
 

                         East West University 

 

    Logic Based Verification of Software      

  Product Line Feature Model 

                                           

by 

Mirza Faisal Md. Abdul Bari 

& 

Morium Akter 

 

A thesis submitted in partial fulfillment for the 

degree of Bachelor of Science in Computer Science and  Engineer 

 

in the 

Faculty of Science and Engineering 

Department of computer Science and Engineering 

 

December 2014 



Declaration 

We hereby declare that this submission is our own work and that to the best of our 

knowledge and belief it contains neither material nor facts previously published or 

written by another person. Further, it does not contain material or facts which to a 

substantial extent have been accepted for the award of any degree of a university or 

any other institution of tertiary education except where an acknowledgement. 

 

 

 

 

 

 

 

 

 

(MoriumAkter) 

ID:2010-2-60-010 
 

 

 

 

 

(Mirza Faisal Md. A. Bari) 
ID: 2010-2-68-015 



 

 

Letter of Acceptance 

The project entitled “Logic Based Verification of Software Product Line 

Feature Model” submitted by Mirza Faisal Md. Abdul Bari (ID: 2010-2-68-015) 

and MoriumAkter(ID:2010-2-60-010),to the department of Computer Science and 

Engineering, East West University, Dhaka, Bangladesh is accepted by the 

department in partial fulfillment of requirements for the Award of the Degree of 

Bachelor of  Science in Computer Science and Engineering on December 2014 

 

Board of Examiners 

 

 

Dr. Shamim H. Ripon 

Associate Professor& Chairperson 

Department of Computer Science and Engineering  

East West University, Dhaka-1212, Bangladesh  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

                                    Acknowledgements 
First of all Thanks to ALLAH for the uncountable blessings on us. Thanks to our 

Supervisor and chairperson Dr. Shamim  Hasnat  Ripon for providing us this opp 

ortunity to test our skills in the best possible manner. He enlightened, encouraged  

and provided us with ingenuity to transform our vision into reality. East West Univ- 

ersity, for his encouragement, guidance and counseling. Thanks to our family who  

helped us out during this project. 



i 
 

Abstract 

Feature diagrams are widely used to model product line variant . Formal Verification of variant 

requirements has gained much interest in the software product line(SPL) community . However, 

there is a lack of precisely defined formal notation for representing and verifying such models. 

This report presents an approach to modeling and analyzing SPL variant feature by Logic Based 

and also First order logic. The logical representation provides a precise and rigorous formal 

interpretation of the feature diagrams. Logical expressions can be built by modeling variants and 

their dependencies by using propositional connectives. These expressions can then be validated 

by any suitable verification tool such as Alloy. A case study of two Feature Model (GPL & Hall 

Booking System) variant feature model is presented to illustrate the analysis and verification 

process. 
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Chapter  1 

 

Introduction 

 

1.1  Introduction 
 

Software product line is a set of software-intensive systems that share a common, 

managed set of features satisfying the specific needs of a particular market segment or 

mission and that are developed from a common set of core assets in a prescribed way. 

Software product lines are emerging as a viable and important development paradigm 

allowing companies to realize order-of-magnitude improvements in time to market, 

cost, productivity, quality, and other business drivers[24]. Software product line 

engineering can also enable rapid market entry and flexible response, and provide a 

capability for mass customization.  

 

A software product line is a set of software-intensive systems sharing a common, 

managed set of features that satisfy the specific needs of a particular market segment 

or mission and that are developed from a common set of core assets in a prescribed 

way [21]. Core assets are the basis for software product line. The core assets often 

include the architecture, reusable software components, domain models, requirements 

statements, documentation and specifications, performance model, etc. Different 

product line members may differ in functional and non-functional requirements, 

design decisions, run-time architecture and interoperability (component structure, 

component invocation, synchronization, and data communication), platform, etc. The 

product line approach integrates two basic processes: the abstraction of the 

commonalities and variability of the products considered (development for reuse) and 

the derivation of product variants from these abstractions (development with reuse) 

[22]. The main idea of software product line is to explicitly identify all the 

requirements that are common to all members of the family as well as those that 

varies among products in the family. This implies a huge model that help the 

stakeholders to be able to trace any design choices and variability decision. A 

particular product is then derived by selecting the required variants and configuring 

them according to the product requirements. 

 

Common requirements among all family members are easy to handle and can be 

integrated into the family architecture and are part of every family member. But 

problem arises from the variant requirements among family members. Variants are 

usually modeled using feature diagram, inheritance, templates and other techniques. 
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In comparison to analysis of a single system, modeling variants adds an extra level of 

complexity to the domain analysis. Different variants might have dependencies on 

each other. Tracing multiple occurrences of any variant and understanding their 

mutual dependencies are major challenges during domain modeling. While each step 

in modeling variants may be simple but problem arises when the volume of 

information grows. As a result, the impact of variant becomes ineffective on domain 

model. Therefore, product customization from the product line model becomes 

unclear and it undermines the very purpose of domain model. 

 

1.2 Problem and  Motivation 
 

Both industry and academia have shown much interest in handling product line in 

application domains such as business systems, avionics, command and control 

systems etc. Today most of the effort in product line development are relating to 

architecture [23], detail design and code. Common requirements among all family 

members are easy to handle as they simply can be integrated into the family 

architecture and are part of every family member. But problem arises from the variant 

requirements among family members. 

 

 In aproduct line, currently variants are modeled using feature diagram, inheritance, 

templates and other techniques. In comparison to analysis of a single system, 

modeling variants adds an extra level of complexity to the domain analysis. In  any 

product line model, the same variant has occurrences in different domain model 

views. Different variants have dependencies on each other. Tracing multiple 

occurrences in different model views of any variant and understanding the mutual 

dependencies among variants are major challenges during domain modeling. While 

each step in modeling variant may be simple but problem arises when the volume of 

information grows. When the volume of information grows the domain models 

become difficult to understand. The main problems are the possible explosion of 

variant combinations, complex dependencies among variants and difficulty in tracing 

variants from the domain model down to the specification of a particular product. As 

a result, the impact of variant becomes ineffective on domain model. Therefore, 

product customization from the product line model becomes unclear and it 

undermines the very purpose of domain model. 

 

1.3  Objectives 
 

In developing product line, the variants are to be managed in domain engineering 

phase ,which scopes the product line and develops the means to rapidly produce the 

members  of the family. It serves two distinct but related purposes, firstly  it can 

record decisions about the product as a whole including identifying the variants for 
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each member and secondly ,it can support application engineering  by providing 

proper information and mechanism for the required variants during product generation 

- The objective of this work is to provide an approach for modeling 

variants in the domain model  of a product line .This model carries al 

the variant related information like specifications ,origin of variants and 

interdependencies etc. 

- Defining  the search table involves manual handling of variants ,formal  

verification is not directly admissible for  such  approach. Our objective 

is to logically representation  of feature model facilitating  the 

development of decision table in formally sound way. 

- Our  plan is perform these verification by using our logical 

representation. 

 

1.4 Contribution 
 

 In order to conduct out experiment we use a  case study  of Graph product line(GPL) 

and hall booking system  by analyzing  and  modeling  the variants as well  as  the 

variants dependencies. 

- We define six types of  logical notation to represent  all  the parts in a  

feature model. Set representation logic  has been for this purpose. This 

notations can be used to define all possible scenarios of a feature model. 

- Analyzing the feature model considering the various scenarios the        

feature model  and we define a set of rules which can be used  to verify  

the feature model .  

- We use Alloy tools for checking the valid or invalid feature model. 

Alloy use first  order logic and encode our logical definitions into Alloy 

and validity of the logical verification 

 

1.5  Outline 
 

The report is organized as follows- 

In chapter 2 we gave a brief overview of the feature model, feature model notations 

and logical representation of the feature model and describe some logical operators, 

domain activities and give a brief review of the model analyzer  named alloy with an 

example model. 

In Chapter 3 We have gave an overview of GPL and an hall booking   feature tree. 

In chapter 4 we discuss about the logical representation and describe their logical 

relations and analyze the set representation 

Chapter 5 We presents the alloy representation of the logical notations. We illustrate 

the steps how the logical representations are encoded into alloy and how the 

verification has been preformed. Chapter 6Concludes the thesis by summarizing our 

work . Finally we outline our future plan 
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Chapter 2 

 

Background 

2.1   Feature Model 
 

Feature modeling is a key approach to capturing and managing the common and 

variable features of systems in a system family or a product line. In the early stages of 

software family development, feature models provide the basis for scoping the system 

family by recording and assessing information such as which features are important to 

enter a new market or remain in an existing market, which features incur a 

technological risk, what is the projected development cost of each feature, and so 

forth [1]. Later, feature models play a central role in the development of a system 

family architecture, which has to realize the variation points specified in the feature 

models [2][ 3]. In application engineering, feature models can drive requirements 

elicitation and analysis. Knowing which features are available in the software family 

may help customers decide which features their system should support. Knowing 

which desired features are provided by the  system family and which have to be 

custom-developed helps to better estimate the time and cost needed for developing the 

system. 

 

 A software pricing model  could also be based on the additional information recorded 

in a feature model. Feature models also play a key role in generative software 

development [2][4]. Generative software development aims at automating application 

engineering based on system families: a system is generated from a specification 

written in one or more textual or graphical domain-specific languages (DSLs). In this 

context, feature models are used to scope and develop DSLs [2][5], which may range 

from simple parameter lists or feature hierarchies to more sophisticated DSLs with 

graph-like structures. Feature modeling was proposed as part of the Feature-Oriented 

Domain Analysis (FODA) method [6], and since then, it has been applied in a number 

of domains including telecom systems [10][11], template libraries [2], network 

protocols [8], and embedded systems [9]. Based on this growing experience, a number 

of extensions and variants of the original FODA notation have been proposed 

[6][7][9][10]. 
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Example

 
                                  Fig2.1: Feature model for  mobile phone 

2.1.1   Feature Modeling Notations 

Current feature modeling notations may be divided into three main groups, 

namely: 

 Basic feature models 

 Cardinality-based feature models 

 Extended feature models 

2.1.1.1  Basic Feature Models 
 

Czarnecki‘s notation proposes four relations, namely: mandatory, optional, alternative 

and or–relation.[25] In these relations, there is always a parent feature and one (in 

the case of mandatory and optional relations) or more (in the case of alternative and 

or–relation) child features. 

 Mandatory - child feature is required. 

 Optional – child feature is optional. 

 Or – at least one of the sub-features must be selected. 

 Alternative (xor) – one of the sub-features must be selected 

In addition to the parental relationships between features, cross-tree constraints are 

allowed. The most common are: 

 A requires B – The selection of A in a product implies the selection of B. 

 A excludes B – A and B cannot be part of the same product. 
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2.1.1.2   Cardinality-Based Feature Models 

Some authors propose extending basic feature models with UML-like multiplicities of 

the form [n,m] with n being the lower bound and m the upper bound. These are used 

to limit the number of sub-features that can be part of a product whenever the parent 

is selected.[26]If the upper bound is m the feature can be cloned as many times as we 

want (as long as the other constraints are respected). This notation is useful for 

products extensible with an arbitrary number of components. 

 

2.1.1.3   Extended Feature Models 
 

Current proposals only deal with characteristics related to the functionality offered by 

an SPL (functional features). Thus, there exists no solid proposal for dealing with the 

remaining characteristics, also called extra-functional features. There are several 

concepts that we would like to clarify before analyzing current proposals and framing 

our 

contribution: 

 Feature: a prominent characteristic of a product. Depending on the stage of 

development, it may refer to a requirement  (if products are requirement 

documents),acomponent in an architecture [26] (if products are component 

architectures) or even to pieces of code  (if products are binary code in a 

feature oriented programming approach) of an SPL. 

 Attribute: the attribute of a feature is any characteristic of a feature that can be 

measured. Availability and cost are examples of attributes of the Service 

feature .Latency and bandwidth may be examples of attributes of an Internet 

connection. 

 Attribute domain: the space of possible values where the attribute takes its 

values. Every attribute belongs to a domain. It is possible to have discrete 

domains (e.g: Integers,Booleans , enumerated) or continuous domains (e.g.: 

real). 

 Extra–functional feature: a relation between one or more attributes of a 

feature. For instance: bandwidth Latency Availability and so on. These  

relations are associated to a feature. 

 

2.2 Logical Representation 
 

Logic has been studied since the classical Greek period (600-300BC). The Greeks, 

most notably Thales, were the first to formally analyze the reasoning process. 

Aristotle (384-322BC), ―the father of logic‖, and many other Greeks searched for 

universal truths that were irrefutable. A second great period for logic came with the 

http://en.wikipedia.org/wiki/Unified_Modeling_Language
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use of symbols to simplify complicated logical arguments. Gottfried Leibniz (1646-

1716) began this work at age 14, but failed to provide a workable foundation for 

symbolic logic. George Boole (1815-1864) is considered the ―father of symbolic 

logic‖. He developed logic as an abstract mathematical system consisting of defined 

terms (propositions), operations (conjunction, disjunction, and negation), and rules for 

using the operations. Boole‘s basic idea was that if simple propositions could be 

represented by precise symbols, the relation between the propositions could be read as 

precisely as an algebraic equation. Boole developed an ―algebra of logic‖  in which 

certain types of reasoning were reduced to manipulations of symbols. 

 

2.2.1   Logical operators 
 

1. Negation Operator: ―not‖, has symbol ―¬‖ : 

Example: p: This book is interesting. Then p can be read as ―This book is not 

interesting‖. 

2.2.1 Truth Table  for  Negation operator 

P ¬P 

T  F 

F  T 

 

The negation operator is a unary operator which, when applied to a proposition p, 

changes the truth value of p. That is, the negation of a proposition p, denoted by ¬p, is 

the proposition that is false when p is true and true when p is false. 

 

2. Conjunction Operator: ―and‖, has symbol ―^‖. 

 Example:  

p: This book is interesting. 

q: I am staying at home. p^q: This book is interesting and I am staying at 

home. 

2.2.2 Truth Table for conjunction operator 

P Q P^Q 

T T T 

T F F 

F T F 

F F F 

 

    The conjunction operator is the binary operator which, when applied to two 

propositions p and q, yields the proposition ―p and q‖, denoted p^q. The conjunction 

p^q of p and q is the proposition that is true when both p and q are true and false 

otherwise. 

3. Disjunction Operator: inclusive ―or‖, has symbol ―‖. 

 Example: 
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p: This book is interesting 

q: I am staying at home. 

p_q: This book is interesting, or I am staying at home. 

2.2.3 Truth Table for Disjunction operator 

P Q P Q 

T T T 

T F T 

F T T 

F F F 

 

The disjunction operator is the binary operator which, when applied to 

twopropositions p and q, yields the proposition ―p or q‖, denoted p_q. The disjunction 

p_q of p and q is the proposition that is true when either p is true, q is true, or both are 

true, and is false otherwise 

4. Exclusive Or Operator: ―xor‖, has symbol ―‖. 

Example: 

p: This book is interesting 

q: I am staying at home. 

p_q: Either this book is interesting or I am staying at home, but not both. 

2.2.4Truth table for Exclusive operator 

P Q PQ 

T T F 

T F T 

F T T 

F F F 

 

The exclusive or is the binary operator which, when applied to two propositions p and 

q yields the proposition ―p xor q‖, denoted pq, which is true if exactly one of p or q is 

true, but not both. It is false if both are true or if both are false. 

5. Implication Operator :―if...then...‖, has symbol ―‖ .  

Example: 

p: This book is interesting. 

q: I am staying at home. 

pq: If this book is interesting, then I am staying at home. 

Truth Table: 
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2.2.5 Truth table  for Implicit Operator 

 

P Q PQ 

T T T 

T F F 

F T T 

F F T 

 

The implication p)q is the proposition that is often read as ―if p then q‖. If ―p then q‖ 

is false precisely when p is true but q is false. 

6. Biconditional Operator: ―if and only if‖, has symbol ―‖ 

 Example: 

p: This book is interesting. 

q: I am staying at home. 

p,q: This book is interesting if and only if I am staying at home. 

2.2.6 Truth table  for Biconditional Operator 

 

P Q PQ 

T T T 

T F F 

F T F 

F F T 

 

The bi-conditional statement is equivalent to (p)q)^(q )p). 

In other words: For p,q to be true we must have both p and q true. 

 

2.3   Propositional Formulas 
 

Mannion was the first to connect propositional formulas to product-lines [14]; we 

show how his results integrate with those. A propositional formula is a set of Boolean 

variables and a propositional logic predicate that constrains the values of these 

variables. Besides the standard ∧, ∨, ¬, ⇒, and ⇔ operations of propositional logic, 

we also use choose1(e1…ek)to mean at most one of the expressions e1…ek is true. 

More generally, chose n,m(e1…ek) means at least n and at most m of the expressions 

e1…ek are true, where 0≤n≤m≤k. A grammar is a compact representation of a 

propositional formula. A variable of the formula is either: a token, the name of a non-

terminal, or the name of a pattern. For example, the production: 

r : A B :: P1 

| C [r1] :: P2 ; 

has seven variables: three {A, B, C}are tokens, two are non-terminals {r, r1}, and two 

are names of patterns {P1, P2}. Given these variables, the rules for mapping a 

grammar to a propositional formula are straightforward. 
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2.4 Domain Engineering and Application 

Engineering 

Domain is an area of knowledge that uses common concepts for describing 

phenomena, requirements, problems, capabilities, and solutions that are of interest to 

some stakeholders. A domain is usually associated with well-defined or partially 

defined terminology. This terminology refers to the basic concepts in that domain, 

their definitions (i.e., their semantic meanings), and their relationships. It sometime 

also refers to behaviors that are desired, forbidden, or perceived within the domain. 

Domain engineering is a set of activities that aim at developing, maintaining, and 

managing the creation and evolution of domains. Domain engineering has become of 

special interest to the information systems and software engineering communities for 

several reasons. These reasons include, in particular, the need to manage increasing 

requirements for variability of information and software systems (reflecting 

variability in customer requirements); the need to minimize accidental complexity 

when modeling the variability of a domain; and the need to obtain, formalize, and 

share expertise in different, evolving domains.  

Domain engineering as a discipline has practical significance as it can provide 

methods and techniques that may help reduce time-to-market, product cost, and 

project risks on one hand, and help improve product quality and performance on a 

consistent basis on the other hand. It is used, researched, and studied in various fields, 

the main ones of which are Software Product Line Engineering, Domain-Specific 

Language Engineering, and Conceptual Modeling &amp; Knowledge Engineering. 

Domain engineering is designed to improve the quality of developed software 

products through reuse of software artifacts. Domain engineering shows that most 

developed software systems are not new systems but rather variants of other systems 

within the same field. As a result, through the use of domain engineering, businesses 

can maximize profits and reduce time-to-market by using the concepts and 

implementations from prior software systems and applying them to the target system. 

The reduction in cost is evident even during the implementation phase. One study 

showed that the use of domain-specific languages allowed code size, in both number 

of methods and number ofsymbols, to be reduced by over 50%, and the total number 

of lines of code to be reduced by nearly 75%. 

Domain engineering focuses on capturing knowledge gathered during the software 

engineering process. By developing reusable artifacts, components can be reused in 

new software systems at low cost and high quality. Because this applies to all phases 

of the software development cycle, domain engineering also focuses on the three 

primary phases: analysis, design, and implementation, paralleling application 

engineering. This produces not only a set of software implementation components 

relevant to the domain, but also reusable and configurable requirements and designs. 

http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Debugging_symbol
http://en.wikipedia.org/wiki/Lines_of_code
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Source_code
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An application engineer plans the design and implementation of technology products 

like specialty industry equipment or computer programs. He or she works together 

with a company‘s manufacturing, sales, and customer service departments. 

Companies typically require this type of worker to have a four-year degree along with 

years of field experience. He or she should have good communication, math and 

teamwork skills. 

Domain engineering, like application engineering, consists of three primary phases: 

analysis, design, and implementation. However, where software engineering focuses 

on a single system, domain engineering focuses on a family of systems. A good 

domain model serves as a reference to resolve ambiguities later in the process, a 

repository of knowledge about the domain characteristics and definition, and a 

specification to developers of products which are part of the domain. 

 

2.5 Alloy Analyzer 

 
Alloy is a language for describing structures and a tool for exploring them. It 

has been used in a wide range of applications from finding holes in security 

mechanisms to designing telephone switching networks. 

An Alloy model is a collection of constraints that describes (implicitly) a set 

of structures, for example: all the possible security configurations of a web 

application, or all the possible topologies of a switching network. Alloy‘s 

tool, the Alloy Analyzer, is a solver that takes the constraints of a model and 

finds structures that satisfy them. It can be used both to explore the model by 

generating sample structures, and to check properties of the model by 

generating counterexamples. Structures are displayed graphically, and their 

appearance can be customized for the domain at hand. 

At its core, the Alloy language is a simple but expressive logic based on the 

notion of relations, and was inspired by the Z specification language and 

Tarski‘s relational calculus. Alloy‘s syntax is designed to make it easy to 

build models incrementally, and was influenced by modeling languages (such 

as the object models of OMT and UML). Novel features of Alloy include a 

rich subtype facility for factoring out common features and a uniform and 

powerful syntax for navigation expressions. Alloy and Alloy Analyzer were 

developed by Daniel Jackson‘s group at MIT.[17] 

Two Statements About Alloy 

―The examples and exercises, if given time, thought, and effort, can make 

better designers of all of us, as Alloy is a powerful force-multiplier in the war 

on bugs... Jackson‘s Software Abstractions has my highest recommendation. It 

is being put to immediate use in my group‘s venue of software-based safety-

critical systems‖—George Hacken, Computing Reviews [17]. 

http://www.wisegeek.com/what-is-customer-service.htm
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―Systems like Alloy should be in the toolbox of all software designers and 

developers, so such a comprehensive book on this topic is very welcome.‖  

—Anthony M. Sloane, Journal of Functional Programming[17] 

 

2.5.1 Short Note About Alloy 
 

• Alloy is an object oriented modeling language 

• Alloy has formal syntax and semantics 

• Alloy specifications can be written in ASCII 

• Alloy also has a visual language similar to UML class diagrams 

• Alloy has a constraint analyzer which can be used to automatically 

analyzeproperties of Alloy models 

 

2.5.2 Syntax and Semantics 

 
Sig:. Signatures that are used for defining  new  types  and constraints. Each signature  

denotes  a set  of objects, which are associated  to other objects by relation declared in 

the signature. A  signature paragraph introduces a type  and a collection   of  relations 

such as- person, feature, person ,Relation and etc. In this alloy  sets- sig declarations 

defining the signature.  The sig notations – 

 

sig   Relation{ 

parent : Name 

child: set Name 

Type:Type} 

 

A FM  include various types of relations . A sig  can represent the several feature  at a 

time. So- 

 

abstract  sig  Type {} 

One  sig  v,v1,v11,v2,v21 extends Type {} 

 

Predicate are used to package reusable formulas. The subsequent  fragment declares 

the relation . Pred declarations defining the predicate. The pred notations- 

 

pred  own Grandpa[p:person ] { 

p in grandpas[p] 

} 

A configuration  relation ,which contains a set  of feature names (selected for a given 

software product) ,is    represented by the following  sig. It is important to notice that 
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this signature is a datatype.A data type  has an implicit generates all possible 

combination ,as stated by the fact configdatatype. 

 

sigconf{ 

 Value: set Name 

}  

factconfigdatatype{ 

all n:set Name |  some c:conf | c.value=n 

} 

 

Multiplicity  is used to define the number of objects required. It has some kinds like  

set(zero or more) 

one  (exactly one) 

lone(zero or none) 

some (one or more) 

Those examples:- 

 

one sig  A{}     // A is singleton set 

lone sig  B{}    // B is a singleton or empty 

some sig  C{}  //   C is  a non-empty set 

 

2.5.3 Instances and Meaning 
 

A model‘s meaning is several collections of instances. An  instances a binding of 

values to variables. Typically, a single instance represents a state, or a pair of states 

(corresponding to execution of anoperation), or an execution trace. The language has 

no built-in notion of state machines, however, so an instance need not represented of 

these things. 

 

The collections of instances assigned to a model are: 

 

 A set signatures andtheir fields, and they bind values to them that make this of 

core instances associated with the facts of the model, and the constraints 

implicit in the signature declarations. These instances have as their variables 

the signature and their  fields. 

 

 

 For each function or predicate, a set of those instances for which the facts and 

declaration constraints of the model asa whole are true, and additionally the 

constraint of the function or predicate are true. The variables of these instances 

are those of the core instances, extended with the arguments of the function or 

predicate. 
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 For each assertion, a set of those instances for which the facts and declaration 

constraints of the model as a whole are true, but for which the constraint of the 

assertion is false. 

 

 A model without any core instances is inconsistent, and almost certainly 

erroneous. A function or predicate without instances is like wise inconsistent, 

and is unlikely to be useful. An assertion is expected not to have any 

instances: the instances are counterexamples, which indicate that the assertion 

does not follow from the facts. 

 

 The Alloy Analyzer finds instances of a model automatically by search within 

finite bounds (specified by the user as a scope). Because the search is 

bounded, failureto find an instance does not necessarily mean that one does 

not exist. But instances that are found are guaranteed to be valid. 
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Chapter 3 

 

Case Study 

 

3.1   Introduction of GPL 

 
We offer the following domain as an example to compare and contrast approaches to 

the definition and implementation of product-line architectures. We believe this a 

good example, because it deals with a classical domain whose algorithms (i.e., graph 

algorithms) are common-knowledge to computer scientists.  This relieves readers of 

burden and overhead that accompanies the understanding of an unfamiliar domain.  

 
Figure:3.1The  graph product  line feature model 

 

3.1.1Overview of GPL Feature Tree 

 
A possible feature diagram for the graph library is shown in the root is labeled with 

GraphLibraryto represent a graph product (That is , a graph library). It has Two 

mandatory child feature Graphtype,Algorithmbecause each graph library has to 

implement an graph type, which is either Directed or Undirected and Weighted or 

Unweighted.Furthermore, oneother child features of the root is optional Search. 

Search strategies may be either breadth-first search(BFS) or depth –first search 
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(DFS). Since it is optional, either zero or one Feature  may be present in a graph 

product.Algorithm offers a selection of graph algorithms as child features & the child 

Features are ShortestPath, Coloring, Cycle Detection,MST and 

StronglyConnected.Since they are in ‗Or‘ feature,either one or more feature may be 

present in graph product line.In our example the algorithm for coloring has two 

alternative implementations, BruteForce and approximation. Some non-local 

conditions are modeled as explicit Boolean constraints – for example ,minimal 

spanning trees(MST) makes only sense for weighted graphs, andShortestPathcan be 

computed for directed graphs only. 

 

3.2 Hall Booking System Feature Tree 

 
Hall Booking software is online/manual  booking software for room and conference 

facility reservations. This software makes booking more efficient for clients, staff, and 

conference facilities. It  simplifythe process, maximize capacity, and provide a 

seamless service from first click to confirmation 

 
                                         Fig:3.2 Hall Booking System Feature Tree 
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3.2.1 Overview of Hall Booking System 

 
We use Hall Booking System family to illustrate our variability modeling mechanism. 

The system is used in academic institutions to reserve tutorial rooms and lecture halls, 

at companies to reserve meeting rooms, and at hotels to reserve rooms and conference 

facilities, etc. In another sense, the system can be used for either academic or non-

academic purposes. Users can manage their own reservation with the system. The 

main purpose and the core functionality are similar across the Hall Booking System 

family; however, there are many variants on the basic theme. One of the basic variants 

is the charging of the booking system. Whenever the system is used for academic 

purposes, no charge is needed for booking halls, whereas there may be a need to 

charge for booking halls in other areas. In some systems, there are facilities available 

for seasonal booking as well as multiple bookings. 

 

The Root of  this system is Functional Feature of Hall Booking System. It has Five 

Direct Feature. Two of them are Mandatory Feature and they are  Reservation Mode 

and Reservation Management. Three of the features are Optional and they are 

Reservation Charge, notification and Handle Conflict. Under Reservation Charge 

feature there has four child feature and they are Deposit, Tax, Basic Charge and 

Discount and all of them are in Or relationship with there parent feature Reservation 

Charge. The Block and Single feature are in Alternative Relationship with there 

Parent Feature Reservation Mode and Under Block Parent feature Multiple Rooms and 

Multiple Time are in Or relationship. On the Other hand Block under Reservation 

Mode and Discount feature under Reservation Charge are in Require Relationship. 

Notification contain three Child feature in Or relation and they are Print Paper, Email 

and Fax. Add Modify and Delete are two mandatory Feature under the Reservation 

Management Parent Feature. 
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Chapter  4 

 

Logical Modeling of Feature Tree 
 

4.1 Introduction 
 

Logic has been studied since the classical Greek period(600-300BC). The Greeks , 

most notableThalas, were the first to formally analyze the reasoning process. Aristotle 

(384-322BC) , ―The father of logic‖, and many other Greeks searched for universal 

truths that were irrefutable.  A second great period for logic came with the use of 

symbols to simplify complicated logical arguments. Gottfried Leibniz (1646-1716) 

began this work at age 14, but failed to provide a workable foundation for symbolic 

logic. George Booke (1815-1864) is considered the ―Father of symbolic logic‖ He 

developed logic as an abstract mathematical system consisting of defined 

terms(Proposition), operations(Conjunction, Disjunction and negation), and rules for 

using the operation. Boole‘s basic idea was that if simple propositions could be 

represented by precise symbols, the relation between the propositions could be read as 

precisely as an algebraic equation. Boole developed an ―Algebra of logic‖ in which 

certain types of reasoning were reduced to manipulations of symbols. 
A feature model is a hierarchically arranged set of features. The relationships between 

a parent (or variation point) feature and its child features (Variations) are categorized 

as follows: 

 

 
         Mandatory 

             4.1 (a) 

 
           Optional 

             4.1 (b) 

 
               Or 

            4.1 (c) 

 
          Alternative 

             4.1 (d)            

 
         Optional Alternative 

                  4.1 (e) 

 
             Optional Or 

                  4.1 (f) 

                                  Fig: 4.1 Notations of the feature rules 
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 Mandatory : A mandatory feature is included if its parent feature is included. 

Mandatory feature is represented by a small circle on the child node. A filled 

bullet denotes a mandatory  ( In fig : 4.1 (a) ) feature and features that are 

required. 

 

 Optional: An optional Feature may or may not be include if its parent is 

included.Optional Feature is represented by a small circle on the child node. A 

empty bullet denotes( In fig : 4.1 (b) ) a optional feature and features that are 

optional .The set notation for optional feature is… 

 

 

 OR Feature: At least one from a set of or feature is included when parent is 

included  and one or more features can be selected when the parent feature 

appears. Feature is represented by a filled triangle ( In fig : 4.1 (c) ) denotes 

the or Feature. 

 

 Alternative: One and only one feature from a set of alternative features are 

included when parent feature is included that means exactly one sub-feature 

must be selected. Feature is  represented by a unfilled( In fig : 4.1 (d) )  

triangle denotes the alternative. 

 

 Optional alternative: One feature from a set of alternative features may or may 

not be included if parent in included. Feature is represented by a unfilled 

triangle and empty bullets( In fig : 4.1 (e) )  denotes the optional alternative. 

 

 Optional or: One or more optional feature may be included if the parent is 

included. Optional Or Feature is represented by  a filled triangle ( In fig : 4.1 

(f) ) and filled bullets denotes the optional or. 
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4.1.1 Logical expression of feature tree 

 

 
Fig 4.1.1: Logical  notations of feature model 

 

 

4.2 Set representation of SPL(Software Product 

Line) 

 

4.2.1  Feature Types 

 
If we want to represent SPL(Software Product Line) feature rules by set then we have 

to think the whole element situated in a set ―conf‖. 

Mandatory: We assume that ―x‖ and ―A‖ are two elements inconf Set. Now for 

define the mandatory feature For all ―x‖ and ―A‖ where ―x‖ and ―A‖ belongs to Set 

Conf. Then both are Dependent to each other. That means where ―x‖ is present ―A‖ 

must be present and also where ―A‖ is present ―x‖ must be present. One cant be 

imagined except another. 
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                     Fig:4.2.1 Set Representation for Mandatory Feature 

 

x,A. x confA conf x    A  

 

4.2.1 Truth table for Mandatory Feature 

 

X A XA 

T T T 

T F F 

F T F 

F F F 

 

Optional:We assume that ―x‖ and ―A‖ are two elements in confSet.―x‖ and ―A‖ are 

two elements in this Set. Now for define the optional feature For all ―x‖ and ―A‖ 

where ―x‖ and ―A‖ belongs to Set Conf. Then  ―x― is Dependent to ―A‖. That means 

where ―x‖ is present ―A‖ must be present but  where ―A‖ is present ―x‖ may or may 

not be present. 

 

 
Fig:4.2.2 Set Representation for Optional Feature 

 

conf 

conf 

x 

 

A 

x 

 

A 
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x,A. x conf A conf x        A  

4.2.2 Truth Table For Optional Feature 

 

X A XA 

T T T 

T F F 

F T T 

F F T 

                             

 

Alternative:We assume that ―x‖ ,‖y‖and ―A‖ are three elements inconf Set. Now 

for define the Alternative feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and  ―A‖ 

belongs to Set Conf. Then if ―A‖is included to feature then ―x‖ or ―y‖must be 

included in feature . .sign  represent the XOR        (any one must be selected) 

relationship.‖A‖ cantbe imagined except any of them. 

 

                     

                        Fig:4.2.3 Set Representation for Alternative Feature 

 

x,y,A. x conf  y conf  A conf  x      y         A 

 

4.2.3 Truth Table For Alternative Feature 

 

X Y A XY (XY)A 

T F T T T 

T F F T F 

T T T F F 

T T F F T 

F F T F F 

F F F F T 

F T T T T 

F T F T F 

                     

 

conf 

x               y 

A 
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Optional Alternative:We assume that ―x‖ ,‖y‖ and ―A‖ are three  elements in 

conf Set. Now for define the Alternative feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ 

,‖y‖ and  ―A‖ belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖ 

may or may not be  included in feature .   sign  represent the XOR      (any one must 

be selected) relationship. 

 

                 

            Fig:4.2.4 Set Representation for optional Alternative Feature 

 

x,y,A. x conf  y conf  A conf  x      y         A 

 

4.2.4Truth Table For Optional Alternative Feature 

 

X Y A XY (XY)A 

T F T T T 

T F F T F 

T T T F T 

T T F F T 

F F T F T 

F F F F T 

F T T T T 

F T F T F 

                    

 

Or Feature:A set of child features are said to have an or-relation with their parent 

when one or more sub features can be selected when the parent feature appears. Now 

for set representation, We assume that ―x‖ ,‖y‖ and ―A‖ are three  elements in conf 

Set. Now for define the Or  feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and  ―A‖ 

belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖ or may both  

included in feature .But one child feature must be included if the parent feature 

included. ―ᴠ‖  sign  represent the Or (any one must be selected) relationship. 

 

conf 

x                y 

        A        
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                               Fig:4.2.5 Set Representation for Or Feature 

 

x,y,A. x conf  y conf  A conf (x  y)         A 

 

4.2.5 Truth Table For Or Feature: 

 

X Y A X  Y (XY)A 

T F T T T 

T F F T F 

T T T F F 

T T F F T 

F F T F F 

F F F F T 

F T T T T 

F T F T F 

                                              

Optional Or: A set of child features are said to have an or-relation with their parent 

when one or more sub features can be selected when the parent feature appears. Now 

for set representation, We assume that ―x‖ ,‖y‖ and ―A‖ are three  elements in Conf 

Set. Now for define the Or  feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and  ―A‖ 

belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖ or may both  

included in feature .But it is not compelled to include any child feature must be 

included if the parent feature included. ―ᴠ‖  sign  represent the Or (any one must be 

selected) relationship. 

 

conf 

x                y 

       A 
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                              Fig:4.2.6 Set Representation for Optional Or Feature 

 

x,y,A. x conf  y conf  A conf  (x  y)         A 

 

4.2.6 Truth Table for Optional Or feature 

 

X Y A X  Y (XY)A 

T F T T T 

T F F T F 

T T T F T 

T T F F T 

F F T F T 

F F F F T 

F T T T T 

F T F T F 

                        

 

Require: Two child feature is in require relationship if one child feature is 

dependent to another child feature. But the both child feature must belongs to 

different Parent feature. Now if we want to represent the require relationship set then, 

we assume that ―x‖,‖y‖,‖conf1‖ and ―conf2‖ are the elements of ―conf‖ set but here 

―x‖ is belongs to ―conf1‖ set and ―y‖ is belongs to ―conf2‖ set and both of them 

(―conf1‖ and ―conf2‖) are belongs to set ―conf‖ set. It should mention that we are 

assuming ―conf1‖ and ―conf2‖ set represent the parent(Variant) feature of ―x‖ and ―y‖ 

variation point(child feature) and also ―x‖, ―y‖ both cant be in same variation point. 

So now ―x‖ is strongly dependent in ―y‖. That means if ―x‖ child feature is included 

―y‖ must be included. ―x‖ cant be imagined without ―y‖. 

 

conf 

x                  y 

         A 
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                                 Fig:4.2.7 Set Representation for Require Feature 

 

x,y,conf1,conf2.  x conf1    y  conf2    conf1 conf  conf2  conf x 

conf2   y  conf1   (x         y)   

 

4.2.7 Truth Table for Require feature 

 

X Y A X  Y (XY)A 

T F T T T 

T F F T F 

T T T F T 

T T F F T 

F F T F T 

F F F F T 

F T T T T 

F T F T F 

                                  

Exclude: Two child feature is in Exclude relationship if one child feature is 

conflicted to another child feature. But the both child feature must belongs to different 

Parent feature. Now if we want to represent the require relationship set then, we 

assume that ―x‖,‖y‖,‖conf1‖ and ―conf2‖ are the elements of ―conf‖ set but here ―x‖ 

is belongs to ―conf1‖ set and ―y‖ is belongs to ―conf2‖ set and both of them (―conf1‖ 

and ―conf2‖) are belongs to set ―conf‖ set. It should mention that we are assuming 

―conf1‖ and ―conf2‖ set represent the parent(Variant) feature of ―x‖ and ―y‖ variation 

point(child feature) and also ―x‖, ―y‖ both cant be in same variation point. So now ―x‖ 

is strongly conflicted with  ―y‖. That means if ―x‖ child feature is included ―y‖ can‘t 

be included. 

 

conf 

conf1 

x 

 

conf2 

y 
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                                                Fig:4.2.8 Set Representation for Exclude Feature 

 

x,y,conf1,conf2.  x conf1    y  conf2    conf1 conf  conf2  conf  x  

conf2   y  conf1   (x       y)   

 

4.2.8 Truth Table for Exclude feature 

 

X Y A XY (XY)A 

T F T T T 

T F F T F 

T T T F T 

T T F F T 

F F T F T 

F F F F T 

F T T T T 

F T F T F 

                                

4.3 Analysis Of Feature Type 
 

The Feature model of the CAD system is spitted  into smaller part for the convenience 

of analysis. Then we analysis each part individually and get some basic rules. 

 

 

 

 

 

 

conf 

conf1 

x 

conf2 

y 
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4.3.1 Scenario 1 

 

In Fig 4.3.1, v1 and v2 are variants (and variation points) and there is a require 

dependency between them. Here v2 is selected whenever v1 is selected. 

 

 
Fig 4.3.1: Require dependency between variants and between variation points 

 

Adopting the notation in  we define the following rule for dependency amongvariants 

as well as variation points. 

v1, v2 · type(v1, variant) ^ type(v2, variant)^ 

require v _v(v1, v2) ^ select(v1) ) select(v2) 

 

v1, v2 · type(v1, variation point) ^ type(v2, variation point)^  

requirevp_vp(v1, v2) ^ select(v1) ) select(v2) 

 

where type(vi, . . . ) indicates whether vi is a variant or variation point, 

select(vi)indicates the selection of variant vi and require() indicates the require 

relationship.Similar notation will be used for rest of the rules definition. Due to this 

dependencyrule the dependent variant, v2 here, will always be selected if v1 is 

selected andsuch selection will not be affected by the type of relationship such as 

Alternative,with their parent. 

 

4.3.2. Scenario 2 

                            
   Fig 4.3.2: Exclude dependency between variants and between variation points 
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In Fig 5.3.2, there is an exclude relationship between v1 and v2. Here v1 and v2 are 

variants in the left figure and variation point in the right part of the figure. In both 

cases, as there is exclude relationship between them only one can be selected at a 

time. Here, we can suggest that for such scenario the relationship among the variants 

or variation points must be Alternative to keep the feature model 

well-formed. Similar to previous example, we define rules for such dependencies. 

 

v1, v2 · type(v1, variant) ^ type(v2, variant)^ 

exclude v_ v(v1, v2) ^ select(v1) )notselect(v2)  

 

v1, v2 · type(v1, variation point)^type(v2, variation point) ^ 

                           exclude_ vp_vp(v1, v2)^ select(v1) )notselect(v2)  

 

4.3.3. Scenario 3 

                            
        Fig 4.3.3:  Require Dependency between  variants and variation point 

 
In Fig ,Suppose v1 and v2 are two variation points. x is a variant under the variation 

point v1 and y is a variant under the variation point v2. There is a require relationship 

between the variant x and the variation point v2. That means when we select x, v2 

will be automatically selected. From this scenario we can derive a rule 
 

v1, v2, x, y · type(x, variant) ^ type(v1, variation point)^ type(v2, variation point) ^ 

requires v _vp(x, v2) ^ select(x) ) select(v2)  
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4.3.4 Scenario 4 

                               
         Figure 4.3.4.: Exclude dependency between variants and variation point 
 

 

In Fig 4.3.4,Suppose v1 and v2 are two variation points. x is a variant under the 

variation point v1, and y is a variant of the variation point v2. There exists an exclude 

relationship between the variant x and the variation point v2. That means when we 

select x, v2 will be automatically deselected because the selection of the variant x 

cannot allow the selection of the variation point v2. That means both 

the variation point v1 and v2 cannot appear in a product. The following rule is derived 

from this scenario 

 

 

v1, v2, x, y · type(x, variant) ^ type(v1, variation point) 

  ^ type(v2, variation point) ^ exclude v _vp(x, v2) ^ select(x) )notselect(v2) 

 

For all variants x and variation point v2; if x excludes v2 and x is selected, thenx2 

should not be selected. 

 

4.3.5  Scenario 5 

 

                               
                            Figure 4.3.5.: Requires dependency between  variation point 
 

In Fig.4.3.5 , v1 and v2 are two variation point and x and y are their variants  

respectively. There is a requires relationship between the variation point v1 and v2, 

then when the variation point v1 is selected we must select the variation point v2, 
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otherwise the condition will be violated. In other words, the selection of variation 

point v1 will automatically select the variation point v2. From this analysis we can 

derive a rule that can satisfy when this type of scenario  occurs in the feature model 

 

v1, v2 · type(v1, variation point) ^ type(v2, variation point) 

 ^ requires vp_vp(v1, v2) ^ select(v1) ) select(v2)  

 

4.3.6  Scenario 6 
 

 
Figure 4.3.6: Exclude dependency between variation points 

 

In Fig. 4.3.6, suppose v1 and v2 are two variation points. Let there exists is an 

exclude relationship between the variation points v1 and v2. Hence when variation 

point v1 is selected we must deselect the variation point v2. In other way we can say 

that selection of variation point v1 will automatically reject the selection of variation 

point v2. From this analysis we can derive a rule that can satisfy when this type of 

scenario occur in the feature model 

v1, v2 · type(v1, variation point) ^ type(v2, variation point) 

    ^ exclude vp_vp(v1, v2) ^ select(v1) ) notselect(v2)  

 

4.3.7  Scenario 7 

 
Figure 4.3.7: Exclude dependency between variation points 

 

In Fig,4.3.7 v1 is variation point and x is a variant of that variation point. When a 

variation is selected its variation point will be selected automatically. This scenario 

can also be called as parent-child, when a child is selected, its parent will be selected 

as well. The following rule is defined for this scenario. 

 

v1, v2 · type(x, variant) ^ type(v1, variation point) 

^ variant(v1, x) ^ select(x)  select(v1)  
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4.3.8  Scenario 8 

 
Figure 4.3.8: Variation point to variation point and parent-child relation 

 
Suppose v1 and v2 are two variation point and x and y are their respective variants 

and there is a requires relation from v1 to v2. Here y is a mandatory feature. In this 

case when variant x is selected according to our earlier scenario, variant y will also be 

selected. shows the scenario and the corresponding definition of 

rules is as follows: 

 

v1, v2, x, y · type(x, variant)^type(y, variant)^variants(v1,x)^variant(v2, y) ^ 

common(y) ^ requires vp_ vp(v1, v2) ^ select(x)  select(y)  

 

4.3.9  Scenario 9 

 
Fig 4.3.9: Variant and variation point exclude relation 

 

Suppose v1 and v2 are variation points. x and y are two of their variants respectively. 

There exists an exclude relationship between v1 and the variants v2. If someone selects 

the variants x it will automatically deselect the selection often  variant y, because we 

cannot select a variant when its variation point is not selected. The scenario is 

depicted in   

 

v1, v2, x, y : type(x, variant) ^ type(y, variant)^ variant(v1, x) ^ variant(v2, y) ^ 

common(y, yes) ^ requires vp_vp(v1, v2) ^ select(x) )notselect(y)              
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Chapter5 

 

Model Verification in ALLOY 

 

5.1 Representing our feature model using Alloy 

 
Though the feature model that we analysis here is so vast so it would be very difficult 

to represent the whole feature model in Alloy. So we break the whole feature diagram 

into pieces. Then we try to encode each small pieces using alloy syntax. We assume 

that this small pieces give the correct result then after integrating all small pieces we 

can get the result about whether the feature model will work correctly or not. To do 

this first we take a small part of the GPL . 

We can represent this part as below. 

 

 
 

Figure :5.1.1 A small part of the GPL 

 

In Alloy, one signature can extend another, establishing that the extended signature  

(sub-signature) is a subset of the parent signature. Firstly, we declare itselements; a 

singleton (one) sub-signature, which has exactly one object, for each FM element. 

The FM inis represented by GPL, which extends FM, and presents 2 features. A 

singleton signature is declared for each feature name. Finally we state GPL‘s features 

in a fact (fact), which packages formulas that always hold, such as invariants about 

the elements. 
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5.1.1 Alloy Encoding for above mention Tree 
 

one sig CAD extends FM{} 

one sig graph extends FM1{} 

one sig dircted,undirected extends Name{} 

factCADFeatures 

{ 

CAD.features1=graph 

graph.features=directed+undirected 

} 

 

The ―+‖ operator denotes the set union operator. Our main goal is to reason whether a 

transformation preserves or increases FM configurations. For that, FM semantics must 

be specified in Alloy. One approach is to declare an Alloy function yielding a set of 

valid configurations for a FM. By our concern in improving analysis performance, we 

cannot declare a semantics function for all FMs, which could be very inefficient. We 

then specified a semantics predicate for each FM. Part of this predicate is fixed for all 

FMs. The other part depends on its relationships and formulas. This encoding is 

systematic, straightforward for being included into tool support. Next, we explain the 

encoding through an example, later generalizing our approach. For each FM, a 

predicate is defined, containing all FM formulas directly translated to their semantics 

function. Using this approach, there is no predicate checking whether a configuration 

satisfies a formula. The immutable part of the semantics predicate introduce the 

following constraints: every configuration includes a subset of FMs names, and the 

root must always be included, as declared next. We call them implicit constraints.  

 

5.1.2 Semantic Part of the above mentioned Tree 
 

pred semantics graph[conf:set Name] 

{ 

conf in graph.features 

alternative[directed,undirected,conf] 

} 

 

Then all relationships of the FM are declared in terms of the predicates alternative 

[directed,undirected,conf]  In order to systematically specify a FM into Alloy using 

our encoding, the following 

steps must be taken:: 

 create a singleton sub-signature for each feature extending from Name 

 specify the semantics predicate containing the relationships (reusing the 

encoding predicates) and formulas (using Alloy operators) in the FM. 
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Based on the previous encoding, we can perform automatic analysis on FMs using the 

Alloy Analyzer.  

 

runsemanticsgraph 

 

The run analysis command must specify a scope for all signatures declared. Our 

encoding contains 2 signatures. The previous fragment declares the run command for 

one FM (we are analyzing only one FM) and for 2 names (the FM encodedcontains 4 

features). 

 

 

5.2 Alloy encoding  

 

5.2.1 Output Validation  for GPL 
 

While checking for valid configuration we create a predicate valid configuration we 

create a predicate validconfig. where  we select  those feature that can product a valid 

product .Here we declare graph, search, algorithm, directed, undirected, weighted, 

unweighted,DfsBfs,coloring,shortestpath,cycledetection,mst,stronglyconnected,appro

ximation,brutef.We have this option to select .So we need to select some of the 

features in order to get our desired product  .Here our target is to check whether alloy 

gives us a valid result for our selection of features. In pred valid config we select 

graph ,algorithm, search, directed, weighted, Dfs, coloring, approximation. We have  

already seen in the logic part that this combination gives us a valid result, which is 

indicated by the alloy result display screen ,where it shows that an instance is found. 

Which is shown in Fig-5.2.1  Also when we click on the ‗instance‘ text then we get 

model which actually display the graph of the product and it is shown in fig5.2.1 
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Fig:5.2.1  For validation for GPL 

 

5.2.3Output validation for hall booking system 

 
While checking for valid configuration we create a predicate valid configuration we 

create a predicate validconfig. where  we select  those feature that can product a valid 

product.Here we 

declarehallbooking,RCharge,RMode,Notification,RManagement,HandleConflicts,dep

osit , tax, basiccharge, discount, block, multiple rooms, multiple times, single, fax, 

print paper,email, add modify, deleteWe have this option to select .So we need to 

select some of the features in order to get our desired product  .Here our target is to 

check whether alloy gives us a valid result for our selection of features. In pred valid 

config we select  hall booking,RCharge,RMode ,Notification, RManagement, Handle 

Conflicts, deposit, block, multiple times, fax,addmodify, delete, add modify. We have  

already seen in the logic part that this combination gives us a valid result, which is 

indicated by the alloy result display screen ,where it shows that an instance is found. 

Which is shown in Fig-5.2.3 Also when we click on the ‗instance‘ text then we get 

model which actually display the graph of the product and it is shown in fig 5.2.3 
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Fig:5.2.3  For validation of  Hall Booking System 

 

5.2.4Output validation for Invalid configuration 
 

Here is the Alloy (Fig 5.2.4) output for Invalid configuration for GPL feature tree 

 
 

Fig 5.2.4 Run invalid Configfor  GPL feature tree 
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Chapter 6 

 

Conclusion 

 

6.1 Conclusion 
A product line architecture represents a significant long term investment .The ease  

with which the architecture can deal with changes such as- New features, new  

products and  better  quality properties will have a significant impact on the success of 

the  product line. In a domain model, when the volume of information grows the 

possible explosion of variant combination becomes inevitable and tracing of proper 

variant information in the domain model becomes hard. As a result, the impacts on 

variants on domain model during customization of any particular product become 

unclear. A variant model has been proposed here which explicitly represents all the 

variant related information in order to generate any customized product form the 

domain model. Successful development of software product line requires appropriate 

organization  and  management of products requirements. A significant characteristic 

of developing product line is the management of the variants which is a crucial 

success factor of product line. 

 

We presented an approach to formalizing and verifying SPL feature models to be able 

to create a decision table to generate customized product by using formal reasoning 

techniques. We provided formal semantics of the feature models by using, set 

representation first-order logic and specified the definitions of six types of variant 

relationships. We have six notations mandatory, optional, or, alternative, optional 

alternative, optional or We also defined cross-tree variant dependencies. Examples are 

provided describing various analysis operations, such as validity. We have addresses 

most of the analysis questions mentioned in . Finally, we encoded our logical 

notations into Alloy to be able to automatically verify any analysis related queries. A 

knowledge-based approach to specify and verify feature models is presented in . 

Comparing to that presentation, our definition relies on set representation which can 

be directly applied in many verification tools . 

 

 

 

 



39 
 

 

6.2 Future Work 

 
Our particular interest is developing a tool to automatically generate customized 

product based on user requirement. In contrast to other automated analysis of feature  

model tools, e.g., at this stage, our  tool  is domain specific where these automated 

tools can be used as a supporting tool and can be used to automatically verify the 

derived product specification.  
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Appendix 

 

A.1.Alloy encoding for  GPL 

 
sig FM{ 

features:set Name 

} 

sig Name{} 

sigconf{} 

 

pred optional[A,B:Name,conf:set Name] { 

B in conf =>A in conf 

} 

 

pred mandatory[A,B:Name,conf:set Name]{ 

A in conf<=> B in conf 

} 

 

pred alter[A,B: Name ,conf:set Name] 

{ 

A in conf ! B in conf 

} 

 

pred root[A:Name,conf:set Name] 

{ 

A in conf 

} 

 

predorFeature[A:Name, children:set Name, conf:set Name] 

{ 

A in conf<=>some c:children|c in conf 

#children>=1 

} 

 

pred require[A,B:Name,conf:set Name] { 

A in conf => B in conf 

} 

 

pred exclude[A,B: Name ,conf:set Name] 
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{ 

A in conf ! B in conf 

} 

 

one sig M extends FM{} 

onesigGPL,graph,search,algorithm,directed,undirected,weig

hted,unweighted,Dfs,Bfs,coloring,shortestpath,cycledetect

ion,mst,stronglyconnected,approximation,brutefextends 

Name{} 

factFaw{ 

M.features=GPL+graph+search+algorithm+directed+undirected

+weighted+unweighted+Dfs+Bfs+coloring+shortestpath+mst+cy

cledetection+stronglyconnected+approximation+brutef 

} 

predsemanticsM[conf:set Name] 

{ 

confinM.features 

root[GPL,conf] 

mandatory[GPL,graph ,conf] 

mandatory[GPL,algorithm,conf] 

optional[GPL,search,conf] 

alter[Dfs,Bfs,conf] 

alter[directed,undirected,conf] 

orFeature[algorithm,coloring+shortestpath+cycledetection+

mst+stronglyconnected,conf] 

alter[approximation,brutef,conf] 

require[Dfs,approximation,conf] 

exclude[weighted,brutef,conf] 

} 

predvalidconfig{ 

semanticsM[GPL+graph+algorithm+search+directed+weighted+D

fs+coloring+approximation] 

} 

Runvalidconfig 
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A.1.1 MetaModel for GPL 

 

 

Fig: A.1.1Metamodel of GPL Feature Tree 

 

A.2.Alloy encoding for Hall booking system 

 
sig FM{ 

features:set Name 

} 

sig Name{} 

sigconf{} 

sig conf1{} 

pred optional[A,B:Name,conf:set Name] { 

B in conf =>A in conf 

} 

pred mandatory[A,B:Name,conf:set Name]{ 

A in conf<=> B in conf 

} 

pred alter[A,B: Name ,conf:set Name] 

{ 

A in conf ! B in conf 

} 

pred root[A:Name,conf:set Name] 

{ 

A in conf 
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} 

pred root1[A:Name,conf:set Name] 

{ 

A in conf 

} 

predorFeature[A:Name, children:set Name, conf:set Name] 

{ 

A in conf<=>some c:children|c in conf 

#children>=1 

} 

pred require[A,B:Name,conf:set Name] { 

A in conf => B in conf 

} 

pred exclude[A,B: Name ,conf:set Name] 

{ 

A in conf ! B in conf 

} 

one sig M extends FM{} 

onesighallbooking,RCharge,RMode,Notification,RManagement,

HandleConflicts,deposit,tax,basiccharge,discount,block,mu

ltiplerooms,multipletimes,single,fax,printpaper,email,add

modify,delete extends Name{} 

factFaw{ 

M.features=hallbooking+RCharge+RMode+Notification+RManage

ment+HandleConflicts+deposit+tax+basiccharge+discount+blo

ck+single+multiplerooms+multipletimes+single+fax+printpap

er+email+addmodify+delete 

} 

predsemanticsM[conf:set Name] 

{ 

confinM.features 

root[hallbooking,conf] 

root1[RManagement,conf] 

optional[hallbooking,RCharge,conf] 

mandatory[hallbooking,RMode ,conf] 

mandatory[hallbooking,RManagement,conf] 

optional[hallbooking,Notification,conf] 

optional[hallbooking,HandleConflicts,conf] 

orFeature[RCharge,deposit+tax+basiccharge+discount,conf] 

alter[block,single,conf] 

orFeature[block,multiplerooms+multipletimes,conf] 

orFeature[Notification,fax+printpaper+email,conf] 

mandatory[RManagement,delete,conf] 

mandatory[RManagement,addmodify ,conf] 
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} 

predvalidconfig{ 

semanticsM[hallbooking+RCharge+RMode+Notification+RManage

ment+HandleConflicts+deposit+block+multipletimes+fax+addm

odify+delete+addmodify] 

} 

 

Runvalidconfig 

 

 

A.2.1 Metamodel of  Hall Booking System 
 

 
Fig:A.2.1Metamodel of Hall Booking system Feature Tree 

 

 

A.3.Invalid configuration for GPL 
 

sig FM{ 

features:set Name 

} 

sig Name{} 

sigconf{} 

 

pred optional[A,B:Name,conf:set Name] { 
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B in conf =>A in conf 

} 

 

pred mandatory[A,B:Name,conf:set Name]{ 

A in conf<=> B in conf 

} 

 

pred alter[A,B: Name ,conf:set Name] 

{ 

A in conf ! B in conf 

} 

 

pred root[A:Name,conf:set Name] 

{ 

A in conf 

} 

 

predorFeature[A:Name, children:set Name, conf:set Name] 

{ 

A in conf<=>some c:children|c in conf 

#children>=1 

} 

 

predorfeature[A:Name, children:setName,conf:set Name] 

 { 

A in conf<=> some c:children | c in conf 

#children >1 

} 

 

pred alternative[A:Name, children: set Name, conf:set 

Name]{ 

orFeature[A,children,conf] 

#(children &conf) <=1 

} 

 

one sig M extends FM{} 

onesigGPL,graph,search,algorithm,directed,undirected,weig

hted,unweighted,Dps,Bfs,spath,MST,coloring,approximation,

brutef extends Name{} 

factFaw{ 

M.features=GPL+graph+search+algorithm+directed+undirected

+weighted+unweighted 

+Dps+Bfs+spath+MST+coloring+approximation+brutef 

} 
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predsemanticsM[conf:set Name] 

{ 

confinM.features 

root[GPL,conf] 

orfeature[GPL,MST,conf] 

orfeature[GPL,coloring,conf] 

alter[Dps,Bfs,conf] 

alter[directed,undirected,conf] 

alter[weighted,unweighted,conf] 

alter[approximation,brutef,conf] 

mandatory[GPL,graph ,conf] 

mandatory[GPL,algorithm,conf] 

optional[GPL,search,conf] 

 

} 

predInvalidconfig{ 

semanticsM[GPL+ 

graph+directed+brutef+algorithm+Dps+weighted+coloring+sea

rch+MST+Bfs] 

} 

runInvalidconfig 
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