

Use Particle Swarm Optimization to

Optimize Data Search

By

MD Ashraful Alam

Alamgir Hossain

&

Khondaker Sajid Alam

Computer Science and Engineering

East West University

Fall 2016

EAST
WEST
UNIVERSITY ____ ------>..I

Use Particle Swarm Optimization to

Optimize Data Search

Submitted by:

MD Ashraful Alam

ID: 2012-3-60-005

Alamgir Hossain

ID: 2013-1-60-040

&

Khondaker Sajid Alam

ID: 2013-1-60-041

Supervised by:

Dr. Shamim H. Ripon

A project submitted in partial fulfillment for the

degree of B.Sc. in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science and Engineering

East West University

Fall 2016

Declaration

We hereby declare that, this submission is our own work and that to the best of

our knowledge and belief it contains neither nor facts previously published or

written by another people. Further, it does contain material or facts which to a

substantial extent has been accepted for the award of any degree of a

university or any our institution o territory except where an acknowledgement.

(MD Ashraful Alam)

 (Alamgir Hossain)

(Khondaker Sajid Alam)

I

Letter of Acceptance

The project entitled “Use of Particle Swarm Optimization to Optimize Data

Search” submitted by MD Ashraful Alam (2012-3-60-005), Khondaker Sajid

Alam (2013-1-60-041) and Alamgir Hossain (2013-1-60-040), to the

Department of Computer Science and Engineering, East West University,

Dhaka, Bangladesh is accepted by the department in partial fulfillment of

requirements for Award of the degree of Bachelor of Science in Computer

Science and Engineering on December, 2016.

Board of Examiners

Dr. Shamim H. Ripon

Associate Professor

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

Dr. Md. Mozammel Huq Azad Khan

Professor & Chairperson

Department of Computer Science & Engineering

East West University, Dhaka, Bangladesh

II

ABSTRACT

In computer science and engineering Particle Swarm Optimization (PSO) is a

very good clustering for swarm optimization. This is very easy to implement

&there are few parameters to adjust. The particle swarm optimization concept

consists of, at each time step, changing the velocity of (accelerating) each

particle toward its pBest and lBest locations (local version of PSO).

Acceleration is weighted by a random term, with separate random numbers

being generated for acceleration toward pBest and lBestlocations. In past

several years, PSO has been successfully applied in many research and

application areas. It is demonstrated that PSO gets better results in a faster,

cheaper way compared with other methods. Another reason that PSO is

attractive is that there are few parameters to adjust. One version, with slight

variations, works well in a wide variety of applications. Particle swarm

optimization has been used for approaches that can be used across a wide

range of applications, as well as for specific applications focused on a specific

requirement. We actually used some of the features of basic PSO. In basic

PSO velocity measure is a very important fact as well as position update. But

we have made a modified version of PSO by using some of the features of the

general PSO because general PSO is not so much comfortable with our

dataset.

III

Acknowledgment

First of all thanks to ALMIGHTY ALLAH for the uncountable blessings on

us. Thanks to our Supervisor Dr. Shamim H. Ripon for providing me this

opportunity to test our skills in the best possible manner. He enlightened,

encouraged and provided us with ingenuity to transform our vision into reality.

IV

TABLE OF CONTENTS

Acknowledgement………………………………………...………….….IV

CHAPTER 1…………………………………………………………..…..01

Introduction .. 01

1.1 Introduction and Motivation .. 01

1.2 Why PSO is Important.. 02

1.3 Objectives ... 07

1.4 Outline .. 08

CHAPTER 2…………………………………………………………..….09

Methodology ... 09

2.1 Dataset .. 09

2.2 Pre-processing / Filtering / Ordering .. 10

2.3 Modified PSO / General PSO ... 10

2.4 Optimized PSO ... 10

2.5 Result .. 10

2.6 Proof of Concept .. 10

CHAPTER 3…………………………………………………………...….11

Implementation .. 11

3.1 General PSO ... 11

3.2 Flowchart .. 12

3.3 Limitation ... 13

3.4 Our Basic PSO .. 13

3.5 Pre-Processing / Filtering the URL .. 16

3.6 Flowchart .. 17

3.7 Our Optimized PSO .. 18

3.8 Proof of Concept .. 21

CHAPTER 4…………………………………………………………..…..22

Result & Analysis .. 22

4.1 Pre-processing / Filtering / Ordering .. 23

4.2 Before Pre-processing & Our PSO ... 23

4.3 After Pre-processing & Our PSO ... 24

4.4 Before Pre-processing & Our Optimized PSO 25

4.5 After Pre-processing & Our Optimized PSO 26

CHAPTER 5………………………………………………………………28

Conclusion ... 28

5.1 Summary .. 28

5.2 Future Work ... 28

Appendix & References .. 29

List of Figures

2: Methodology .. 11

3.2: Flowchart of PSO.. 14

3.4: Our General PSO .. 16

3.6: Flow chart of filtering / ordering .. 18

3.7: Our Optimized PSO .. 20

3.8: Tool View Sample .. 21

4.1: Output of Pre-Processing .. 23

4.2.1: Location output of before pre-processing and our Modified PSO......... 23

4.2.2: University name, before pre-processing and our modified PSO 24

4.3.1: Search by location output, after pre-processing & our modified PSO .. 24

4.3.2: Search by university, after pre-processing and our modified PSO 25

4.4.1: Search by location, before pre-processing and our optimized PSO 25

4.4.2: Search by university, before pre-processing and our optimized PSO ... 26

4.5.1: Search by location, after pre-processing and our optimized PSO 26

4.5.2: Search by university, after pre-processing and our optimized PSO 27

List of Tables

Table 4: Sample Dataset .. 22

Page 1 of 42

Chapter 1

Introduction

1.1 Introduction and Motivation

Particle Swarm Optimization (PSO) was developed by Russell Eberhart and

James Kennedy in 1995. Initially, these two began creating PC programming

recreations of flying creatures rushing around sustenance sources, then later

acknowledged how well their calculations dealt with enhancement issues. PSO

is initially credited to Kennedy, Eberhart and Shi and was initially planned for

reenacting social behavior, as an adapted representation of the development of

creatures in a winged animal run or fish school. The calculation was improved

and it was seen to perform streamlining. The book by Kennedy and Eberhart

depicts numerous philosophical parts of PSO and swarm knowledge. A broad

study of PSO applications is made by Poli. Recently, an extensive survey on

hypothetical and test chips away at PSO has been distributed by Bonyadi and

Michalewicz.

Inside the field of PC illustrations, the primary forerunners of PSO can be

followed back to the work of Reeves (1983), who proposed particle or

molecule frameworks to model questions that are alterable and can't be

effectively spoken to by polygons or surfaces. Cases of such protests are fire,

smoke, water and mists. In these frameworks, particles are free of each other

and their developments are administered by an arrangement of guidelines. A

few years after the fact, Reynolds (1987) utilized a molecule framework to

reproduce the aggregate conduct of a run of feathered creatures. In a

comparable sort of reenactment, Heppner and Grenander (1990) incorporated

a perch that was appealing to the mimicked flying creatures. Both models

roused the arrangement of principles that were later utilized as a part of the

first molecule swarm advancement calculation.

Social brain science examine, specifically the dynamic hypothesis of social

effect (Nowak, Szamrej and Latané, 1990), was another wellspring of

motivation in the advancement of the principal molecule swarm enhancement

calculation (Kennedy, 2006). The guidelines that administer the development

of the particles in an issue's pursuit space can likewise be viewed as a model

of human social conduct in which people alter their convictions and

dispositions to accommodate with those of their associates (Kennedy and

Eberhart 1995).

Page 2 of 42

In software engineering, PSO is a computational technique that enhances an

issue by iteratively attempting to enhance a competitor arrangement as to a

given measure of value. It takes care of an issue by having a populace of

competitor arrangements, here named particles, and moving these particles

around in the hunt space as indicated by straightforward scientific formulae

over the molecule's position and speed. Every molecule's development is

affected by its nearby best known position, but on the other hand is guided

towards the best known positions in the hunt space, which are overhauled as

better positions are found by different particles. This is relied upon to move

the swarm towards the best arrangements. PSO is a populace based stochastic

approach for tackling nonstop and discrete improvement issues.

In PSO, straightforward programming operators, called particles, move in the

pursuit space of an enhancement issue. The position of a molecule speaks to a

competitor answer for the streamlining issue within reach. Every molecule

scans for better positions in the inquiry space by changing its speed as per

principles initially propelled by behavioral models of winged animal running.

PSO has a place with the class of swarm insight strategies that are utilized to

take care of streamlining issues.

PSO is a metaheuristic as it makes few or no suppositions about the issue

being improved and can look expansive spaces of applicant arrangements. Be

that as it may, metaheuristics, for example, PSO don't ensure an ideal

arrangement is ever found. All the more particularly, PSO does not utilize the

slope of the issue being upgraded, which implies PSO does not require that the

streamlining issue be differentiable as is required by great enhancement

strategies, for example, inclination drop and semi newton techniques.

 PSO is a population based calculation. In this regard it is like the hereditary

calculation. An accumulation of people called particles move in ventures all

through an area. At every progression, the calculation assesses the target work

at every molecule. After this assessment, the calculation settles on the new

speed of every molecule. The particles move, then the calculation reconsiders.

The motivation for the calculation is groups of winged animals or bugs

swarming. Every molecule is pulled in to some degree to the best area it has

discovered as such, furthermore to the best area any individual from the

swarm has found. After a few stages, the populace can blend around one area,

or can combine around a couple of areas, or can keep on moving.

The particle swarm work endeavors to enhance utilizing a Particle Swarm

Optimization Algorithm.

Page 3 of 42

1.2 Why particle swarm optimization is important?

PSO offers numerous similitudes with developmental calculation procedures,

for example, Genetic Algorithms (GA). The framework is instated with a

populace of irregular arrangements and hunt down optima by overhauling

eras. Be that as it may, dissimilar to GA, PSO has no development

administrators, for example, hybrid and change. In PSO, the potential

arrangements, called particles, fly through the issue space by taking after the

present ideal particles.

Every molecule monitors its directions in the issue space which are connected

with the best arrangement (wellness) it has accomplished as such. (The

wellness esteem is additionally put away.) This esteem is called pBest.

Another "best" esteem that is followed by the molecule swarm streamlining

agent is the best esteem, got so far by any molecule in the neighbors of the

molecule. This area is called lBest. At the point when a molecule takes all the

populace as its topological neighbors, the best esteem is a worldwide best and

is called gBest.

The particle swarm optimization idea comprises of, at every time step,

changing the speed of (quickening) every molecule toward its pBest and lBest

areas (nearby form of PSO). Speeding up is weighted by an irregular term,

with independent arbitrary numbers being created for increasing speed toward

pBest and lBest areas. In recent years, PSO has been effectively connected in

numerous examination and application ranges. It is shown that PSO improves

brings about a quicker, less expensive path contrasted and different strategies.

Another reason that PSO is appealing is that there are couple of parameters to

conform. One rendition, with slight varieties, functions admirably in a wide

assortment of utilizations. The particle swarm optimization has been utilized

for methodologies that can be utilized over an extensive variety of uses, and in

addition for particular applications concentrated on a particular necessity.

PSO may sound entangled, yet it's truly an exceptionally straightforward

calculation. Over various cycles, a gathering of factors have their qualities

balanced nearer to the part whose esteem is nearest to the objective at any

given minute. Envision a rush of winged animals hovering over a range where

they can notice a concealed wellspring of nourishment. The person who is

nearest to the nourishment trills the loudest and alternate flying creatures

swing around toward him. On the off chance that any of the other revolving

around feathered creatures comes nearer to the objective than the primary, it

twitters louder and the others veer over toward him. This fixing design

proceeds until one of the winged creatures chances upon the sustenance. It's a

calculation that is straightforward and simple to execute.

Page 4 of 42

The calculation monitors three worldwide factors:

a) Target esteem or condition

b) Worldwide best (gBest) esteem showing which molecule's

information is at present nearest to the Target

c) Ceasing esteem showing when the calculation ought to stop if the

Target isn't found

Every molecule comprises of:

a) Information speaking to a conceivable arrangement

b) Velocity esteem demonstrating how much the Data can be

changed

c) An individual best (pBest) esteem demonstrating the nearest the

molecule's Data has ever gone to the Target

The particles' information could be anything. In the running winged animal’s
case over, the information would be the X, Y, Z directions of every flying

creature. The individual directions of every winged creature would attempt to

draw nearer to the directions of the fledgling which is nearer to the

nourishment's directions (gBest). On the off chance that the information is an

example or succession, then individual bits of the information would be

controlled until the example coordinates the objective example.

The speed esteem is figured by far an individual's information is from the

objective. The further it is, the bigger the speed esteem. In the flying creature’s
case, the people farthest from the nourishment would try to stay aware of the

others by flying quicker toward the gBest fledgling. On the off chance that the

information is an example or arrangement, the speed would portray how

diverse the example is from the objective, and therefore, the amount it should

be changed to coordinate the objective.

Every molecule's pBest esteem just demonstrates the nearest the information

has ever gone to the objective since the calculation began.

The gBest esteem just changes when any molecule's pBest esteem comes

nearer to the objective than gBest. Through every emphasis of the calculation,

gBest continuously draws nearer and nearer to the objective until one of the

particles achieves the objective.

It's additionally regular to see PSO calculations utilizing population

topologies, or "neighborhoods", which can be littler, limited subsets of the

worldwide best esteem. These areas can include at least two particles which

are foreordained to act together, or subsets of the hunt space that particles

happen into amid testing. The utilization of neighborhoods regularly help the

calculation to abstain from stalling out in nearby minima.

Page 5 of 42

General Algorithm

An essential variation of the PSO calculation works by having a population

(called a swarm) of applicant arrangements (called particles). These particles

are moved around in the pursuit space as per a couple of straightforward

formulae. The developments of the particles are guided by their own best

referred to position in the hunt space and also the whole swarm's best known

position. At the point when enhanced positions are being found these will then

come to direct the developments of the swarm. The procedure is rehashed and

by doing as such it is trusted, however not ensured, that a palatable

arrangement will in the end be found.

Formally, let f: ℝn→ℝ be the cost work which must be minimized. The

capacity takes a competitor arrangement as contention as a vector of genuine

numbers and delivers a genuine number as yield which demonstrates the target

work estimation of the given applicant arrangement. The slope off f is not

known. The objective is to discover an answer a for which f(a) ≤ f(b) for all b
in the inquiry space, which would mean an is the worldwide least.

Amplification can be performed by considering the capacity h = - f.

Give S a chance to be the quantity of particles in the swarm, each having a

position xi ∈ℝn in the pursuit space and a speed vi ∈ℝn. Give pi a chance to

be the best known position of molecule i and let g be the best known position

of the whole swarm. An essential PSO calculation is then

for each particle i = 1,..., S do
 Initialize the particle's position with a
uniformly distributed random vector: xi ~ U(blo,
bup)
 Initialize the particle's best known position to
its initial position: pi ← xi
if f(pi) < f(g) then
update the swarm's best known position: g ← pi
 Initialize the particle's velocity: vi ~ U(-|bup-
blo|, |bup-blo|)
while a termination criterion is not met do:
for each particle i = 1, ..., S do
for each dimension d = 1, ..., n do
 Pick random numbers: rp, rg ~ U(0,1)

 Update the particle's velocity: vi,d ← ω
vi,d + φprp (pi,d-xi,d) + φgrg (gd-xi,d)
 Update the particle's position: xi ← xi +
vi
if f(xi) < f(pi) then
 Update the particle's best known
position: pi ← xi
if f(pi) < f(g) then
 Update the swarm's best known
position: g ← pi

Page 6 of 42

The qualities blo and bup are separately the lower and upper limits of the

pursuit space. The end paradigm can be number of cycles performed, or an

answer with satisfactory target work esteem is found. The parameters ω, φp,
and φg are chosen by the specialist and control the conduct and adequacy of

the PSO technique, see beneath.

Parameter Selection

The decision of PSO parameters can largely affect improvement execution.

Selecting PSO parameters that yield great execution has hence been the

subject of much research. The PSO parameters can likewise be tuned by

utilizing another overlaying analyzer, an idea known as meta-advancement.

Parameters have likewise been tuned for different improvement situations.

Neighborhoods and Topologies

The topology of the swarm characterizes the subset of particles which every

molecule can trade information. The essential variant of the calculation

utilizes the worldwide topology as the swarm correspondence structure. This

topology permits all particles to speak with the various particles, in this way

the entire swarm have a similar best position g from a solitary molecule. Be

that as it may, this approach may lead the swarm to be caught into a nearby

minimum, subsequently extraordinary topologies have been utilized to control

the stream of data among particles. For example, in nearby topologies,

particles just impart data to a subset of particles. This subset can be a

geometrical one – for instance "the m closest particles" – or, all the more

regularly, a social one, i.e. an arrangement of particles that is not relying upon

any separation. In such a case, the PSO variation is said to be nearby best

(versus worldwide best for the fundamental PSO).

Inner Workings

There are a few schools of thought with respect to why and how the PSO

calculation can perform enhancement.

A typical conviction among specialists is that the swarm conduct shifts

between exploratory conduct, that is, seeking a more extensive district of the

hunt space, and exploitative conduct, that is, a privately situated pursuit in

order to get more like a (conceivably nearby) ideal. This school of thought has

been predominant since the beginning of PSO. This school of thought fights

that the PSO calculation and its parameters must be picked in order to

appropriately adjust amongst investigation and misuse to maintain a strategic

distance from untimely joining to a neighborhood ideal yet still guarantee a

decent rate of merging to the ideal. This conviction is the antecedent of

numerous PSO variations.

Page 7 of 42

1) Convergence

In connection to PSO the word joining normally alludes to two unique

definitions:

a) Meeting of the arrangement of arrangements (otherwise known as,

strength investigation, focalizing) in which all particles have met to a

point in the hunt space, which could possibly be the ideal,

b) Joining to a nearby ideal where every single individual best p or, on

the other hand, the swarm's best known position g, approaches a

neighborhood ideal of the issue, paying little mind to how the swarm

acts.

2) Biases

As the fundamental PSO works measurement by measurement, the

arrangement point is less demanding found when it lies on a hub of the pursuit

space, on a corner to corner, and much simpler on the off chance that it is spot

on the center.

One approach is to change the calculation so it is no more delicate to the

arrangement of coordinates. Note that some of these techniques have a higher

computational many-sided quality (are in O (n^2) where n is the quantity of

measurements) that make the calculation moderate for huge scale

optimization.

Variants

Various variations of even a fundamental PSO calculation are conceivable.

For instance, there are diverse approaches to introduce the particles and speeds

(e.g. begin with zero speeds rather), how to hose the speed, just redesign pi

and g after the whole swarm has been upgraded, and so forth.A progression of

standard executions have been made by driving analysts.

The most recent is Standard PSO 2011 (SPSO-2011).

1) Hybridization

New and more advanced PSO variations are likewise consistently being

acquainted in an endeavor with enhance streamlining execution. There are

sure patterns in that examination; one is to make a half breed streamlining

technique utilizing PSO joined with other optimizers, e.g., consolidated PSO

with biogeography-based optimization, and the fuse of a viable learning

method.

2) Alleviate premature

Another exploration pattern is to attempt and mitigate untimely meeting (that

is, enhancement stagnation), e.g. by turning around or irritating the

development of the PSO particles, another way to deal with manage untimely

merging is the utilization of various swarms (multi-swarm enhancement). The

multi-swarm approach can likewise be utilized to actualize multi-objective

Page 8 of 42

optimization. Finally, there are advancements in adjusting the behavioral

parameters of PSO amid optimization.

3) Simplifications

Another school of believed is that PSO ought to be rearranged however much

as could reasonably be expected without weakening its execution; a general

idea frequently alluded to as Occam's razor. Disentangling PSO was initially

recommended by Kennedy and has been concentrated more extensively, where

it gave the idea that enhancement execution was enhanced, and the parameters

were simpler to tune and they performed all the more reliably crosswise over

various improvement issues.

4) Multi-objective optimization

PSO has likewise been connected to multi-objective problems, in which the

target work correlation considers pareto strength while moving the PSO

particles and non-commanded arrangements are put away in order to rough the

pareto front.

5) Binary, discrete, and combinatorial

As the PSO conditions given above work on genuine numbers, a usually

utilized strategy to tackle discrete issues is to delineate discrete pursuit space

to a constant area, to apply a traditional PSO, and after that to demap the

outcome. Such a mapping can be extremely basic (for instance by simply

utilizing adjusted qualities) or more sophisticated.

Notwithstanding, it can be noticed that the conditions of development make

utilization of administrators that perform four activities:

a) Registering the distinction of two positions. The outcome is a

speed (all the more accurately a relocation)

b) Increasing a speed by a numerical coefficient

c) Including two speeds

d) Applying a speed to a position

Typically a position and a speed are spoken to by n genuine numbers, and

these administrators are basically - , *, +, and again +. Be that as it may, all

these numerical articles can be characterized in a totally extraordinary manner,

keeping in mind the end goal to adapt to double issues (or all the more for the

most part discrete ones), or even combinatorial ones. One approach is to

reclassify the administrators in light of sets.

Page 9 of 42

1.3 Objectives

Inspired by the social behavior of bird flocking and fish schooling here is the

objectives of our project.

 Our goal is to remove irrelevant data by filtering our original dataset.

 Our main goal is to optimize searching.

 Our another goal is to remove data duplicity

1.4 Outline

The report is organized as follows

In chapter 2, we will briefly describe the methodology of our thesis. We will

give description of the every functions & parameters of our project.

In chapter 3, we will show our implementation part. We will describe part by

part of each of the processes.

In chapter 4, we will give an overview of our result part. We will show it by

comparing with the two different method those are General PSO & optimized

PSO.

In chapter 5, we will give a summary of our total project & make a

conclusion for our project.

Finally, in chapter 6 we will show all the important parts of our codes &

functions of our projects in details which will be called appendix.

Page 10 of 42

Chapter 2

Methodology

Fig 2: Methodology.

2.1 Dataset

We keep our dataset in Excel file. In excel file we keep three column which

are Location, University, University website link. In our system user can

search either location name or university name and user can also visit selected

university website that's why kept three column. In our experiment we use 420

number of data which include ten locations thirty universities information .For

a better comparison we also use 140, 25 number of data.

~ Modified PSO Result

Data Set r------- Pre.Processing f---- f-

'- Optimized PSO Result

Compare

SEARCH

Page 11 of 42

2.2 Pre-processing/Filtering/Ordering

Usually data may contain lots of irrelevant data and wrong information. If we

can omit those irrelevant data/ wrong data then the data size will reduce and

there will no wrong information that's why we develop a technique for omit

irrelevant /wrong data. We apply this method to our website link column in

excel file. Based on our Data we recognize a common pattern that is every

website link must contain two dot (.), three slash (\) and it starts with http:\\ or

https:\\. Based on this we can easily omit irrelevant link. For create a ordering

by location we first need to identify unique location .When we get unique

location name then we can easily create ordering by location.

2.3 Modified PSO/General PSO

Due to some limitation of PSO for our dataset we can’t apply all the
functionality of PSO in our dataset. That's why we have to omit some

functionality of general PSO. It is very good algorithm for no ordering data.

After experiment we come with a decision our PSO works better in large

amount of data.

2.4 Optimized PSO

After applying our general PSO we observe that we can easily optimize our

general PSO by adding a new function. For getting this optimization we must

need ordering data otherwise it works same as our general PSO. When we

search by location that time a location may contain lots of data. So it actually

works perfect when we search by location. There is huge chance when we

initialize some particle that time we can found user expected location if found

then it go through to the excel file where data is in sorted by location .If not

found it works as general our General PSO.

2.5 Result

We also shown the result of General PSO and Optimized PSO. What is the

output if we select search by location, what is the output if we select search by

university, all the output we shown in this book in result section.

2.6 Proof of Concept

To proof of concept we develop a tool. For developing this tool ,we use

JavaFx. In this tool user can search by university name or location. Then the

output will show in list view. On the basis of selection of university name user

can also visit university website in our tool. One window pop up only one time

and multiple scene are switching between them.

Page 12 of 42

Chapter 3

Implementation

3.1 General PSO

The general PSO is worldwide renowned. It has a lot
of variants.

The pseudo code of the procedure is as follows.

For each particle

{
 Initialize particle
}

Do until maximum iterations or minimum error
criteria
{
 For each particle
 {
 Calculate Data fitness value
 If the fitness value is better than pBest
 {
 Set pBest = current fitness value
 }
 If pBest is better than gBest
 {
 Set gBest = pBest
 }
 }

 For each particle
 {
 Calculate particle Velocity
 Use gBest and Velocity to update particle
Data
 }
 }

Page 13 of 42

3.2 Flowchart

Fig 3.2: Flowchart of PSO

At first we have to initialize all the particle by randomly generate function.

Then start a ‘for loop’ which terminate when the maximum iteration reached.
Then we have to calculate the fitness value for each particle. If current fitness

value is better than this particle Best value then allocate the current best value

as Best value, if not keep previous one as best . Then assign best particle best

value among all particles as global best value.

Then calculate the velocity of each particle by this equation,

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2
* rand() * (gbest[] - present[]) (a)

Then update the position by this equation,

present[] = persent[] + v[] (b)

This process continues till the Target or maximum Iteration reached.

Page 14 of 42

3.3 Limitation

We gather some limitation Of Universal PSO with our data set while we trying

to implement it in our data set. In our data set we keep 10 countries 10

university name and their about page URL. In our system user can search by

location or search by university name. When we search by University name

that time the user need to only one output, no need gather other university to

the resultant particle.

We can't calculate all the particles fitness value except users search content,

we don't have any parameter to calculate other particles fitness value.

We know PSO is used for problems involving global stochastic optimization

of a continuous function (called the objective function). PSO can also be used

for discrete optimization problems but not in string data.

 As we know PSO inspired by social behavior of bird flocking or fish

schooling where if a bird is near to the food then others bird will follow that

bird. In Our system when we search by location there exist 10 more same

locations that's mean we have multiple solution, so we can’t define the exact
one solution that's why we can't gather others other particle to the solution.

That's why can't calculate particle velocity and update their velocity.

In our data set our data is fixed so we can’t update the data by velocity. And

our data position is fixed.

In PSO we have to initialize all the particle and check fitness value so that's

mean we have to check out our all data, which is not optimized.

We implement basic PSO but we don't get our requirement data due to this

type of limitation for our dataset that’s why can't adjust with all the parameters
of Basic PSO.

3.4 Basic PSO

Due to some limitation of PSO we can't use all the function of PSO which

function are velocity and position update. We modified the PSO to adjust our

dataset.

Page 15 of 42

Pseudo code of our PSO is given below:

Calculate Total Row ();

For randomly generate total particle/10,

 Initialize particle randomly ();

 Calculate pBest ();

END

DO

 For initialized particles,

 If pBest fulfill its target {

 if(SearchByUniversitySelected){

 Terminate process and show result;

 }

 }

 Calculate Global Best Test ();

 If(GlobalBest<globalBestTest) {

 GlobalBest = GlobalBestTest ;

 ADD result list;

 }

 END

 Update Particle ();

While maximum iterations or minimum criteria is not
attained;

Page 16 of 42

Fig 3.4: General PSO

In our PSO we at first calculate the total row of data from .xlsx file by

ReadFROMXL function. Now we know the total number of data in our data

set. Now we initialize randomly 10 particle from our dataset because we have

100 data. We calculate randomly 10 particle by this equation,

random_index=(maxPosition-lowest position)* new

Random().nextDouble()+low;

In Initialize function we also calculate the pBest by checking if the data

matches with the user input then we set pBest =3 otherwise it remain 0 . Then

we start a ‘for loop’ which is terminate by fixed Iteration. Here we check that
the pBest is match with the target, if match set a Boolean value as true and set

the iteration as maximum iteration. Here also check if user search by

university then terminate the process because when user search by university

then they need only one output . If user search by location then continue the

initialize particles Calculate pBest

Target achie~d
or maximum iteration

reached
>----ye'--~

Page 17 of 42

process. Then we check Global best test result by this findBestresult() where

return the best particle among this 10 particles which one matches with target.

Now check if our Global best result pBest is less than the global best test

pBest then set the global best particle as global best test particle and add this

particle to result list. This loop is continue maximum 10 times if it get target

then terminate. Then update 10 more randomly generate particle. Then again

start from the ‘for loop’. It continue till the maximum iteration or target found.

3.5 Pre-Processing /Filtering the URL

Usually our data has no ordering and contain irrelevant data. We can omit

irrelevant data and ordering by location in this technique. So that we can

optimize our PSO by extended some function.

Pseudo code of Filtering technique is given below:

calculateTotalRow();

For each Row {

 Particle=new particle();

If (particle.Data[2].contains (http://www.” ||
“http:” || “https:www.” ||
“https://”$$num of Dot>=2 & $numofslash>=3) {
 addFreshParticleList();

 }

}

Calculate unique (Countryname());

For each Unique Country name {

 For each Fresh Particle {

 If (Unique Country = = Fresh Particle) {

 Add result list ();

 }

 }

}

http://www./

Page 18 of 42

3.6 Flowchart

Fig 3.6: Flow chart of filtering/ordering.

We first calculate the total number of data from xlsl file. Then start a for

which terminating condition is total number of particle. We check the URL

does match with the url pattern? If match then we add it to fresh list . We

recognize a common pattern for our data URL. Since we kept the about page

link of university website so our pattern must start with http:\\www. Or http:\\

or https:\\ or https:\\ and it must contain at least two dot(.) and three slash(\) in

our data URL. After filtering we have to ordering by country name that's why

we need to determine the unique location name .We can easily calculate

unique location by a for loop. After determining the unique location name then

we can easily doing ordering by two for loop. Where first for loop terminate

when it reached the number of total unique location and the second one

terminate when it reached to the total number of fresh particle.

By this technique our data set size is reduced that's why PSO works more

faster.

No

if P a ttern
Match

Iteration
Completed

No

Yes

Page 19 of 42

3.7 Our Optimized PSO

This PSO will better when user will search by location but that time our data

must have to be sorted & ordered.

Here is the pseudo code as follows:

Calculate Total Row ();

For total particle/10;

 Initialize Particle Randomly ();

Check (pBest = = Target){

 ADD some location data from xlsFile ();

 Stop loop;

DO

 For initialized particles,

 If pBest fulfill its target {

 if(SearchByUniversitySelected){

 Terminate process and show result;

 }

 }

 Calculate Global Best Test ();

 If (GlobalBest<globalBestTest) {

 GlobalBest = GlobalBestTest ;

 ADD result list;

 }

END

Update Particle ();

While maximum iterations or minimum criteria is not
attained;

Page 20 of 42

Flowchart

Fig 3.7: Optimized PSO.

Initialize
Particles

Add Same Loc
Data(matchPosition)

Pos=matchPos~

(numThisLoc­
iteration)

Yes

)---------------NO>-----,

No

No

No

keep
previous

one

Calculate
Global

Best Test

update particle

gBest=gBestTest

Page 21 of 42

Since we determining the pBest value when we initializing the 10 particle by

randomly. When user select search by location there is a huge probability to

match location name during initializing because we have 10 countries

University website. If that time match we don't need to go into algorithm

because our data kept into ordering by location, that time we go to our xlsl file

and check the next position location isn't match? If match then it check next

position and go on, if not we check into the upper side of matching index data

by this equation,

index=match_index-(totalnumofsameloc data-iteration).

This loop is continue till the iteration reached to the total number of that

location data. In our case it is 10. Here we need maximum 20 iteration to get

10 location, which is totally optimized. Same as when user search by

university then it follows same method. Now if during initialization user

search is not found then it works as our normal PSO like,

We start a ‘for loop’ which is terminate by fixed Iteration. Here we check that

the pBest is match with the target, if match set a boolean value as true and set

the iteration as maximum iteration. Here also check if user search by

university then terminate the process because when user search by university

then they need only one output . If user search by location then continue the

process. Then we check Global best test result by this findBestresult() where

return the best particle among this 10 particles which one matches with target.

Now check if our Global best result pBest is less than the global best test

pBest then set the global best particle as global best test particle and add this

particle to result list. This loop is continue maximum 10 times if it get target

then terminate. Then update 10 more randomly generate particle. Then again

start from the ‘for loop’. It continue till the maximum iteration or target found.

Page 22 of 42

3.8 Proof of Concept

We use javaFx to build our tool User interface. It has three scene in one

window. In running time it switches scene into one window. That’s why it is
very user friendly ,there will pop up only one window whole running time but

scene will change multiple time as user requirement . We use two radio

button, one Text Field, and three button. When user click on a website link

then it shows the university website also.

Fig 3.8: Tool View Sample.

CI _ • •• - [] x

• S<!arch by location S~arch by Univ~rsity

Australia

S~arch With Optimiz~ PSO S<!arch with PSO ba~c

"' ~'" .. ~
b.1dtohom~

Total Iteration:19

Australia C~ntraol Queensland University https:l/www.cqu.edu.al.lfa

ustral., CNriet DarWIn UnlVefS.lty h\lp:lfwww cdu edu.aufabout

Australia Charles Sturt University http://www.csu.edu.au!about

Australia Curtin University http://about.curtin.~du.au/who/

Australia D~akin Univ~rsil)' http://www.d~akin.~du.au!about -d~aki

Australia Ed ith Cowan University htlp:lfwww.«u.edu.au!aboul-«

Australia F~~ration Uniwrsity http ://f~~ralion. ~u.au!abOlJt-LiS

Australia Australian Catholic UnivffSity http://_.acu.~u.au!a

Australia Australian National Urliversity http://w_.aIlU.~du.au/abo

Au,tral", Bond Univ~ty https:llbond.edu.aulabout-bond

_.~ •• 1~1:I= -x

Scene 3

I About c ou " , ' f'''!S',' '?,' § " i'" '' '@'·;W'i~
a:::::: CHARLES
~ DARWIN
~UNIVERSITV

Table of content

CD U • About CDU

Connect Discover Grow
Charles Darwin University Strategic Plan 2015-2025

Page 23 of 42

Chapter 4

Result & Analysis

Table 4: Sample Dataset.

Country University About Page Link

Bangladesh University of Dhaka http://www.du.ac.bd/main_menu/the_university/

about

Bangladesh University Cse105

UK Bath Spa University http://www.bathspa.ac.uk/about-us/our-vision-

values-history

India Panjab University http://puchd.ac.in/pu-profile.php

Bangladesh Khulna University http://ku.ac.bd/about-ku/

UK Aberystwyth

University

www.cse442

UK Faridpur university Cse.com

Sweden University of Boras http://www.hb.se/en/About-UB/

India University of

Rajasthan

http://www.uniraj.ac.in/index.php?mid=1101

Malaysia Universiti AIMST http://www.aimst.edu.my/about-us.php

Germany KatholischeUniversi

tätEichstätt

http://www.ku.de/en/ku-at-a-glance/

India University of

Ragastan

https://www.youtube

Germany Medical University

of Luebeck

https://www.uni-luebeck.de/en/university/the-

university/profile.html

India SRM University http://srmuniversity.org/about-us/

Bangladesh Bangladesh

Agricultural

University

http://bau.edu.bd/pages/view_1/MQ==

India Anna University https://www.annauniv.edu/aboutus.php

Malaysia Perdana University http:/www.knowledge.com

Malaysia Perdana University http://perdanauniversity.edu.my/vision-mission/

UK Bangor University https://www.bangor.ac.uk/about/profile.php.en

Sweden Jönköping

University

http://ju.se/en/about-us/jonkoping-

university.html

Sweden Karlstads

Universitet

https://www.kau.se/en/about-university

Bangladesh Shahjalal University

of Science &

Technology

http://www.sust.edu/about

Bangladesh Bangladesh

University of

Engineering and

Technology

http://www.buet.ac.bd/?page_id=2

Page 24 of 42

Though we work with 423 data but here we show with only 23 data as sample.

Our PSO works better for 423 data than this 23 data .That's mean PSO works

better for large number of data. In 423 data include 10 countries 30

universities information and 120 irrelevant/wrong website link .Here the data

size is 23 which including 5 irrelevant link/wrong link. We show both 23 and

423 data set output here.

4.1 Pre-processing /Filtering/ Ordering

In our system we filter data by omit the wrong URL. And make ordering by

location. After apply Pre-processing technique to given data then the data size

will be 18 by reducing the wrong URL and it will ordering by location. The

outputs are both for 18 and 423 dataset.

Fig 4.1: Output of Pre-Processing.

Total Iteration:After Filter

Bang lade'h U"'ori,ty of Dhaka http://www.du.lK.bd/ml.n_monu A

Bangla';',h Khuln. Urw."rt)' http//l:u.a<.bd}lbout·b.,I

Blng lao..h Bangl.llnn Agfi<U~U'" Uniw";ty http:l~ ,edu.bd,

Bangla';', h SMojal .. Un"",""y of Sc .. ",. & r""hn<>logy http:!"

Blng iao..h Banglldnh Unive"ity of Engi""""ng and Te<:hnol"9l

Ind,. PlnJOb U ·<lty hnptlp""l\d,bC.on/pu-profil • . php

IM i. U""'"" ityof Raja,thln httP"JIwww.un ~.j 'KjrVi rKlu.php?m,

Ind,. An"" U "rty htti><Jlwww,annaunlV.edu/aboutu<.php

UK Bath Spa U ily http://www,baU'',,",,o(,Uk{lbouH''/OYf''

UK Bango< lJn"""<l1y http<://www.b.ongor..><.uk/abou!/profile.pht

S den Unive"ity of 8er •• hnp:ffwww.hb'~'<VAbo<Jt ·UBf

S d<n JOnk~ponQ UnIW""tv htt;>:/Iju,<e/.n/at>oot-u. r,onkop'nQ v
q >

[J . .. _ox

Total Iteration:After Filter

Au,If.h. Austr n Catholic Univenit)i hnp:/""-.Ku,~w'.b

Au,trah .. Au, trah .. n NabOnai U rSlly httpJ"-.anu . .,ju ... ",at

Au.tr Bond UniwBlty htrps:l/bond~"""'K>out·bond

Au,tral ia Centro! Queensland Un""'~ly httpo:ltwww..c:qu.ed\>.auI.

Au,It.h. Charln O.vwin Un",.".ity Il1!p:I{www.cdou.~ ... "'aboul

Au,tral ia Charles Stu" u rty http://www.(.... edu...,,,~ bout

Alntr.h. CUrtin Uniw",ty ht!P://.bout.curtil\~.autwno.l

Au,ltal " O~m Urvv=lty http://www.dealon.edu ... '''about-<leal

Alntral .. Edilll Cowan Uniwnfty http:l'-.KIJ.~.au/.bout-e<

Au,ltal " Federabon UNVe~rty I1ttp:llfeOe<. t.,...edu....,;.bou! -....

s-<Ien BlRing<! THnlsb 1iOgiliII. http<://www.b!h.wongllobo

.-

Page 25 of 42

4.2 Before Pre-Processing & Our PSO

If we select search by location and search with Location Bangladesh then the

output comes with the 6 Bangladesh university including wrong link data in 19

iteration. In 423 data set search by location, it took 142 iteration for the output.

This iteration number is not fixed because our algorithm worked by random

number generation. Some time it could be increased or decreased. Here are the

screenshot,

Fig 4.2.1: Search by location output of before pre-processing and our

Modified PSO.

If we select search by university and search with Jönköping University of

Sweden then it come with the output in 6 iteration. In 423 data set when we

select search by university then it took 84 iteration for output .Again I am

saying that iteration number could be increased so much or decrease because

our main system is based on random number generation. Screenshot are:

. ,._,-
bac:k t o home j

Tota l Iteration:19

B~"9~h Bangl~h u~",ity 01 Engineering a nd Technology ~

B.ngl.>d~h U risty of Ohaka http://www,du..>c.bdI,,,,,in_menu/U

B.ng~h B.ngl~h (",,105

B.ng"'~h B.ngl~ Agnrultural Univ-e~ty httfX//b;>u . .du.bdlp'

B.ng~h Shohj" I,,1 Univemly of Sc:"~ &. Technology hnp://ww

B.ngl.>d~h 1Cl-<>1n. U~ity http://ku.ac:.bdlaboul-Irul

< • >

. ~

~tohome

Tota l iteration:142

Au.I ... ,h. Cent.ol QUHn ... nd Un~\y htlps:lf_.cqu.edu.MJ/.
,

Austr U~ofAdeloide hnp:l!www.cdu.edu.....J. bout

Au'If"'" ... ~",,498

Au'It.h" .ydnoy c",,301.com

Au.tr UnMnityolS.....m Austr (UN1SA) http:l'-.• nu~

Austrlh. jiii cse40S

Au.tr Aonde<"s Un""" .. ly 1\t1p://.t>ouI.curtn.edu4UIwhol

.!\u<ual", Bond Un .. ,.,...,ty hnp<J/bond....t... ... "'. bout·bond

Austral .. f~,.uon UnMl'Bity http://f~ration.edu,au/.bout-,,,

Au.tr iii hdlijl1ltdshkh8d1

Austr.h" U~ol New Soult> Wain (UNSW) hnpsJ /bond_e<

Au'ltah" M",quane Un~ty htlp:/1www,($u.~.bout ,
< >

Page 26 of 42

Fig 4.2.2: Search by University name,before pre-processing and our modified PSO.

.. . . . - ~~-
I ~ktohom. 1

Total Iteration:6

S~d.n JOnk~on9 Un.wmty http"Jlju.st/tn/aoo..t-us/jookopir'l9 -u

Total Iteration:84

- ,

Page 27 of 42

4.3 After preprocessing and Our PSO

The main facilities of pre-processing technique is it reduced the size of the

data. And we won't get irrelevant data anymore. Except this facilities pre-

processing is not help in normal PSO.

If we search for Bangladesh in filtering data then it comes with 4 fresh

Bangladesh data in 23 iteration and our filter data has 4 Bangladesh data. In

423 dataset, when we select search by location then it took 175 iteration for

bringing 30 Australian universities information and there is no wrong

/irrelevant data.

Fig 4.3.1: Search by location output, after pre-processing and

our modified PSO

Total Iteration:23

Bang iao..h 8anglld ... h Agficu~u,.1 Un "'ty http/Ibau ,od u.bd/p<

Blng iao..h Un n'lyof Dhau httpllwww.du.ac.bd/ma.n_menu/U

~ngl.do,h ShanJ,laI Unrve",ly of 5<""'0 & Tt<hnoio9Y http://ww

~nglao.,h Khulna U~"'ty httpJ/ku~bdl.bout- i<u/

Total Iteration:175

<

Ausllll" u "'ty of Ta,mlnia Mt~:I/www.<qu.odu,ou/.bout· u

Au,lIalii Flino." Un ily http://lbcut<urtin,odu,ouIwho/

Au,IIIIi1 A",\,.liln CatnclK Un"' ty http://www .• <u,WJ .. u/lb

Au,llllii Jam .. Cook Un "'ty http://www.cdu.e<IY.lu/lbOlll

Au,II.I,. Ctnt," QueeMland Unrve",ly http':ffwww,(qu.odu~.

Au,t<. lia Royal Melboume lnst,tute alTec hnoiogy (RMlT) http;/fl

Au,h. lia Curtin Unive"'ly http://www.~u .• du .. u/.boul.cu

Auslll l" Borod Univ"';ty httr<:flboM,Mu .. u/about·bond

Au,lIal" Edith Cowa n UnM"~y http://www.t< u.odu.au/lbout· ..

Au,lIalii U "'ty cf We,t.,n Au,tralil (UWA) http.:I/www.cou

Au,IlII" Macqu.,i. Univ ty http://www.uu,e<IY .. u/.bout

Page 28 of 42

If we select search by university then search with Jönköping University then it

comes without put in 9 iteration. In 423 dataset when we select search by

university of Melbourne then the system came out with the output in 84

iteration. Here are the screenshot:

Fig 4.3.2: Search by university, after pre-processing and our modified PSO.

~~ tohome

Total Iteration:9

S den JOllkOping Unw.."ity http://ju"~en/aboot"u<fJOllkop i ng"

-

~--~-- I <?! I!!l ' ".

~ktohome

Total Iteration:84

Page 29 of 42

4.4 Before pre-processing and our optimized PSO

In this algorithm it don't works perfectly in before pre-processing data. It

works same as normal PSO.

If we select search by location and search with Bangladesh then it comes with

the output in 19 iteration. In 423 data set ,when we search by location then it

just work as normal PSO in before pre-processing, The output which takes 144

iteration for gather 30 Australian university information including irrelevant

data,

Here is the output screenshot,

Fig 4.4.1: search by location, before pre-processing and our optimized PSO.

If we select search by university and search with Jönköping University then it

comes with the output in 11 iteration. In 423 dataset, it works normal as

general PSO, it takes 84 iteration for output.

(I ... • • • - &-_ ~

Total Iteration:19

s..ngiad<'h Khuln~ UnMrsity http//lu.K.bd/.boul-1cuI

s..ngiad<'h Bonglod ... h Agfi<u kufol Un~"'ly httpJ/bMJ . .du.bd/~
s..ngiad<'h Bonglod ... h Un~"ity of Englf nng ocd Tochnology ~

s..ngiad<'h Sha hjo'al UnM" ily of SCI.(\(. & Tochnology httpJl_

B.nglad~'h Un" . n. ly of Dh.ka httpJ/www.du.iK.bd!m • • n_m. nu/tt

s..ngiad<'h Bonglod ... h (",105

... -=-~,- X CAO _ • •• ___ _
back to hom.

Total Iteration:144

Au,tr.l ... G6ffith U~",ity hltps://bond.edu.AU/.boul -bond

Au,tr.l ... Ed ith u-.n U~",ity h t tp://www ... cu.edu /.bout-r<

Au,tr.l ... Murooc:h Uni""",ly http://www~ .edu.au/.bout-ec l
Au,tr.l ... jiii c~5

Au,tr.l ... <ydnry c,.,301.com

Au,tr.l ... MacqUOfi. Un,...;ly http://www.csu.r<l,, .. u/.bout

Au,tr.l ... Flin&", Un"'er>ily http://.boul .curtin.r<lu .'''lfwhoi

Au,tr.l ... jjjj hdfkjhWshkt.adf

Au,tr.l ... Swinbuf..., Un;....,"'ly ofTechnoloqy h ttp://www.&.kin.

Au,tr.l ... U~"'ty Of Wol ioogoog hltp://.bout.curtin.edu.aulwt

Au,tr.l ... Chari", Sturt U"""''''ity http://-...c>u.r<lu ... ,,,.bout

< Au,tr.l ... hhhhh www.i>pah.ni ... bout

Page 30 of 42

Fig 4.4.2: search by university, before pre-processing and our optimized PSO.

... . . . - -
Total Iteration:ll

b.>ck to home i
Total Iteration:84

Au<tr~l ia UnM ty ol Melboome http://IIoWW,x u .• du .. u/. boot_.

Page 31 of 42

4.5 After Pre-processing and optimize PSO

Our Optimize PSO works very well when we apply it in after pre-processing

data. It works perfectly when we search with location. We know location is

always in low number but a location holds lot of data. In this algorithm When

initialize the particles that time if we got the user request location then we

don't go to the coding rest part ,we move to the .xlsl file because our data is in

ordered by location . The Probability of getting location during initialization is

very high. Now if we search by location Bangladesh the output comes in 7

iteration with 4 fresh Bangladesh data which is totally optimized. In 423

dataset it works perfectly in after preprocessing .Our optimize PSO actually

based on the filtering/ordered data. Without ordering it works normal as

general PSO. In 423 data set, it takes only 34 iteration to gather 30 fresh

Australian University information, Here are the output:

Fig 4.5.1: Search by location, after pre-processing and our optimized PSO.

CI ~ _ . • • - &_ __

Total Iteration:7

EL>nglade'h Khuln~ u~"ity http/!1<u~c.bdJ.bout- 1cuI

EL>nglade'h B'ngl.d ... h Ag, i<uku,al Un~"'ty hnp//bMJ ,edu.bdJp<1

EL>nglade'h Sha hja'al lJn~"ity of SC",lKe & Technology http/lww

EL>nglade'h Banglad ... h lJn~"ity of £ng"",o,;ng and Technology ~

. .. -
t..Kk to home

Total Iteration:34

Au,tr. lia UnM"'ly of Newca,tle http://www.de.lOn.edoJ.au/~bou

Au, tralia ~nsland lJn",e",ty of Technology (OUT) http://www

Au, tra lia Roya l Melbourne Institute o f TecMoiogy (RMlT) http://f

Au,tralia Curtin Un~ty htlp;.//www.acu.eclu ... u/abou,-acu

Au, tr. lia UnM"'ty of South Au,t,. li. (UNISAj htlp :/;W-... nu.eo

Au, tralia G"ffith U~"ity htlp<://bond.edu...,J. bout-bond

Au, tra lia U~"'tyofTa"""nio https:l;W-.cqu.edu ,MI/.bout-u

Au,tralia Jam ... Cook Un~ty hnp://www,cdu.edu ... u/.bout

Au, tr. lia La Trob< University http/;W-.csu.edu ,MI/. bout

Au'Ir~lia FIind..,.,. Un"'~y http://aboutcurt ... edu ,au/wtIoI

Au, tra lia Swinbu",,, Un.v.m,ity of Technology htlp;.//www.dooak:in.

Au, tra lia Murdoch Un;"",,,,v http://_.ecu.edu /abooJt -<<ulv

Page 32 of 42

When we search by university on filtered data it not work as well as search by

location but sometimes it also work as search by location. If we search by

Jönköping University then it comes with the output in 12 iteration. In 423

dataset our Optimize PSO works as normal PSO. When user search by

Australian Melbourne University it took 84 iteration. Sometime this Iteration

number could be lower than 12. Here are the output screenshot.

Fig 4.5.2: Search by university, after pre-processing and our optimized PSO.

bac:k tohom~ ~

Total Iteration:12

Total Iteration:84

Page 33 of 42

Chapter 5

Conclusion

5.1 Summary

The first practical application of PSO was in the field of neural network

training and was reported together with the algorithm itself (Kennedy and

Eberhart 1995). Many more areas of application have been explored ever

since, including telecommunications, control, data mining, design,

combinatorial optimization, power systems, signal processing, and many

others. In our research, we have shown the differences between the general

PSO & our modified one. Searching are more optimized than the general PSO.

Not only that by using the pre-processing technique we could easily remove

the irrelevant data from our dataset and we could easily remove duplicity.

5.2 Future work

Our future plan is to reuse the particle swarm optimization technique for

reducing searching more. Not only that we are also interested to work the

other fields of Particle Swarm Optimization for inventing something useful in

future.

Page 34 of 42

Appendix

In this chapter, we are providing the most important portions of the source

code of our project in details.

private voidPSOAlgorithm(introwCount) {

 Particle gBest = new Particle();

 Particle gBestTest;

 Particle aParticle;

int cycle = 0;

boolean done = false;

int x=0;

 List<Particle>resultPerticlelist=new
ArrayList<>();

stringArrayList.clear();

urlList.clear();

if(SearchButtonNoti!=null){

done=initializeParticle(rowCount / 10);

 }

else{

initializeParticle2(rowCount/10);

 }

while (!done) {

if (cycle < MAX_CYCLES) {

System.out.println("Size of particle
list"+particleList.size());

for (int i = 0; i <particleList.size(); i++) {

aParticle = particleList.get(i);

System.out.println(aParticle.getpBest());

if(aParticle.getpBest() == 3){

 i=particleList.size();

 }

gBestTest = findBest();

if (gBest.getpBest() <gBestTest.getpBest()){

gBest = gBestTest;

System.out.println(gBest.toString());

if(!stringArrayList.contains(gBest.toString())){

stringArrayList.add(gBest.toString());

urlList.add(gBest.geturl());

 }

Page 35 of 42

x++;

resultPerticlelist.add(gBest);

 }

if(stringArrayList.size()>=10){

done=true;

 }

if(chkSearchByuniversity!=null&&stringArrayList.size
()>=1){

done=true;

 }

totalSearchCost++;

 }

updateParticle();

cycle++;

 }

else{

done = true;

 }

 }

 }

private booleaninitializeParticle(intnParticle) {

particleList = new ArrayList<>();

boolean done;

done=false;

intrandom_index;

for (int i = 0; i <nParticle; i++) {

 Particle particle = new Particle();

int best = 0;

random_index = getRandomNumber();

particle.setData(getData(random_index));

particle.setIndex(random_index);

totalSearchCost++;

if (chkSearchBylocation != null) {

if (particle.getData()[0].equals(input)) {

best = 3;

System.out.println("searchbylocation not null");

match_index = particle.getIndex();

System.out.println("match at:"+match_index);

stringArrayList.add(particle.toString());

urlList.add(particle.geturl());

System.out.println("Add data:"+particle.toString());

Page 36 of 42

AddmoreSameLocData();

done = true;

 i=nParticle;

 }

 } else if (chkSearchByuniversity !=
null) {

System.out.println("check by university not null
:D");

if (particle.getData()[1].equals(input)) {

best = 3;

System.out.println("searchbyuniversity not null");

match_index = particle.getIndex();

System.out.println("match at:"+match_index);

stringArrayList.add(particle.toString());

urlList.add(particle.geturl());

System.out.println("Add data:"+particle.toString());

done=true;

 i=nParticle;

 }

 }

particle.setpBest(best);

particleList.add(particle);

 }

System.out.println("Done from initialize
function:"+String.valueOf(done));

return done;

 }

private void AddmoreSameLocData(){

int index;

index=match_index+1;

for(int x=1;x<=10;x++){

 Particle particle=new Particle();

totalSearchCost++;

particle.setData(WhenMatchgetData(index));

particle.setIndex(index);

if(particle.getData()[0].equals(input)){

index=index+1;

stringArrayList.add(particle.toString());

urlList.add(particle.geturl());

}else {

index=match_index-(TotalNumof_thisCountry-x);

 }

Page 37 of 42

 }

 }

private intgetRandomNumber()

 {

return (int)((rowCount - 1) * new
Random().nextDouble() + 1);

 }

private String[] getData(introw_index) {

String[] data = new String[3];

XSSFRow row;

XSSFCell cell;

row = sheet.getRow(row_index);

 Iterator cells = row.cellIterator();

int i = 0;

while (cells.hasNext()) {

cell=(XSSFCell) cells.next();

data[i] = cell.getStringCellValue();

i++;

 }

return data;

 }

private String[] WhenMatchgetData(int index) {

String[] data = new String[3];

XSSFRow row;

XSSFCell cell;

row = sheet.getRow(index);

 Iterator cells;

cells= row.cellIterator();

int i = 0;

while (cells.hasNext()) {

cell=(XSSFCell) cells.next();

data[i] = cell.getStringCellValue();

i++;

 }

return data;

 }

privateParticle findBest() {

 Particle result = particleList.get(0);

for (Particle aParticle : particleList) {

if (result.getpBest() <aParticle.getpBest())

Page 38 of 42

result = aParticle;

 }

return result;

 }

privatevoid updateParticle(){

for (Particle aParticle : particleList) {

int best = 0;

intrandom_index;

random_index=getRandomNumber();

aParticle.setData(getData(random_index));

aParticle.setIndex(random_index);

if(chkSearchBylocation!=null){

if(aParticle.getData()[0].equals(input)){

best=3;

 }

 }

if(chkSearchByuniversity!=null){

if(aParticle.getData()[1].equals(input)){

best=3;

 }

 }

aParticle.setpBest(best);

 }

 }

public void preProcesingButtonHandle(ActionEvent
event) throws IOException {

freshParticleList = new ArrayList<>();

 List<String>stringList = new
ArrayList<String>();

 List<String>url = new ArrayList<String>();

inttotalRow,numOfDot,numOfSlash;

boolean done;

 String link;

done=false;

totalRow=readXLSXFileForFilter();

 List<String>uniqString = new
ArrayList<String>();

for (int i = 0; i <totalRow; i++) {

numOfDot=0;

numOfSlash=0;

link=null;

Page 39 of 42

 Particle particle = new Particle();

int best = 0;

particle.setData(getData2(i));

particle.setIndex(i);

link=particle.getData()[2];

for(int z=0;z<link.length();z++){

if(link.charAt(z)=='.'){

numOfDot++;

 }

if(link.charAt(z)=='/'){

numOfSlash++;

 }

 }

if ((particle.getData()[2].contains("http://www.")||

particle.getData()[2].contains("http://")||

particle.getData()[2].contains("https://www.")||

particle.getData()[2].contains("https://"))&&numOfDo
t>=2&&numOfSlash>=3){

freshParticleList.add(particle);

 }

 }

uniqString.add(freshParticleList.get(0).getData()[0]
);

int position;

position=0;

for (int j=0;j<freshParticleList.size();j++){//uniq
string determine

if(!uniqString.contains(freshParticleList.get(j).get
Data()[0])){

uniqString.add(freshParticleList.get(j).getData()[0]
);

 }

 }

for (int j=0;j<uniqString.size();j++){//ordering

for(int x=0;x<freshParticleList.size();x++){

if(uniqString.get(j)==freshParticleList.get(x).getDa
ta()[0]){

stringList.add(freshParticleList.get(x).toString());

url.add(freshParticleList.get(x).geturl());

 }

 }

Page 40 of 42

 }

System.out.println(uniqString);

ObservableList<String>urllistt;

ObservableList<String> list;

list =
FXCollections.observableArrayList(stringList);

urllistt=FXCollections.observableArrayList(url);

myController.setScreen(Main.screen2ID, "After
Filter", list,urllistt);

 }

public intreadXLSXFile() throws IOException

 {

InputStreamExcelFileToRead = new
FileInputStream("pso_data.xlsx");

XSSFWorkbookwb = new XSSFWorkbook(ExcelFileToRead);

sheet = wb.getSheetAt(0);

returnsheet.getPhysicalNumberOfRows();

 }

 @FXML

public void psobasicBtnHandle(ActionEvent event)
throws IOException {

SearchButtonNoti=null;

mainwork();

ObservableList<String>urllistt;

ObservableList<String> list;

list =
FXCollections.observableArrayList(stringArrayList);

urllistt=FXCollections.observableArrayList(urlList);

chkSearchByuniversity=null;

chkSearchBylocation=null;

System.out.println("Total Search
cost"+totalSearchCost);
myController.setScreen(Main.screen2ID,
Integer.toString(totalSearchCost), list,urllistt);

}

Page 41 of 42

References

[1] Zhan, Z-H.; Zhang, J.; Li, Y; Chung, H.S-H.
(2009). "Adaptive Particle Swarm Optimization"
(PDF). IEEE Transactions on Systems, Man, and
Cybernetics. 39 (6): 1362–1381.
doi:10.1109/TSMCB.2009.2015956.

[2] Yang, X.S. (2008). Nature-Inspired Metaheuristic
Algorithms. Luniver Press. ISBN 978-1-905986-10-1.

[3] Tu, Z.; Lu, Y. (2004). "A robust stochastic
genetic algorithm (StGA) for global numerical
optimization". IEEE Transactions on Evolutionary
Computation. 8 (5): 456–470.
doi:10.1109/TEVC.2004.831258.

[4] Tu, Z.; Lu, Y. (2008). "Corrections to "A Robust
Stochastic Genetic Algorithm (StGA) for Global
Numerical Optimization". IEEE Transactions on
Evolutionary Computation. 12 (6): 781–781.
doi:10.1109/TEVC.2008.926734.

[5] Kennedy, James (2003). "Bare Bones Particle
Swarms". Proceedings of the 2003 IEEE Swarm
Intelligence Symposium.

[6] X. S. Yang, S. Deb and S. Fong, Accelerated
particle swarm optimization and support vector
machine for business optimization and applications,
NDT 2011, Springer CCIS 136, pp. 53-66 (2011).

http://www.mathworks.com/matlabcentral/fileexchang
e/?term=APSO

[7] Parsopoulos, K.; Vrahatis, M. (2002). "Particle
swarm optimization method in multiobjective
problems". Proceedings of the ACM Symposium on
Applied Computing (SAC). pp. 603–607.

[8] CoelloCoello, C.; Salazar Lechuga, M. (2002).
"MOPSO: A Proposal for Multiple Objective Particle
Swarm Optimization". Congress on Evolutionary
Computation (CEC'2002). pp. 1051–1056.

[9] Roy, R., Dehuri, S., & Cho, S. B. (2012). A
Novel Particle Swarm Optimization Algorithm for
Multi-Objective Combinatorial Optimization Problem.
'International Journal of Applied Metaheuristic
Computing (IJAMC)', 2(4), 41-57

[10] Kennedy, J. &Eberhart, R. C. (1997). A discrete
binary version of the particle swarm algorithm,
Conference on Systems, Man, and Cybernetics,
Piscataway, NJ: IEEE Service Center, pp. 4104-4109.

Page 42 of 42

