

Semantic-Aware Feature Modeling and Analysis

 by
 Taslima Akter
 Tasmia Akther
 Neeta Sinha

 A thesis submitted in partial fulfillment for the
 degree of Bachelor of Science in Computer Science and Engineering

 in the
 Faculty of Science and Engineering
 Department of computer Science and Engineering

 December 2016

Declaration

We hereby declare that this submission is our own work and that to the best of our
knowledge and belief it contains neither material nor facts previously published or written
by another person. Further, it does not contain material or facts which to a substantial
extent have been accepted for the award of any degree of a university or any other
institution of tertiary education except where an acknowledgement.

 (Tasmia Akther)

 (Taslima Akter)

 (Neeta Sinha)

Letter of Acceptance

The project entitled “Semantic-Aware Feature Modeling and Analysis”

submitted by Taslima Akter (ID: 2012-2-60-003) Tasmia Akther (ID: 2012-
2-60-009) and Neeta Sinha (ID: 2012-2-60-020), to the department of
Computer Science and Engineering, East West University, Dhaka,
Bangladesh is accepted by the department in partial fulfillment of
requirements for the Award of the Degree of Bachelor of Science in
Computer Science and Engineering on December 2016

Board of Examiners

Dr. Shamim H. Ripon

Associate Professor

Department of Computer Science and Engineering

East West University, Dhaka-1212, Bangladesh

Dr. Md. Mozammel Huq Azad Khan

Professor & Chairperson

Department of Computer Science and Engineering

East West University, Dhaka-1212, Bangladesh

i

Abstract

Feature diagrams are the most widely used to model product line variant. Formal
Verification of variant requirements has gained much interest in the software product line
(SPL) community. Successful development of a software product line (SPL) requires a
proper management of product line requirements. Various approaches have been adopted
to model both of the requirements of feature diagram. However, most of these approached
lack proper formal semantics. This report presents our work in progress semantic web
approach to model and verify product line requirements. Logical expressions can be built
by modeling variants and their dependencies by using propositional connectives. A case
study of two Feature Model (Hall Booking System) variant feature model is presented to
illustrate the analysis and verification process.

ii

Contents

1 Introduction .. 1

1.1 Introduction ... 1

 1.2 Problem and Motivation .. 2

1.3 Objective .. 3

 1.4 Contribution ... 3

1.5 Outline ... 4

2 Background .. 5

 2.1 Software Product Line .. 5

 2.2 Feature Model ... 6

 2.2.1 Feature Modeling Notations .. 7

 2.3 Domain and Application Engineering .. 8

 2.4 Semantic Web ... 10

 2.5 Ontology ... 11

 2.5.1 Ontology as a Specific Mechanism ... 13

 2.6 OWL .. 14

 2.6.1 Why OWL .. 15

3 Hall Booking System Overview .. 16

4 Semantic Representation ... 19

 4.1 Mandatory .. 19

 4.2 Optional ... 20

 4.3 Alternative ... 20

 4.4 Or ... 21

 4.5 Optional Alternative ... 21

 4.6 Optional Or ... 22

 4.7 Exclude ... 22

 4.8 Requires ... 23

5 Consistency Analysis of Feature Model .. 24

6 Conclusion .. 26

iii

Appendix ... 27

A.1 RDF/XML SOURCE CODE ... 27

Bibliography ... 34

iv

List of Figure

Figure 2.1: Domain Engineering and Application Engineering .. 9

 Figure 3.1: Hall Booking System Feature Tree ... 16

Figure 5.1: Consistency checking in RACER .. 24

 Figure 5.2: Inconsistency checking in RACER .. 25

v

 Acknowledgements

First of all Thanks to ALLAH for the uncountable blessings on us. Thanks to our
Supervisor, Dr. Shamim Hasnat Ripon for providing us this opportunity to test our skills
in the best possible manner. He enlightened, encouraged and provided us with ingenuity to
transform our vision into reality.

Lastly, but deliberately we want to pay tribute to our parents. We call them “Our Heroes,

Our mentors”. These two the people that god has used to discover, nurture and deepen our
academic career.

vi

 To our parents

1

Chapter 1

Introduction

1.1 Introduction

Software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way [1].
Software product lines are emerging as a viable and important development paradigm
allowing companies to realize order-of-magnitude improvements in time to market, cost
productivity, quality. The main idea of software product line is to explicitly identify all the
requirements that are common to all members of the family as well as those that vary
among products in the family. This implies a huge model that help the stakeholders to be
able to trace any design choices and variability decision. A particular product is then
derived by selecting the required variants and configuring them according to the product
requirements. Common requirements among all family members are easy to handle and
can be integrated into the family architecture and are part of every family member. But
problem arises from the variant requirements among family members. Variants are usually
modeled using feature diagram, inheritance, templates and other techniques.

Domain and application engineering are the two main phase of SPL development [2]. A
detailed domain analysis is performed in domain engineering by identifying the
commonalities and variability’s of various aspects of the domain. Domain knowledge is

captured in a reusable manner. Feature modeling [6] plays an important role for modeling
different aspects of family of systems. It models the commonality and variability in a tree
structure and describes the interdependencies of product family features. In comparison to

2

analysis of a single system, modeling variants adds an extra level of complexity to the
domain analysis. Different variants might have dependencies on each other. Tracing
multiple occurrences of any variant and understanding their mutual dependencies are
major challenges during domain modeling. While each step in modeling variants may be
simple but problem arises when the volume of information grows. As a result, the impact
of variant becomes ineffective on domain model.

1.2 Problem and Motivation

There are various reuse mechanism proposed for feature model, such as FODA (Feature
Oriented Domain Analysis) [11], FORM9Feature Oriented Reuse Method)[12] . However,
dew to the lack of formal semantic for feature models, no automated tools are available to
check the consistency and correctness of feature configuration of a particular product.
Various approaches have been suggested to model feature diagram. To capture Domain
knowledge and common vocabularies in any field ontology’s have shown itself an

acceptable paradigm [18]. It is also necessary to process and exploit knowledge in a
computer system.
Both industry and academia have shown much interest in handling product line in
Application domains such as business systems, avionics, command and control systems
etc. Today most of the effort in product line development are relating to architecture [13]
detail design and code. Common requirements among all family members are easy to
handle as they simply can be integrated into the family architecture and are part of every
family member. But problem arises from the variant. In a product line, currently variants
are modeled using feature diagram, inheritance, templates and other techniques. In
comparison to analysis of a single system, modeling variants adds an extra level of
complexity to the domain analysis. In any product line model, the same variant has
occurrences in different domain model views. Different variants have dependencies on
each other. Tracing multiple occurrences in different model views of any variant and
understanding the mutual dependencies among variants are major challenges during
domain modeling. While each step in modeling variant may be simple but problem arises
when the volume of information grows. When the volume of information grows the
domain models become difficult to understand. The main problems are the possible
explosion of variant combinations, complex dependencies among variants and difficulty in
tracing variants from the domain model down to the specification of a particular product.
As a result, the impact of variant becomes ineffective on domain model. Therefore,
product customization from the product line model becomes unclear and it undermines the
very purpose of domain model.
Semantic web technology can provide a meaningful and shared ontological description of
the domain. Web Ontology Language (OWL) [19] is one of the most expressive language

3

for specifying publishing and sharing ontology’s. It is therefore evident that semantic web

technology, OWL in particular can be used to represent a particular domain and define the
relationship of various features within that domain.

1.3 Objectives

This report formally models and verifies the variants of SPL using semantic web
mechanism. In developing product line, the variants are to be managed in domain
engineering phase, which scopes the product line and develops the means to rapidly
produce the members of the family. It serves two distinct but related purposes, firstly it
can record decisions about the product as a whole including identifying the variants for
each member and secondly ,it can support application engineering by providing proper
information and mechanism for the required variants during product generation
- The objective of this work is to provide an approach for modeling variants in the domain
model of a product line .This model carries all the variant related information like
specifications ,origin of variants and interdependencies etc.
- Semantic web mechanism can integrate meaningful description and semantic
information into SPL feature models.
- Our plan is perform these verification by using our Semantic representation.

1.4 Contribution

In order to conduct out experiment we use a hall booking system by analyzing and
modeling the variants as well as the variants dependencies.
- We define six types of logical notation to represent all the parts in a feature model. Set
representation logic has been for this purpose. This notations can be used to define all
possible scenarios of a feature model.
- Analyzing the feature model considering the various scenarios the Feature model and we
define a set of rules which can be used to verify the feature model.
- We use protégé software for checking the valid or invalid feature model.

4

1.5 Outline

The report is organized as follows-

In chapter 2 we gave a brief overview of the feature model, feature model notations and
logical representation of the feature model and describe some logical operators, domain
activities.

In Chapter 3 We have gave an overview hall booking system and hall booking feature
tree.

In chapter 4 we discuss about the logical representation and describe their logical relations
and analyze the semantic representation.

Chapter 5 Using protégé tool for graphical editing and RACER for consistency checking.

Chapter 6 Concludes the thesis by summarizing our work. Finally we outline our future
plan.

5

Chapter 2

Background

2.1 Software Product Line

Software product lines or software product line development refers to software
engineering methods, tools and techniques for managing variability and commonality of
core software assets in order to facilitate the development of families of software-intensive
products. A software product line (SPL) is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way.[1]

A software product line harnesses the principles of industrialization and automation in
order to make the development of software more efficient in addition to the resulting
artifacts being of higher quality. Also we know that software product line is a software
intensive system sharing a common and managed set of feature that satisfy the needs of a
particular market segment or mission and that are developed from a set of core assets in a
prescribed way. Product line technology is a way of improving the software development
lifecycle and refuse by providing facilities to reuse the model of the system family. It is
possible to increase the productivity and decrease the possible errors significantly by
reusing the products of the system families rather than recreating. The main idea of
software product line is to explicitly identify all the activities which are common to all
members of the family as well as which are different and arrange them in a model. This
implies a huge model which will help the stakeholder to be able to trace any design

6

choices and variability decisions as well. Finally, the derivation of the product is done by
selecting the required variants from the model and configuring them according to product
requirements.

Manufacturers have long employed analogous engineering techniques to create a product
line of similar products using a common factory that assembles and configures parts
designed to be reused across the product line. For example, automotive manufacturers can
create unique variations of one car model using a single pool of carefully designed parts
and a factory specifically designed to configure and assemble those parts. The
characteristic that distinguishes software product lines from previous efforts is predictive
versus opportunistic software reuse. Rather than put general software components into a
library in the hope that opportunities for reuse will arise, software product lines only call
for software artifacts to be created when reuse is predicted in one or more products in a
well defined product line. Recent advances in the software product line field have
demonstrated that narrow and strategic application of these concepts can yield order of
magnitude improvements in software engineering capability. The result is often a
discontinuous jump in competitive business advantage, similar to that seen when
manufacturers adopt mass production and mass customization paradigms

While early software product line methods at the genesis of the field provided the best
software engineering improvement metrics seen in four decades, the latest generation of
software product line methods and tools are exhibiting even greater improvements. New
generation methods are extending benefits beyond product creation into maintenance and
evolution, lowering the overall complexity of product line development, increasing the
scalability of product line portfolios, and enabling organizations to make the transition to
software product line practice with orders of magnitude less time, cost and effort.

2.2 Feature Model

In software development, a feature model is a compact representation of all the products
of the Software Product Line in terms of "features".[3] Feature models are visually
represented by means of feature diagrams. A feature models are simple, hierarchical
models that capture the commonality and variability of a product line. In 1990, Feature
models were first introduced in the Feature-Oriented Domain Analysis (FODA) method
by Kang .Since then, feature modeling has been widely adopted by the software product
line community and a number of extensions have been proposed. Feature models play a
central role in the development of a system family architecture, which has to realize the
variation points specified in the feature models [4] [5].
 In software product line(SPL) implementations are typically feature based as features are
logical point of variation for any given group of software products. Therefore , the feature
model is an extremely useful method for modeling the commonality and variability within
an SPL. Also the key technical innovation of software product lines is the use of features

7

to distinguish product line members. A feature is an increment in program functionality. A
particular product line member is defined by a unique combination of features. The set of
all legal feature combination defines the set of product-line members. Feature models
define features and their usage constraints in product-lines. Current methodologies
organize feature into a tree, called a feature diagram (FD), which is used to declaratively
specify product-line members .Relationships among FDs and grammars, and FDs and
formal models/logic programming have been noted in the past, but the potential of their
integration is not yet fully realized.

2.2.1 Feature Modeling Notations

Relationships between a parent feature and its child features (or sub features) are
categorized as

 Mandatory: child feature is required.

 Optional: child feature is optional

 Or: at least one of the sub-features must be selected.

 Alternative (xor): one of the sub _features must be selected.

In addition to the parental relationships between features ,cross-tree constraints are
allowed. The most common are:

 A requires B – The selection of A in a product implies the selection of B.

A excludes B- A and B cannot be part of the same product.

These relations are shown in Table 1.

8

 Table 2.1 Types of features
Type Notation Type Notation

Mandatory

Or

Optional

Optional or

Alternative

Optional
Alternative

2.3 Domain and Application Engineering

Domain is an area of knowledge that uses common concepts for describing phenomena,
requirements, problems, capabilities and solution that are interest of some stakeholders. A
domain is usually associated with well-defined or partially defined terminology. This
terminology refers to the basic concepts in that domain their definition (i.e. their semantic
meanings) and their relationships. It sometime also refers to behaviors that are desired,
forbidden, or perceived within the domain. Domain engineering is a set of activities that
aim at developing, maintaining and managing the creation and evolution of domains.
Domain engineering has become of interest to the information systems and software
engineering communities for several reasons. These reasons include, in particular, the
need to manage increasing requirements for variability of information and software
systems(reflecting variability in customer requirements); the need to minimize accidental
complexity when modeling the variability of a domain; and the need to obtain, formalize
and share expertise in different evolving domains.

Domain engineering provide methods and techniques that may help reduce time-to-
market, product cost and project risk on one hand ,and help improve product quality and
performance on a consistent basis on the other hand. To improve the quality of developed
software products through reuse of software artifacts domain engineering is designed very
well. Domain engineering shows that most developed software system which is not a new
system but rather variants of other systems within the same field. As a result ,the use of
domain engineering business can maximize profits and reduce time -to – market by using
the concepts and implementations from prior software systems and applying them to the
target system.

9

 Figure 2.1 domain engineering and application engineering.

The reduction in cost is evident even during the implementation phase. One study showed
that the use of domain specific language allowed code size, in both number of methods
and number of symbols, to be reduce by over 50% and the total number of lines of code
to be reduced by nearly 75%.

 Domain engineering focuses on capturing knowledge gathered during the software
system. In a domain engineering components can be reused in a new software system at
low cost and high quality. Because this applies to all phases of the software development
cycle, domain engineering also focuses on the three phases such as analysis, design and
implementation, paralleling application engineering. This products not only a set of
software implementation components relevant to the domain, but also reusable and
configurable requirements and designs .

Also we know that software engineering focuses on single system but domain engineering
focuses on a family of system [11]. A good domain model servers as a reference to resolve
ambiguities later in the process [12], a repository of knowledge about the domain
characteristics and definition, and a specification to developers of products which are the
part of the domain .

10

2.4 Semantic Web

The semantic web is an extension of the Web through standards by the World Wide Web
Consortium (W3C). The standards promote common data formats and exchange protocols
on the Web, most fundamentally the Resource Description Framework (RDF) [7]. By
encouraging the inclusion of semantic content in web pages, the semantic web aims at
converting the current web dominated bt unstructured and semi-structured documents into
a “web of data”.

The vast majority of the Web is designed to be read and understand by humans. It is, for
the most part , not possible for a machine or software agent to freely navigate through the
Web and accurately accomplish a task of any significance. Most content on the Web must
be viewed by humans and ,with the proper context, understood in order to be of any use. A
true Semantic Web would add machine readable structure and encode content in such a
manner so that machines, especially intelligent software agents, could navigate and
accomplish tasks by reasoning through the meaningful content of the Web pages.

The W3C gives the following definition for the Semantic Web :The Semantic Web is an
extension of the current Web in which information is given a well-defined meaning, better
enabling computers and people to work in cooperation’s is a collaborative effort led by
W3C with participation from a large number of researchers and industrial partners. With
the SW, the machine can do many complicated tasks which currently can only be
performed manually For example ,user can directly send the following request to Web
agent Book me a holiday next weekend somewhere warm, not too far away, and where
they speak Chinese or English. The Web agent will be able to understand the request and
perform it for users. A series of technology has been proposed to realize the vision of the
Semantic Web as the next generation Web. It extends the current Web. It extends the
current Web by giving the Web content a well defined meaning and representation the
information in a machine –understandable form HTML, the current web data standard, is
aimed at delivering information to the end user for human-consumption.XML is aimed at
delivering data to systems than can understand and interpret information .XML is focused
on the syntax(defined but the XML schema or DTD) of a documents and it provides
essentially a mechanism to declare and use simple data structure. However there is no
way for a program to actually understand the knowledge contained in the XML
documents. Resource Description Frame (RDF) is a foundation for processing metadata; it
provides interoperability between applications that exchange machine –understandable
information on the Web. RDF uses XML to exchange descriptions of Web resources and
emphasizes facilities to enable automated processing. The RDF descriptions provide a
simply ontology system to support the exchange of knowledge and semantic information
on the Web. RDF schema provides the basic vocabulary to describe RDF documents.
RDF schema can be used to define properties and types of the Web resources in a similar

11

fashion to XML schema which gives specific constraints on the structure of an XML
documents, RDF schema provides information about the interpretation of the RDF
statements. The DARPA agent Markup Language (DAML) is an AI-inspired description
logic-based language for describing taxonomic information. DAML currently combines
Ontology Inference Layer(OIL) and features from other ontology systems .It is now called
DAML+OIL and contains richer modeling primitives than RDF schema . the DAML+OIL
language builds on top of XML and RDF(S) to provide a language with both a well-
defined semantics and a set of language constructs including classes, subclasses and
properties with domain and ranges , for describing a Web domain DAML+OIL can
further express restrictions on membership in classes and restrictions on certain domain
and ranges values. The Semantic Web is highly distributed, and different parties may have
different understandings of the same concept .Ideally, the program must have a way t
discover the common meaning from the different understandings. It is central to one
important concept in Semantic Web system Ontology. The Ontology for a Semantic Web
system is a document or a file that formally defines the relations among terms. The most
typical kind of ontology for the Web gas a taxonomy and a set of inference rules.
Ontology can enhance the functioning of the Web in many ways.

2.5 Ontology

Ontology is a specification of a conceptualization. Ontology is the philosophical study of
the nature of being, becoming, existence or reality as well as the basic categories of being
and their relations. Traditionally listed as a part of the major branch of philosophy known
as metaphysics, ontology often deals with questions concerning what entities exist or may
be said to exist and how such entities may be grouped, related within a hierarchy, and
subdivided according. The core meaning within computer science is a model for
describing the world that consists of a set of types, properties, and relationship types.
There is also generally an expectation that the features of the model in an ontology should
closely resemble the real world. In computer science and information science, an ontology
is a formal naming and definition of the types, properties, and interrelationships of the
entities that really or fundamentally exist for a particular domain of discourse. It is thus a
practical application of philosophical ontology, with a taxonomy. An ontology
compartmentalizes the variables needed for some set of computations and establishes the
relationships between them. to similarities and differences. Actually ontology’s are used to
capture knowledge about some domain of interest. An ontology describes the concepts in
the domain and also the relationships that hold between those concepts. Different ontology
languages provide different facilities. The most recent development in standard ontology
languages as Owl from the World Wide Web Consortium (W3C). Like protégé, OWL
makes it possible to describe concepts but it also provides new facilities. It has a richer set
of operators- e.g. intersection, union and negation. It is based on different logical model
which makes it possible for concepts to be defined as well as described. Complex concept

12

can therefore be build up in definitions out of simpler concept. Furthermore, the logical
model allows the use of the reasoner which can check whether or not all the statement and
definition in the ontology are mutually consistent can therefore help to maintain the
hierarchy correctly. This is particularly useful when dealing with cases where classes can
have more than one parent.

Ontology analysis clarifies the structure of knowledge. Given a domain, its ontology
forms the heart of any system of knowledge representation for that domain .Without
ontology’s, or the conceptualizations that underline knowledge; there can-not be a
vocabulary for representation knowledge. Thus, the first step in devising an effective
knowledge representation system, and a vocabulary, is to perform an effective ontology
analysis of the field , or domain. Weak analyses lead to incoherent knowledge bases. An
example of why performing good analysis is necessary comes from the field of database.
Consider a domain having several classes of people (for example, students, professors,
employee, females ,and males).This study first examined the way this database would be
commonly organized: students , employee, professor, males and female would be
represented as type of the class humans. However, some of the problems that exist with
this ontology are that students can also be employee at times and can stop being students.
Further analysis showed that the returns students and employee do not describe categories
of humans, but are roles that humans can play, while terms such as females and males
more appropriately represent subcategories of humans. Therefore ,clarifying the
terminology enables the ontology to work for coherent and cohesive reasoning purposes.
Second, ontology’s enable knowledge sharing. Suppose we perform an analysis and arrive
at a satisfactory set of conceptualizations, and their representative term, for some area of
knowledge -for example, the electronic -devices domain. The resulting ontology would
likely include domain-specific terms such as transistors and diodes; general terms such as
functions, casual processes, and modes; and term that describe behavior such as voltage.
The ontology captures the intrinsic conceptual structure of the domain. In order to build a
knowledge representation language based on the analysis ,we need to associate terms with
the concepts and relations in the ontology and devise a syntax for encoding knowledge in
terms of the concepts and relations. We can share this knowledge replication the
knowledge analysis process. Shared ontology’s can thus the basis for domain-specific
knowledge representation languages .In contrast to the previous generation of knowledge-
representation languages (such as KL-one), these languages are content –rich; they have a
large number of terms that embody a complex content theory of the domain. Shared
ontology’s let us build specific device manufactures can use a common vocabulary and
syntax to build catalogs that describe their products. Then the manufacturers could share
the catalogs and use them in automated design systems. This kind of sharing vastly
increases the potential for knowledge reuse.

13

2.5.1 Ontology’s as a Specification Mechanism

A body of formally represented knowledge is based on a conceptualization: the objects,
concepts and other entities that are assumed to exist in some area of interest and the
relationships that hold among them. A conceptualization is an abstract, simplified view of
the world that we wish to represent for some purpose. Every knowledge base, knowledge-
based system or knowledge-level agent is committed to some conceptualization, explicitly
or implicitly. A ontology is an explicit specification of a conceptualization. The term is
borrowed from philosophy, where ontology is a systematic account of existence. For AI
systems, what “exists” is that which can be represented. When the knowledge of a domain

is represented in a declarative formalism, the set of objects that can be represented is
called the universe of discourse. This set of objects and the describable relationships
among them are reflected in the representational vocabulary with which a knowledge-
based program represents knowledge. Thus, in the context of AI, we can describe
ontology of a program by defining a set of representational terms. In such ontology,
definitions associate the names of entities in the universe of discourse (e.g. classes,
relations, functions or other objects) with human-readable text describing what the names
mean and formal axioms that constrain the interpretation and well-formed use of these
terms. Formally, ontology is the statement of a logical theory. We use common ontology’s
to describe ontological commitments for a set of agents so that they can communicate
about a domain of discourse without necessarily operating on a globally shared theory. We
say that an agent commits to ontology if its observable actions are consistent with the
definitions in the ontology. The idea of ontological commitments is based on the
knowledge-level perspective. The Knowledge Level is a level of description of the
knowledge of an agent that is independent of the symbol-level representation used
internally by the agent. Knowledge is attributed to agents by observing their actions; an
agent “knows” something if it acts as if it had the information and is acting rationally to
achieve its goals. The “actions” of agents including knowledge base servers and

knowledge-based systems can be seen through a tell-and-ask functional interface, where a
client interacts with an agent by making logical assertions (tell) and posing queries (ask).
Pragmatically, a common ontology defines the vocabulary with which queries and
assertions are exchanged among agents. Ontological commitments are agreements to use
the shared vocabulary in a coherent and consistent manner. The agents sharing a
vocabulary need not share a knowledge base; each knows things the other does not and an
agent that commits to ontology is not required answering all queries that can be
formulated in the shared vocabulary. In short, a commitment to a common ontology is a
guarantee of consistency, but not completeness, with respect to queries and assertions
using the vocabulary defined in the ontology.

Any ontology must give an account of which words refer to entities, which do not, why
and what categories result. When one applies this process to nouns such as electrons,

14

energy, contract, happiness, time, truth, causality and God, ontology becomes fundamental
to many. In both computer science and information science, ontology is a data model that
represents a set of concepts within a domain and the relationships between those concepts.
It is used to reason about the object within that domain. Ontology’s are used in artificial
intelligence, the semantic web, software engineering, biomedical informatics and
information architecture as a form of knowledge representation about the world or some
part of it. Ontology generally describe:

Individuals: the basic or “ground level” objects.

Classes: sets, collections or types of objects.

Attributes: properties, features, characteristics or parameters that objects can have and
share.

Relations: ways that objects can be related to one another.

Events: the changing of attributes or relations.

2.6 OWL

The Web Ontology Language (OWL) is a family of knowledge representation languages
for authoring ontology’s. The OWL languages are characterized by formal semantics They
are built upon a W3C XML standard for objects called the Resource Description
Framework (RDF).OWL and RDF have attracted significant academic, medical and
commercial interest. In October 2007 a new W3C working group was started to extend
OWL with several new features as proposed in the OWL 1.1 member submission.W3C
announced the new version of OWL on 27 October 2009. This new version, called OWL
2, soon found its way into semantic editors such as Protégé and semantic reasoners such
as Pellet, RacerPro, FACT++ and Hermit. The OWL family contains many species,
serializations, syntaxes and specifications with similar names. OWL and OWL2 are used
to refer to the 2004 and 2009 specifications, respectively. Full species names will be used,
including specification version (for example, OWL2 EL). When referring more generally,
owl family will be used. The OWL Web Ontology Language is described for use by
applications that need to process the content of information instead of just presenting
information to humans.OWL facilitates greater machine interpretability of Web content
than that supported by XML,RDF ,and RDF schema (RDF-S) by providing additional
vocabulary along with a formal semantics.OWL has three increasingly – expressive
sublanguages: OWL lite, OWL DL, OWL full.

In this part of this report, describes the OWL Web Ontology Language. OWL is intended
to be used when the information contained in documents needs to be processed by
applications, as opposed to situations where the content only needs to be presented to

15

humans. OWL can be used to explicitly represent the meaning of terms in vocabularies
and the relationships between those terms. This representation of terms and their
interrelationships is called ontology. OWL has more facilities for expressing meaning and
semantics than XML, RDF, and RDF-S and thus OWL goes beyond these languages in its
ability to represent machine interpretable content on the Web. OWL is a revision of the
DAML+OIL web ontology language incorporating lessons learned from the design and
application of DAML+OIL.

2.6.1 Why OWL

The semantic Web is a vision for the future of the Web in which information is given
explicit meaning, making it easier for machines to automatically process and integrate
information available on the Web. The semantic Web will build on XML’s ability to

define customized tagging schemes and RDF’s flexible approach to representing data. The
first level above RDF required for the semantic web is an ontology language what can
formally describe the meaning of terminology used in Web documents. If machines are
expected to perform useful reasoning tasks on these documents, the language must go
beyond the basic semantics of RDF schema. The OWL use cases and requirements
Documents provides more details on ontology’s, motivates the need for a Web Ontology
Language in terms of six use cases, and formulates design goals, requirements and
objectives for OWL.OWL has been designed to meet this need for a Web Ontology
Language .OWL is part of the growing stack of W3C recommendations related to the
Semantic Web.

 XML provides a surface syntax for structured documents, but impose no semantic
constraints on the meaning of these documents.XML schema is a language for
restricting the structure of XML documents and also extends with data types.

 RDF is a data model for objects (“resources”) and relations between them,
provides a simple semantics for this data model , and these data models can be
represented in an XML syntax.RDF schema is a vocabulary for describing
properties and classes of RDF resources , with a semantics for semantics for
generalization – hierarchies of such properties and classes.

 OWL adds more vocabulary for describing properties and classes: among others
relations between classes (e .g disjoints), cardinality (e.g. “exactly one”), equality

riche

 typing of properties ,characteristics of properties (e.g symmetry), and enumerated
classes.

16

Chapter 3

Hall Booking System Overview

 Figure 3.1: Hall Booking System Feature Tree

Hall Booking software is online or manual booking software for room and conference
facility reservations. This software makes hall booking system more efficient for clients,
staff, and conference facilities. People hiring the hall get all the information they need at
the right time. This software simplifies the process; maximize capacity of booking the
hall. The main purpose of this software to Improvements in efficiency of hall booking,
Prevention of double bookings, Quick and Simple Booking Process, Block bookings for
daily, weekly, monthly or ad hoc multiple day bookings, Automatic email or sms
confirmations to customers. The system can be used for either academic or non academic
purposes. The system can be used in academic institutions to reserve tutorial rooms and
lecture halls, at companies to reserve meeting rooms, and at hotels to reserve rooms and

17

conference facilities etc. Users can be able to manage their own reservation with the
system easily. The main purpose and the core functionality are similar across the Hall
Booking System however; there are many variants on the basic theme. One of the basic
variants is the charging of the booking system. Our system is design as like when the
system is used for academic purposes no charge is needed for booking halls but there may
be a need to charge for booking halls in other areas like booking hall for non academic
purpose. In some systems, there are facilities available for seasonal booking as well as
multiple bookings.

 Table 3.1 :Types of features

Type Notation Type Notation

Mandatory

Or

Optional

Optional or

Alternative

Optional
Alternative

We use Hall Booking System to illustrate our variability modeling mechanism. A part of
the features of Hall Booking System in shown in Fig 3.1.extensions of feature diagram
described in [4] have been used here. The Root of this system is Functional Feature of
Hall Booking System. It has Five Direct Feature. There are three mandatory features and
two optional features in our feature tree Three Mandatory Features are Reservation Mode,
Reservation Management and Notification. Two Optional features are Reservation Charge
and Handle Conflict. Mandatory features appear in all the members of the system on the
other hand variant features appear in some member of the system .Variant feature are
classified as optional. Alternative, and Or feature An example of .In Reservation Charge
feature there has four child feature and they are Deposit, Tax, Basic Charge and Discount
and all of them are in Or relationship with their parent feature Reservation Charge. Under
Deposit Parent feature Bank transfer and Credit cards are in Or relationship. In
Reservation Mode there has two child feature and they are Block and Single. The Block
and Single feature are in Alternative Relationship with their Parent Feature Reservation
Mode and Under Block Parent feature Multiple Rooms and Multiple Time are in Or
relationship. On the Other hand Block under Reservation Mode and Discount feature

18

under Reservation Charge are in Require Relationship. Notification contain four Child
feature in Or relation and they are Fax, Printed Paper, Email And Massage. Reservation
Management contains Add Modify and Delete and they are two mandatory Features under
the Reservation Management Parent Feature. Optional feature Handle Conflicts contains
two children yes or no and they are two mandatory Feature under the Handle Conflicts
Parent Feature.

19

Chapter 4

Semantic Representation

 We use protégé software to represent our System. Using OWL language constructs we
modeled various feature relations. By using OWL-Dl language we model six different
types of relations namely mandatory, optional, alternative, or, optional or, alternative or.
There are one dependency in our system which is called requires are also modeled.

Representation of Various Types of Features

4.1 Mandatory

A mandatory feature is included if its parent feature is included. Mandatory feature is
represented by a small circle on the child node. A filled bullet denotes a mandatory (In
Table : 3.1) feature and features that are required. There are three mandatory features in
our system which is Reservation Mood, Reservation Management, and Notification.

Mandatory features are defined as follow:

Hall Booking that

hasBookingSystem some ReservationMood

hasBookingSystem some ReservationManagement

hasBookingSystem some Notification

20

4.2 Optional

An optional Feature may or may not be include if its parent is included. Optional Feature
is represented by a small circle on the child node. A empty bullet denotes(In Table : 3.1)
a optional feature and features that are optional .There are two optional feature in our hall
booking system they are Reservation Charge and Handle Conflicts and they may or may
not be included in a configuration of Hall Booking system.

Optional features are defined as follow:

Hall Booking that

hasBookingSystem some ReservationCharge

hasBookingSystem some HandleConflict

4.3 Alternative

One and only one feature from a set of alternative features are included when parent
feature is included that means exactly one sub-feature must be selected. Feature is
represented by a unfilled (In Table : 3.1) triangle denotes the alternative.

Block and Single are alternative features of Reservation Mode. We model this relation as
follow:

Hall Booking that

hasBlock some MultipleRoom

hasBlock some MultipleTime

ReservationMood

hasReservation only(Block or Ssingle)

hasReservation some single

has Reservation some block

Bank transfer and credit Transfer are alternative feature of deposite under reservation
charge.we model this relation as follow

Hall Booking that

hasReservation only(BankTransfer or CreditTransfer)

ReservationCharge

21

4.4 Or

At least one from a set of or feature is included when parent is included and one or more
features can be selected when the parent feature appears. Feature is represented by a filled
triangle (In Fig : 3.1) denotes the or Feature.

There are four child which are in or relation with each others under Reservation Charge
and they are Basic charge, Deposit, Discount and Tax. We defined this relation as follow:

Hall Booking that

hasReservationCharge some BasicCharge

hasReservationCharge some Deposit

hasReservationCharge some discount

hasReservationCharge some Tax

There are four child of Notification which are Fax, Email, Massege and Printed Paper
also in Or relation.we defined this relation as follow:

Hall Booking that

hasNotification some Email

hasNotification some fax

hasNotification some PrintedPaper

hasNotification some massege

Multiple Room and Multiple time under Block parent are also in Or relation.we defined
this as follow:

Hall Booking that

hasBlock some MultipleRoom

hasBlock some MultipleTime

ReservationMood

4.5 Optional Alternative

One feature from a set of alternative features may or may not be included if parent
included. Feature is represented by a unfilled triangle and empty bullets (In table: 3.1)
denotes the optional alternative.

22

Optional alternative can be defined as:

hasBooking some ReservationMood

and(not Block (or Single) or not single(or block))

4.6 Optional Or

One or more optional feature may be included if the parent is included. Optional Or
Feature is represented by a filled triangle (In table : 3.1) and filled bullets denotes the
optional or.

Optional Or can be defined as follow:

hasBooking some Notification

(not(fax or Email or PrintedPaper or Massage))

4.7 Exclude
Some feature cannot be together in a feature tree.
exclude relation can be defined as:

ReservationMood and

(Block or (not Single)

And (not Block)or Single))

4.8 Requires

The feature may depend on some other feature; hence its present in a feature configuration
requires the appearance of the others. In our hall booking system there are dependency on
block under parent Reservation Mood and Discount under parent Reservation Charge,
Block and Discount are in requires relation.

we defined this relation as follow:

Hall Booking and(hasReservationMood some block)

And(hasReservationCharge some Discount)

23

Chapter 5

Consistency analysis of feature model

We input our ontology into protégé and use RACER [8] to check its consistency. For the
initially encoded ontology, RACER checks for consistency and show that encoded
definition are consistent (Fig 5.1).

 Figure 5.1: Consistency checking in RACER

In feature modeling an instance of a concept is a configuration derived from the feature
model. In order to detect inconsistency in a configuration OWL classes are used, and
features and concepts instances are then simulated. When an instance is checked, the
reasoner not only check inconsistency but also shows which class/classes are inconsistent.

In feature modeling, a feature configuration derived from a feature model represents a
concrete instance of a concept (i.e., a specific system in a domain). Intuitively given a

24

feature ontology, features and concepts in a configuration should be ground instances
(OWL individuals) of the OWL classes defined in the ontology. Hence modeling feature
configurations using individuals is a straight forward approach.

Here we search for ReservationCharge and RACER give us tree saying that 1 result found.
The feature configuration can be modeled as follow,

Hall Booking that

hasReservationCharge some BasicCharge

hasReservationCharge some Deposit

hasReservationCharge some discount

hasReservationCharge some Tax

For inconsistency we search for notification type from our hall booking system feature
tree. The RACER now shows that the configuration in inconsistent. The inconsistent
classes are marked as red. There is no class name notification type so it’s give 0 result
found

 Figure 5.2: Inconsistency checking in RACER

25

Chapter 6

Conclusion

We presented an approach to formalizing and verifying SPL feature models to be able to
create a decision table to generate customized product by using formal reasoning
techniques. We provided formal semantics of the feature models by using, set
representation first-order logic and specified the definitions of six types of variant
relationships. We have six notations mandatory, optional, or, alternative, optional
alternative, optional or we also defined cross-tree variant dependencies. Examples are
provided describing various analysis operations, such as validity. We have addresses most
of the analysis questions mentioned in. Finally, we encoded our logical notations into
Semantic Representation to be able to automatically verify any analysis related queries. A
knowledge-based approach to specify and verify feature models is presented in Comparing
to that presentation.
OWL ontology’s provide a suitable platform for the development of semantically aware

software product line allowing the knowledge within the feature model to be shared
among the reusable features of the SPL. We represented our preliminary result of
consistency checking using RACER. A through consistency checking is currently
undergoing.

26

Appendix

A.1 RDF/XML SOURCE CODE

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF

xmlns="http://www.semanticweb.org/emon/ontologies/2016/11/untitled-

ontology-19#"

xml:base="http://www.semanticweb.org/emon/ontologies/2016/11/untitled-

ontology-19"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <owl:Ontology

rdf:about="http://www.semanticweb.org/emon/ontologies/2016/11/untitled-

ontology-19"/>

 <!--

//

///////////////

 //

 // Object Properties

 //

//

///////////////

 -->

27

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasBlock

-->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasBloc

k"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasDeposite -->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasDepo

site"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasHandleConflicts

-->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasHand

leConflicts"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasNotification --

>

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasNoti

fication"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasReservation -->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasRese

rvation"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasReservationChar

ge -->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasRese

rvationCharge"/>

28

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasReservationMana

gement -->

 <rdf:Description

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#hasRese

rvationManagement"/>

 <!-- http://www.w3.org/2002/07/owl#topObjectProperty -->

 <rdf:Description rdf:about="&owl;topObjectProperty">

 <rdf:type rdf:resource="&owl;ReflexiveProperty"/>

 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>

 </rdf:Description>

 <!--

//

///////////////

 //

 // Classes

 //

//

///////////////

 -->

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#AddModify

-->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#AddModi

fy">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationManagement"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#BankTransfer -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#BankTra

nsfer">

29

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Depo

sit"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#BasicCharge -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#BasicCh

arge">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationCharge"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Block -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Block">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationMode"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#CreditTransfer -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#CreditT

ransfer">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Depo

sit"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Delete --

>

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Delete"

>

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationManagement"/>

 </owl:Class>

30

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Deposit -

->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Deposit

">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationCharge"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Discount

-->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Discoun

t">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationCharge"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Email -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Email">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Noti

fication"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Fax -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Fax">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Noti

fication"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#HandleConflict -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#HandleC

onflict"/>

31

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#MultipleRoom -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Multipl

eRoom">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Bloc

k"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#MultipleTime -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Multipl

eTime">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Bloc

k"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#No -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#No">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Hand

leConflict"/>

 </owl:Class>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#Notification -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Notific

ation"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#PrintedPaper -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Printed

Paper">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Noti

fication"/>

 </owl:Class>

32

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#ReservationCharge

-->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Reserva

tionCharge"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#ReservationManagem

ent -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Reserva

tionManagement"/>

 <!--

http://www.Hallbooking.com/ontologies/Hallbooking.owl#ReservationMode --

>

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Reserva

tionMode"/>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Single --

>

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Single"

>

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationMode"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Sms -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Sms">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Noti

fication"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Tax -->

33

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Tax">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Rese

rvationCharge"/>

 </owl:Class>

 <!-- http://www.Hallbooking.com/ontologies/Hallbooking.owl#Yes -->

 <owl:Class

rdf:about="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Yes">

 <rdfs:subClassOf

rdf:resource="http://www.Hallbooking.com/ontologies/Hallbooking.owl#Hand

leConflict"/>

 </owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.4.2)

http://owlapi.sourceforge.net -->

34

Bibliography

[1] Software product lines: practices and patterns. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[2] Pohl, Klaus, Böckle, Günter, van der Linden, Frank J.. Software Product Line
Engineering Foundations, Principles, and Techniques. Springer-Verlag New York,
Inc. Secaucus, NJ, USA ©2005

[3] Greenfield, J., Short, K.: Software Factories: Assembling Applications with
Patterns,Models, Frameworks, and Tools. Wiley (2004) To be published.

[4] Czarnecki, K., Eisenecker,U.W. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

[5] Bosch, J.: Design and Use of Software Architecture: Adopting and evolving a product-
line approach. Addison-Wesley (2000)

[6] Feature model: https://en.wikipedia.org/wiki/Feature_model (Last Visited in
12.11.2016)

[7] Semantic web: https://en.wikipedia.org/wiki/Semantic_Web (Last Visited in
12.11.2016)

 [8] Volker Haarslev and Ralf Moller RACER User’s Guide and Reference Manual

Version 1.7.19. April 26, 2004

[9] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson,
and Mark A. Musen. Creating Semantic Web Contents with Protégé-2000

[10] Monica Shekhar and Saravanaguru RA. K, Semantic Web Search based on Ontology
Modeling using Protégé Reasoner

[11] Kyo C. Kang, Sholom G. Cohen, James A. Hess ,William E. Novak A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report, Software Engineering Institute Carnegie Mellon University, November 1990

35

[12] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, Moonhang Huh,
FORM: A feature-oriented reuse method with domain-specific reference architectures.
Annals of Software Engineering 5 (1), 143-168, January 1998.

[13] Jan Bosch. Design and use of software architectures: adopting and evolving A
product-line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

 [14] Ontology: https://en.wikipedia.org/wiki/Ontology(Last Visited in 25.10.2016)

[15] Jan Bosch. Design and use of software architectures: adopting and evolving A
product-line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.
[16] http://www.sei.cmu.edu/productlines/ (Last Visited in 12.11.2016)

[17] http://www.tdgseville.info/topics/spl (Last Visited in 12.11.2016)

[18] Shusheng Zhang, Weiming Shen, and Hamada Ghenniwa.A review of Internet-based
product information sharing and visualization. May 2004, Pages 1–15

[19] Ian Horrocks, Peter F. Patel-Schneider,and Frank van Harmelen. From SHIQ and
RDF to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,
2003.

[20] M. Bernardo, P. Ciancarini, and L. Donatiello.Architecting families of
softwaresystems withprocessalgebras.ACM Transactions on Software Engineering and
Methodology, 11(4):386–426, 2002.

[21 Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for product
line software engineering. In Gacek, C., ed.: Software Reuse: Methods, Techniques, and
Tools: Proceedings of the Seventh Reuse Conference (ICSR7), Austin, USA, Apr.15-19,
2002. LNCS 2319, Springer-Verlag (2002) 62–77

[22] Protégé: http://protegewiki.stanford.edu/wiki/RacerProTG (Last Visited in
20.11.2016)

[23] Andreas Hein, John MacGregor, and Steffen Thiel. Configuring software product
line Features. In ElkePulvermller, Andreas Speck, James Coplien, Maja D Hondt, and
Wolfgang De Meuter, editors, Proceedings of the ECOOP 2001 Workshop on Feature

http://dl.acm.org/author_page.cfm?id=81408599739&coll=DL&dl=ACM&trk=0&cfid=876485245&cftoken=69883557

36

Interaction in Composed Systems (FICS 2001), Budapest, Hungary, June 18-22, 2001,
volume 2001-14 of Technical Report, pages 67–69

 [24] Griss, M., Favaro, J., d‘ Alessandro, M.: Integrating feature modeling with the
RSEB. In: Proceedings of the Fifth International Conference on Software Reuse(ICSR),
IEEE Computer Society Press (1998) 76–85

	[2] Pohl, Klaus, Böckle, Günter, van der Linden, Frank J.. Software Product Line Engineering Foundations, Principles, and Techniques. Springer-Verlag New York, Inc. Secaucus, NJ, USA ©2005

