevertheless,

they consist uni-cast/ one way communication (client to server only).

The demand for a feasible solution to the above mentioned problems is very high for a

metro city- like Dhaka. Losing valuable time (approx 200%) being stuck in traffic jams

and increases CO2 emissions (approx 300%) due to the present traffic situation. As a

result, an up-to-date technological based traffic management support system/tool has

become a need for such metro cities.

Thus, our proposed system will bring the real time bidirectional communication between

the clients and the servers. Accurate and real-time traffic situation can be plotted at any

given time. In addition, it would make better utilization of the existing technologies to

achieve these goals. In addition, users will be able to get help/advice from the system,

find nearby places like hospitals, police stations, vehicle service stations. Users can also

find the optimized and cost effective way to reach from source to destination or vice

versa.

1

Chapter 1 - Introduction

1.1 Introduction

In this work, I propose to use the WebSocket over http technology with real time bi-

directional communication to solve the problems discussed above. The main reason

behind the selection of the technology is low cost implementation, flexibility,

maintainability and infrastructure security.

In this section I present a blend of all above features and technologies to introduce a

generic architecture for the proposed real time system.

The vehicles referred as clients has access to GPS which allows them to collect the

present location in terms of Latitude and Longitude.

The clients are also equipped with any device capable to handle the web request/response

over the Http. The device should also have support for the IETF as RFC 6455 standards.

The architecture comprises a WebSockets server that listens for incoming connections

and the client browsers that should be compatible with HTML5 and WebSockets.

The clients will be able to get the services from the server(s). Also they will have to relay

their present location through a WebSocket server.

At first an Html5 client requests a web-page from a web server that includes the required

javascript for establishment of the WebSocket connections (or any fallback connection if

required). Then, the client connects to the WebSockets server using a WebSocket

connection and starts the process of sending the location updates in predefined intervals.

The communication server(s) will be responsible to handle the incoming client

connections and the database server manages the client data as well as the data of the

traffic system.

The routes are calculated in the database server in predefined intervals and are served to

any requesting client.

2

The HTTP signaling between clients and web servers assumes access to the appropriate

web page by each client.

Figure bellow illustrates the components of our proposed architecture along with the

involved signaling.

Figure 1: System Architecture

Apart from the location updates the clients can also request for exposed services like

traffic route suggestions, find nearby places, view traffic alerts related to the road and the

transportation industry etc. by the servers.

The server application will generate most relevant data based on the facts available at

time of the request and make decisions for the client. The server will relay the

decision/suggestion to the clients whenever the data is processed and ready.

1.2 Background of the project

Over the time different solutions have been proposed to solve the traffic jam problem.

The solutions vary in their core technology; as some of them use Infrared sensors, CCTV

cameras and image processing, GSM and cellular towers, RFID gates, Sound sensors etc.

3

However, many of those solutions are either very expensive or difficult to install and

maintain over the time.

As a result I tried to develop a system which will allow us to achieve the same goals

without suffering from the shortcomings mention above.

1.3 Objective

Specific objectives of this project includes:

 Study and analysis of the existing traffic monitoring systems and their

shortcomings.

 Design and implementation of client applications which will allow users to

consume services.

 Design and Implementation of an administrative dashboard for real-time road

traffics monitoring.

The benefits of the proposed system is flexibility, cost effective and low infrastructure

maintenance and installation costs. From this perspective, the primary benefit is the

ability to use the same mobile phone that is used to make phone calls, can be used as a

mobile tool to consume different road traffic related services. The system will also allow

users to get direction to a destination, find nearby places, view and send traffic alerts. The

system will be low on costs. So in quest for developing such an application it has been

decided to design and implement a WebSocket based real time communication system.

1.4 Organization of the project

As I try to develop a WebSocket based real time communication system, first of all I will

do some cost-effective comparison with the existing parallel technologies which can

deliver the same type of outputs. Then I will try to explain the WebSocket technology and

how it works. I shall describe the communication technology used to monitor real time

traffics. Eventually protocols and the interfacing will be discussed too. Next comes the

security discussion where the security of the system will be discussed following by source

code listing.

4

 Chapter 2 – Analysis

This chapter will provide an overview of the WebSocket technology and its

various technical aspects such as handshaking and bandwidth consumptions and

also an overview of the application designs.

 Chapter 3 – Implementation

The third chapter will provide an eagle’s eye view of the entire system using UML

diagrams. I have provided separate class diagrams and Use case diagrams of the

application.

 Chapter 4 – Test Input Output

This chapter consists of the results of the tests I performed on our system in

various angles and I have demonstrated that our system can handle (gracefully) all

sorts of inputs.

 Chapter 5 – Conclusion

I conclude my project report by acknowledging the things I learned while

developing the system and the future improvements that can be made to the

system.

5

Chapter 2 - Analysis

2.1 WebSocket and the http protocol

So far, real time media communication between various client devices, either one way

(server to client streaming) or two (conference), was, more or less, a static and monolithic

operation served by customized platform-specific solutions.

Current attempts to provide real-time web applications largely revolve around polling and

other server-side push technologies, the most notable of which is Comet, which delays the

completion of an HTTP response to deliver messages to the client. Comet-based push is

generally implemented in JavaScript and uses connection strategies such as long-polling.

[5]

2.1.1 Polling

With polling, the browser sends HTTP requests at regular intervals and immediately

receives a response. This technique was the first attempt for the browser to deliver real-

time information.

Obviously, this is a good solution if the exact interval of message delivery is known,

because you can synchronize the client request to occur only when information is

available on the server. However, real-time data is often not that predictable, making

unnecessary requests inevitable and as a result, many connections are opened and closed

needlessly in low-message-rate situations. [5].

Figure bellow demonstrates a polling scenario between a client and a server.

Figure 2: Polling [10]

6

2.1.2 Long Polling

With long-polling, the browser sends a request to the server and the server keeps the

request open for a set period. If a notification is received within that period, a response

containing the message is sent to the client. If a notification is not received within the set

time period, the server sends a response to terminate the open request. It is important to

understand, however, that when you have a high message volume, long-polling does not

provide any substantial performance improvements over traditional polling. In fact, it

could be worse, because the long-polling might spin out of control into an un-throttled,

continuous loop of immediate polls. [5]

Figure bellow demonstrates a long polling scenario between a client and a server.

Figure 3: Long-polling [10]

2.1.3 Server-Sent Events

SSEs are sent over traditional HTTP. That means they do not require a special protocol or

server implementation to get working. SSE connections can only push data to the

browser. Which is why this technology is not suitable for my application.

Figure bellow demonstrates a Server-Sent Event scenario between a client and a server.

Figure 4: Server-Sent Event

7

2.1.4 WebSocket

Ultimately, all of these methods for providing real-time data involve HTTP request and

response headers, which contain lots of additional, unnecessary header data and introduce

latency. On top of that, full-duplex connectivity requires more than just the downstream

connection from server to client. In an effort to simulate full-duplex communication over

half-duplex HTTP, many of today's solutions use two connections: one for the

downstream and one for the upstream. The maintenance and coordination of these two

connections introduces significant overhead in terms of resource consumption and adds

lots of complexity. [5]

The WebSocket specification - developed as part of the HTML5 initiative - introduced

the WebSocket JavaScript interface, which defines a full-duplex single socket connection

over which messages can be sent between client and server. The WebSocket standard

simplifies much of the complexity around bi-directional web communication and

connection management.

WebSocket represents the next evolutionary step in web communication compared to

Comet and Ajax. [4]

WebSocket defines a full-duplex communication channel that operates through a single

socket over the Web. HTML5 Web Sockets is not just another incremental enhancement

to conventional HTTP communications; it represents a colossal advance, especially for

real-time, event-driven web applications. [4]

It provides dynamic improvements over conventional full-duplex connection over http.

The main difference in WebSockets – compared to the usual network traffic over HTTP –

is that the WebSocket protocol does not follow the traditional request-response

convention. Once a client and a server have opened a WebSocket connection, both

endpoints may asynchronously send data to each other. The connection remains open and

active as long as either the client or the server closes the connection. [7]

8

Figure 5: WebSocket connection [8]

2.1.5 Browser supports for WebSocket

Table 1: Browser Support for WebSocket

IE Firefox Chrome Safari Opera
iOS

Safari*

Opera

Mini*

Android

Browser*

Chrome

for

Android

11 37 42 8 27 8.3 8 40 42

*The Safari browser for iOS is tied to the operating system, so the numbers used are based on the OS

version.

*In most cases Opera Mini processing is done via Opera servers, which often prevents JS from working

correctly.

As of version 8, the default mode of Opera Mini on iOS uses the iOS Safari engine, though Mini mode can

be enabled.

*Android browser/WebView version numbers through 4.4 refer to the version of Android OS. Support

listed is for the Android core; it should be noted that many hardware vendors (Samsung, HTC, etc.) use

altered version of their default browser which may include more/less/buggy support.

Starting in Android 5, the web engine can be updated separately, so the latest Chromium version number is

used instead.[17]

9

2.2 Performance

2.2.1 Payload

If overhead of network is considered the total HTTP request and response header

information calls for overhead. The size of header may vary with respect to application

here for example let us consider that header contains 871 bytes and that does not even

include any data. The size of header may increase up to 2000bytes in some cases. For

analysis let us consider a polling application is deployed for large number of users. Then

network throughput for just HTTP request and response header data for two different set

of users becomes as follows:

• Use case A: 1,000 clients polling every second: Network throughput is (871 x

1,000) = 871,000 bytes = 6,968,000 bits per second (6.6 Mbps)

• Use case B: 10,000 clients polling every second: Network throughput is (871 x

10,000) = 8,710,000 bytes = 69,680,000 bits per second (66 Mbps)

• Use case C: 100,000 clients polling every 1 second: Network throughput is (871 x

100,000) = 87,100,000 bytes = 696,800,000 bits per second (665 Mbps)

That's an enormous amount of unnecessary network throughput! If only we could just get

the essential data over the wire. [5]

Now if this application is rebuild with HTML5 WebSocket there is tremendous amount of

reduction in the network throughput due to unnecessary data. Each of these messages is a

WebSocket frame that has just two bytes of overhead (instead of 871).

Now let us consider above example with the WebSocket based application in this case the

size of frame header is only 2 bytes. Let us analyze the effect:

• Use case A: 1,000 clients receive 1 message per second: Network throughput is (2

x 1,000) = 2,000 bytes = 16,000 bits per second (0.015 Mbps)

• Use case B: 10,000 clients receive 1 message per second: Network throughput is

(2 x 10,000) = 20,000 bytes = 160,000 bits per second (0.153 Mbps)

• Use case C: 100,000 clients receive 1 message per second: Network throughput is

(2 x 100,000) = 200,000 bytes = 1,600,000 bits per second (1.526 Mbps)

As you can see in the following figure, HTML5 Web Sockets provide a dramatic

reduction of unnecessary network traffic compared to the polling solution. [5]

10

Following figure shows the comparison of the unnecessary network throughput overhead

between the polling and the WebSocket applications:

Figure 6: Polling vs WebSocket overhead [5]

2.2.2 Latency

What about the reduction in latency? Take a look at the following figure. In the top half,

you can see the latency of the half-duplex polling solution. If we assume, for this

example, that it takes 50 milliseconds for a message to travel from the server to the

browser, then the polling application introduces a lot of extra latency, because a new

request has to be sent to the server when the response is complete. This new request takes

another 50ms and during this time the server cannot send any messages to the browser,

resulting in additional server memory consumption. [5]

In the bottom half of the figure, you see the reduction in latency provided by the

WebSocket solution. Once the connection is upgraded to WebSocket, messages can flow

from the server to the browser the moment they arrive. It still takes 50 ms for messages to

travel from the server to the browser, but the WebSocket connection remains open so

there is no need to send another request to the server. [5]

11

Figure 7: Polling vs Websocket latency [5]

2.3 WebSocket based System Design Overview

The WebSockets technology provides a bidirectional communication channel using a

single TCP connection.

It is designed to be implemented in applications such as web browsers. Its API is being

standardized by the W3C. The connections are established over the regular TCP port 80,

which ensures that the system can run behind firewalls. The life-cycle of a WebSocket

session is depicted in Figure 3.

At first the client that supports the WebSockets protocol, requests to establish a

WebSocket connection. The positive response from the server denotes the start of such a

WebSocket connection. The connection remains open for the whole session, until any

endpoint requests its release with the specified procedure. As a WebSocketremains active;

WebSocket frames can be transferred from server to client and vice versa with no

preceding request. In our implementation the WebSockets server also hosts the service

logic part of our web-applications, which is responsible for maintaining a listing of the

client peers with active WebSockets and session management.

The server application has real time data to plot the situation of a region based on the data

available. The server application is also responsible for data mining and business logic

execution based on the data collected from various clients.

12

2.3.1 Hardware Requirements

 The server used for this implementation is an x86 based web server running

Windows machine running IIS 8.0 or above with a minimum of 2GB memory.

 For client application, any mobile unit supporting the Html5 specification and

GPS capability.

2.3.2 Software Requirements

We can use MySQL 5 or MS SQL Server 2012 Express or above for storing the client

data.

The server application will be a web application built on top of open source Microsoft

Asp.net MVC frameworks.

For the WebSocket implementation we can reuse the open source implementation of

SignalR for Asp.net MVC framework.[5]

2.3.3 Description of the system components
2.3.3.1 Google Map

Google Maps is a desktop and mobile web mapping service application and technology

provided by Google, offering satellite imagery, street maps, and Street View perspectives.

[13]

Figure 8: Google map

13

2.3.3.2 API

After the success of reverse-engineered mashups such as chicagocrime.org and

housingmaps.com, Google launched the Google Maps API in June 2005 to allow

developers to integrate Google Maps into their websites. It is a free service, and currently

does not contain ads, but Google states in their terms of use that they reserve the right to

display ads in the future. [13]

2.3.3.3 Licensing

Most websites and applications may use the Google Maps API free of charge. However,

if you consistently generate a high amount of traffic, usage limits apply and you will need

to pay for extra usage. If your site or application generates 25 000 map loads or more each

day, for more than 90 consecutive days, we’ll get in touch with you to talk about

payment. Don’t worry, if you go over the limits, we won’t immediately shut off your API

access or display error messages on your site. [14] [15]

2.3.3.4 GPS

The Global Positioning System (GPS) is a space-based satellite navigation system that

provides location and time information in all weather conditions, anywhere on or near the

Earth where there is an unobstructed line of sight to four or more GPS satellites. [11]

2.3.3.5 How GPS Works

GPS satellites circle the earth twice a day in a very precise orbit and transmit signal

information to earth. GPS receivers take this information and use triangulation to

calculate the user's exact location. Essentially, the GPS receiver compares the time a

signal was transmitted by a satellite with the time it was received. The time difference

tells the GPS receiver how far away the satellite is. Now, with distance measurements

from a few more satellites, the receiver can determine the user's position. [12]

Figure bellow shows the satellites in orbits.

14

Figure 9: Satellites in orbits [12]

2.3.3.6 GPS Accuracy

Today's GPS receivers are extremely accurate, thanks to their parallel multi-channel

design. [12]

GPS time is theoretically accurate to about 14 nanoseconds. However, most receivers lose

accuracy in the interpretation of the signals and are only accurate to 100 nanoseconds.

[11]

2.3.4 Fallback Mechanism

We know that in a real world scenario there will always be some system which will lack

the latest technology. i.e. in this case our focused WebSocket may not be supported by a

group of devices. As a result we always have to have some fallback mechanism so that

our services are not interrupted.

Figure bellow will give an idea of the stack of the most preferred to the list preferred

mechanisms.

Figure 10: Preferred fallback stack [16]

15

2.3.5 User Authentication

To identify a client the server will maintain a challenge request/response which each of

the clients will have to comply to consume the services. The server will maintain the

sessions for each of the clients.

16

Chapter 3 - Implementation

3.1 Class Diagrams

Classes are typically modeled as rectangles with three sections: the top section for the

name of the class, the middle section for the attributes of the class, and the bottom section

for the methods of the class.

The class diagrams were generated using Visual Studio Ultimate 2013.

3.1.1 Data Models

Figure 11: Graph Model

The diagram above shows the fields, properties and methods for the models used to

represent the nodes of the graph and the weight table data.

17

Figure 12: Data Models

The diagram above shows the fields, properties and methods for the models used to

represent the weight table, Alert, Place, a Marker on the map, a Test route data.

18

3.1.2 Application Services

Figure 13: Services

The diagram above shows the fields, properties and methods for the services of Weight,

Location and Alert. It also shows the interfaces of each of the classes.

19

3.1.3 Application Data Access

Figure 14: Data Access & Core

The diagram above shows the fields, properties and methods for the data models to store

and retrieve the data from and to the database. The models shown above describes

individual entities in the database.

20

3.1.4 Application Controllers

Figure 15: Application Controller

The diagram above shows the fields, properties and methods for the classes that control

the display of the pages in the application.

21

3.2 Use Case Diagrams

Use case diagrams in the following sections describe the sequence of actions that provide

something of measurable value to actors. The General options for both the server and the

client applications are shown here.

3.2.2 Application Services

The following UMS 2.5 Use case diagram presents the services exposed by the

application.

Figure 16: Application Use case diagram

22

3.3 Screen Shots

The screen shots of the application with detailed description of the features will help in

understanding how the application functions.

3.3.1 Home Screen

Figure below is the home page for the users

Figure 17: Home Page

On the home page users can see their current location on the map. A marker icon will

display the location. The marker icon changes as the users move. A user can only see hei

or her location.

In addition, from the home page uses can get direction to a place. And also find nearby

places.

23

3.3.2 Get Route Suggestions

Figure 18: Route Suggestions

When a user requests a route suggestion the system does the followings:

 Consider the current location of the user as the ‘Source’

 The selected “To Place” is considered as the destination

 Dijkstra's algorithm is used to find a better routing

 The weight matrix is applied to calculate an optimized route from source to

destination

Based on the above criteria the suggested route is displayed on the screen. The direction

is followed alphabetically.

24

3.3.3 Find Places

Figure 19: Find Places

When a user requests to view the places the system does the followings:

 Gets the “category” of the places user is looking for

 Performs a search in the database for the listed places

 Displays the resulted places on the screen – on a map

Based on the above criteria the places are displayed on the screen. If the user clicks the

marker icon a basic information of the place would be displayed.

Users will have a “Get Direction” link to find a better route to the selected place.

25

3.3.4 Create an Alert/Event

Figure 20: Add Alert/Event

This page allows the user to report and incident/event. The name of the event/Alert is

mandatory. When a user submits an alert it gets broadcasted to all connected users.

3.3.5 Alert Notification

Figure 21: Alert/Event Notification

On the top right corner of the screen there are the alert icon. If a message is received by

the system it displays the count of the alerts in this section.

If the user clicks the alert icon the list of alerts is displayed.

From the list the user can click an Alert and view the details of the alert.

26

3.3.6 Alert/Event List

Figure 22: Alert/Event List

On the Alert/Event list page users can view all the alerts. So if any user misses an alert

he/she can find the alerts on this page. The Alerts are sorted date descending. Which

means the latest one is usually on top.

3.3.7 Dashboard

Figure 23: Dashboard

The Dashboard is the page where the admin can monitor all the traffic and their locations.

The live marker for each user gets displayed here. The markers move as the user moves.

From the dashboard it is possible to view the information of a particular user. It is also

possible to send an alert to that particular user.

27

Chapter 4 - Test Input-Output

This chapter layouts the test IO tables according to the available options in the

application. Each table has four columns. First one is for the description of the option for

which we are going to list the input-output and the last one (‘Remarks’) is used to

describe if the output is the direct result to server input or reformatted. The ‘Remarks’

sections identifies any output that may vary depending on the logic of the application.

Operation: Account Registration

Table 2: Test inputs for account registration

The table above describes the probable account registration scenarios with the

combination of inputs and their expected outputs. This is the IO table for the registration

page in the application.

Operation: Login

Table 3: Test inputs for Login operation

Description Input Output Remarks

Correct User Name

wrong Password

User Name,

Password

Invalid username or

password.

Wrong user name

correct password

User Name,

Password

Invalid username or

password.

Description Input Output Remarks

Successful creation of an

account

User ID,

Password

Auto login and

redirect to home

page

Dynamic Output

If account already exists for

a given ID

User ID,

Password

This account already

exists

If the given password id not

well formatted

User ID,

Password

Password must be at

least 6 characters

long

28

Correct user name

and correct

password

User Name,

Password

Auto login and

redirect to home

page

Dynamic Output

Wrong user name

and wrong password

User Name,

Password

Invalid username or

password.

Successful login
User Name,

Password

Auto login and

redirect to home

page

Dynamic Output

Already logged in
User Name,

Password

Auto login and

redirect to home

page

Discards previous

session

The table above describes the probable login scenarios with the combination of inputs and

their expected outputs. This is the IO table for the login page in the application.

Operation: Get Direction

Table 4: Test inputs for Route operation

Description Input Output Remarks

If not logged in To Location Empty Dynamic Output

If logged in To Location

Display Route from

source to

destination

Dynamic Output

If the ‘To’

destination do not

match any in the

database

To Location Empty Dynamic Output

The table above describes the probable direction scenarios with the combination of inputs

and their expected outputs. This is the IO table for the “Get Direction” functionality in the

application.

29

Operation: Find Place

Table 5: Test inputs for Find Place operation

Description Input Output Remarks

Place exists Category of Place Display place Dynamic Output

Place do not exists Category of Place
No Place is

displayed

Place no in the

database
Category of Place

No place is

displayed

The table above describes the probable place finding scenarios with the combination of

inputs and their expected outputs. This is the IO table for the “Find Place” functionality in

the application.

Operation: View Alerts/Events

Table 6: Test inputs for Alerts/Events

Description Input Output Remarks

Alert for all users
Display in

notification section

Alert for current user
Display in

notification section

The table above describes the probable alert scenarios with the combination of inputs and

their expected outputs. This is the IO table for the “Alert” functionality in the application.

30

Operation: Create an Alert/Event

Table 7: Test inputs for Alert/Event Creation

Description Input Output Remarks

All necessary fields

empty
Name, Category

The Name* field is

required.

All necessary fields

available
Name, Category

Event Inserted

Successfully!

The table above describes the probable alert creation scenarios with the combination of

inputs and their expected outputs. This is the table for the “Add/ Edit Alert” functionality

in the application.

Operation: Alert Notification

Table 8: Test inputs for Alert Notification

Description Input Output Remarks

Alert notification Number of Alerts Dynamic Output

Alert List List of Alerts Dynamic Output

View an alert Alert ID Alert Detail Dynamic Output

The table above describes the probable alert notification scenarios with the combination

of inputs and their expected outputs. This is the IO table for the “View Alert”

functionality in the application.

Operation: Logout

Table 9: Test inputs for logout operation

Description Input Output Remarks

When user logs out
Redirect to home

page

User session gets

cleared

The table above describes the probable logout scenario with the combination of inputs

and their expected outputs. This is the IO table for the “Log out” functionality in the

application.

31

Input Range: Input Ranges are fixed in the graphical user interface so that users cannot

put extreme inputs. Null or blank inputs are also checked before requesting for any

service.

Output Format: Sometime unformatted outputs (e.g. Empty) are generated on the server

side and they are represented for the client. This is done to increase the readability of the

application.

Input-Output Format: To make the inputs understandable by the application I have

formatted user input and transformed the server’s output in a human understandable form.

On the server side the user input is parsed and mapped to the necessary data.

32

Chapter 5: Conclusion

5.1 Conclusion

The “Real Time Bi-directional Traffic Management Support System” system that has

been successfully implemented with GPS and WebSocketby proved the adage of

“mobility & flexibility” for traffic management. As a traffic support system the

application provides opportunities for tactical and targeted communication.

The following point explains the accomplishment of the given objectives (that were set

forth for the project):

 Studied and analyzed the WebSocket technology and its various technical aspects.

 Designed and implemented WebSocket based server that is capable of processing

the client requests and acts accordingly.

 The server application was developed not only for monitoring traffic but also to

provide services to the end users.

This WebSocket based system can be used in any geographical location anywhere in the

world including: Forests, Mountains, Deserts, north or south poles where installation and

maintenance of any ground based monitoring system is difficult.

Places where road conditions changes very frequently like tornedo zones, hazardous

zones, congested traffic zones, this application may be very helpful for routing traffics in

an emergency situation.

5.2 Future Work

The traffic management support system can be further enhanced by embedding the

software into mobile devices. In addition, microcontroller based implementation with

GPS and GSM/EDGE unit support will bring down the costs significantly. Future work

may include improving application security so that an intruder will not compromise the

network. Also develop a system so that every vehicle will contain the tee above device.

This can be done with the vehicle registration authority to connect the vehicle registration

system with the application. Another challenge is to deal with dynamic environment

enhancing the routing and extending the coverage of the application.

33

Appendices

Appendix A: Acronyms

API - Application Program Interface

CCTV - Closed-circuit Television

GPS - Global Positioning System

HTTP - Hypertext Transfer Protocol

HTML - Hyper Text Markup Language

IETF - Internet Engineering Task Force

IP - Internet Protocol

IIS - Internet Information Services

JS - JavaScript

MS - Millisecond

RFC - Request for Comments

RFID - Radio-frequency identification

SSE - Server-Sent Events

34

Appendix B: Source Code

BaseController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

using MVC5.Web.ViewModels;

using MVC5.Web.Services;

using Dijkstra;

using MVC5.Web.Models;

using Microsoft.AspNet.Identity.EntityFramework;

using Microsoft.AspNet.Identity;

namespace MVC5.Web.Controllers

{

 public class BaseController : Controller

 {

 LocationService loc = new LocationService();

 DijkstraService dijkstraService = new DijkstraService();

 public void BindingModel(CustomWaypointsViewModel model)

 {

 var allCoordinates = loc.GetAll();

 if (model.FromID == 0 && model.ToID == 0)

 {

 model.FromID = 2;

 model.ToID = 2;

 var s = (from ad in allCoordinates

 where ad.LatLngID == 2

 select ad).FirstOrDefault();

 model.StartingMidPointLat = s.MidPointLat;

 model.StartingMidPointLong = s.MidPointLong;

 model.EndingMidPointLat = s.MidPointLat;

 model.EndingMidPointLong = s.MidPointLong;

 }

 else

 {

 var s = (from ad in allCoordinates

 where ad.LatLngID == model.FromID

 select ad).FirstOrDefault();

 var e = (from ad in allCoordinates

 where ad.LatLngID == model.ToID

 select ad).FirstOrDefault();

 model.StartingMidPointLat = s.MidPointLat;

 model.StartingMidPointLong = s.MidPointLong;

 model.EndingMidPointLat = e.MidPointLat;

35

 model.EndingMidPointLong = e.MidPointLong;

 }

 var shortestPathNodeList =

dijkstraService.GetMinDistancePathsLatlng(model.FromID,

model.ToID).Take(8).ToList();

 model.ShortestPathCoordinates = shortestPathNodeList;

 model.Coordinates = allCoordinates;

 }

 public MyLocation GetMyLocationByUserId(string userId)

 {

 MyLocation myLoc = null;

 var testRoute =

loc.GetTestRouteByUserId(userId).FirstOrDefault();

 if (testRoute != null)

 {

 myLoc = new MyLocation()

 {

 MyLatitude = testRoute.Latitude,

 MyLongitude = testRoute.Longitude,

 MyMarkerIcon = GetMarkerIconByCategory()

 };

 }

 return myLoc;

 }

 public ApplicationUser GetCurrentUser()

 {

 ApplicationUser user = null;

 if

(ControllerContext.HttpContext.User.Identity.IsAuthenticated)

 {

 var store = new UserStore<ApplicationUser>(new

ApplicationDbContext());

 var userManager = new

UserManager<ApplicationUser>(store);

 user =

userManager.FindByNameAsync(User.Identity.Name).Result;

 }

 return user;

 }

 public string GetMarkerIconByCategory()

 {

 string markerIcon = string.Empty;

 var user = GetCurrentUser();

 if (user != null)

 {

 switch (user.Category)

 {

 case "Category A":

 markerIcon =

"/content/images/markers/Category_A.png";

 break;

 case "Category B":

 markerIcon =

"/content/images/markers/Category_B.png";

 break;

 case "Category C":

36

 markerIcon =

"/content/images/markers/Category_C.png";

 break;

 case "Category D":

 markerIcon =

"/content/images/markers/Category_D.png";

 break;

 default:

 markerIcon =

"/content/images/markers/Category_A.png";

 break;

 }

 }

 return markerIcon;

 }

 }

}

AccountController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Security.Claims;

using System.Threading.Tasks;

using System.Web;

using System.Web.Mvc;

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;

using Microsoft.Owin.Security;

using MVC5.Web.Models;

using System.Web.Security;

using MVC5.Web.Services;

namespace MVC5.Web.Controllers

{

 [Authorize]

 public class AccountController : Controller

 {

 LocationService loc = new LocationService();

 public AccountController()

 : this(new UserManager<ApplicationUser>(new

UserStore<ApplicationUser>(new ApplicationDbContext())))

 {

 }

 public AccountController(UserManager<ApplicationUser>

userManager)

 {

 UserManager = userManager;

 }

 public UserManager<ApplicationUser> UserManager { get; private

set; }

 //

 // GET: /Account/Login

 [AllowAnonymous]

37

 public ActionResult Login(string returnUrl)

 {

 ViewBag.ReturnUrl = returnUrl;

 return View();

 }

 //

 // POST: /Account/Login

 [HttpPost]

 [AllowAnonymous]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> Login(LoginViewModel model,

string returnUrl)

 {

 if (ModelState.IsValid)

 {

 var user = await UserManager.FindAsync(model.UserName,

model.Password);

 if (user != null)

 {

 await SignInAsync(user, model.RememberMe);

 return RedirectToLocal(returnUrl);

 }

 else

 {

 ModelState.AddModelError("", "Invalid username or

password.");

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

 }

 //

 // GET: /Account/Register

 [AllowAnonymous]

 public ActionResult Register()

 {

 RegisterViewModel model = new RegisterViewModel();

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 //

 // POST: /Account/Register

 [HttpPost]

 [AllowAnonymous]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> Register(RegisterViewModel

model)

 {

 if (ModelState.IsValid)

 {

 var user = new ApplicationUser() { UserName =

model.UserName, Category = model.Category };

 var result = await UserManager.CreateAsync(user,

model.Password);

 if (result.Succeeded)

 {

38

 await SignInAsync(user, isPersistent: false);

 return RedirectToAction("Home", "Home");

 }

 else

 {

 AddErrors(result);

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

 }

 //

 // POST: /Account/Disassociate

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> Disassociate(string

loginProvider, string providerKey)

 {

 ManageMessageId? message = null;

 IdentityResult result = await

UserManager.RemoveLoginAsync(User.Identity.GetUserId(), new

UserLoginInfo(loginProvider, providerKey));

 if (result.Succeeded)

 {

 message = ManageMessageId.RemoveLoginSuccess;

 }

 else

 {

 message = ManageMessageId.Error;

 }

 return RedirectToAction("Manage", new { Message = message

});

 }

 //

 // GET: /Account/Manage

 public ActionResult Manage(ManageMessageId? message)

 {

 ViewBag.StatusMessage =

 message == ManageMessageId.ChangePasswordSuccess ? "Your

password has been changed."

 : message == ManageMessageId.SetPasswordSuccess ? "Your

password has been set."

 : message == ManageMessageId.RemoveLoginSuccess ? "The

external login was removed."

 : message == ManageMessageId.Error ? "An error has

occurred."

 : "";

 ViewBag.HasLocalPassword = HasPassword();

 ViewBag.ReturnUrl = Url.Action("Manage");

 return View();

 }

 //

 // POST: /Account/Manage

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> Manage(ManageUserViewModel

model)

39

 {

 bool hasPassword = HasPassword();

 ViewBag.HasLocalPassword = hasPassword;

 ViewBag.ReturnUrl = Url.Action("Manage");

 if (hasPassword)

 {

 if (ModelState.IsValid)

 {

 IdentityResult result = await

UserManager.ChangePasswordAsync(User.Identity.GetUserId(),

model.OldPassword, model.NewPassword);

 if (result.Succeeded)

 {

 return RedirectToAction("Manage", new { Message

= ManageMessageId.ChangePasswordSuccess });

 }

 else

 {

 AddErrors(result);

 }

 }

 }

 else

 {

 // User does not have a password so remove any

validation errors caused by a missing OldPassword field

 ModelState state = ModelState["OldPassword"];

 if (state != null)

 {

 state.Errors.Clear();

 }

 if (ModelState.IsValid)

 {

 IdentityResult result = await

UserManager.AddPasswordAsync(User.Identity.GetUserId(),

model.NewPassword);

 if (result.Succeeded)

 {

 return RedirectToAction("Manage", new { Message

= ManageMessageId.SetPasswordSuccess });

 }

 else

 {

 AddErrors(result);

 }

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

 }

 //

 // POST: /Account/ExternalLogin

 [HttpPost]

 [AllowAnonymous]

 [ValidateAntiForgeryToken]

 public ActionResult ExternalLogin(string provider, string

returnUrl)

 {

40

 // Request a redirect to the external login provider

 return new ChallengeResult(provider,

Url.Action("ExternalLoginCallback", "Account", new { ReturnUrl =

returnUrl }));

 }

 //

 // GET: /Account/ExternalLoginCallback

 [AllowAnonymous]

 public async Task<ActionResult> ExternalLoginCallback(string

returnUrl)

 {

 var loginInfo = await

AuthenticationManager.GetExternalLoginInfoAsync();

 if (loginInfo == null)

 {

 return RedirectToAction("Login");

 }

 // Sign in the user with this external login provider if the

user already has a login

 var user = await UserManager.FindAsync(loginInfo.Login);

 if (user != null)

 {

 await SignInAsync(user, isPersistent: false);

 return RedirectToLocal(returnUrl);

 }

 else

 {

 // If the user does not have an account, then prompt the

user to create an account

 ViewBag.ReturnUrl = returnUrl;

 ViewBag.LoginProvider = loginInfo.Login.LoginProvider;

 return View("ExternalLoginConfirmation", new

ExternalLoginConfirmationViewModel { UserName =

loginInfo.DefaultUserName });

 }

 }

 //

 // POST: /Account/LinkLogin

 [HttpPost]

 [ValidateAntiForgeryToken]

 public ActionResult LinkLogin(string provider)

 {

 // Request a redirect to the external login provider to link

a login for the current user

 return new ChallengeResult(provider,

Url.Action("LinkLoginCallback", "Account"), User.Identity.GetUserId());

 }

 //

 // GET: /Account/LinkLoginCallback

 public async Task<ActionResult> LinkLoginCallback()

 {

 var loginInfo = await

AuthenticationManager.GetExternalLoginInfoAsync(XsrfKey,

User.Identity.GetUserId());

 if (loginInfo == null)

 {

41

 return RedirectToAction("Manage", new { Message =

ManageMessageId.Error });

 }

 var result = await

UserManager.AddLoginAsync(User.Identity.GetUserId(), loginInfo.Login);

 if (result.Succeeded)

 {

 return RedirectToAction("Manage");

 }

 return RedirectToAction("Manage", new { Message =

ManageMessageId.Error });

 }

 //

 // POST: /Account/ExternalLoginConfirmation

 [HttpPost]

 [AllowAnonymous]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult>

ExternalLoginConfirmation(ExternalLoginConfirmationViewModel model,

string returnUrl)

 {

 if (User.Identity.IsAuthenticated)

 {

 return RedirectToAction("Manage");

 }

 if (ModelState.IsValid)

 {

 // Get the information about the user from the external

login provider

 var info = await

AuthenticationManager.GetExternalLoginInfoAsync();

 if (info == null)

 {

 return View("ExternalLoginFailure");

 }

 var user = new ApplicationUser() { UserName =

model.UserName };

 var result = await UserManager.CreateAsync(user);

 if (result.Succeeded)

 {

 result = await UserManager.AddLoginAsync(user.Id,

info.Login);

 if (result.Succeeded)

 {

 await SignInAsync(user, isPersistent: false);

 return RedirectToLocal(returnUrl);

 }

 }

 AddErrors(result);

 }

 ViewBag.ReturnUrl = returnUrl;

 return View(model);

 }

 //

 // POST: /Account/LogOff

 [HttpPost]

 [ValidateAntiForgeryToken]

42

 public ActionResult LogOff()

 {

 AuthenticationManager.SignOut();

 return RedirectToAction("Home", "Home");

 }

 //

 // GET: /Account/ExternalLoginFailure

 [AllowAnonymous]

 public ActionResult ExternalLoginFailure()

 {

 return View();

 }

 [ChildActionOnly]

 public ActionResult RemoveAccountList()

 {

 var linkedAccounts =

UserManager.GetLogins(User.Identity.GetUserId());

 ViewBag.ShowRemoveButton = HasPassword() ||

linkedAccounts.Count > 1;

 return (ActionResult)PartialView("_RemoveAccountPartial",

linkedAccounts);

 }

 protected override void Dispose(bool disposing)

 {

 if (disposing && UserManager != null)

 {

 UserManager.Dispose();

 UserManager = null;

 }

 base.Dispose(disposing);

 }

 #region Helpers

 // Used for XSRF protection when adding external logins

 private const string XsrfKey = "XsrfId";

 private IAuthenticationManager AuthenticationManager

 {

 get

 {

 return HttpContext.GetOwinContext().Authentication;

 }

 }

 private async Task SignInAsync(ApplicationUser user, bool

isPersistent)

 {

AuthenticationManager.SignOut(DefaultAuthenticationTypes.ExternalCookie)

;

 var identity = await UserManager.CreateIdentityAsync(user,

DefaultAuthenticationTypes.ApplicationCookie);

 AuthenticationManager.SignIn(new AuthenticationProperties()

{ IsPersistent = isPersistent }, identity);

 }

 private void AddErrors(IdentityResult result)

 {

43

 foreach (var error in result.Errors)

 {

 ModelState.AddModelError("", error);

 }

 }

 private bool HasPassword()

 {

 var user = UserManager.FindById(User.Identity.GetUserId());

 if (user != null)

 {

 return user.PasswordHash != null;

 }

 return false;

 }

 public enum ManageMessageId

 {

 ChangePasswordSuccess,

 SetPasswordSuccess,

 RemoveLoginSuccess,

 Error

 }

 private ActionResult RedirectToLocal(string returnUrl)

 {

 if (Url.IsLocalUrl(returnUrl))

 {

 return Redirect(returnUrl);

 }

 else

 {

 return RedirectToAction("Home", "Home");

 }

 }

 private class ChallengeResult : HttpUnauthorizedResult

 {

 public ChallengeResult(string provider, string redirectUri)

: this(provider, redirectUri, null)

 {

 }

 public ChallengeResult(string provider, string redirectUri,

string userId)

 {

 LoginProvider = provider;

 RedirectUri = redirectUri;

 UserId = userId;

 }

 public string LoginProvider { get; set; }

 public string RedirectUri { get; set; }

 public string UserId { get; set; }

 public override void ExecuteResult(ControllerContext

context)

 {

 var properties = new AuthenticationProperties() {

RedirectUri = RedirectUri };

 if (UserId != null)

44

 {

 properties.Dictionary[XsrfKey] = UserId;

 }

context.HttpContext.GetOwinContext().Authentication.Challenge(properties

, LoginProvider);

 }

 }

 #endregion

 }

}

DashboardController.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace MVC5.Web.Controllers

{

 public class DashboardController : Controller

 {

 public ActionResult Dashboard()

 {

 return View();

 }

 }

}

EventController.cs

using Microsoft.AspNet.SignalR;

using MVC5.Web.Models;

using MVC5.Web.ServerHub;

using MVC5.Web.Services;

using MVC5.Web.ViewModels;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace MVC5.Web.Controllers

{

 public class EventController : BaseController

 {

 LocationService loc = new LocationService();

 public ActionResult Index()

 {

 var allEvents =

loc.GetAllEvents().OrderByDescending(x=>x.DateUpdated);

 return View(allEvents);

 }

 public ViewResult EventDetails(int id)

45

 {

 var ev = loc.GetEventById(id);

 return View(ev);

 }

 public ActionResult EventInsert()

 {

 var model = new EventViewModel();

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 [HttpPost]

 public ActionResult EventInsert(EventViewModel model)

 {

 try

 {

 if (ModelState.IsValid)

 {

 var e = new Event()

 {

 Name = model.Name,

 Description = model.Description,

 City = model.City,

 PostCode = model.PostCode,

 Category = model.Category,

 Latitude = model.Latitude,

 Longitude =model.Longitude,

 DateCreated = DateTime.Now,

 DateUpdated = DateTime.Now

 };

 loc.InsertEvent(e);

 TempData["Success"] = "Event Inserted

Successfully!";

 EventHub.BroadcastFromServer(e);

 return RedirectToAction("Index");

 }

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 catch

 {

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 }

 public ActionResult EventUpdate(int id)

 {

 var ev = loc.GetEventById(id);

 EventViewModel model = null;

 if (ev != null)

 {

 model = new EventViewModel()

 {

 Id = ev.Id,

 Name = ev.Name,

 Description = ev.Description,

46

 City = ev.City,

 Address = ev.Address,

 Category = ev.Category,

 PostCode = ev.PostCode,

 CategoryList = loc.GetCategoryList()

 };

 }

 return View(model);

 }

 [HttpPost]

 public ActionResult EventUpdate(int id, EventViewModel model)

 {

 try

 {

 if (ModelState.IsValid)

 {

 var ev = loc.GetEventById(id);

 if (ev != null)

 {

 ev.Name = model.Name;

 ev.Address = model.Address;

 ev.Category = model.Category;

 ev.Description = model.Description;

 ev.City = model.City;

 ev.PostCode = model.PostCode;

 ev.DateUpdated = DateTime.Now;

 loc.UpdateEvent(ev);

 }

 TempData["Success"] = "Event Updated Successfully!";

 return RedirectToAction("Index");

 }

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 catch

 {

 model.CategoryList = loc.GetCategoryList();

 return View(model);

 }

 }

 public ActionResult EventDelete(int id)

 {

 var ev = loc.GetEventById(id);

 loc.DeleteEvent(ev);

 TempData["Success"] = "Event Deleted Successfully!";

 return RedirectToAction("Index");

 }

 }

}

MapController.cs

using Dijkstra;

using Map.Contex;

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;

using MVC5.Web.Controllers;

47

using MVC5.Web.Models;

using MVC5.Web.Services;

using MVC5.Web.ViewModels;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

using System.Xml.Linq;

namespace Map.Controllers

{

 public class MapController : BaseController

 {

 LocationService loc = new LocationService();

 DijkstraService dijkstraService = new DijkstraService();

 public ActionResult Polygon()

 {

 return View();

 }

 public ActionResult Polyline()

 {

 return View();

 }

 public ActionResult GetAllLatLng()

 {

 var model = loc.GetAll();

 return Json(model);

 }

 public ActionResult GetDistanceAndDuration()

 {

 return View();

 }

 public ActionResult GetRegionName()

 {

 return View();

 }

 public ActionResult FindingName()

 {

 return View();

 }

 public ActionResult RegionName(double latitude, double

longitude)

 {

 var regionName = loc.GetRegionFromLatLong(latitude,

longitude);

 return Json(regionName);

 }

 [HttpGet]

 public ActionResult FindRegionName()

 {

 return View();

 }

48

 [HttpPost]

 public ActionResult FindRegionName(string latlng)

 {

 return Json(loc.GetRegionFromServerSide(latlng));

 }

 public ActionResult GetGoogleMapDirection()

 {

 return View();

 }

 public ActionResult CustomDirection(GooglemapViewModel model)

 {

 model.AllRegionName = loc.GetAll();

 return View(model);

 }

 public ActionResult CustomWaypointsDirection(GooglemapViewModel

model)

 {

 model.AllRegionName = loc.GetAll();

 return View(model);

 }

 public ActionResult GetDirection(CustomWaypointsViewModel model)

 {

 BindingModel(model);

 return View(model);

 }

 public ActionResult

ApplyDijkstraAlgorithmWithGooglemap(CustomWaypointsViewModel model)

 {

 BindingModel(model);

 return View(model);

 }

 //[HttpGet]

 //public ActionResult GetShortestPathCoordinateList(int fromID,

int toID)

 //{

 // var shortestPathNodeList =

dijkstraService.GetMinDistancePathsLatlng(fromID, toID).Take(8);

 // return Json(shortestPathNodeList,

JsonRequestBehavior.AllowGet);

 //}

 #region Partial Actions

 [OutputCache(Duration = 3600)]

 public PartialViewResult DirectionUI()

 {

 CustomWaypointsViewModel model = new

CustomWaypointsViewModel();

 BindingModel(model);

 return PartialView("_GetDirectionUI", model);

 }

49

 [OutputCache(Duration = 3600)]

 public PartialViewResult FindPlaceUI()

 {

 PlaceViewModel model = new PlaceViewModel();

 List<SelectListItem> list = new List<SelectListItem>();

 list.Add(new SelectListItem() { Text = "Police Station",

Value = "Police Station", Selected = true });

 list.Add(new SelectListItem() { Text = "Fire Service", Value

= "Fire Service" });

 list.Add(new SelectListItem() { Text = "Hospital", Value =

"Hospital" });

 list.Add(new SelectListItem() { Text = "DMP Booth", Value =

"DMP Booth" });

 list.Add(new SelectListItem() { Text = "Service Center",

Value = "Service Center" });

 model.CategoryList = list;

 //return PartialView("_FindPlaceUI", new SelectList(list,

"Text", "Value"));

 return PartialView("_FindPlaceUI", model);

 }

 public ActionResult GetMyPath(string userId)

 {

 var testRoutes = loc.GetTestRouteByUserId(userId);

 return Json(testRoutes, JsonRequestBehavior.AllowGet);

 }

 public ActionResult FindPlaces(PlaceViewModel model)

 {

 model.Places = loc.GetPlacesByCategory(model.PlaceCategory);

 model.MyLocation =

GetMyLocationByUserId(GetCurrentUser()!=null ? GetCurrentUser().Id :

null);

 return View(model);

 }

 public ActionResult GetCustomDirection(CustomWaypointsViewModel

model, string FLat, string FLan, string TLat, string TLan)

 {

 LatLng startingLocation = null;

 LatLng endingLocation = null;

 if (model.ToID > 1)

 {

 startingLocation =

loc.FindNearestLocation(model.StartingMidPointLat,

model.StartingMidPointLong);

 endingLocation = loc.GetLatLngById(model.ToID);

 }

 else

 {

 startingLocation =

loc.FindNearestLocation(decimal.Parse(FLat), decimal.Parse(FLan));

 endingLocation = loc.GetLatLng(decimal.Parse(TLat),

decimal.Parse(TLan));

 }

50

 if (startingLocation != null && endingLocation != null)

 {

 model.EndingMidPointLat = endingLocation.MidPointLat;

 model.EndingMidPointLong = endingLocation.MidPointLong;

 model.ToID = endingLocation.LatLngID;

 model.StartingMidPointLat =

startingLocation.MidPointLat;

 model.StartingMidPointLong =

startingLocation.MidPointLong;

 model.FromID = startingLocation.LatLngID;

 var totalShortestPathNodeList =

dijkstraService.GetMinDistancePathsLatlng(model.FromID,

model.ToID).ToList();

 model.ShortestPathCoordinates =

totalShortestPathNodeList.Take(8).ToList();

 model.TotalShortestPathCoordinates =

totalShortestPathNodeList;

 }

 model.MyLocation = GetMyLocationByUserId(GetCurrentUser() !=

null ? GetCurrentUser().Id : null);

 return View(model);

 }

 #endregion

 private void BindingModel(CustomWaypointsViewModel model)

 {

 var allCoordinates = loc.GetAll();

 if (model.FromID == 0 && model.ToID == 0)

 {

 model.FromID = 2;

 model.ToID = 2;

 var s = (from ad in allCoordinates

 where ad.LatLngID == 2

 select ad).FirstOrDefault();

 model.StartingMidPointLat = s.MidPointLat;

 model.StartingMidPointLong = s.MidPointLong;

 model.EndingMidPointLat = s.MidPointLat;

 model.EndingMidPointLong = s.MidPointLong;

 }

 else

 {

 var s = (from ad in allCoordinates

 where ad.LatLngID == model.FromID

 select ad).FirstOrDefault();

 var e = (from ad in allCoordinates

 where ad.LatLngID == model.ToID

 select ad).FirstOrDefault();

 model.StartingMidPointLat = s.MidPointLat;

 model.StartingMidPointLong = s.MidPointLong;

51

 model.EndingMidPointLat = e.MidPointLat;

 model.EndingMidPointLong = e.MidPointLong;

 }

 var shortestPathNodeList =

dijkstraService.GetMinDistancePathsLatlng(model.FromID,

model.ToID).Take(8).ToList();

 model.ShortestPathCoordinates = shortestPathNodeList;

 model.Coordinates = allCoordinates;

 }

 }

}

// Code for Routing //

Database Context Object:

public class GoogleMapContext : DbContext

 {

 public GoogleMapContext()

 : base("GoogleMapDbContex")

 {

 Database.SetInitializer<GoogleMapContext>(new

CreateDatabaseIfNotExists<GoogleMapContext>());

 }

 public DbSet<LatLng> LatLngs { get; set; }

 public DbSet<Incedent> Incedent { get; set; }

 public DbSet<Weight> Weight { get; set; }

 protected override void OnModelCreating(DbModelBuilder

modelBuilder)

 {

modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 modelBuilder.Entity<LatLng>().ToTable("LatLngs");

 modelBuilder.Entity<Incedent>().ToTable("Incedent");

 modelBuilder.Entity<Weight>().ToTable("Weights");

 Database.SetInitializer<DbContext>(null);

 }

 }

Get Shortest Path:
var totalShortestPathNodeList =

dijkstraService.GetMinDistancePathsLatlng(model.FromID,

model.ToID).ToList();

Repository Methods – Insert/Update/Delete/ Get:

 public class GenericRepository<TEntity> where TEntity : class

 {

 internal GoogleMapContext context;

 internal DbSet<TEntity> dbSet;

 public GenericRepository(GoogleMapContext context)

52

 {

 this.context = context;

 this.dbSet = context.Set<TEntity>();

 }

 public virtual IEnumerable<TEntity> Get(

 Expression<Func<TEntity, bool>> filter = null,

 Func<IQueryable<TEntity>, IOrderedQueryable<TEntity>>

orderBy = null,

 string includeProperties = "")

 {

 IQueryable<TEntity> query = dbSet;

 if (filter != null)

 {

 query = query.Where(filter);

 }

 foreach (var includeProperty in includeProperties.Split

 (new char[] { ',' },

StringSplitOptions.RemoveEmptyEntries))

 {

 query = query.Include(includeProperty);

 }

 if (orderBy != null)

 {

 return orderBy(query).ToList();

 }

 else

 {

 return query.ToList();

 }

 }

 public virtual TEntity GetByID(object id)

 {

 return dbSet.Find(id);

 }

 public virtual void Insert(TEntity entity)

 {

 dbSet.Add(entity);

 }

 public virtual void Delete(object id)

 {

 TEntity entityToDelete = dbSet.Find(id);

 Delete(entityToDelete);

 }

 public virtual void Delete(TEntity entityToDelete)

 {

 if (context.Entry(entityToDelete).State ==

EntityState.Detached)

 {

 dbSet.Attach(entityToDelete);

 }

 dbSet.Remove(entityToDelete);

 }

53

 public virtual void Update(TEntity entityToUpdate)

 {

 dbSet.Attach(entityToUpdate);

 context.Entry(entityToUpdate).State = EntityState.Modified;

 }

 }

54

References

[1] Traffic Pollution Kills Thousands,” BBC News, 2000.

http://news.bbc.co.uk/2/hi/health/905016.stm (Accessed on 10th May, 2015)

[2] “Cutting Greenhouse Gas Emissions has Major Direct Health Benefits,” The

Lancet Medical Journal, December 2009.

http://climateprogress.org/2009/12/01/the-lancetmedical-journal-cutting-

greenhouse-gas-emissions-hasmajor-direct-health-benefits (Accessed on 10th May,

2015)

[3] “Road Pollution Can Damage Kid’s Lungs, Hearts,” MSNBC Health, 2007.

http://www.msnbc.msn.com/id/16831975/ (Accessed on 10th May, 2015)

[4] https://www.websocket.org

[5] HTML5 Web Sockets: A Quantum Leap in Scalability for the Web.

http://www.websocket.org/quantum.html (Accessed on 10th May, 2015)

[6] http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.web.20130201.01

[7] http://juerkkil.iki.fi/files/writings/websocket2012.pdf (Accessed on 10th May,

2015)

[8] http://www.pubnub.com/websockets/ (Accessed on 10th May, 2015)

[9] http://article.sapub.org/10.5923.j.web.20130201.01.html (Accessed on 10th May,

2015)

[10] http://css.dzone.com/articles/techniques-real-time-client (Accessed on 10th May,

2015)

[11] http://en.wikipedia.org/wiki/Global_Positioning_System (Accessed on 10th May,

2015)

[12] http://www8.garmin.com/aboutGPS/ (Accessed on 10th May, 2015)

[13] http://en.wikipedia.org/wiki/Google_Maps (Accessed on 10th May, 2015)

[14] https://developers.google.com/maps/documentation/javascript/usage (Accessed on

10th May, 2015)

[15] https://developers.google.com/maps/licensing (Accessed on 10th May, 2015)

[16] http://signalr.blogspot.com/ (Accessed on 10th May, 2015)

http://news.bbc.co.uk/2/hi/health/905016.stm
http://climateprogress.org/2009/12/01/the-lancetmedical-journal-cutting-greenhouse-gas-emissions-hasmajor-direct-health-benefits
http://climateprogress.org/2009/12/01/the-lancetmedical-journal-cutting-greenhouse-gas-emissions-hasmajor-direct-health-benefits
http://www.msnbc.msn.com/id/16831975/
https://www.websocket.org/
http://www.websocket.org/quantum.html
http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.web.20130201.01
http://juerkkil.iki.fi/files/writings/websocket2012.pdf
http://www.pubnub.com/websockets/
http://article.sapub.org/10.5923.j.web.20130201.01.html
http://css.dzone.com/articles/techniques-real-time-client
http://en.wikipedia.org/wiki/Global_Positioning_System
http://www8.garmin.com/aboutGPS/
http://en.wikipedia.org/wiki/Google_Maps
https://developers.google.com/maps/documentation/javascript/usage
https://developers.google.com/maps/licensing
http://signalr.blogspot.com/

55

[17] Browser versions support for WebSocket.

http://caniuse.com/#feat=websockets (Accessed on 10th May, 2015)

[18] Unified Modeling Language

http://en.wikipedia.org/wiki/Unified_Modeling_Language (Accessed on 10th May,

2015)

[19] Asp.net user authentication

http://www.asp.net/web-forms/overview/older-versions-

security/introduction/forms-authentication-configuration-and-advanced-topics-cs

(Accessed on 10th May, 2015)

http://caniuse.com/#feat=websockets
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.asp.net/web-forms/overview/older-versions-security/introduction/forms-authentication-configuration-and-advanced-topics-cs
http://www.asp.net/web-forms/overview/older-versions-security/introduction/forms-authentication-configuration-and-advanced-topics-cs

