
EAST WEST UNIVERSITY

Service Oriented Product Line: Analysis and Verification

Submitted by

Yasir Taher

and

Amit Sarker

Supervised by

Dr. Shamim H. Ripon

A project submitted in partial fulfillment for the degree of

B.Sc. in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science and Engineering

May 2015

I

Declaration

We hereby declare that, this submission is our own work and that to the best of our

knowledge and belief it contains neither material nor facts previously published or written by

another person. Further, it does contain material or facts which to a substantial extent has

been accepted for the award of any degree of a university or any other institution of territory

education except where an acknowledgement.

(Amit Sarker)

(Yasir Taher)

II

Letter of acceptance

The project entitled “Service Oriented Product Line: Analysis and Verification”

submitted by Amit Sarker (2011-1-60-033) and Yasir Taher (2011-1-60-011), to the

Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh

is accepted by the department in partial fulfillment of requirements for Award of the degree

of Bachelor of Science in Computer Science and Engineering on May, 2015.

Board of Examiners

Dr. Shamim H. Ripon

Associate Professor and Chairperson,

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

III

ABSTRACT

In computer science and software engineering, re-usability is the use of existing assets in

some form within the software product development process. A software product line (SPL)

is a set of software-intensive systems that share a common, managed set of features satisfying

the specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way. A service-oriented architecture is essentially a

collection of services. These services communicate with each other. The communication can

involve either simple data passing or it could involve two or more services coordinating some

activity. Some means of connecting services to each other is needed. Web Service technology

provides a platform on which we can develop distributed services. The interoperability

among these services is achieved by various standard protocols. Web service composition

originated from the necessity to achieve a predetermined goal that cannot be realized by a

standalone service. Internally, in a composition, services can interact with each other to

exchange parameters, for example a service's result could be another service's input

parameter. We need verification of service composition to check whether there is any

errors/deadlock in the composite service and are there any difficulties in the composite

service? There are two types of service composition and we focused only on service

choreography. To verify the service composition we used process algebraic technique, FPS.

We model the service choreography in FSP and then use LTSA tool to animate the transitions

and verify the composition.

IV

Contents

Acknowledgements VIII

1. Introduction ..01

1.1. Introduction and Motivation ..01

1.2. Objectives ...03

1.3. Contribution ..03

1.4. Outline ..04

2. Background ..05

2.1. Web Service Composition ..05

2.2. Choreography ...05

2.3. Orchestration ...06

2.4. Comparison ...06

2.5. Petri net ...07

2.6. Atomic Process ...07

2.7. Sequence Process ..08

2.8. Split Process..09

2.9. The Split-Join Process ..09

2.10 Label Transition System (LTS) ...10

2.11 Finite State Process (FSP) ..12

2.12 Primitive Processes ..12

 2.13 Composite Processes ..17

3 Software Product Line Feature Analysis ..19

3.11 Software Product Line ...19

3.12 Feature Model ..19

4 Service Orientation ...22

4.11 Services and Comparison with features Comparison with feature22

4.12 Service Orientated Product line ...25

V

5 Web Service Choreography ...28

5.11 Introduction ..28

5.12 Buyer ..28

5.13 Lender Web Service ...29

5.14 Supplier Web Service ..29

5.15 Broker Web Service ...30

6 Choreography Analysis ..33

6.11 Petri Net Representation ..33

6.12 FSP Representation ..35

6.13 Model ...35

6.14 LTS Analysis ...37

7 Conclusion ...45

7.11 Summary ...45

7.12 Future work ..45

Appendix ..46

References ..54

VI

List of Figures

2.1: Orchestration vs Choreography ..06

2.2: Atomic process model ..08

2.3: Sequence model ..08

2.4: Split model ..09

2.5: Split-Join model ..10

2.6: Example of LTS ..11

2.7: LTS of Action prefix...13

2.8: LTS of deterministic choice ..13

2.9: LTS of non-deterministic choice ..14

2.10: LTS of STOP ..14

2.11: LTS of Indexing ..15

2.12: LTS of Conditional15

2.13: LTS of Guard ..17

2.14: LTS of Parallel Composition ..18

2.15: LTS of Relabeling 18

3.1: Feature tree of a broker system ...21

5.1: Architectural view of Buyer ...28

5.2: Architectural view of Lender web service ..29

5.3: The Architectural view of supplier web service ...30

5.4: The Architectural view of Broker web service ...31

5.5: Architectural view of Broker System ...32

6.1: The Petri Nets Representation of Broker system web service ..34

6.2: LTS of Buyer ..37

6.3: LTS of BROKER ..38

6.4: LTS of SUPPLIER..41

6.5: LTS of Loan ..42

6.6: LTS of Broker System ..43

VII

List of Tables

Table 2.1: Different types of operations ..7

VIII

Acknowledgement

First of all Thanks to ALLAH for the uncountable blessings on me. Thanks to my Supervisor

Dr. Shamim H. Ripon for providing me this opportunity to test our skills in the best possible

manner. He enlightened, encouraged and provided us with ingenuity to transform our vision

into reality.

P a g e 1 | 54

Chapter 1

Introduction

1.1 Introduction and Motivation

In most engineering disciplines, systems are designed by composition that means building a

system out of components that have been used in other systems. To achieve better software

quality, more quickly, at lower costs, software engineers are beginning to adopt systematic reuse

as a design process.

There are many types of software reuse process:

 Application system reuse: The whole of an application system may be reused either by

incorporating it. Without changing into other systems (COTS reuse) or by developing

application families.

 Component reuse: Components of an application from sub-systems to single objects

may be reused.

 Object and function reuse: Software components that implement a single well-defined

object or function may be reused.

The benefits of software reuse are to increase dependability, reduced process risk, effective use

of specialists, Standards compliance, and Accelerated development.

P a g e 2 | 54

A software product line (SPL) is a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or mission

and that are developed from a common set of core assets in a prescribed way. Software product

lines are emerging as a viable and important development paradigm allowing companies to

realize order-of-magnitude improvements in time to market, cost, productivity, quality, and other

business drivers. Software product line engineering can also enable rapid market entry and

flexible response, and provide a capability for mass customization.

SOA is considered to be the new paradigm for developing flexible and dynamic software

solutions by using loose coupling of services with diverse operating systems, programming

languages and other components of various platforms. The integration of these interoperable

services around a business process allows systems development in environments that have to

continuously change and adapt to new circumstances. [11] A service-oriented architecture (SOA)

is essentially a collection of services. These services communicate with each other. It mainly

used to create architecture based upon the use those services. The communication can involve

either simple data passing or it could involve two or more services coordinating some activity.

Some means of connecting services to each other is needed.

The term ‘web services’ describes a standardized way of integrating web-based applications

using open standards (e.g., XML, SOAP and UDDI) over an internet protocol backbone. Used

primarily as a means for businesses to communicate with each other and with clients, web

services allow organizations to communicate data without intimate knowledge of each other’s IT

system behind the firewall. Instead of providing GUIs to users, web services share business

logic, data and processes through a programmable interface across the network. In order to create

a cross-organizational component in web services, flexible methods are needed to handle web

service interfaces. To describe the composition of web services as well as the process flow, two

terms are widely used: Orchestration and Choreography. [12]

P a g e 3 | 54

A service composition is an aggregate of services collectively composed to automate a particular

task or business process. To qualify as a composition, at least two participating services plus one

composition initiator need to be present. Otherwise, the service interaction only represents a

point-to-point exchange. Service compositions can be classified into primitive and complex

variations. In early service-oriented solutions, simple logic was generally implemented via point-

to-point exchanges or primitive compositions. As the surrounding technology matured, complex

compositions became more common. Much of the service-orientation design paradigm revolves

around preparing services for effective participation in numerous complex compositions. So

much so that the Service compos ability design principle exits, dedicated solely to ensuring that

services are designed in support of repeatable composition.

1.2 Objectives

Inspired by the growing interest in Service Composition of web services. So, here is the

objectives of our project:

 Reuse of Service in Service Composition of Web service.

 Composition of Web Service in Service Oriented Product line.

 To analyze the composition of Web service.

 To verify the Composition of Web service.

1.3 Contribution

We have made the following contribution in this project:

 We have analyzed the feature of Car Broker web service by modeling Broker system

product line. We first identified various components of the web service as well as the

composition among the services.

P a g e 4 | 54

 After analyzing various services of the Car Broker, We compared features with services

and define service oriented product line.

 First we have modeled car broker web service choreography by using Petri net. We then

have modeled the broker web service by using Finite State Process (FSP).

 We verified the choreography represented in Finite state process by using Labelled

Transition System Analyzer (LTSA). We have checked dead lock/errors in the service

composition and check the traces of the animation.

1.4 Outline

The report is organized as follows:

Chapter 2 gives a brief overview of web service composition, Petri Net, Finite State Process and

Labelled Transition System. We describe different type of Compositions and comparison

between them. We also describe different type of processes in Petri Net and different types of

operation and processes of LTS and how they work within the examples.

Chapter 3 gives an overview of the Car Broker web service product line and describe its feature

analysis.

Chapter 4 gives an overview of service and gives a brief idea about difference between services

and features. Discusses about product line and finally describe all the services and their

composition.

Chapter 5 gives a brief overview of all Web services of Car Broker web service product line.

In Chapter 6 we represent our model in Petri Net and Finite State Process then analysis the data

and describe them.

Finally, in Chapter 7 we give a summary of the project and outline our future plans.

P a g e 5 | 54

Chapter 2

Background

2.1 Web Service Composition

Service composition aims at providing effective and efficient means for creating, running,

adapting, and maintaining services that rely on other services in some way. Web Service

Compositions are formed from a singular problem domain which is “local” to problem domain

owner. In structured system domains, the design proceeds from a specification, and there is a

single entity that is ultimately responsible for the design and implementation of the system. Web

service compositions, as compositions can be built locally yet aim to conform to global

compositional constraints through the use of choreography and orchestration rules. This rule base

is significantly involved in standard ways of both communication and domain understanding.

The composition of web services could be static or dynamic. Both static and dynamic web

service compositions can collectively be described as; “A web service composition consists of

orchestrated web services through a local process, itself potentially a service. Static web service

compositions are known at design time and too limited to a composition at design time. Dynamic

web service compositions are one or many compositions in which web services are known at run

time, and which are discovered or their properties resolved based upon a criteria process set at

design time.” [10]

2.1.1 Choreography

The term choreography which is more collaborative and allows each involved party to describe

its part in the interaction. Choreography tracks the message sequences among multiple parties

and sources typically the public message exchanges that occur between web services rather than

a specific business process that a single party executes.

P a g e 6 | 54

2.1.2 Orchestration

Orchestration always represents control from one party’s perspective. The term orchestration

refers to an executable business process that can interact with both internal and external web

services. The interactions occur at the message level. They include business logic and task

execution order, and they can span applications and organizations to define a long-lived,

transactional, multistep process model.

2.1.3 Comparison

The terms orchestration and choreography describe two aspects of emerging standards for

creating business processes from multiple Web services. The two terms overlap somewhat, but

orchestration refers to an executable business process that can interact with both internal and

external Web services. Orchestration always represents control from one party's perspective.

This distinguishes it from choreography, which is more collaborative and allows each involved

party to describe its part in the interaction. Proposed orchestration and choreography standards

must meet several technical requirements that address the language for describing the process

workflow and the supporting infrastructure.

Figure 2.1: Orchestration vs Choreography

P a g e 7 | 54

2.2 Petri net [1]

A Petri net is one of several mathematical modeling languages for the description of distributed

systems. Petri nets is a graphical and mathematical modeling tool applicable to many systems. A

Petri net is a directed bipartite graph, in which the nodes represent transitions and places. It is

very useful tool for specifying information processing systems, which are describe as being

asynchronous, parallel, concurrent, distributed or dynamical.

Places

some type of resource

Transitions

consume and produce

resources

Tokens

One unity of a certain

resource. The token tells us

the state of the process

Table 2.1: Different types of operations

2.2.1 Atomic Process

The Petri nets model for an atomic process. Petri nets PN = <S, T, I, O> as shown in Figure 2.1,

Where

S={s};

It represents the service to be run when s includes.

Tokens.

T= {ts, te},

P a g e 8 | 54

Where ts represent beginning of the service and te represents ending of the service. I(ts, s) and

O(s, te) represent Input and Output respectively.

Figure 2.2: Atomic process model

2.2.2 Sequence Process

The petri nets model for sequence composition of web services is a hierarchical Petri nets SPN= <S, PN,

I, O> as shown in Figure 2.2, where

S = {s1, s2, s3 ...….sk}

PN = {PN1, PN2, PN3…………. PNk},

Where PNi is a subset of i-th service.

I = {I(PNi, si), O(si, PNi+1) | i= 1,2,3,4,………….., k-1}.

P a g e 9 | 54

Figure 2.3: Sequence model

2.2.3 Split Process

The Petri Nets model for split composition of web service is a hierarchical Petri nets SPN = <S,

PN, I, O> as show inFigure 2.3,

where,

S = {sin}

T= {t1}

PN = {PN1, PN2, PN3…………. PNk},

Where PNi is a subset of i-th service.

I = {I(sin, t1) U O(t1, PNi) | i= 1,2,3,4,………….., k}

P a g e 10 | 54

Figure 2.4: Split model

2.2.4 The Split-Join Process

The Petri Nets model for split-join composition of web services is a hierarchical Petri nets SJPN

= <S, PN, I, O> as shown in Figure 2.4, where,

S = {Sin ,Sout}

T = {t1, t2, t3, t4}

PN = {PN1, PN2, PN3…………. PNk},

Where PNi is a subset of i-th service.

I = I (sin, t1) U I(t1, PNi) U I(PNi, t2) U I(t1, sout),

i = 1, 2, 3… k

P a g e 11 | 54

Figure 2.5: Split-Join model

2.3 Label Transition System (LTS)

A labelled transition system (LTS) comprises some number of states, with arcs between them

labelled by activities of the system. Labelled transition systems are suitable for modelling

discrete state systems that change through action of some kind. Certain states may be

distinguished: a start state, perhaps one or more final states.

A labelled transition system is specified by:

 A set S of states;

 A set L of labels or actions;

 A set of transitions T ⊆ S × L × S.

Transitions are given as triples (start, label, end). The set of states may be finite or infinite; the

set of labels is usually finite.

S = {I, R, A}

L = {alert, relax, on, off}

T = {(I, alert, R),(R, relax, I),

(R, on, A),(A, off, I)}

A run of a labelled transition system is a list of transitions that proceed from one state to another:

(s1, l1, s2), (s2, l2, s3). . . (sk, lk, sk+1)

P a g e 12 | 54

The trace of a run is the series of labels from these transitions:

l1l2l3 . . . lk

Both runs and traces may be finite or infinite. For any given system, we are generally interested

in the set of all traces from a given initial state. For example, all these are traces of the LTS on

the below:

on.off

alert.on.off

alert.relax.alert.on.off.alert

Figure: 2.6: Example of LTS

This is a finite LTS, but its complete set of traces is infinite. The set of traces for an LTS gives

some information about the behavior of the system: but it is not enough to reconstruct the LTS

itself. Labelled transitions systems, runs and traces are closely related to a range of similar

notions in computer science:

 Finite-state machines / Automata

 Regular languages and regular Expressions

 Moore and Mealy machines

2.4 Finite State Process (FSP)

FSP stands for Finite State Process. It is the notation designed to be easily machine readable, and

thus provides a preferred language to specify abstract workflows. FSP is a textual notation for

P a g e 13 | 54

concisely describing and reasoning about concurrent programs. The constructed FSP can be used

to model the exact transition of workflow processes through a modelling tool such as the

Labelled Transition System Analyzer (LTSA), which converts an FSP into a state machine and

provides a resulting LTS. Syntax and semantics of FSP owe much to both Hoare's CSP and

Milner's CCS. FSP behavior specifications contain two sorts of process definitions: primitive

processes and composite processes. Safety properties are specified using property automata.[2]

2.4.1 Primitive Processes [3]

Action Prefix "->":

(a -> P) describes a process which engages in the action a and then behaves as described by P.

More operationally, action prefix defines a transition between states. The following recursive

definition describes the process CLOCK which repeatedly engages in the action tick.

CLOCK = (tick -> CLOCK).

The LTS corresponding to the definition above is:

Figure 2.7: LTS of Action prefix

In FSP action labels must always start with a lowercase character (e.g. tick) and process names

must begin with a capital letter (e.g. CLOCK). A primitive process definition is terminated by a

full stop(.).

Choice "|":

(a -> P | b -> Q) describes a process which initially engages in either of the actions a or b. After

the first action has been performed, subsequent behavior is described by P if the first event

P a g e 14 | 54

was a, or by Q if the first event was b. The LTS corresponding to this process has two possible

transitions a and b out of the initial state. The example describes the behavior of a dispensing

machine which dispenses coffee if the black button is pressed and tea if the white button is

pressed.

DRINKS = (black -> coffee -> DRINKS | white -> tea -> DRINKS).

Figure 2.8: LTS of deterministic choice

In non-deterministic choice is simply expressed by having the same action leading to two

different succeeding behaviors as shown in the example which describes tossing a coin.

COIN = (toss -> heads -> COIN |toss -> tails -> COIN).

Figure 2.9: LTS of non-deterministic choice

STOP:

P a g e 15 | 54

It is sometimes necessary to specify a primitive process which terminates. Consequently, a local

process STOP is predefined which engages in no further actions. In LTS terms, STOP defines a

state with no outgoing transitions. The example is a process which does some init action and then

terminates.

STARTUP = (init -> STOP).

Figure 2.10: LTS of STOP

It should be noted that STOP means that the primitive process within which it is declared takes

no further actions. It does not mean that the global system composed of potentially many

primitive processes can take no further actions (which would be a deadlock).

Indexing:

Both local process names and action names may be indexed. This greatly increases the

expressive power of FSP as demonstrated by the following examples.

In this example is a single cell buffer which stores integer values in the range 0 to 2.

BUFFER = EMPTY,

EMPTY = (in[x:0..2] -> FULL[x]),

FULL[x:0..2] = (out[x] -> EMPTY).

P a g e 16 | 54

Initially the buffer is empty until an in action to store a value occurs. This action may be to store

the value 0, 1 or 2 as indicated by the range [x:0..2]. The process moves into a state in which it

stores the appropriate value FULL[0], FULL[1] or FULL[2]. Outputting the value returns the

buffer to the EMPTY state. The scope of the range variable x in each case is the local process in

which it is declared. The LTS for the process is depicted below:

Figure 2.11: LTS of Indexing

The buffer process can be expressed more succinctly as below. BUF is exactly equivalent to

BUF and generates an identical LTS.

BUF = (in[x:0..2] -> out[x] -> BUF).

When modelling behavior of concurrent systems, it is frequently convenient to think of an action

with a range as inputting a value in that range and an action indexed with a variable as outputting

the value of that variable. Ranges may be explicitly declared as shown below:

range T = 0..2

BUF = (in[x:T] -> out[x] -> BUF).

P a g e 17 | 54

Which will produce the exactly same LTS like above.

Conditional:

A conditional takes the form: if expr then local_process else local_process. FSP supports only

integer expressions. A non-zero expression value causes the conditional to behave as the local

process of the then part; a zero value causes it to behave as the local process of the else part.

The else part is optional, if omitted and expr evaluates to zero the conditional becomes the STOP

process.

Example:

LEVEL = (read[x:0..3] ->

 if x>=2 then

 (high -> LEVEL)

 Else

 (low -> LEVEL)).

Figure2.12: LTS of Conditional

Guards:

A guarded transition takes the form (when B a -> P) which means that the action a is eligible

when the guard B is true, otherwise a cannot be chosen for execution. The following example

uses guards to define a bounded semaphore:

const Max = 4

P a g e 18 | 54

rangeInt = 0..Max

BSEMA(Init=0) = BSEMA[Init],

BSEMA[v:Int] = (when (v<Max) up -> BSEMA[v+1]

 |when (v>0) down ->BSEMA[v-1]

).

Figure 2.13: LTS of Guard

2.4.2 Composite Processes [3]

Parallel Composition "||":

(P || Q) expresses the parallel composition of the processes P and Q. It constructs an LTS which

allows all the possible interleaving’s of the actions of the two processes. Actions, which occur in

the alphabets of both P and Q, constrain the interleaving since these actions must be carried out

by both of the processes at the same time. These shared actions synchronize the execution of the

two processes. If the processes contain no shared actions then the composite state machine will

describe all interleaving’s. In the following example, x is an action shared by the

processes A and B.

A = (a -> x -> A).

B = (b -> x -> B).

||SYS = (A || B).

P a g e 19 | 54

Figure 2.14: LTS of Parallel Composition

The diagram depicts the LTS for the composite process SYS. It can be easily seen that, in this

simple example, the two possible execution traces are < a,b,x> and <b,a,x>. That is the

actions a and b can occur in any order.

Relabeling "/":

Relabeling functions are applied to processes and change the names of action labels. This is

usually done to ensure that composed processes synchronize on the correct actions. A relabeling

function can be applied to both primitive and composite processes. However, it is generally more

used in composition. The general form of the relabeling function is /{newlabel_1/oldlabel_1,….

, newlabel_n/oldlabel_n}. The example shows the composition of two binary semaphore

processes to give a semaphore which can be incremented twice (by up). The diagram shows how

the down action of the first SEMA process is associated with the up action of the next semaphore

by relabeling both to mid.

SEMA = (up -> down -> SEMA).

||SEMA2 = (SEMA/{mid/down} || SEMA/{mid/up}).

The alphabet of SEMA2 is {up, down, mid} and its LTS is depicted below:

Figure 2.15: LTS of Relabeling

P a g e 20 | 54

Chapter 3

Software Product Line Feature Analysis

Software Product Line

Software product line engineering is concerned with capturing the commonalities, universal and

shared attributes of a set of software-intensive applications for a specific problem domain. It

allows for the rapid development of variants of a domain specific application through various

configurations of a common set of reusable assets often known as core assets, which support the

management of commonality as well as variability. On the one hand, commonality is supported

by providing domain analysts with both the ability and the required tools for capturing all of the

shared conceptual information within the applications of a given domain. On the other hand,

variability is addressed by allowing the domain analysts to include application-specific attributes

and features within their unified model but at the same time, restrict their use; this way,

commonality and variability are handled simultaneously. In the context of software product lines,

feature modeling is one of the important techniques for modeling the attributes of a family of

systems. This modeling language is important in that it provides means for capturing variability

in software product lines.

Feature Model

Features are important distinguishing aspects, qualities, or characteristics of a family of systems.

They are used for depicting the shared structure and behavior of a set of similar systems. To form

a product family, all the various features of a set of similar/related systems are composed into a

feature model. A feature model is a means for representing the possible configuration space of all

the products of a system product family in terms of its features. For this reason, it is important

P a g e 21 | 54

that feature models be able to capture variability and commonality between the features of the

different applications available in a given domain. As we will see in the following paragraphs,

feature models provide suitable means for modeling commonality, by allowing the domain

modelers to form a common feature model representation for multiple applications, as well as

variability by providing means to capture competing features of different applications under one

unified umbrella. An example of capturing commonality is when a similar feature, which exists

in multiple applications is represented as a unique feature in the overall domain representation,

while an example of variability is when one notion is viewed differently by separate applications

and is therefore modeled using competing features.

Feature models can be represented both formally and graphically; however, the graphical

notation depicted through a tree structure is more favored due to its visual appeal and easier

understanding. More specifically, graphical feature models are in the form of a tree whose root

node represents a domain concept, e.g., a domain application, and the other nodes and leafs

illustrate the features. In this context, a feature is a concept property related to a user-visible

functional or nonfunctional requirement, e.g., domain application task, modeled in a way to

capture commonalities or possibly differentiate among product family variants.

In a feature model, features are hierarchically organized and can typically be classified as:

 Mandatory, the feature must be included in the description of its parent feature;

 Optional, the feature may or may not be included in its parent description given the

situation;

 Alternative feature group, one and only one of the features from the feature group can be

included in the parent description;

 Or feature group, one or more features from the feature group can be included in the

description of the parent feature.

P a g e 22 | 54

Figure 3.1: Feature tree of a broker system

In Broker System there are in total six features, four of them are mandatory; Request, ACK,

Order management and Payment and two are optional features; Notification, Quotation. Request

has two features in or operation, ACK has another two features and those are alternative. Either

one can be selected. Also optional feature Notification has three features and those are

mandatory but any (one or two or all) of them can be selected. In case of Payment, payment itself

it is mandatory and it has two features one of them is mandatory and other one is optional also

can both of them or only mandatory one can be selected.

P a g e 23 | 54

Chapter 4

Service Orientation

4.1 Services and Comparison with features

A service is an abstract resource that represents a capability of performing tasks that represents a

coherent functionality from the point of view of provider entities and requester entities. To be

used, a service must be realized by a provider agent. This provider agent is the concrete piece of

software (or hardware) that sends and receives messages, while the service is the resource

characterized by the abstract set of functionality that is provided. Service identification is to

select related resources. [5]

In service oriented applications, services are basic elements. So design and implementation of

services is necessary steps in developing service oriented product line. In this way service

composition is done to reuse existing services instead of implementing the new service. Service

composition can be defined as the process of combining and linking existing services (atomic or

composite) to create new working services. It constitutes an essential part of service

provisioning, since it leads to novel service offering thus adding value that was not existent in

the individual services. [5]

In service composition, the result of combining services is referred to as a composite service.

When you use services together to achieve new functionality in a business process, the

composition processes itself that dictates that the order and interactions between the lower-level

services is exposed as this composite service. [5]

Feature modeling identifies a product line’s features by identifying externally visible product

characteristics in a product line and organizing them into a model. Product features are identified

P a g e 24 | 54

and classified in terms of capability, domain technology, implementation technique, and

operating-environment features. Capability features are user-visible characteristics that can be

identified as distinct services, operations, and nonfunctional characteristics. Domain technology

features represent ways of implementing services or operations. Implementation technique

features are generic functions or techniques for implementing services, operations, and domain

functions. Operating-environment features represent the environments where the applications are

used. [4]

Service-based systems are distributed and composed of various services that can be discovered

and replaced at runtime.

QoS has traditionally been associated with telephony and computer networking. Certain

applications, such as voice over IP (VoIP), might require QoS because such applications have

various requirements concerning network data flow (latency, jitter, number of dropped packets,

and so on). Service-based systems consider qualities as constraints on a service’s functionality,

so mechanisms are necessary to guarantee the expected system quality at runtime. [6]

SPLE usually addresses quality issues statically during system design and implementation. Static

quality management approaches rely on predicting system properties on the basis of its

constituent components’ properties. If, however, we simply statically predict resource use when

developing a service-based system, the product might not have the resources to function

correctly at the necessary quality level at runtime. To address this issue, we first statically define

QoS in terms of features, with a maximum limit of available resources for each product. We then

use this information when the product starts negotiating with service providers to select available

services at runtime. [4]

To automate the advertisement, discovery, and negotiation of services, participants in a service-

based system must share a common set of terms for describing service qualities and constraints.

[8] A standard description method facilitates processes such as service advertisement, discovery,

selection, composition, substitution, negotiation, and runtime service monitoring.[6] The most

P a g e 25 | 54

prominent standard is the Web Services Description Language, which provides a service’s

location and a functional description of the service’s input and output messages. [7]

Most SPLE approaches focus on configuring product line variations before deployment and

don’t consider dynamic-service composition. One way to address this problem is to distinguish

between statically configured services (static services) and dynamic services during feature

analysis. The configuration of static services can be tailored to each product. However, dynamic

services might rely on third-party providers. So, a product must search for such a dynamic

service when needed at runtime using the service-oriented architecture. Our proposed solution

specifies static services, along with the tasks that constitute them, as workflows, and thus also

specifies these services’ pre and post conditions, invariants, and dynamic-service interfaces.

Finally, by integrating and parameterizing dynamic services at runtime, our solution lets user’s

access static services with dynamic ones.[4]

SPLE promotes systematic reuse within an organization and usually doesn’t consider external

organizations when developing reusable assets. Moreover, relying on third-party providers and

promoting the use of their services was out of scope for SPLE. The closest thing to third-party

involvement that SPLE considers might be the use of commercial off-the-shelf (COTS)

components. In SO, however, third-party involvement is one of the main drivers that make this

approach attractive, and it leads to several initiatives, including service negotiations, service

monitoring, and service reputation system. [4]

In a service-oriented marketplace, transactions often occur between parties that haven’t

previously interacted. Reputation systems are collaborative mechanisms that address trust issues

between such parties, and they help distinguish between low- and high-quality service

providers.[9] Including provider reputation in the service selection criteria benefits the quality

assurance process.

Traditional SPLE approaches don’t consider these three key aspects of dynamic-service

provision, but SOPL methods should incorporate them. Therefore, we propose a QoS aware

framework that provides automated runtime support for service discovery, negotiation,

P a g e 26 | 54

monitoring, and service provider rating. QoS awareness lets consumers handle recovery from

SLA violations, service failures, and runtime environment limitations by renegotiating and

substituting problematic services.

4.2 Service Orientated Product line

The term Service-Oriented Product Line is used for service oriented applications that share

common parts and vary in a regular and identifiable manner. In this context, high customization

and systematic planned reuse are achieved through managed variability and the use of a two life-

cycle model as in SPL engineering: core assets and product development.

In each service oriented application, there are two kinds of service compositions (static and

dynamic), in this model both static and dynamic composition are considered in separate steps.

Static composition implies that the compositions is performed at design or compile time.

Dynamic service composition, on the other hand, composes an application autonomously when a

user queries for an application at runtime. Therefore, dynamic composition involves adapting

running applications by changing their functionalities and/or behavior via the addition or

removal of service components at run time.

If there is a list of possible service candidates, we should select them from reusable service

repository. The purpose of service selection is to select optimal web service for a particular task.

As the selected service has to become an integral part of the reference architecture, domain

design imposes architecture constraints to be considered during this selection, such as the

architectural styles and patterns that the service must conform to, compatibility constraints, and

constraints caused by the process structure of the reference architecture. At this time, if there are

not any matched services and we select the static composition, we should decompose the main

feature into sub features, chose the best available services that are matched with these sub

features, linked together these atomic services and finally compiled and deployed the new

(composite) service.

Two main approaches are currently investigated for static service composition. The first

approach, referred to as web service orchestration, combines available services by adding a

central coordinator (the orchestrator) that is responsible for invoking and combining the single

P a g e 27 | 54

sub-activities. The second approach, referred to as web service choreography, does not assume

the exploitation of a central coordinator but rather defines complex tasks via the definition of the

conversation that should be undertaken by each participant.

Static composition is purely manual i.e. firstly, the user problem must be defined and then a

manual selection of services according to desired outputs is performed. There are many potential

problems, exceptions, and errors that may occur during this process. The challenge lies in

dealing with these unexpected issues in the limited time frame that is permitted for a particular

composition. Also, it is not possible to precisely predict or test at design time what the exact

environmental circumstances of operation will be at composition time and whether the process

will be successful. While steps are taken to decrease the chance of a failed composition, it cannot

always be avoided.

Dynamic service composition is the process of creating new services at runtime from a set of

service components. This process includes activities that must take place before the actual

composition such as locating and selecting service components that will take part in the

composition, and activities that must take place after the composition such as registering the new

service with a service registry.

A very important aspect of dynamic service composition is that the new composite service need

not be envisioned at design time. This feature, known as unanticipated dynamic composition,

provides considerable flexibility for modifying and extending the operation of software systems

during runtime. However, it also introduces a number of complications and problems for

designing and operating software systems that support dynamic service composition. In this

paper, we will describe our experiences with dynamic service composition and discuss how it

can be used to improve the agility, flexibility, and availability of business software systems,

particularly for e- and m commerce systems.

In dynamic composition, automated tools are used to analyze a user problem, select and

assemble web service interfaces so that their composition will solve the user problem.

Furthermore, even if the dynamic composition process seems successful, there is the potential for

P a g e 28 | 54

unexpected feature interactions that cannot be easily and rapidly discovered and recovered from.

A feature interaction is the way a service component (i.e., a feature) modifies or affects at

runtime the behavior of other service components in a particular composition. The problem is

similar to a program that compiles without errors but still fails to execute properly.

Compilation is only one part of the successful execution of a program just as the composition

process will not guarantee the composite service will function correctly. When unexpected

feature interactions arise despite all measures taken to avoid them, it might be almost impossible

for the composition infrastructure to correct the situation. Human (i.e., user) input is needed to

determine if the side effects are neutral or service affecting. If the feature interactions cause the

composite service to function incorrectly or behave erratically, the composite service can be

terminated and never reassembled. However, in many situations it may be appropriate to simply

ignore those feature interactions that do not seriously affect the operation of the composite

service. There is also a lack of support for dynamic composition techniques in programming

languages and other development tools. The fundamental challenge in composing services at

runtime is the design and implementation of an infrastructure that will support the process.

Locating components at runtime requires a component library or code repository that is

integrated with the software infrastructure that is actually per forming the composition. The

infrastructure should also support mechanisms to recover (e.g., rollback) from an unsuccessful

composition and to discover and, if possible, recover from unexpected feature interactions. All

these and other issues make the dynamic composition process inherently complex. Consequently,

cost-benefit analysis must be taken into consideration before applying dynamic service

composition techniques to a particular circumstance.

P a g e 29 | 54

Chapter 5

Web Service Choreography

5.1 Introduction

For explaining choreography of web service we choose car broker system. A web service Broker

provides online support to customers to negotiate car purchases and arranges loans for these. A

buyer provides a need for a car model. The broker first uses its business partner Supplier to find

the best possible quote for the requested model and then uses another business partner Lender to

arrange a loan for the buyer for the selected quote. The buyer is also notified about the quote and

the necessary arrangements for the loan. Both Lender and the Buyer can cause an interrupt to be

invoked. A loan can be refused due to a failure in the loan assessment and a customer can reject

the loan and quoted offer. In both cases, there is a need to run the compensation, where the car

might have already been ordered, or the loan has already been offered.

5.2 Buyer

A buyer, is the one who want to buy a product from online. For that buyer request for product to

Broker and get list of desired products. Then choose and order products.

Figure 5.1: Architectural view of Buyer

P a g e 30 | 54

5.3 Lender Web Service

A loan service is a frequent example for business processes. Lender is a lender that offers a loan

to customer, who submits a proposal containing name, address and loan amount. If the amount is

10000 or more, Lender asks its business partner to perform a full assessment. Business partner is

an approver that thoroughly evaluates a loan proposal. The loan rate it determines is returned by

Lender to its customer.

Figure 5.2: Architectural view of Lender web service

5.4 Supplier Web Service

A supplier that offers Buyer a good deal on product orders. A customer provides a need

containing name, address and product details to Broker. The request for a quotation is passed

through Broker to Supplier. Supplier and Buyer doesn’t have any direct contact. Buyer orders for

the product to Broker and Broker contact with Supplier and makes all arrangement.

P a g e 31 | 54

Figure 5.3: The Architectural view of supplier web service

5.5 Broker Web Service

A broker that provides an online service to negotiate product purchases and loans for these. A

customer provides a need with name, address and product details. Broker first uses its business

partner supplier to order the product on the best terms. If the product is unavailable broker

informs its customer. Otherwise, Broker asks its business partner Lender to arrange a loan for the

product price. If a loan can be provided, the customer receives a schedule containing the product

name, price, and delivery period and loan rate. If a loan is refused, a loan refusal fault will occur.

Since the product has already been ordered, compensation requires the order to be cancelled. The

refusal is then returned to the customer.

P a g e 32 | 54

Figure 5.4: The Architectural view of Broker web service

Figure 5.5 shows the full architectural view of Car Broker System, where Buyer, Supplier,

Lender and Broker Web service works together.

P a g e 33 | 54

Figure 5.5: Architectural view of Broker System

P a g e 34 | 54

Chapter 6

Choreography Analysis

6.1 Petri Net Representation

A broker system web service deals any purchases for its buyers and also arranges loans for

buyer. The broker uses two separate web services: a Supplier to find a suitable quote for the

requested and a Lender to arrange loans. Each web service can operate separately and can be

used in other web services. In this case study, our focus is on how the processes communicate

with each other. For brevity, describing the broker system example

We model a web service named Broker system. It provides online support to customers to

negotiate product purchases and arranges loans for the product. At first buyer provides a need for

a product model. The broker first uses its business partner Supplier to find the best possible

quote for the requested model and then uses another business partner Loan Star to arrange a loan

for the buyer for the selected quote. The buyer is also notified about the quote and the necessary

arrangements for the loan. The process should be completed by talking the confirmation from

buyer. We model this web service using Petri Nets.

P a g e 35 | 54

Figure 6.1: The Petri Nets Representation of Broker system web service

At first the Broker received a token from Buyer (the token contain information about product).

After receiving the token Broker add more parameter with the token and send it to Supplier.

Supplier also adds some parameter with the token and return back it to Broker. After that, the

Broker simultaneously sends the token to Lender, Buyer and Supplier. Lender receives the token

as request for Loan, Buyer receives it as a notification (acknowledgement) for confirmation and

Supplier receives it as a delivery order (acknowledgement). The process is terminated when all

of those tokens are return back to Broker.

P a g e 36 | 54

6.2 FSP Representation

Through the process we have seen the Petri Net representation now let’s see the same example in

FSP (Finite state process). In FSP we divided our whole system into different pieces (i.e. Buyer,

Broker, Supplier and Loan) and represent them.

6.2.1 Model

When we divided the whole system into pieces and represent them into FSP then we got.

Buyer:

BUYER = (req_to_broker->response_from_broker->ack_to_broker-

>BUYER).

Broker:

BROKER_SEQ = BROKER_FROM_B,

BROKER_FROM_B = (rec_order->BROKER_REQ),

BROKER_REQ = (req_sup->rec_quote->select_quote->END).

BROKER_TO_B = (select_quote->send_quote_B->ack_from_B-

>BROKER_TO_B).

BROKER_TO_LOAN = (select_quote->req_loan->reply-

>BROKER_TO_LOAN).

BROKER_SUPPLIER = (select_quote->order_sup->ack_sup-

>BROKER_SUPPLIER).

||BROKER =

(BROKER_SEQ||BROKER_TO_B||BROKER_TO_LOAN||BROKER_SUPPLIER).

P a g e 37 | 54

Supplier:

SUPPLIER = (req_from_broker->response_to_broker-

>get_order_from_broker->ack_to_broker->SUPPLIER).

Loan:

LOAN = (req_loan->reply->LOAN).

Now let’s see the whole system together in FSP. Here is the code.

Broker system:

const N = 2

range I = 1..N

BUYER = (req_order->resp_from_broker[I]->send_ack_to_broker-

>BUYER).

BROKER = (rec_oder->req_to_supplier-

>recieve_quote_from_supplier[I]->resp_to_buyer[I]-

>rec_ack_from_buyer->req_loan->reply->BROKER).

LOAN = (req_loan->reply->LOAN).

SUPPLIER = (req_from_broker->prep->send_quote_to_broker[I]-

>SUPPLIER).

||BROKER_SYS = (BUYER || BROKER || SUPPLIER || LOAN)

/{order/req_order,order/rec_oder,

req_to_supplier/req_from_broker,

recieve_quote_from_supplier/send_quote_to_broker,

ack/send_ack_to_broker,ack/rec_ack_from_buyer,

resp/resp_from_broker,

resp/resp_to_buyer

}.

P a g e 38 | 54

6.2.2 LTS Analysis

The common approach to analysis is described and specific properties analyzed given different

sets of models, for service choreography, compatibility and implementation analysis, and

properties for analysis. For verification we analyze compositions of the models from the earlier

section.

Buyer:

Figure 6.2: LTS of Buyer

Transitions of Buyer:

Process:

 BUYER

States:

 3

Transitions:

 BUYER = Q0,

 Q0 = (req_to_broker -> Q1),

 Q1 = (response_from_broker -> Q2),

 Q2 = (ack_to_broker -> Q0).

P a g e 39 | 54

Broker:

Figure 6.3: LTS of BROKER

Transitions of Broker:

Process:

BROKER

States:

31

Transitions:

 BROKER = Q0,

 Q0 = (rec_order -> Q1),

 Q1 = (req_sup -> Q2),

 Q2 = (rec_quote -> Q3),

 Q3 = (select_quote -> Q4),

 Q4 = (order_sup -> Q5

 |req_loan -> Q23

 |send_quote_B -> Q29),

 Q5 = (ack_sup -> Q6

 |req_loan -> Q15

 |send_quote_B -> Q21),

 Q6 = (req_loan -> Q7

 |send_quote_B -> Q13),

 Q7 = (reply -> Q8

 |send_quote_B -> Q11),

 Q8 = (send_quote_B -> Q9),

 Q9 = (ack_from_B -> Q10),

 Q10 = STOP,

 Q11 = (reply -> Q9

 |ack_from_B -> Q12),

 Q12 = (reply -> Q10),

 Q13 = (req_loan -> Q11

 |ack_from_B -> Q14),

 Q14 = (req_loan -> Q12),

 Q15 = (ack_sup -> Q7

 |reply -> Q16

P a g e 40 | 54

 |send_quote_B -> Q19),

 Q16 = (ack_sup -> Q8

 |send_quote_B -> Q17),

 Q17 = (ack_sup -> Q9

 |ack_from_B -> Q18),

 Q18 = (ack_sup -> Q10),

 Q19 = (ack_sup -> Q11

 |reply -> Q17

 |ack_from_B -> Q20),

 Q20 = (ack_sup -> Q12

 |reply -> Q18),

 Q21 = (ack_sup -> Q13

 |req_loan -> Q19

 |ack_from_B -> Q22),

 Q22 = (ack_sup -> Q14

 |req_loan -> Q20),

 Q23 = (order_sup -> Q15

 |reply -> Q24

 |send_quote_B -> Q27),

 Q24 = (order_sup -> Q16

 |send_quote_B -> Q25),

 Q25 = (order_sup -> Q17

 |ack_from_B -> Q26),

 Q26 = (order_sup -> Q18),

 Q27 = (order_sup -> Q19

 |reply -> Q25

 |ack_from_B -> Q28),

 Q28 = (order_sup -> Q20

 |reply -> Q26),

 Q29 = (order_sup -> Q21

 |req_loan -> Q27

 |ack_from_B -> Q30),

 Q30 = (order_sup -> Q22

 |req_loan -> Q28).

Trace to DEADLOCK:

 rec_order

 req_sup

 rec_quote

 select_quote

P a g e 41 | 54

 send_quote_B

 ack_from_B

 req_loan

 reply

 order_sup

 ack_sup

So in the above LTS of Broker there is a possibility of Deadlock, which we can remove by

replace END with BROKER_SEQ of this portion.

BROKER_SEQ = BROKER_FROM_B,

BROKER_FROM_B = (rec_order->BROKER_REQ),

BROKER_REQ = (req_sup->rec_quote->select_quote->BROKER_REQ).

After this there will be no deadlock but problem is LTS Draw become overflow 31 transitions

become 108 transitions. Transitions are given in Appendix A.

Supplier:

Figure 6.4: LTS of SUPPLIER

P a g e 42 | 54

Transitions of Supplier:

Process:

 SUPPLIER

States:

 4

Transitions:

 SUPPLIER = Q0,

 Q0 = (req_from_broker -> Q1),

 Q1 = (response_to_broker -> Q2),

 Q2 = (get_order_from_broker -> Q3),

 Q3 = (ack_to_broker -> Q0).

Loan:

Figure 6.5: LTS of Loan

Transitions of loan:

Process:

 LOAN

States:

 2

P a g e 43 | 54

Transitions:

 LOAN = Q0,

 Q0 = (req_loan -> Q1),

 Q1 = (reply -> Q0).

Broker System:

Figure 6.6: LTS of Broker System

Transitions of Broker System:

Process:

 BROKER_SYS

States:

 18

P a g e 44 | 54

Transitions:

 BROKER_SYS = Q0,

 Q0 = (order -> Q1),

 Q1 = (req_to_supplier -> Q2),

 Q2 = (prep -> Q3),

 Q3 = (recieve_quote_from_supplier[2] -> Q4

 |recieve_quote_from_supplier[1] -> Q11),

 Q4 = (resp[2] -> Q5

 |resp[1] -> Q8),

 Q5 = (ack -> Q6),

 Q6 = (req_loan -> Q7),

 Q7 = (reply -> Q0),

 Q8 = (ack -> Q9),

 Q9 = (req_loan -> Q10),

 Q10 = (reply -> Q0),

 Q11 = (resp[2] -> Q12

 |resp[1] -> Q15),

 Q12 = (ack -> Q13),

 Q13 = (req_loan -> Q14),

 Q14 = (reply -> Q0),

 Q15 = (ack -> Q16),

 Q16 = (req_loan -> Q17),

 Q17 = (reply -> Q0).

P a g e 45 | 54

Chapter 7

Conclusion

7.1 Summary

We have shown the composition of web service choreography in service oriented product line.

We modeled the Car Broker Web Service in Petri Net to verify the composition and represents it

in Finite State Process to analysis the composition.

7.2 Future work

Our future plan is to verify service orchestration by using a suitable tool by following similar

fashion as in this project. We are also interested to check other properties such as livelock and

other compositional errors in service composition

P a g e 46 | 54

Appendix A

A.1 Broker System

Process:

 BROKER

States:

 108

Transitions:

 BROKER = Q0,

 Q0 = (rec_order -> Q1),

 Q1 = (req_sup -> Q2),

 Q2 = (rec_quote -> Q3),

 Q3 = (select_quote -> Q4),

 Q4 = (order_sup -> Q5

 |req_loan -> Q73

 |send_quote_B -> Q97

 |rec_order -> Q105),

 Q5 = (ack_sup -> Q6

 |req_loan -> Q38

 |send_quote_B -> Q62

 |rec_order -> Q70),

 Q6 = (req_loan -> Q7

 |send_quote_B -> Q27

 |rec_order -> Q35),

 Q7 = (reply -> Q8

 |send_quote_B -> Q16

 |rec_order -> Q24),

 Q8 = (send_quote_B -> Q9

 |rec_order -> Q13),

 Q9 = (ack_from_B -> Q0

 |rec_order -> Q10),

 Q10 = (ack_from_B -> Q1

 |req_sup -> Q11),

 Q11 = (ack_from_B -> Q2

 |rec_quote -> Q12),

P a g e 47 | 54

 Q12 = (ack_from_B -> Q3),

 Q13 = (send_quote_B -> Q10

 |req_sup -> Q14),

 Q14 = (send_quote_B -> Q11

 |rec_quote -> Q15),

 Q15 = (send_quote_B -> Q12),

 Q16 = (reply -> Q9

 |ack_from_B -> Q17

 |rec_order -> Q21),

 Q17 = (reply -> Q0

 |rec_order -> Q18),

 Q18 = (reply -> Q1

 |req_sup -> Q19),

 Q19 = (reply -> Q2

 |rec_quote -> Q20),

 Q20 = (reply -> Q3),

 Q21 = (reply -> Q10

 |ack_from_B -> Q18

 |req_sup -> Q22),

 Q22 = (reply -> Q11

 |ack_from_B -> Q19

 |rec_quote -> Q23),

 Q23 = (reply -> Q12

 |ack_from_B -> Q20),

 Q24 = (reply -> Q13

 |send_quote_B -> Q21

 |req_sup -> Q25),

 Q25 = (reply -> Q14

 |send_quote_B -> Q22

 |rec_quote -> Q26),

 Q26 = (reply -> Q15

 |send_quote_B -> Q23),

 Q27 = (req_loan -> Q16

 |ack_from_B -> Q28

 |rec_order -> Q32),

 Q28 = (req_loan -> Q17

 |rec_order -> Q29),

 Q29 = (req_loan -> Q18

 |req_sup -> Q30),

 Q30 = (req_loan -> Q19

 |rec_quote -> Q31),

P a g e 48 | 54

 Q31 = (req_loan -> Q20),

 Q32 = (req_loan -> Q21

 |ack_from_B -> Q29

 |req_sup -> Q33),

 Q33 = (req_loan -> Q22

 |ack_from_B -> Q30

 |rec_quote -> Q34),

 Q34 = (req_loan -> Q23

 |ack_from_B -> Q31),

 Q35 = (req_loan -> Q24

 |send_quote_B -> Q32

 |req_sup -> Q36),

 Q36 = (req_loan -> Q25

 |send_quote_B -> Q33

 |rec_quote -> Q37),

 Q37 = (req_loan -> Q26

 |send_quote_B -> Q34),

 Q38 = (ack_sup -> Q7

 |reply -> Q39

 |send_quote_B -> Q51

 |rec_order -> Q59),

 Q39 = (ack_sup -> Q8

 |send_quote_B -> Q40

 |rec_order -> Q48),

 Q40 = (ack_sup -> Q9

 |ack_from_B -> Q41

 |rec_order -> Q45),

 Q41 = (ack_sup -> Q0

 |rec_order -> Q42),

 Q42 = (ack_sup -> Q1

 |req_sup -> Q43),

 Q43 = (ack_sup -> Q2

 |rec_quote -> Q44),

 Q44 = (ack_sup -> Q3),

 Q45 = (ack_sup -> Q10

 |ack_from_B -> Q42

 |req_sup -> Q46),

 Q46 = (ack_sup -> Q11

 |ack_from_B -> Q43

 |rec_quote -> Q47),

 Q47 = (ack_sup -> Q12

P a g e 49 | 54

 |ack_from_B -> Q44),

 Q48 = (ack_sup -> Q13

 |send_quote_B -> Q45

 |req_sup -> Q49),

 Q49 = (ack_sup -> Q14

 |send_quote_B -> Q46

 |rec_quote -> Q50),

 Q50 = (ack_sup -> Q15

 |send_quote_B -> Q47),

 Q51 = (ack_sup -> Q16

 |reply -> Q40

 |ack_from_B -> Q52

 |rec_order -> Q56),

 Q52 = (ack_sup -> Q17

 |reply -> Q41

 |rec_order -> Q53),

 Q53 = (ack_sup -> Q18

 |reply -> Q42

 |req_sup -> Q54),

 Q54 = (ack_sup -> Q19

 |reply -> Q43

 |rec_quote -> Q55),

 Q55 = (ack_sup -> Q20

 |reply -> Q44),

 Q56 = (ack_sup -> Q21

 |reply -> Q45

 |ack_from_B -> Q53

 |req_sup -> Q57),

 Q57 = (ack_sup -> Q22

 |reply -> Q46

 |ack_from_B -> Q54

 |rec_quote -> Q58),

 Q58 = (ack_sup -> Q23

 |reply -> Q47

 |ack_from_B -> Q55),

 Q59 = (ack_sup -> Q24

 |reply -> Q48

 |send_quote_B -> Q56

 |req_sup -> Q60),

 Q60 = (ack_sup -> Q25

 |reply -> Q49

P a g e 50 | 54

 |send_quote_B -> Q57

 |rec_quote -> Q61),

 Q61 = (ack_sup -> Q26

 |reply -> Q50

 |send_quote_B -> Q58),

 Q62 = (ack_sup -> Q27

 |req_loan -> Q51

 |ack_from_B -> Q63

 |rec_order -> Q67),

 Q63 = (ack_sup -> Q28

 |req_loan -> Q52

 |rec_order -> Q64),

 Q64 = (ack_sup -> Q29

 |req_loan -> Q53

 |req_sup -> Q65),

 Q65 = (ack_sup -> Q30

 |req_loan -> Q54

 |rec_quote -> Q66),

 Q66 = (ack_sup -> Q31

 |req_loan -> Q55),

 Q67 = (ack_sup -> Q32

 |req_loan -> Q56

 |ack_from_B -> Q64

 |req_sup -> Q68),

 Q68 = (ack_sup -> Q33

 |req_loan -> Q57

 |ack_from_B -> Q65

 |rec_quote -> Q69),

 Q69 = (ack_sup -> Q34

 |req_loan -> Q58

 |ack_from_B -> Q66),

 Q70 = (ack_sup -> Q35

 |req_loan -> Q59

 |send_quote_B -> Q67

 |req_sup -> Q71),

 Q71 = (ack_sup -> Q36

 |req_loan -> Q60

 |send_quote_B -> Q68

 |rec_quote -> Q72),

 Q72 = (ack_sup -> Q37

 |req_loan -> Q61

P a g e 51 | 54

 |send_quote_B -> Q69),

 Q73 = (order_sup -> Q38

 |reply -> Q74

 |send_quote_B -> Q86

 |rec_order -> Q94),

 Q74 = (order_sup -> Q39

 |send_quote_B -> Q75

 |rec_order -> Q83),

 Q75 = (order_sup -> Q40

 |ack_from_B -> Q76

 |rec_order -> Q80),

 Q76 = (order_sup -> Q41

 |rec_order -> Q77),

 Q77 = (order_sup -> Q42

 |req_sup -> Q78),

 Q78 = (order_sup -> Q43

 |rec_quote -> Q79),

 Q79 = (order_sup -> Q44),

 Q80 = (order_sup -> Q45

 |ack_from_B -> Q77

 |req_sup -> Q81),

 Q81 = (order_sup -> Q46

 |ack_from_B -> Q78

 |rec_quote -> Q82),

 Q82 = (order_sup -> Q47

 |ack_from_B -> Q79),

 Q83 = (order_sup -> Q48

 |send_quote_B -> Q80

 |req_sup -> Q84),

 Q84 = (order_sup -> Q49

 |send_quote_B -> Q81

 |rec_quote -> Q85),

 Q85 = (order_sup -> Q50

 |send_quote_B -> Q82),

 Q86 = (order_sup -> Q51

 |reply -> Q75

 |ack_from_B -> Q87

 |rec_order -> Q91),

 Q87 = (order_sup -> Q52

 |reply -> Q76

 |rec_order -> Q88),

P a g e 52 | 54

 Q88 = (order_sup -> Q53

 |reply -> Q77

 |req_sup -> Q89),

 Q89 = (order_sup -> Q54

 |reply -> Q78

 |rec_quote -> Q90),

 Q90 = (order_sup -> Q55

 |reply -> Q79),

 Q91 = (order_sup -> Q56

 |reply -> Q80

 |ack_from_B -> Q88

 |req_sup -> Q92),

 Q92 = (order_sup -> Q57

 |reply -> Q81

 |ack_from_B -> Q89

 |rec_quote -> Q93),

 Q93 = (order_sup -> Q58

 |reply -> Q82

 |ack_from_B -> Q90),

 Q94 = (order_sup -> Q59

 |reply -> Q83

 |send_quote_B -> Q91

 |req_sup -> Q95),

 Q95 = (order_sup -> Q60

 |reply -> Q84

 |send_quote_B -> Q92

 |rec_quote -> Q96),

 Q96 = (order_sup -> Q61

 |reply -> Q85

 |send_quote_B -> Q93),

 Q97 = (order_sup -> Q62

 |req_loan -> Q86

 |ack_from_B -> Q98

 |rec_order -> Q102),

 Q98 = (order_sup -> Q63

 |req_loan -> Q87

 |rec_order -> Q99),

 Q99 = (order_sup -> Q64

 |req_loan -> Q88

 |req_sup -> Q100),

 Q100 = (order_sup -> Q65

P a g e 53 | 54

 |req_loan -> Q89

 |rec_quote -> Q101),

 Q101 = (order_sup -> Q66

 |req_loan -> Q90),

 Q102 = (order_sup -> Q67

 |req_loan -> Q91

 |ack_from_B -> Q99

 |req_sup -> Q103),

 Q103 = (order_sup -> Q68

 |req_loan -> Q92

 |ack_from_B -> Q100

 |rec_quote -> Q104),

 Q104 = (order_sup -> Q69

 |req_loan -> Q93

 |ack_from_B -> Q101),

 Q105 = (order_sup -> Q70

 |req_loan -> Q94

 |send_quote_B -> Q102

 |req_sup -> Q106),

 Q106 = (order_sup -> Q71

 |req_loan -> Q95

 |send_quote_B -> Q103

 |rec_quote -> Q107),

 Q107 = (order_sup -> Q72

 |req_loan -> Q96

 |send_quote_B -> Q104).

P a g e 54 | 54

References

[1] Mohammad Salah Uddin, “Web Service Composition: A Comparison of BPEL with A

Process Algebra”, Lambert Academic Publishing, ISBN: 978-3-659-46748-6.

[2] Howard Foster “A Rigorous Approach to Engineering Web Service Compositions”, January

2006.

[3] http://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html

[4] Jaejoon Lee, Kotonya, G “Combining Service Orientation with Product Line Engineering.”

In IEEE Software, 27 (3): 35-41, 2010. DOI BibTeX

[5] Fatemeh Mafi, Shariar Mafi, Mehran Mohsenzadeh, Service Composition in Service Oriented

Product Line. (IJCSE) International Journal on Computer Science and Engineering Vol. 02, No.

09, 2010, 2859-2864

[6] G. Kotonya, J. Lee, and D. Robinson, “A Consumer- Centered Approach for Service-

Oriented Product Line Development,” Proc. Working IEEE/IFIP Conf. Software Architecture

(WICSA 09), IEEE Press, 2009, pp. 211–220.

[7] E. Christensen et al., Web Services Description Language (WSDL) 1.1, World Wide Web

Consortium (W3C) note, Mar. 2001, www.w3.org/TR/wsdl.

[8] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: A QoS Ontology for Service-Centric

Systems,” Proc. 31st Euromicro Conf. Software Eng. and Advanced Applications, IEEE CS

Press, 2005, pp. 80–87

[9] A. Josang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for Online

Service Provision,” Decision Support Systems, vol. 43, no. 2, 2007, pp. 618–644.

[10] Artemios Kontogogos and Paris Avgeriou, “An Overview of Software Engineering

Approaches to Service Oriented Architectures in Various Fields”, 2009 18th IEEE International

Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises.

