

 East West University

 Logic Based Verification of Software

 Product Line Feature Model

by

Mirza Faisal Md. Abdul Bari

&

Morium Akter

A thesis submitted in partial fulfillment for the

degree of Bachelor of Science in Computer Science and Engineer

in the

Faculty of Science and Engineering

Department of computer Science and Engineering

December 2014

Declaration

We hereby declare that this submission is our own work and that to the best of our

knowledge and belief it contains neither material nor facts previously published or

written by another person. Further, it does not contain material or facts which to a

substantial extent have been accepted for the award of any degree of a university or

any other institution of tertiary education except where an acknowledgement.

(MoriumAkter)

ID:2010-2-60-010

(Mirza Faisal Md. A. Bari)
ID: 2010-2-68-015

Letter of Acceptance

The project entitled “Logic Based Verification of Software Product Line

Feature Model” submitted by Mirza Faisal Md. Abdul Bari (ID: 2010-2-68-015)

and MoriumAkter(ID:2010-2-60-010),to the department of Computer Science and

Engineering, East West University, Dhaka, Bangladesh is accepted by the

department in partial fulfillment of requirements for the Award of the Degree of

Bachelor of Science in Computer Science and Engineering on December 2014

Board of Examiners

Dr. Shamim H. Ripon

Associate Professor& Chairperson

Department of Computer Science and Engineering

East West University, Dhaka-1212, Bangladesh

 Acknowledgements
First of all Thanks to ALLAH for the uncountable blessings on us. Thanks to our

Supervisor and chairperson Dr. Shamim Hasnat Ripon for providing us this opp

ortunity to test our skills in the best possible manner. He enlightened, encouraged

and provided us with ingenuity to transform our vision into reality. East West Univ-

ersity, for his encouragement, guidance and counseling. Thanks to our family who

helped us out during this project.

i

Abstract

Feature diagrams are widely used to model product line variant . Formal Verification of variant

requirements has gained much interest in the software product line(SPL) community . However,

there is a lack of precisely defined formal notation for representing and verifying such models.

This report presents an approach to modeling and analyzing SPL variant feature by Logic Based

and also First order logic. The logical representation provides a precise and rigorous formal

interpretation of the feature diagrams. Logical expressions can be built by modeling variants and

their dependencies by using propositional connectives. These expressions can then be validated

by any suitable verification tool such as Alloy. A case study of two Feature Model (GPL & Hall

Booking System) variant feature model is presented to illustrate the analysis and verification

process.

i

Contents

Acknowledgement

Abstract i

List of Figure ii

List of Tables

1. Introduction 1-3

1.1 Introduction 1

1.2 Problems and motivation 2

1.3 Objectives 2

1.4 Contribution 3

1.5 Outline 3

2. Background 4-14

2.1 Feature model 4

2.1.1 Feature Model Notations 5

2.1.1.1 Basic Features Models 5

2.1.1.2 Cardinality Based Features Models 6

2.1.1.3 Extended Feature Models 6

2.2 Logical Representation 6

2.2.1 Logical Operators 7

2.3 Propositional Formulas 9

2.4 Domain Engineering And Application Engineering 10

2.5 Alloy Analyzer 11

2.5.1 Short Note About Alloy 12

2.5.2 Syntax and semantics 12

2.5.3 Instances and Meaning 13

3. Case study 15-17

3.1 Introduction of GPL 15

3.1.1 Overview of GPL Feature Tree 15

3.2 Hall Booking System Feature Tree 16

ii

3.2.1 Overview of Hall Booking Feature Tree 17

4. Logical Modeling Of Feature Tree 18-32

4.1 Introduction 18

4.1.1 Logical Expression Of Feature Tree 20

4.2 Set Representation of SPL 20

4.2.1 Feature types 20

4.3 Analysis of feature types

 27

5. Model Verification in Alloy 33-39

5.1 Representing Our Feature Model using Alloy 33

5.1.1 Alloy Encoding 34

5.1.2 Semantict Part of the above Mentioned Tree 34

5.2 Alloy Encoding 35

 5.2.1 Output Meta model for GPL 35

 5.2.3 Output validation for Hall Booking System 36

 5.2.5 Output validation for Invalid Conf 37

6. Conclusion 38-39

6.1 Conclusion 38

6.2 Future Work 39

7.Appendix 40-46

 A.1 Alloy encoding for GPL 40

 A1.1 Meta model for GPL 42

 A.2 Alloy encoding for Hall Booking system 42

 A2.1 Meta model for Hall Booking system 44

 A.3 Invalid Configuration for GPL 44

iii

Bibliography 48

iv

List Of Table

2.2.1 Truth Table For Negation Operator 7

2.2.2 Truth Table For Conjunction Operator 7

2.2.3 Truth Table For Disjunction Operator 8

2.2.4 Truth Table For Exclusive Operator 8

2.2.5 Truth Table For Implicit Operator 9

2.2.6 Truth Table For Biconditional Operator 9

4.2.1 Truth Table For Mandatory Notation 21

4.2.2 Truth Table For Optional Notation 22

4.2.3 Truth Table For Alternative Notation 22

4.2.4 Truth Table For Optional Alternative Notation 23

4.2.5 Truth Table For Or Notation 24

4.2.6 Truth Table For Optional Or Notation 25

4.2.7 Truth Table For Require Notation 26

4.2.8 Truth Table For Exclude Notation 27

ii

List Of Figure

2.1 Feature Model For Mobile Phone 5

3.1 The Graph Product line Feature Model 15

3.2 Hall Booking System Feature Tree 16

4.1 Notation of The feature Rules 18

4.1.1 Logical Notation of Feature Model 20

4.2.1 Set Representation For Mandatory Feature 21

4.2.2 Set Representation For Optional Feature 21

4.2.3 Set Representation For Alternative Feature 22

4.2.4 Set Representation For Optional Alternative Feature 23

4.2.5 Set Representation For Or Feature 24

4.2.6 Set Representation For Optional Or Feature 25

4.2.7 Set Representation For Require Feature 26

4.2.8 Set Representation For Exclude Feature 27

4.3.1 Require dependency between variants and variation point 28

4.3.2 Exclude dependency between variants and variants point 28

4.3.3 Require dependency between variants and variation point 29

4.3.4 Exclude dependency between variants and variation point 29

4.3.5 Require dependency between variation points 30

4.3.6 Exclude dependency between variation points 31

4.3.7 Exclude dependency between variation points 31

4.3.8 Variation point to variation point and parent-child relation 32

4.3.9 Variant and variation point exclude relation 32

5.1.1 A small part of the GPL 33

iii

5.2.1 For validation or GPL 36

5.2.3 For validation of Hall Booking System 37

5.2.5 Run invalid Configfor GPL feature tree 39

A1.1 Meta model of GPL feature tree 42

A2.1 Meta model of Hall booking system 44

1

Chapter 1

Introduction

1.1 Introduction

Software product line is a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way.

Software product lines are emerging as a viable and important development paradigm

allowing companies to realize order-of-magnitude improvements in time to market,

cost, productivity, quality, and other business drivers[24]. Software product line

engineering can also enable rapid market entry and flexible response, and provide a

capability for mass customization.

A software product line is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way [21]. Core assets are the basis for software product line. The core assets often

include the architecture, reusable software components, domain models, requirements

statements, documentation and specifications, performance model, etc. Different

product line members may differ in functional and non-functional requirements,

design decisions, run-time architecture and interoperability (component structure,

component invocation, synchronization, and data communication), platform, etc. The

product line approach integrates two basic processes: the abstraction of the

commonalities and variability of the products considered (development for reuse) and

the derivation of product variants from these abstractions (development with reuse)

[22]. The main idea of software product line is to explicitly identify all the

requirements that are common to all members of the family as well as those that

varies among products in the family. This implies a huge model that help the

stakeholders to be able to trace any design choices and variability decision. A

particular product is then derived by selecting the required variants and configuring

them according to the product requirements.

Common requirements among all family members are easy to handle and can be

integrated into the family architecture and are part of every family member. But

problem arises from the variant requirements among family members. Variants are

usually modeled using feature diagram, inheritance, templates and other techniques.

2

In comparison to analysis of a single system, modeling variants adds an extra level of

complexity to the domain analysis. Different variants might have dependencies on

each other. Tracing multiple occurrences of any variant and understanding their

mutual dependencies are major challenges during domain modeling. While each step

in modeling variants may be simple but problem arises when the volume of

information grows. As a result, the impact of variant becomes ineffective on domain

model. Therefore, product customization from the product line model becomes

unclear and it undermines the very purpose of domain model.

1.2 Problem and Motivation

Both industry and academia have shown much interest in handling product line in

application domains such as business systems, avionics, command and control

systems etc. Today most of the effort in product line development are relating to

architecture [23], detail design and code. Common requirements among all family

members are easy to handle as they simply can be integrated into the family

architecture and are part of every family member. But problem arises from the variant

requirements among family members.

 In aproduct line, currently variants are modeled using feature diagram, inheritance,

templates and other techniques. In comparison to analysis of a single system,

modeling variants adds an extra level of complexity to the domain analysis. In any

product line model, the same variant has occurrences in different domain model

views. Different variants have dependencies on each other. Tracing multiple

occurrences in different model views of any variant and understanding the mutual

dependencies among variants are major challenges during domain modeling. While

each step in modeling variant may be simple but problem arises when the volume of

information grows. When the volume of information grows the domain models

become difficult to understand. The main problems are the possible explosion of

variant combinations, complex dependencies among variants and difficulty in tracing

variants from the domain model down to the specification of a particular product. As

a result, the impact of variant becomes ineffective on domain model. Therefore,

product customization from the product line model becomes unclear and it

undermines the very purpose of domain model.

1.3 Objectives

In developing product line, the variants are to be managed in domain engineering

phase ,which scopes the product line and develops the means to rapidly produce the

members of the family. It serves two distinct but related purposes, firstly it can

record decisions about the product as a whole including identifying the variants for

3

each member and secondly ,it can support application engineering by providing

proper information and mechanism for the required variants during product generation

- The objective of this work is to provide an approach for modeling

variants in the domain model of a product line .This model carries al

the variant related information like specifications ,origin of variants and

interdependencies etc.

- Defining the search table involves manual handling of variants ,formal

verification is not directly admissible for such approach. Our objective

is to logically representation of feature model facilitating the

development of decision table in formally sound way.

- Our plan is perform these verification by using our logical

representation.

1.4 Contribution

 In order to conduct out experiment we use a case study of Graph product line(GPL)

and hall booking system by analyzing and modeling the variants as well as the

variants dependencies.

- We define six types of logical notation to represent all the parts in a

feature model. Set representation logic has been for this purpose. This

notations can be used to define all possible scenarios of a feature model.

- Analyzing the feature model considering the various scenarios the

feature model and we define a set of rules which can be used to verify

the feature model .

- We use Alloy tools for checking the valid or invalid feature model.

Alloy use first order logic and encode our logical definitions into Alloy

and validity of the logical verification

1.5 Outline

The report is organized as follows-

In chapter 2 we gave a brief overview of the feature model, feature model notations

and logical representation of the feature model and describe some logical operators,

domain activities and give a brief review of the model analyzer named alloy with an

example model.

In Chapter 3 We have gave an overview of GPL and an hall booking feature tree.

In chapter 4 we discuss about the logical representation and describe their logical

relations and analyze the set representation

Chapter 5 We presents the alloy representation of the logical notations. We illustrate

the steps how the logical representations are encoded into alloy and how the

verification has been preformed. Chapter 6Concludes the thesis by summarizing our

work . Finally we outline our future plan

4

Chapter 2

Background

2.1 Feature Model

Feature modeling is a key approach to capturing and managing the common and

variable features of systems in a system family or a product line. In the early stages of

software family development, feature models provide the basis for scoping the system

family by recording and assessing information such as which features are important to

enter a new market or remain in an existing market, which features incur a

technological risk, what is the projected development cost of each feature, and so

forth [1]. Later, feature models play a central role in the development of a system

family architecture, which has to realize the variation points specified in the feature

models [2][3]. In application engineering, feature models can drive requirements

elicitation and analysis. Knowing which features are available in the software family

may help customers decide which features their system should support. Knowing

which desired features are provided by the system family and which have to be

custom-developed helps to better estimate the time and cost needed for developing the

system.

 A software pricing model could also be based on the additional information recorded

in a feature model. Feature models also play a key role in generative software

development [2][4]. Generative software development aims at automating application

engineering based on system families: a system is generated from a specification

written in one or more textual or graphical domain-specific languages (DSLs). In this

context, feature models are used to scope and develop DSLs [2][5], which may range

from simple parameter lists or feature hierarchies to more sophisticated DSLs with

graph-like structures. Feature modeling was proposed as part of the Feature-Oriented

Domain Analysis (FODA) method [6], and since then, it has been applied in a number

of domains including telecom systems [10][11], template libraries [2], network

protocols [8], and embedded systems [9]. Based on this growing experience, a number

of extensions and variants of the original FODA notation have been proposed

[6][7][9][10].

5

Example

 Fig2.1: Feature model for mobile phone

2.1.1 Feature Modeling Notations

Current feature modeling notations may be divided into three main groups,

namely:

 Basic feature models

 Cardinality-based feature models

 Extended feature models

2.1.1.1 Basic Feature Models

Czarnecki‘s notation proposes four relations, namely: mandatory, optional, alternative

and or–relation.[25] In these relations, there is always a parent feature and one (in

the case of mandatory and optional relations) or more (in the case of alternative and

or–relation) child features.

 Mandatory - child feature is required.

 Optional – child feature is optional.

 Or – at least one of the sub-features must be selected.

 Alternative (xor) – one of the sub-features must be selected

In addition to the parental relationships between features, cross-tree constraints are

allowed. The most common are:

 A requires B – The selection of A in a product implies the selection of B.

 A excludes B – A and B cannot be part of the same product.

6

2.1.1.2 Cardinality-Based Feature Models

Some authors propose extending basic feature models with UML-like multiplicities of

the form [n,m] with n being the lower bound and m the upper bound. These are used

to limit the number of sub-features that can be part of a product whenever the parent

is selected.[26]If the upper bound is m the feature can be cloned as many times as we

want (as long as the other constraints are respected). This notation is useful for

products extensible with an arbitrary number of components.

2.1.1.3 Extended Feature Models

Current proposals only deal with characteristics related to the functionality offered by

an SPL (functional features). Thus, there exists no solid proposal for dealing with the

remaining characteristics, also called extra-functional features. There are several

concepts that we would like to clarify before analyzing current proposals and framing

our

contribution:

 Feature: a prominent characteristic of a product. Depending on the stage of

development, it may refer to a requirement (if products are requirement

documents),acomponent in an architecture [26] (if products are component

architectures) or even to pieces of code (if products are binary code in a

feature oriented programming approach) of an SPL.

 Attribute: the attribute of a feature is any characteristic of a feature that can be

measured. Availability and cost are examples of attributes of the Service

feature .Latency and bandwidth may be examples of attributes of an Internet

connection.

 Attribute domain: the space of possible values where the attribute takes its

values. Every attribute belongs to a domain. It is possible to have discrete

domains (e.g: Integers,Booleans , enumerated) or continuous domains (e.g.:

real).

 Extra–functional feature: a relation between one or more attributes of a

feature. For instance: bandwidth Latency Availability and so on. These

relations are associated to a feature.

2.2 Logical Representation

Logic has been studied since the classical Greek period (600-300BC). The Greeks,

most notably Thales, were the first to formally analyze the reasoning process.

Aristotle (384-322BC), ―the father of logic‖, and many other Greeks searched for

universal truths that were irrefutable. A second great period for logic came with the

http://en.wikipedia.org/wiki/Unified_Modeling_Language

7

use of symbols to simplify complicated logical arguments. Gottfried Leibniz (1646-

1716) began this work at age 14, but failed to provide a workable foundation for

symbolic logic. George Boole (1815-1864) is considered the ―father of symbolic

logic‖. He developed logic as an abstract mathematical system consisting of defined

terms (propositions), operations (conjunction, disjunction, and negation), and rules for

using the operations. Boole‘s basic idea was that if simple propositions could be

represented by precise symbols, the relation between the propositions could be read as

precisely as an algebraic equation. Boole developed an ―algebra of logic‖ in which

certain types of reasoning were reduced to manipulations of symbols.

2.2.1 Logical operators

1. Negation Operator: ―not‖, has symbol ―¬‖ :

Example: p: This book is interesting. Then p can be read as ―This book is not

interesting‖.

2.2.1 Truth Table for Negation operator

P ¬P

T F

F T

The negation operator is a unary operator which, when applied to a proposition p,

changes the truth value of p. That is, the negation of a proposition p, denoted by ¬p, is

the proposition that is false when p is true and true when p is false.

2. Conjunction Operator: ―and‖, has symbol ―^‖.

 Example:

p: This book is interesting.

q: I am staying at home. p^q: This book is interesting and I am staying at

home.

2.2.2 Truth Table for conjunction operator

P Q P^Q

T T T

T F F

F T F

F F F

 The conjunction operator is the binary operator which, when applied to two

propositions p and q, yields the proposition ―p and q‖, denoted p^q. The conjunction

p^q of p and q is the proposition that is true when both p and q are true and false

otherwise.

3. Disjunction Operator: inclusive ―or‖, has symbol ―‖.

 Example:

8

p: This book is interesting

q: I am staying at home.

p_q: This book is interesting, or I am staying at home.

2.2.3 Truth Table for Disjunction operator

P Q P Q

T T T

T F T

F T T

F F F

The disjunction operator is the binary operator which, when applied to

twopropositions p and q, yields the proposition ―p or q‖, denoted p_q. The disjunction

p_q of p and q is the proposition that is true when either p is true, q is true, or both are

true, and is false otherwise

4. Exclusive Or Operator: ―xor‖, has symbol ―‖.

Example:

p: This book is interesting

q: I am staying at home.

p_q: Either this book is interesting or I am staying at home, but not both.

2.2.4Truth table for Exclusive operator

P Q PQ

T T F

T F T

F T T

F F F

The exclusive or is the binary operator which, when applied to two propositions p and

q yields the proposition ―p xor q‖, denoted pq, which is true if exactly one of p or q is

true, but not both. It is false if both are true or if both are false.

5. Implication Operator :―if...then...‖, has symbol ―‖ .

Example:

p: This book is interesting.

q: I am staying at home.

pq: If this book is interesting, then I am staying at home.

Truth Table:

9

2.2.5 Truth table for Implicit Operator

P Q PQ

T T T

T F F

F T T

F F T

The implication p)q is the proposition that is often read as ―if p then q‖. If ―p then q‖

is false precisely when p is true but q is false.

6. Biconditional Operator: ―if and only if‖, has symbol ―‖

 Example:

p: This book is interesting.

q: I am staying at home.

p,q: This book is interesting if and only if I am staying at home.

2.2.6 Truth table for Biconditional Operator

P Q PQ

T T T

T F F

F T F

F F T

The bi-conditional statement is equivalent to (p)q)^(q)p).

In other words: For p,q to be true we must have both p and q true.

2.3 Propositional Formulas

Mannion was the first to connect propositional formulas to product-lines [14]; we

show how his results integrate with those. A propositional formula is a set of Boolean

variables and a propositional logic predicate that constrains the values of these

variables. Besides the standard ∧, ∨, ¬, ⇒, and ⇔ operations of propositional logic,

we also use choose1(e1…ek)to mean at most one of the expressions e1…ek is true.

More generally, chose n,m(e1…ek) means at least n and at most m of the expressions

e1…ek are true, where 0≤n≤m≤k. A grammar is a compact representation of a

propositional formula. A variable of the formula is either: a token, the name of a non-

terminal, or the name of a pattern. For example, the production:

r : A B :: P1

| C [r1] :: P2 ;

has seven variables: three {A, B, C}are tokens, two are non-terminals {r, r1}, and two

are names of patterns {P1, P2}. Given these variables, the rules for mapping a

grammar to a propositional formula are straightforward.

10

2.4 Domain Engineering and Application

Engineering

Domain is an area of knowledge that uses common concepts for describing

phenomena, requirements, problems, capabilities, and solutions that are of interest to

some stakeholders. A domain is usually associated with well-defined or partially

defined terminology. This terminology refers to the basic concepts in that domain,

their definitions (i.e., their semantic meanings), and their relationships. It sometime

also refers to behaviors that are desired, forbidden, or perceived within the domain.

Domain engineering is a set of activities that aim at developing, maintaining, and

managing the creation and evolution of domains. Domain engineering has become of

special interest to the information systems and software engineering communities for

several reasons. These reasons include, in particular, the need to manage increasing

requirements for variability of information and software systems (reflecting

variability in customer requirements); the need to minimize accidental complexity

when modeling the variability of a domain; and the need to obtain, formalize, and

share expertise in different, evolving domains.

Domain engineering as a discipline has practical significance as it can provide

methods and techniques that may help reduce time-to-market, product cost, and

project risks on one hand, and help improve product quality and performance on a

consistent basis on the other hand. It is used, researched, and studied in various fields,

the main ones of which are Software Product Line Engineering, Domain-Specific

Language Engineering, and Conceptual Modeling & Knowledge Engineering.

Domain engineering is designed to improve the quality of developed software

products through reuse of software artifacts. Domain engineering shows that most

developed software systems are not new systems but rather variants of other systems

within the same field. As a result, through the use of domain engineering, businesses

can maximize profits and reduce time-to-market by using the concepts and

implementations from prior software systems and applying them to the target system.

The reduction in cost is evident even during the implementation phase. One study

showed that the use of domain-specific languages allowed code size, in both number

of methods and number ofsymbols, to be reduced by over 50%, and the total number

of lines of code to be reduced by nearly 75%.

Domain engineering focuses on capturing knowledge gathered during the software

engineering process. By developing reusable artifacts, components can be reused in

new software systems at low cost and high quality. Because this applies to all phases

of the software development cycle, domain engineering also focuses on the three

primary phases: analysis, design, and implementation, paralleling application

engineering. This produces not only a set of software implementation components

relevant to the domain, but also reusable and configurable requirements and designs.

http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Debugging_symbol
http://en.wikipedia.org/wiki/Lines_of_code
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Source_code

11

An application engineer plans the design and implementation of technology products

like specialty industry equipment or computer programs. He or she works together

with a company‘s manufacturing, sales, and customer service departments.

Companies typically require this type of worker to have a four-year degree along with

years of field experience. He or she should have good communication, math and

teamwork skills.

Domain engineering, like application engineering, consists of three primary phases:

analysis, design, and implementation. However, where software engineering focuses

on a single system, domain engineering focuses on a family of systems. A good

domain model serves as a reference to resolve ambiguities later in the process, a

repository of knowledge about the domain characteristics and definition, and a

specification to developers of products which are part of the domain.

2.5 Alloy Analyzer

Alloy is a language for describing structures and a tool for exploring them. It

has been used in a wide range of applications from finding holes in security

mechanisms to designing telephone switching networks.

An Alloy model is a collection of constraints that describes (implicitly) a set

of structures, for example: all the possible security configurations of a web

application, or all the possible topologies of a switching network. Alloy‘s

tool, the Alloy Analyzer, is a solver that takes the constraints of a model and

finds structures that satisfy them. It can be used both to explore the model by

generating sample structures, and to check properties of the model by

generating counterexamples. Structures are displayed graphically, and their

appearance can be customized for the domain at hand.

At its core, the Alloy language is a simple but expressive logic based on the

notion of relations, and was inspired by the Z specification language and

Tarski‘s relational calculus. Alloy‘s syntax is designed to make it easy to

build models incrementally, and was influenced by modeling languages (such

as the object models of OMT and UML). Novel features of Alloy include a

rich subtype facility for factoring out common features and a uniform and

powerful syntax for navigation expressions. Alloy and Alloy Analyzer were

developed by Daniel Jackson‘s group at MIT.[17]

Two Statements About Alloy

―The examples and exercises, if given time, thought, and effort, can make

better designers of all of us, as Alloy is a powerful force-multiplier in the war

on bugs... Jackson‘s Software Abstractions has my highest recommendation. It

is being put to immediate use in my group‘s venue of software-based safety-

critical systems‖—George Hacken, Computing Reviews [17].

http://www.wisegeek.com/what-is-customer-service.htm

12

―Systems like Alloy should be in the toolbox of all software designers and

developers, so such a comprehensive book on this topic is very welcome.‖

—Anthony M. Sloane, Journal of Functional Programming[17]

2.5.1 Short Note About Alloy

• Alloy is an object oriented modeling language

• Alloy has formal syntax and semantics

• Alloy specifications can be written in ASCII

• Alloy also has a visual language similar to UML class diagrams

• Alloy has a constraint analyzer which can be used to automatically

analyzeproperties of Alloy models

2.5.2 Syntax and Semantics

Sig:. Signatures that are used for defining new types and constraints. Each signature

denotes a set of objects, which are associated to other objects by relation declared in

the signature. A signature paragraph introduces a type and a collection of relations

such as- person, feature, person ,Relation and etc. In this alloy sets- sig declarations

defining the signature. The sig notations –

sig Relation{

parent : Name

child: set Name

Type:Type}

A FM include various types of relations . A sig can represent the several feature at a

time. So-

abstract sig Type {}

One sig v,v1,v11,v2,v21 extends Type {}

Predicate are used to package reusable formulas. The subsequent fragment declares

the relation . Pred declarations defining the predicate. The pred notations-

pred own Grandpa[p:person] {

p in grandpas[p]

}

A configuration relation ,which contains a set of feature names (selected for a given

software product) ,is represented by the following sig. It is important to notice that

13

this signature is a datatype.A data type has an implicit generates all possible

combination ,as stated by the fact configdatatype.

sigconf{

 Value: set Name

}

factconfigdatatype{

all n:set Name | some c:conf | c.value=n

}

Multiplicity is used to define the number of objects required. It has some kinds like

set(zero or more)

one (exactly one)

lone(zero or none)

some (one or more)

Those examples:-

one sig A{} // A is singleton set

lone sig B{} // B is a singleton or empty

some sig C{} // C is a non-empty set

2.5.3 Instances and Meaning

A model‘s meaning is several collections of instances. An instances a binding of

values to variables. Typically, a single instance represents a state, or a pair of states

(corresponding to execution of anoperation), or an execution trace. The language has

no built-in notion of state machines, however, so an instance need not represented of

these things.

The collections of instances assigned to a model are:

 A set signatures andtheir fields, and they bind values to them that make this of

core instances associated with the facts of the model, and the constraints

implicit in the signature declarations. These instances have as their variables

the signature and their fields.

 For each function or predicate, a set of those instances for which the facts and

declaration constraints of the model asa whole are true, and additionally the

constraint of the function or predicate are true. The variables of these instances

are those of the core instances, extended with the arguments of the function or

predicate.

14

 For each assertion, a set of those instances for which the facts and declaration

constraints of the model as a whole are true, but for which the constraint of the

assertion is false.

 A model without any core instances is inconsistent, and almost certainly

erroneous. A function or predicate without instances is like wise inconsistent,

and is unlikely to be useful. An assertion is expected not to have any

instances: the instances are counterexamples, which indicate that the assertion

does not follow from the facts.

 The Alloy Analyzer finds instances of a model automatically by search within

finite bounds (specified by the user as a scope). Because the search is

bounded, failureto find an instance does not necessarily mean that one does

not exist. But instances that are found are guaranteed to be valid.

15

Chapter 3

Case Study

3.1 Introduction of GPL

We offer the following domain as an example to compare and contrast approaches to

the definition and implementation of product-line architectures. We believe this a

good example, because it deals with a classical domain whose algorithms (i.e., graph

algorithms) are common-knowledge to computer scientists. This relieves readers of

burden and overhead that accompanies the understanding of an unfamiliar domain.

Figure:3.1The graph product line feature model

3.1.1Overview of GPL Feature Tree

A possible feature diagram for the graph library is shown in the root is labeled with

GraphLibraryto represent a graph product (That is , a graph library). It has Two

mandatory child feature Graphtype,Algorithmbecause each graph library has to

implement an graph type, which is either Directed or Undirected and Weighted or

Unweighted.Furthermore, oneother child features of the root is optional Search.

Search strategies may be either breadth-first search(BFS) or depth –first search

16

(DFS). Since it is optional, either zero or one Feature may be present in a graph

product.Algorithm offers a selection of graph algorithms as child features & the child

Features are ShortestPath, Coloring, Cycle Detection,MST and

StronglyConnected.Since they are in ‗Or‘ feature,either one or more feature may be

present in graph product line.In our example the algorithm for coloring has two

alternative implementations, BruteForce and approximation. Some non-local

conditions are modeled as explicit Boolean constraints – for example ,minimal

spanning trees(MST) makes only sense for weighted graphs, andShortestPathcan be

computed for directed graphs only.

3.2 Hall Booking System Feature Tree

Hall Booking software is online/manual booking software for room and conference

facility reservations. This software makes booking more efficient for clients, staff, and

conference facilities. It simplifythe process, maximize capacity, and provide a

seamless service from first click to confirmation

 Fig:3.2 Hall Booking System Feature Tree

17

3.2.1 Overview of Hall Booking System

We use Hall Booking System family to illustrate our variability modeling mechanism.

The system is used in academic institutions to reserve tutorial rooms and lecture halls,

at companies to reserve meeting rooms, and at hotels to reserve rooms and conference

facilities, etc. In another sense, the system can be used for either academic or non-

academic purposes. Users can manage their own reservation with the system. The

main purpose and the core functionality are similar across the Hall Booking System

family; however, there are many variants on the basic theme. One of the basic variants

is the charging of the booking system. Whenever the system is used for academic

purposes, no charge is needed for booking halls, whereas there may be a need to

charge for booking halls in other areas. In some systems, there are facilities available

for seasonal booking as well as multiple bookings.

The Root of this system is Functional Feature of Hall Booking System. It has Five

Direct Feature. Two of them are Mandatory Feature and they are Reservation Mode

and Reservation Management. Three of the features are Optional and they are

Reservation Charge, notification and Handle Conflict. Under Reservation Charge

feature there has four child feature and they are Deposit, Tax, Basic Charge and

Discount and all of them are in Or relationship with there parent feature Reservation

Charge. The Block and Single feature are in Alternative Relationship with there

Parent Feature Reservation Mode and Under Block Parent feature Multiple Rooms and

Multiple Time are in Or relationship. On the Other hand Block under Reservation

Mode and Discount feature under Reservation Charge are in Require Relationship.

Notification contain three Child feature in Or relation and they are Print Paper, Email

and Fax. Add Modify and Delete are two mandatory Feature under the Reservation

Management Parent Feature.

18

Chapter 4

Logical Modeling of Feature Tree

4.1 Introduction

Logic has been studied since the classical Greek period(600-300BC). The Greeks ,

most notableThalas, were the first to formally analyze the reasoning process. Aristotle

(384-322BC) , ―The father of logic‖, and many other Greeks searched for universal

truths that were irrefutable. A second great period for logic came with the use of

symbols to simplify complicated logical arguments. Gottfried Leibniz (1646-1716)

began this work at age 14, but failed to provide a workable foundation for symbolic

logic. George Booke (1815-1864) is considered the ―Father of symbolic logic‖ He

developed logic as an abstract mathematical system consisting of defined

terms(Proposition), operations(Conjunction, Disjunction and negation), and rules for

using the operation. Boole‘s basic idea was that if simple propositions could be

represented by precise symbols, the relation between the propositions could be read as

precisely as an algebraic equation. Boole developed an ―Algebra of logic‖ in which

certain types of reasoning were reduced to manipulations of symbols.
A feature model is a hierarchically arranged set of features. The relationships between

a parent (or variation point) feature and its child features (Variations) are categorized

as follows:

 Mandatory

 4.1 (a)

 Optional

 4.1 (b)

 Or

 4.1 (c)

 Alternative

 4.1 (d)

 Optional Alternative

 4.1 (e)

 Optional Or

 4.1 (f)

 Fig: 4.1 Notations of the feature rules

19

 Mandatory : A mandatory feature is included if its parent feature is included.

Mandatory feature is represented by a small circle on the child node. A filled

bullet denotes a mandatory (In fig : 4.1 (a)) feature and features that are

required.

 Optional: An optional Feature may or may not be include if its parent is

included.Optional Feature is represented by a small circle on the child node. A

empty bullet denotes(In fig : 4.1 (b)) a optional feature and features that are

optional .The set notation for optional feature is…

 OR Feature: At least one from a set of or feature is included when parent is

included and one or more features can be selected when the parent feature

appears. Feature is represented by a filled triangle (In fig : 4.1 (c)) denotes

the or Feature.

 Alternative: One and only one feature from a set of alternative features are

included when parent feature is included that means exactly one sub-feature

must be selected. Feature is represented by a unfilled(In fig : 4.1 (d))

triangle denotes the alternative.

 Optional alternative: One feature from a set of alternative features may or may

not be included if parent in included. Feature is represented by a unfilled

triangle and empty bullets(In fig : 4.1 (e)) denotes the optional alternative.

 Optional or: One or more optional feature may be included if the parent is

included. Optional Or Feature is represented by a filled triangle (In fig : 4.1

(f)) and filled bullets denotes the optional or.

20

4.1.1 Logical expression of feature tree

Fig 4.1.1: Logical notations of feature model

4.2 Set representation of SPL(Software Product

Line)

4.2.1 Feature Types

If we want to represent SPL(Software Product Line) feature rules by set then we have

to think the whole element situated in a set ―conf‖.

Mandatory: We assume that ―x‖ and ―A‖ are two elements inconf Set. Now for

define the mandatory feature For all ―x‖ and ―A‖ where ―x‖ and ―A‖ belongs to Set

Conf. Then both are Dependent to each other. That means where ―x‖ is present ―A‖

must be present and also where ―A‖ is present ―x‖ must be present. One cant be

imagined except another.

21

 Fig:4.2.1 Set Representation for Mandatory Feature

x,A. x confA conf x  A

4.2.1 Truth table for Mandatory Feature

X A XA

T T T

T F F

F T F

F F F

Optional:We assume that ―x‖ and ―A‖ are two elements in confSet.―x‖ and ―A‖ are

two elements in this Set. Now for define the optional feature For all ―x‖ and ―A‖

where ―x‖ and ―A‖ belongs to Set Conf. Then ―x― is Dependent to ―A‖. That means

where ―x‖ is present ―A‖ must be present but where ―A‖ is present ―x‖ may or may

not be present.

Fig:4.2.2 Set Representation for Optional Feature

conf

conf

x

A

x

A

22

x,A. x conf A conf x A

4.2.2 Truth Table For Optional Feature

X A XA

T T T

T F F

F T T

F F T

Alternative:We assume that ―x‖ ,‖y‖and ―A‖ are three elements inconf Set. Now

for define the Alternative feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and ―A‖

belongs to Set Conf. Then if ―A‖is included to feature then ―x‖ or ―y‖must be

included in feature . .sign represent the XOR (any one must be selected)

relationship.‖A‖ cantbe imagined except any of them.

 Fig:4.2.3 Set Representation for Alternative Feature

x,y,A. x conf y conf A conf x y A

4.2.3 Truth Table For Alternative Feature

X Y A XY (XY)A

T F T T T

T F F T F

T T T F F

T T F F T

F F T F F

F F F F T

F T T T T

F T F T F

conf

x y

A

23

Optional Alternative:We assume that ―x‖ ,‖y‖ and ―A‖ are three elements in

conf Set. Now for define the Alternative feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖

,‖y‖ and ―A‖ belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖

may or may not be included in feature . sign represent the XOR (any one must

be selected) relationship.

 Fig:4.2.4 Set Representation for optional Alternative Feature

x,y,A. x conf y conf A conf x y A

4.2.4Truth Table For Optional Alternative Feature

X Y A XY (XY)A

T F T T T

T F F T F

T T T F T

T T F F T

F F T F T

F F F F T

F T T T T

F T F T F

Or Feature:A set of child features are said to have an or-relation with their parent

when one or more sub features can be selected when the parent feature appears. Now

for set representation, We assume that ―x‖ ,‖y‖ and ―A‖ are three elements in conf

Set. Now for define the Or feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and ―A‖

belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖ or may both

included in feature .But one child feature must be included if the parent feature

included. ―ᴠ‖ sign represent the Or (any one must be selected) relationship.

conf

x y

 A

24

 Fig:4.2.5 Set Representation for Or Feature

x,y,A. x conf y conf A conf (x  y) A

4.2.5 Truth Table For Or Feature:

X Y A X  Y (XY)A

T F T T T

T F F T F

T T T F F

T T F F T

F F T F F

F F F F T

F T T T T

F T F T F

Optional Or: A set of child features are said to have an or-relation with their parent

when one or more sub features can be selected when the parent feature appears. Now

for set representation, We assume that ―x‖ ,‖y‖ and ―A‖ are three elements in Conf

Set. Now for define the Or feature For all ―x‖ ,‖y‖ and ―A‖ where ―x‖ ,‖y‖ and ―A‖

belongs to Set Conf. Then if ―A‖ is included to feature then ―x‖ or ―y‖ or may both

included in feature .But it is not compelled to include any child feature must be

included if the parent feature included. ―ᴠ‖ sign represent the Or (any one must be

selected) relationship.

conf

x y

 A

25

 Fig:4.2.6 Set Representation for Optional Or Feature

x,y,A. x conf y conf A conf (x  y) A

4.2.6 Truth Table for Optional Or feature

X Y A X  Y (XY)A

T F T T T

T F F T F

T T T F T

T T F F T

F F T F T

F F F F T

F T T T T

F T F T F

Require: Two child feature is in require relationship if one child feature is

dependent to another child feature. But the both child feature must belongs to

different Parent feature. Now if we want to represent the require relationship set then,

we assume that ―x‖,‖y‖,‖conf1‖ and ―conf2‖ are the elements of ―conf‖ set but here

―x‖ is belongs to ―conf1‖ set and ―y‖ is belongs to ―conf2‖ set and both of them

(―conf1‖ and ―conf2‖) are belongs to set ―conf‖ set. It should mention that we are

assuming ―conf1‖ and ―conf2‖ set represent the parent(Variant) feature of ―x‖ and ―y‖

variation point(child feature) and also ―x‖, ―y‖ both cant be in same variation point.

So now ―x‖ is strongly dependent in ―y‖. That means if ―x‖ child feature is included

―y‖ must be included. ―x‖ cant be imagined without ―y‖.

conf

x y

 A

26

 Fig:4.2.7 Set Representation for Require Feature

x,y,conf1,conf2. x conf1  y  conf2  conf1 conf conf2 conf x

conf2  y  conf1  (x y)

4.2.7 Truth Table for Require feature

X Y A X  Y (XY)A

T F T T T

T F F T F

T T T F T

T T F F T

F F T F T

F F F F T

F T T T T

F T F T F

Exclude: Two child feature is in Exclude relationship if one child feature is

conflicted to another child feature. But the both child feature must belongs to different

Parent feature. Now if we want to represent the require relationship set then, we

assume that ―x‖,‖y‖,‖conf1‖ and ―conf2‖ are the elements of ―conf‖ set but here ―x‖

is belongs to ―conf1‖ set and ―y‖ is belongs to ―conf2‖ set and both of them (―conf1‖

and ―conf2‖) are belongs to set ―conf‖ set. It should mention that we are assuming

―conf1‖ and ―conf2‖ set represent the parent(Variant) feature of ―x‖ and ―y‖ variation

point(child feature) and also ―x‖, ―y‖ both cant be in same variation point. So now ―x‖

is strongly conflicted with ―y‖. That means if ―x‖ child feature is included ―y‖ can‘t

be included.

conf

conf1

x

conf2

y

27

 Fig:4.2.8 Set Representation for Exclude Feature

x,y,conf1,conf2. x conf1  y  conf2  conf1 conf conf2 conf x 

conf2  y  conf1  (x y)

4.2.8 Truth Table for Exclude feature

X Y A XY (XY)A

T F T T T

T F F T F

T T T F T

T T F F T

F F T F T

F F F F T

F T T T T

F T F T F

4.3 Analysis Of Feature Type

The Feature model of the CAD system is spitted into smaller part for the convenience

of analysis. Then we analysis each part individually and get some basic rules.

conf

conf1

x

conf2

y

28

4.3.1 Scenario 1

In Fig 4.3.1, v1 and v2 are variants (and variation points) and there is a require

dependency between them. Here v2 is selected whenever v1 is selected.

Fig 4.3.1: Require dependency between variants and between variation points

Adopting the notation in we define the following rule for dependency amongvariants

as well as variation points.

v1, v2 · type(v1, variant) ^ type(v2, variant)^

require v _v(v1, v2) ^ select(v1)) select(v2)

v1, v2 · type(v1, variation point) ^ type(v2, variation point)^

requirevp_vp(v1, v2) ^ select(v1)) select(v2)

where type(vi, . . .) indicates whether vi is a variant or variation point,

select(vi)indicates the selection of variant vi and require() indicates the require

relationship.Similar notation will be used for rest of the rules definition. Due to this

dependencyrule the dependent variant, v2 here, will always be selected if v1 is

selected andsuch selection will not be affected by the type of relationship such as

Alternative,with their parent.

4.3.2. Scenario 2

 Fig 4.3.2: Exclude dependency between variants and between variation points

29

In Fig 5.3.2, there is an exclude relationship between v1 and v2. Here v1 and v2 are

variants in the left figure and variation point in the right part of the figure. In both

cases, as there is exclude relationship between them only one can be selected at a

time. Here, we can suggest that for such scenario the relationship among the variants

or variation points must be Alternative to keep the feature model

well-formed. Similar to previous example, we define rules for such dependencies.

v1, v2 · type(v1, variant) ^ type(v2, variant)^

exclude v_ v(v1, v2) ^ select(v1))notselect(v2)

v1, v2 · type(v1, variation point)^type(v2, variation point) ^

 exclude_ vp_vp(v1, v2)^ select(v1))notselect(v2)

4.3.3. Scenario 3

 Fig 4.3.3: Require Dependency between variants and variation point

In Fig ,Suppose v1 and v2 are two variation points. x is a variant under the variation

point v1 and y is a variant under the variation point v2. There is a require relationship

between the variant x and the variation point v2. That means when we select x, v2

will be automatically selected. From this scenario we can derive a rule

v1, v2, x, y · type(x, variant) ^ type(v1, variation point)^ type(v2, variation point) ^

requires v _vp(x, v2) ^ select(x)) select(v2)

30

4.3.4 Scenario 4

 Figure 4.3.4.: Exclude dependency between variants and variation point

In Fig 4.3.4,Suppose v1 and v2 are two variation points. x is a variant under the

variation point v1, and y is a variant of the variation point v2. There exists an exclude

relationship between the variant x and the variation point v2. That means when we

select x, v2 will be automatically deselected because the selection of the variant x

cannot allow the selection of the variation point v2. That means both

the variation point v1 and v2 cannot appear in a product. The following rule is derived

from this scenario

v1, v2, x, y · type(x, variant) ^ type(v1, variation point)

 ^ type(v2, variation point) ^ exclude v _vp(x, v2) ^ select(x))notselect(v2)

For all variants x and variation point v2; if x excludes v2 and x is selected, thenx2

should not be selected.

4.3.5 Scenario 5

 Figure 4.3.5.: Requires dependency between variation point

In Fig.4.3.5 , v1 and v2 are two variation point and x and y are their variants

respectively. There is a requires relationship between the variation point v1 and v2,

then when the variation point v1 is selected we must select the variation point v2,

31

otherwise the condition will be violated. In other words, the selection of variation

point v1 will automatically select the variation point v2. From this analysis we can

derive a rule that can satisfy when this type of scenario occurs in the feature model

v1, v2 · type(v1, variation point) ^ type(v2, variation point)

 ^ requires vp_vp(v1, v2) ^ select(v1)) select(v2)

4.3.6 Scenario 6

Figure 4.3.6: Exclude dependency between variation points

In Fig. 4.3.6, suppose v1 and v2 are two variation points. Let there exists is an

exclude relationship between the variation points v1 and v2. Hence when variation

point v1 is selected we must deselect the variation point v2. In other way we can say

that selection of variation point v1 will automatically reject the selection of variation

point v2. From this analysis we can derive a rule that can satisfy when this type of

scenario occur in the feature model

v1, v2 · type(v1, variation point) ^ type(v2, variation point)

 ^ exclude vp_vp(v1, v2) ^ select(v1)) notselect(v2)

4.3.7 Scenario 7

Figure 4.3.7: Exclude dependency between variation points

In Fig,4.3.7 v1 is variation point and x is a variant of that variation point. When a

variation is selected its variation point will be selected automatically. This scenario

can also be called as parent-child, when a child is selected, its parent will be selected

as well. The following rule is defined for this scenario.

v1, v2 · type(x, variant) ^ type(v1, variation point)

^ variant(v1, x) ^ select(x)  select(v1)

32

4.3.8 Scenario 8

Figure 4.3.8: Variation point to variation point and parent-child relation

Suppose v1 and v2 are two variation point and x and y are their respective variants

and there is a requires relation from v1 to v2. Here y is a mandatory feature. In this

case when variant x is selected according to our earlier scenario, variant y will also be

selected. shows the scenario and the corresponding definition of

rules is as follows:

v1, v2, x, y · type(x, variant)^type(y, variant)^variants(v1,x)^variant(v2, y) ^

common(y) ^ requires vp_ vp(v1, v2) ^ select(x)  select(y)

4.3.9 Scenario 9

Fig 4.3.9: Variant and variation point exclude relation

Suppose v1 and v2 are variation points. x and y are two of their variants respectively.

There exists an exclude relationship between v1 and the variants v2. If someone selects

the variants x it will automatically deselect the selection often variant y, because we

cannot select a variant when its variation point is not selected. The scenario is

depicted in

v1, v2, x, y : type(x, variant) ^ type(y, variant)^ variant(v1, x) ^ variant(v2, y) ^

common(y, yes) ^ requires vp_vp(v1, v2) ^ select(x))notselect(y)

33

Chapter5

Model Verification in ALLOY

5.1 Representing our feature model using Alloy

Though the feature model that we analysis here is so vast so it would be very difficult

to represent the whole feature model in Alloy. So we break the whole feature diagram

into pieces. Then we try to encode each small pieces using alloy syntax. We assume

that this small pieces give the correct result then after integrating all small pieces we

can get the result about whether the feature model will work correctly or not. To do

this first we take a small part of the GPL .

We can represent this part as below.

Figure :5.1.1 A small part of the GPL

In Alloy, one signature can extend another, establishing that the extended signature

(sub-signature) is a subset of the parent signature. Firstly, we declare itselements; a

singleton (one) sub-signature, which has exactly one object, for each FM element.

The FM inis represented by GPL, which extends FM, and presents 2 features. A

singleton signature is declared for each feature name. Finally we state GPL‘s features

in a fact (fact), which packages formulas that always hold, such as invariants about

the elements.

34

5.1.1 Alloy Encoding for above mention Tree

one sig CAD extends FM{}

one sig graph extends FM1{}

one sig dircted,undirected extends Name{}

factCADFeatures

{

CAD.features1=graph

graph.features=directed+undirected

}

The ―+‖ operator denotes the set union operator. Our main goal is to reason whether a

transformation preserves or increases FM configurations. For that, FM semantics must

be specified in Alloy. One approach is to declare an Alloy function yielding a set of

valid configurations for a FM. By our concern in improving analysis performance, we

cannot declare a semantics function for all FMs, which could be very inefficient. We

then specified a semantics predicate for each FM. Part of this predicate is fixed for all

FMs. The other part depends on its relationships and formulas. This encoding is

systematic, straightforward for being included into tool support. Next, we explain the

encoding through an example, later generalizing our approach. For each FM, a

predicate is defined, containing all FM formulas directly translated to their semantics

function. Using this approach, there is no predicate checking whether a configuration

satisfies a formula. The immutable part of the semantics predicate introduce the

following constraints: every configuration includes a subset of FMs names, and the

root must always be included, as declared next. We call them implicit constraints.

5.1.2 Semantic Part of the above mentioned Tree

pred semantics graph[conf:set Name]

{

conf in graph.features

alternative[directed,undirected,conf]

}

Then all relationships of the FM are declared in terms of the predicates alternative

[directed,undirected,conf] In order to systematically specify a FM into Alloy using

our encoding, the following

steps must be taken::

 create a singleton sub-signature for each feature extending from Name

 specify the semantics predicate containing the relationships (reusing the

encoding predicates) and formulas (using Alloy operators) in the FM.

35

Based on the previous encoding, we can perform automatic analysis on FMs using the

Alloy Analyzer.

runsemanticsgraph

The run analysis command must specify a scope for all signatures declared. Our

encoding contains 2 signatures. The previous fragment declares the run command for

one FM (we are analyzing only one FM) and for 2 names (the FM encodedcontains 4

features).

5.2 Alloy encoding

5.2.1 Output Validation for GPL

While checking for valid configuration we create a predicate valid configuration we

create a predicate validconfig. where we select those feature that can product a valid

product .Here we declare graph, search, algorithm, directed, undirected, weighted,

unweighted,DfsBfs,coloring,shortestpath,cycledetection,mst,stronglyconnected,appro

ximation,brutef.We have this option to select .So we need to select some of the

features in order to get our desired product .Here our target is to check whether alloy

gives us a valid result for our selection of features. In pred valid config we select

graph ,algorithm, search, directed, weighted, Dfs, coloring, approximation. We have

already seen in the logic part that this combination gives us a valid result, which is

indicated by the alloy result display screen ,where it shows that an instance is found.

Which is shown in Fig-5.2.1 Also when we click on the ‗instance‘ text then we get

model which actually display the graph of the product and it is shown in fig5.2.1

36

Fig:5.2.1 For validation for GPL

5.2.3Output validation for hall booking system

While checking for valid configuration we create a predicate valid configuration we

create a predicate validconfig. where we select those feature that can product a valid

product.Here we

declarehallbooking,RCharge,RMode,Notification,RManagement,HandleConflicts,dep

osit , tax, basiccharge, discount, block, multiple rooms, multiple times, single, fax,

print paper,email, add modify, deleteWe have this option to select .So we need to

select some of the features in order to get our desired product .Here our target is to

check whether alloy gives us a valid result for our selection of features. In pred valid

config we select hall booking,RCharge,RMode ,Notification, RManagement, Handle

Conflicts, deposit, block, multiple times, fax,addmodify, delete, add modify. We have

already seen in the logic part that this combination gives us a valid result, which is

indicated by the alloy result display screen ,where it shows that an instance is found.

Which is shown in Fig-5.2.3 Also when we click on the ‗instance‘ text then we get

model which actually display the graph of the product and it is shown in fig 5.2.3

37

Fig:5.2.3 For validation of Hall Booking System

5.2.4Output validation for Invalid configuration

Here is the Alloy (Fig 5.2.4) output for Invalid configuration for GPL feature tree

Fig 5.2.4 Run invalid Configfor GPL feature tree

38

Chapter 6

Conclusion

6.1 Conclusion
A product line architecture represents a significant long term investment .The ease

with which the architecture can deal with changes such as- New features, new

products and better quality properties will have a significant impact on the success of

the product line. In a domain model, when the volume of information grows the

possible explosion of variant combination becomes inevitable and tracing of proper

variant information in the domain model becomes hard. As a result, the impacts on

variants on domain model during customization of any particular product become

unclear. A variant model has been proposed here which explicitly represents all the

variant related information in order to generate any customized product form the

domain model. Successful development of software product line requires appropriate

organization and management of products requirements. A significant characteristic

of developing product line is the management of the variants which is a crucial

success factor of product line.

We presented an approach to formalizing and verifying SPL feature models to be able

to create a decision table to generate customized product by using formal reasoning

techniques. We provided formal semantics of the feature models by using, set

representation first-order logic and specified the definitions of six types of variant

relationships. We have six notations mandatory, optional, or, alternative, optional

alternative, optional or We also defined cross-tree variant dependencies. Examples are

provided describing various analysis operations, such as validity. We have addresses

most of the analysis questions mentioned in . Finally, we encoded our logical

notations into Alloy to be able to automatically verify any analysis related queries. A

knowledge-based approach to specify and verify feature models is presented in .

Comparing to that presentation, our definition relies on set representation which can

be directly applied in many verification tools .

39

6.2 Future Work

Our particular interest is developing a tool to automatically generate customized

product based on user requirement. In contrast to other automated analysis of feature

model tools, e.g., at this stage, our tool is domain specific where these automated

tools can be used as a supporting tool and can be used to automatically verify the

derived product specification.

40

Appendix

A.1.Alloy encoding for GPL

sig FM{

features:set Name

}

sig Name{}

sigconf{}

pred optional[A,B:Name,conf:set Name] {

B in conf =>A in conf

}

pred mandatory[A,B:Name,conf:set Name]{

A in conf<=> B in conf

}

pred alter[A,B: Name ,conf:set Name]

{

A in conf ! B in conf

}

pred root[A:Name,conf:set Name]

{

A in conf

}

predorFeature[A:Name, children:set Name, conf:set Name]

{

A in conf<=>some c:children|c in conf

#children>=1

}

pred require[A,B:Name,conf:set Name] {

A in conf => B in conf

}

pred exclude[A,B: Name ,conf:set Name]

41

{

A in conf ! B in conf

}

one sig M extends FM{}

onesigGPL,graph,search,algorithm,directed,undirected,weig

hted,unweighted,Dfs,Bfs,coloring,shortestpath,cycledetect

ion,mst,stronglyconnected,approximation,brutefextends

Name{}

factFaw{

M.features=GPL+graph+search+algorithm+directed+undirected

+weighted+unweighted+Dfs+Bfs+coloring+shortestpath+mst+cy

cledetection+stronglyconnected+approximation+brutef

}

predsemanticsM[conf:set Name]

{

confinM.features

root[GPL,conf]

mandatory[GPL,graph ,conf]

mandatory[GPL,algorithm,conf]

optional[GPL,search,conf]

alter[Dfs,Bfs,conf]

alter[directed,undirected,conf]

orFeature[algorithm,coloring+shortestpath+cycledetection+

mst+stronglyconnected,conf]

alter[approximation,brutef,conf]

require[Dfs,approximation,conf]

exclude[weighted,brutef,conf]

}

predvalidconfig{

semanticsM[GPL+graph+algorithm+search+directed+weighted+D

fs+coloring+approximation]

}

Runvalidconfig

42

A.1.1 MetaModel for GPL

Fig: A.1.1Metamodel of GPL Feature Tree

A.2.Alloy encoding for Hall booking system

sig FM{

features:set Name

}

sig Name{}

sigconf{}

sig conf1{}

pred optional[A,B:Name,conf:set Name] {

B in conf =>A in conf

}

pred mandatory[A,B:Name,conf:set Name]{

A in conf<=> B in conf

}

pred alter[A,B: Name ,conf:set Name]

{

A in conf ! B in conf

}

pred root[A:Name,conf:set Name]

{

A in conf

43

}

pred root1[A:Name,conf:set Name]

{

A in conf

}

predorFeature[A:Name, children:set Name, conf:set Name]

{

A in conf<=>some c:children|c in conf

#children>=1

}

pred require[A,B:Name,conf:set Name] {

A in conf => B in conf

}

pred exclude[A,B: Name ,conf:set Name]

{

A in conf ! B in conf

}

one sig M extends FM{}

onesighallbooking,RCharge,RMode,Notification,RManagement,

HandleConflicts,deposit,tax,basiccharge,discount,block,mu

ltiplerooms,multipletimes,single,fax,printpaper,email,add

modify,delete extends Name{}

factFaw{

M.features=hallbooking+RCharge+RMode+Notification+RManage

ment+HandleConflicts+deposit+tax+basiccharge+discount+blo

ck+single+multiplerooms+multipletimes+single+fax+printpap

er+email+addmodify+delete

}

predsemanticsM[conf:set Name]

{

confinM.features

root[hallbooking,conf]

root1[RManagement,conf]

optional[hallbooking,RCharge,conf]

mandatory[hallbooking,RMode ,conf]

mandatory[hallbooking,RManagement,conf]

optional[hallbooking,Notification,conf]

optional[hallbooking,HandleConflicts,conf]

orFeature[RCharge,deposit+tax+basiccharge+discount,conf]

alter[block,single,conf]

orFeature[block,multiplerooms+multipletimes,conf]

orFeature[Notification,fax+printpaper+email,conf]

mandatory[RManagement,delete,conf]

mandatory[RManagement,addmodify ,conf]

44

}

predvalidconfig{

semanticsM[hallbooking+RCharge+RMode+Notification+RManage

ment+HandleConflicts+deposit+block+multipletimes+fax+addm

odify+delete+addmodify]

}

Runvalidconfig

A.2.1 Metamodel of Hall Booking System

Fig:A.2.1Metamodel of Hall Booking system Feature Tree

A.3.Invalid configuration for GPL

sig FM{

features:set Name

}

sig Name{}

sigconf{}

pred optional[A,B:Name,conf:set Name] {

45

B in conf =>A in conf

}

pred mandatory[A,B:Name,conf:set Name]{

A in conf<=> B in conf

}

pred alter[A,B: Name ,conf:set Name]

{

A in conf ! B in conf

}

pred root[A:Name,conf:set Name]

{

A in conf

}

predorFeature[A:Name, children:set Name, conf:set Name]

{

A in conf<=>some c:children|c in conf

#children>=1

}

predorfeature[A:Name, children:setName,conf:set Name]

 {

A in conf<=> some c:children | c in conf

#children >1

}

pred alternative[A:Name, children: set Name, conf:set

Name]{

orFeature[A,children,conf]

#(children &conf) <=1

}

one sig M extends FM{}

onesigGPL,graph,search,algorithm,directed,undirected,weig

hted,unweighted,Dps,Bfs,spath,MST,coloring,approximation,

brutef extends Name{}

factFaw{

M.features=GPL+graph+search+algorithm+directed+undirected

+weighted+unweighted

+Dps+Bfs+spath+MST+coloring+approximation+brutef

}

46

predsemanticsM[conf:set Name]

{

confinM.features

root[GPL,conf]

orfeature[GPL,MST,conf]

orfeature[GPL,coloring,conf]

alter[Dps,Bfs,conf]

alter[directed,undirected,conf]

alter[weighted,unweighted,conf]

alter[approximation,brutef,conf]

mandatory[GPL,graph ,conf]

mandatory[GPL,algorithm,conf]

optional[GPL,search,conf]

}

predInvalidconfig{

semanticsM[GPL+

graph+directed+brutef+algorithm+Dps+weighted+coloring+sea

rch+MST+Bfs]

}

runInvalidconfig

47

Bibliography

[1] DeBaud, J.M., Schmid, K.: A systematic approach to derive the scope of software

product lines. In: Proceedings of the 21st International Conference on Software

Engineering (ICSE), IEEE Computer Society Press (1999) 34–43

[2] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools,

andApplications. Addison-Wesley (2000)

[3] Bosch, J.: Design and Use of Software Architecture: Adopting and evolving a

product-line approach. Addison-Wesley (2000)

[4] Greenfield, J., Short, K.: Software Factories: Assembling Applications with

Patterns,Models, Frameworks, and Tools. Wiley (2004) To be published.

[5] Deursen, A.v., Klint, P.: Domain-specific language design requires feature

descriptions.Journal of Computing and Information Technology 10 (2002) 1–17

[6] Griss, M., Favaro, J., d‘ Alessandro, M.: Integrating feature modeling with the

RSEB. In: Proceedings of the Fifth International Conference on Software

Reuse(ICSR), IEEE Computer Society Press (1998) 76–85

[7] Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling

forproduct line software engineering. In Gacek, C., ed.: Software Reuse:

Methods,Techniques, and Tools: Proceedings of the Seventh Reuse Conference

(ICSR7), Austin, USA, Apr.15-19, 2002. LNCS 2319, Springer-Verlag (2002) 62–77

[8] Barbeau, M., Bordeleau, F.: A protocol stack development tool using generative

programming. In Batory, D., Consel, C., Taha, W., eds.: Proceedings of the ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component

Engineering (GPCE‘02), Pittsburgh, October 6-8, 2002. LNCS 2487, Springer-Verlag

(2002) 93–109

[9] Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.W.: Generative

programming for embedded software: An industrial experience report. In Batory, D.,

Consel, C., Taha, W., eds.: Proceedings of the ACM SIGPLAN/SIGSOFT

Conference on Generative Programming and Component Engineering (GPCE‘02),

Pittsburgh, October 6-8, 2002. LNCS 2487, Springer-Verlag (2002) 156–172

[10] Riebisch, M., B¨ollert, K., Streitferdt, D., Philippow, I.: Extending feature

diagrams with UML multiplicities. In: 6th Conference on Integrated Design &

Process Technology (IDPT 2002), Pasadena, California, USA. (2002)

[11] B. Chandrasekaran and John R. Josephson, Ohio State University V. Richard

Benjamins, University of Amsterdam.“What Are Ontologies, and Why Do We Need

Them?”

[12] Peter F. Patel-Schneider,co-chair Bill Swartout,co-chair . ―Description-Logic

Knowledge Representation System Specification from the KRSS Group of the ARPA

Knowledge Sharingeffort.‖1 November 1993

48

[13] http://www.racer-systems.com/products/racerpro/ (Last Visited in 11.11.2014)

[14] http://en.wikipedia.org/wiki/Propositional_formula (Last Visited in 11.11.2014)

[15] Christian Prehofer. Feature-oriented programming: A new way of object

composition. Concurrency and Computation: Practice and Experience, 13(6):465–

501, 2001.

[16] S. Jarzabek, Wai Chun Ong, and HongyuZhang.Handling variant requirements in

domainmodeling.The Journal of Systems and Software, 68(3):171–182, 2003.

[17] http://alloy.mit.edu/alloy/ (Last Visited in 17.11.2014)

[19] http://en.wikipedia.com (Last Visited in 17.11.2014)

[20] http://wikipedia.org/wiki/wikipedia:citationneeded (Last Visited in 17.11.2014)

[21] Software product lines: practices and patterns. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2001.

[22] Andreas Hein, John MacGregor, and Steffen Thiel. Configuring software

product line Features. In ElkePulvermller, Andreas Speck, James Coplien, Maja D

Hondt, and Wolfgang De Meuter, editors, Proceedings of the ECOOP 2001 Workshop

on Feature Interaction in Composed Systems (FICS 2001), Budapest, Hungary, June

18-22, 2001, volume 2001-14 of Technical Report, pages 67–69. University of

Karlsruhe, InstitutfürProgrammstrukturenundDatenorganisation, 2001.

[23] Jan Bosch. Design and use of software architectures: adopting and evolving A

product-line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY,

USA, 2000.

[24] http://www.sei.cmu.edu/productlines/ (Last Visited in 26.10.2014)

[25] http://www.tdgseville.info/topics/spl (Last Visited in 26.10.2014)

[26] M. Bernardo, P. Ciancarini, and L. Donatiello.Architecting families of software

systems withprocessalgebras.ACM Transactions on Software Engineering and

Methodology, 11(4):386–426, 2002.

http://www.racer-systems.com/products/racerpro/
http://en.wikipedia.org/wiki/Propositional_formula
http://alloy.mit.edu/alloy/
http://en.wikipedia.com/
http://wikipedia.org/wiki/wikipedia:citationneeded
http://www.sei.cmu.edu/productlines/
http://www.tdgseville.info/topics/spl

	final report (last).pdf
	2.1.1 Feature Modeling Notations
	Current feature modeling notations may be divided into three main groups, namely:
	2.1.1.2 Cardinality-Based Feature Models
	Some authors propose extending basic feature models with UML-like multiplicities of the form [n,m] with n being the lower bound and m the upper bound. These are used to limit the number of sub-features that can be part of a product whenever the parent...

