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Chapter 1 

Introduction 

Wireless sensor networks (WSNs) are a significant technology attracting considerable research 

interest. Recent advances in wireless communications and electronics have enabled the 

development of low-cost, low-power and multi-functional sensors that are small in size and 

communicate in short distances. Cheap, smart sensors, networked through wireless links and 

deployed in large numbers, provide unprecedented opportunities for monitoring and controlling 

homes, cities, and the environment. 

 

In addition, networked sensors have a broad spectrum of applications in the defense area, 

generating new capabilities for reconnaissance and surveillance as well as other tactical 

applications [1]. Self-localization capability is a highly desirable characteristic of wireless sensor 

networks. In environmental monitoring applications such as bush fire surveillance, water quality 

monitoring and precision agriculture, the measurement data are meaningless without knowing 

the location from where the data are obtained. Moreover, location estimation may enable a 

myriad of applications such as inventory management, intrusion detection, road traffic 

monitoring, health monitoring, reconnaissance and surveillance. 

 

Sensor network localization algorithms estimate the locations of sensors with initially unknown 

location information by using knowledge of the absolute positions of a few sensors and inter-

sensor measurements such as distance and bearing measurements. Sensors with known location 

information are called anchors and their locations can be obtained by using a global positioning 

system (GPS), or by installing anchors at points with known coordinates. In applications 

requiring a global coordinate system, these anchors will determine the location of the sensor 

network in the global coordinate system. In applications where a local coordinate system suffices 

(e.g., smart homes), these anchors define the local coordinate system to which all other sensors 

are referred. Because of constraints on the cost and size of sensors, energy consumption, 

implementation environment (e.g., GPS is not accessible in some environments) and the 
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deployment of sensors (e.g., sensor nodes may be randomly scattered in the region), most sensors 

do not know their locations. These sensors with unknown location information are called non-

anchor nodes and their coordinates will be estimated by the sensor network localization 

algorithm. 

 

However, location discovery in wireless sensor networks is very challenging. First the algorithm 

positioning must be distributed and localized in order to scale well for large sensor networks. 

Second, the localization protocol must minimize communication and computation overhead for 

each sensor since nodes have very limited resources (power, CPU, memory, etc.). Third, the 

positioning functionality should not increase the cost and complexity of the sensor since an 

application may require thousands of sensors. Fourth, a location detection scheme should be 

robust. It should work with accuracy and precision in various environments, and should not 

depend on sensor to sensor connectivity in the network. The TPS positioning scheme proposed in 

this research is designed to meet these challenges. 

 

The major contribution of this paper is twofold. First, we propose a time-based location detection 

scheme for outdoor sensor networks and demonstrate our algorithm by simulation. Second, we 

analyze the theoretical performance of our scheme in noisy environments and identify possible 

sources of error with measures to help mitigate them. We put very few restrictions on the 

network layout and propose a scheme suitable for general outdoor sensor networks. We rely on 

RF signal, which performs well compared to ultrasound, infrared, etc., in outdoor environments 

[29]. We measure the difference in arrival times (TDoA) of beacon signals. In previous research, 

Timeof-Arrival (ToA) has proven more useful than RSSI in location determination [32]. TPS 

does not need the specialized antennae generally required by an Angle of Arrival (AoA) 

positioning system. This time-based location detection scheme avoids the drawbacks of many 

existing systems for outdoor sensor location detection. Our simulations show that TPS is 

potentially very effective and computationally efficient. Compared to existing schemes proposed 

in the context of outdoor sensor networks, our scheme bas the following characteristics and 

advantages: 
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 Time synchronization of all base stations and nodes is not required in TPS. Sensors 

measure the difference in signal arrival times using a local clock. Base stations schedule 

their transmissions based on receipt of other beacon transmissions and do not require 

synchronized clocks. Many existing location discovery systems for Sensor networks 

require time synchronization among base stations [25], or between satellites and sensors 

[15]. Impact time synchronization can degrade the positioning accuracy. 

 

 There are no requirements for ultrasound receiver [8], [32], second radio [15] or 

specialized antennae [ 5] ,[2], [25] at base stations or sensors. Our scheme does not incur 

the complexity, power consumption and cost associated with these components. (TPS 

sensors do require the ability to measure the difference in signal arrival times with 

precision.) 

 

 Our algorithm is not iterative-and doesn’t require a complicated refinement step as does 

[28], [31],[33].We refine position estimates by averaging time difference measurements 

over several beacon intervals prior to calculating position. This is useful to mitigate the 

effects of momentary interference and fast fading. This averaging requires less 

computation than repeatedly solving linear system matrices, least squares or 

multilateration algorithms. 

 

 

 TPS has or low multilateration computation algorithms cost. Our location detection 

algorithm is based on simple algebraic operations on scalar values. On the other hand, 

multilateration based systems[15],[17],[32],[33] require matrix operations to optimize the 

objective functions (minimum mean square estimation or maximum likelihood 

estimation), which induces higher computation overhead at each sensor. 

 

 

 Sensors listen passively each and are not required to make radio transmissions. Base 

stations transmit all the beacon signals. This conserves sensor energy and reduces RF 
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channel use. Connectivity based systems often require global flooding [26] or global 

connectivity information [35] to estimate range. 
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Chapter 2 

Measurement techniques                                                                                                                   

Measurement techniques in WSN localization can be broadly classified into three categories: 

Angle-of-arrival (AOA) measurements, distance related measurements and RSS profiling 

techniques. 

 

2.1. Angle-of-arrival measurements 

The angle-of-arrival measurement techniques can be further divided into two subclasses: those 

making use of the receiver antenna’s amplitude response and those making use of the receiver 

antenna’s phase response.  

 

Beam forming is the name given to the use of anisotropy in the reception pattern of an antenna, 

and it is the basis of one category of AOA measurement techniques. The measurement unit can 

be of small size in comparison with the wavelength of the signals. The beam pattern of a typical 

anisotropic antenna is shown in Fig. 1. One can imagine that the beam of the receiver antenna is 

rotated electronically or mechanically, and the direction corresponding to the maximum signal 

strength is taken as the direction of the transmitter. Relevant parameters are the sensitivity of the 

receiver and the beam width. A technical problem to be faced and overcome arises when the 

transmitted signal has a varying signal strength. The receiver cannot differentiate the signal 

strength variation due to the varying amplitude of the transmit ted signal and the signal strength 

variation caused by the anisotropy in the reception pattern. One approach to dealing with the 

problem is to use a second non-rotating and omnidirectional antenna at the receiver. By 

normalizing the signal strength received by the rotating anisotropic antenna with respect to the 

signal strength received by the non-rotating omnidirectional antenna, the impact of varyisng 

signal strength can be largely removed. 
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Fig. 1. An illustration of the horizontal antenna pattern of a typical anisotropic antenna. 

 

Another widely used approach [6] to cope with the varying signal strength problem is to use a 

minimum of two (but typically at least four) stationary antennas with known, anisotropic antenna 

patterns. Overlapping of these patterns and comparing the signal strength received from each 

antenna at the same time yields the transmitter direction, even when the signal strength changes. 

Coarse tuning is performed by measuring which antenna has the strongest signal, and it is 

followed by fine tuning which compares amplitude responses. Because small errors in measuring 

the received power can lead to a large AOA measurement error, a typical measurement accuracy 

for four antennas is 10–150. With six antennas, this can be improved to about 50, and 20 with 

eight antennas [6]. 
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S  

Fig. 2. An antenna array with N antenna elements. 

The second category of measurement techniques, known as phase interferometry [7], derives the 

AOA measurements from the measurements of the phase differences in the arrival of a wave 

front. It typically requires a large receiver antenna (relative to the wavelength of the transmitter 

signal) or an antenna array. Fig. 2 shows an antenna array of N antenna elements. The adjacent 

antenna elements are separated by a uniform distance d. The distance between a transmitter far 

away from the antenna array and the ith antenna element can be approximated by 

R ≈ R0 – id cosθ             

 

 where R0 is the distance between the transmitter and the 0th antenna element and 𝜃 is the 

bearing of the transmitter with respect to the antenna array. The transmitter signals received by 

adjacent antenna elements have a phase difference of  2𝜋
𝑑𝑐𝑜𝑠𝜃

𝜆
, which allows us to obtain the 

bearing of the transmitter from the measurement of the phase difference. This works quite well 

for high SNR but may fail in the presence approach of strong co-channel interference and/or 

multipath signals [7].  

 

The accuracy of AOA measurements is limited by the directivity of the antenna, by shadowing 

and by multipath reflections. How to obtain accurate AOA measurements in the presence of 



8 
 

multipath and shadowing errors has been a subject of intensive research. AOA measurements 

rely on a direct line-of-sight (LOS) path from the transmitter to the receiver. However a 

multipath component may appear as a signal arriving from an entirely different direction and can 

lead to very large errors in AOA measurements. Multipath problems in AOA measurements can 

be addressed by using the maximum likelihood (ML) algorithms[7]. Different ML algorithms 

have been proposed in the literature which make different assumptions about the statistical 

characteristics of the incident signals[8–10]. They can be classified into deterministic and 

stochastic ML methods. Typically ML methods will estimate the AOA of each separate path in a 

multipath environment. The implementation of these methods is computationally intensive and 

requires complex multidimensional search. The dimensionality of the search is equal to the total 

number of paths taken by all the received signals [7]. The problem is further complicated by the 

fact that the total num ber of paths is not known a priori and must be estimated. Different from 

the earlier ML methods, which assume the incoming signal is an unknown stochastic process, 

another class of ML methods [11],[12],[13] assume that the structure of the signal waveform is 

known to the receiver. This assumption is possible in some digital communication systems 

because the modulation format is known to the receiver and many systems are equipped with a 

known training sequence in the preamble. This extra information is exploited to improve the 

accuracy of AOA measurements or simplify computation. 

 

Yet another class of AOA measurement methods is based on so-called subspace-based 

algorithms[14],[21],[16],[24]. The most well known methods in this category are MUSIC 

(multiple signal classification) [14] and ESPRIT (estimation of signal parameters by rotational 

invariance techniques). These eigenanalysis based direction finding algorithms utilize a vector 

space formulation, which takes advantage of the underlying parametric data model for the sensor 

array problem. They require a multi-array antenna in order to form a correlation matrix using 

signals received by the array. The measured signal vectors received at the M array elements is 

visualized as a vector in M dimensional space. Utilizing an eigen-decomposition of the 

correlation matrix, the vector space is separated into signal and noise subspaces. Then the 

MUSIC algorithm searches for nulls in the magnitude squared of the projection of the direction 

vector onto the noise subspace. The nulls are a function of angle-of-arrival, from which angle-of-
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arrival can be estimated. For linear arrays, Root-MUSIC [18], a polynomial rooting version of 

MUSIC, improves the resolution capabilities of MUSIC. A weighted norm version of MUSIC, 

WMUSIC [19], also gives an extension in the resolution capabilities compared to the original 

MUSIC. ESPRIT [21] [16]  is based on the estimation of signal parameters via rotational 

invariance techniques. It uses two displaced sub arrays of matched sensor doublets to exploit an 

underlying rotational invariance among signal subspaces for such an array. A comprehensive 

experimental evaluation of MUSIC, Root-MUSIC, WMUSIC, Min-Norm [20] and ESPRIT 

algorithms can be found in A very large number of AOA measurement techniques have been 

developed which are based on MUSIC and ESPRIT, to cite but two, see e.g. [24] [22]. Due to 

space limitations, we do not provide an exhaustive list of them in this paper. Readers may refer 

to [36] for a detailed technical discussion on AOA measurement techniques. 

 

2.2. Distance related measurements 

Distance related measurements include propagation time based measurements, i.e., one-way 

propagation time measurements, roundtrip propagation time measurements and time-difference-

of-arrival (TDOA) measurements, and RSS measurements. Another interesting technique 

measuring distance, which does not fall into the above categories, is the lighthouse approach 

shown in [43]. In the following paragraphs we provide further details of these techniques. 

 

2.2.1. One-way propagation time and roundtrip propagation time 

measurements 

 One-way propagation time and roundtrip propagation time measurements are also generally 

known as time-of-arrival measurements. Distances between neighboring sensors can be 

estimated from these propagation time measurements.  

One-way propagation time measurements measure the difference between the sending time of a 

signal at the transmitter and the receiving time of the signal at the receiver. It requires the local 

time at the transmitter and the local time at the receiver to be accurately synchronized. This 
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requirement may add to the cost of sensors by demanding a highly accurate clock and/or increase 

the complexity of the sensor network by demanding a sophisticated synchronization mechanism. 

This disadvantage makes one-way propagation time measurements a less attractive option than 

measuring roundtrip time in WSNs. Roundtrip propagation time measurements measure the 

difference between the time when a signal is sent by a sensor and the time when the signal 

returned by a second sensor is received at the original sensor. Since the same clock is used to 

compute the roundtrip propagation time, there is no synchronization problem. The major error 

source in roundtrip propagation time measurements is the delay required for handling the signal 

in the second sensor. This internal delay is either known via a priori calibration, or measured and 

sent to the first sensor to be subtracted. A detailed discussion on circuitry design for roundtrip 

propagation time measurements can be found in [37].                                                                                                               

 

Time delay measurement is a relatively mature field. The most widely used method for obtaining 

time delay measurement is the generalized cross-correlation method [38] [27]. A detailed discussion 

on the cross-correlation method is given in Section 2.2.3. 

 

Based on the observation that the speed of sound in the air is much smaller than the speed of 

light (RF) in the air, Priyantha et al. developed a technique to measure the one-way propagation 

time [39], which solved the synchronization problem. It uses a combination of RF and ultrasound 

hardware.                                                    

 

On each transmission, a transmitter sends an RF signal and an ultrasonic pulse at the same time. 

The RF signal will arrive at the receiver earlier than the ultrasonic pulse. When the receiver 

receives the RF signal, it turns on its ultrasonic receiver and listens for the ultrasonic pulse. The 

time difference between the receipt of the RF signal and the receipt of the ultrasonic signal is 

used as an estimate of the one-way acoustic propagation time. Their method gave fairly accurate 

distance estimate at the cost of additional hardware and complexity of the system because 

ultrasonic reception suffers from severe multipath effects caused by reflections from walls 

and other objects. A recent trend in propagation time measurements is the use of ultra wide band 
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(UWB) signals for accurate distance estimation [40][30]. A UWB signal is a 

signal whose bandwidth to center frequency ratio is larger than 0.2 or a signal with a total 

bandwidth of more than 500 MHz. UWB can achieve higher accuracy because its bandwidth is 

very large and therefore its pulse has a very short duration. This feature makes fine time 

resolution of UWB signals and easy separation of multipath signals possible.           

 

2.2.2. Light house approach to distance measurements 

Another interesting approach to distance measurements is the lighthouse approach [43] which 

derives the distance between an optical receiver and a transmitter of a parallel rotating optical 

beam by measuring the time duration that the receiver dwells in the beam. 

 

Fig. 3. An illustration of the lighthouse approach for distance measurement. 
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Fig. 3 is an illustration of the lighthouse approach for distance measurement. A transmitter 

located at the origin is equipped with a parallel optical beam, i.e., an optical beam whose beam 

width b is constant with respect to the distance from the rotational axis of the beam. 

The optical beam rotates at an unknown angular velocity ω around the Z axis. 

An optical receiver in the XY plane and at a distance d1 from the Z axis detects the beam for a 

time duration t1. From Fig. 3, it can be shown that 

d1 ≈ 
𝑏

2sin (𝛼
1/2)

 =  
𝑏

2sin (𝜔𝑡
1/2)

 

 

The unknown angular velocity x can be derived from the difference between the time instant 

when the optical receiver first detects the beam and the time instant when the optical receiver 

detects the beam for the second time. Therefore the distanced1 can be derived from the time 

duration t1 that the optical receiver dwells in the beam. The lighthouse approach measures the 

distance between an optical receiver and the rotational axis of the optical beam generated by the 

transmitter. A major advantage of the lighthouse approach is the optical receiver can be of a very 

small size, thus making the idea of ‘‘smart dust’’ possible [43]. 

 However the transmitter may be large. The approach also requires a direct line-of-sight between 

the optical receiver and the transmitter. 
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2.2.3. Time-difference-of-arrival measurements 

There is a category of localization algorithms utilizing TDOA measurements of the transmitter’s 

signal at a number of receivers with known location information to estimate the location of the 

transmitter. 

 

Fig. 4. Localization using time-difference-of-arrival measurement 

 

Fig. 4 shows a TDOA localization scenario with a group of four receivers at locations r1, r2, r3, r4 

and a transmitter at rt. The TDOA between a pair of receivers i and j is given by 

∆tij  ≜ ti – tj = 
1

𝑐
 ( ║ri - rt║- ║rj - rt║),      i≠j   

 

 

where ti and tj are the time when a signal is received at receivers i and j, respectively, c is the 

propagation speed of the signal, and ||.||denotes the Euclidean norm. 

Measuring the TDOA of a signal at two receivers at separate locations is a relatively mature field 

[41]. 
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The most widely used method is the generalized cross-correlation method, where the cross-

correlation function between two signals si and sj received at receivers i and j is given by 

integrating the lag product of two received signals for a sufficiently long time period T, 

𝜌i,j (𝜏) = 
1

𝑇
 ∫ 𝑠𝑖(t)

𝑇

𝑂
𝑠𝑗(t− τ)dt  

The cross-correlation function can also be obtained from an inverse Fourier transform of the 

estimated frequency domain cross-spectral density function. Frequency domain processing is 

often preferred because the signals can be filtered prior to computation of the cross-correlation 

function. The cross-correlation approach requires very accurate synchronization among receivers 

but does not impose any requirement on the signal transmitted by the transmitter. The accuracy 

and temporal resolution capabilities of TDOA measurements will improve when the separation 

between receivers increases because this increases differences between time-of-arrival. 

Closely spaced multiple receivers may give rise to multiple received signals that cannot be 

separated.  

For example, TDOA of multiple signals that are not separated by more than the width of their 

cross-correlation peaks (whose location on the time-delay axis corresponds to TDOA) usually 

cannot be resolved by conventional TDOA measurement techniques [42]. Yet another factor 

affecting the accuracy of TDOA measurement is multipath. Overlapping cross-correlation peaks 

due to multipath often cannot be resolved. Even if distinct peaks can be resolved, a method must 

be designed for selecting the correct peak value, such as choosing 

the largest or the first peak [7]. It is worth noting that Gardner and Chen proposed an approach in 

[42] [9], which exploits the cyclostationarity property of a certain signal to obtain substantial 

tolerance to noise and interference. The cyclostationarity property is a direct result of the 

underlying periodicities in the signal due to periodic sampling, scanning, modulating, 

multiplexing, and coding operations employed in the transmitter. Both the frequency-shifted and 

time-shifted cross-correlations are utilized to exploit the unique cyclostationarity property of the 

signal. 

Their method requires the signal of interest to have a known analog frequency or digital keying 

rate that is distinct from that of the interfering signal. 
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(i) triangulation      (ii)     trilateration                   (iii)   multilaterations 

Fig. 5 Range or angle combining techniques. 

 

Triangulation, trilateration, and multilateration are the three techniques for combining ranges and 

angles. Triangulation is the simplest. As in Fig. 5(i), if the angles (α and β) to base stations A and 

B are known, the location of S is where lines from A and B intersect. Thus for AoA, at least two 

base stations are required. Trilateration computes the intersection of three circles, as shown in 

Fig. 5(ii). If the range to each base station is not accurate, the three circles may not have a 

common intersection point leading to ambiguous solutions. Multilateration uses an objective 

function to minimize the difference between the estimated position and real position of a sensor. 

For example in Fig. 5(iii), we can use min ∑i(Dsi- si)
2 to compute (x,y) for S, where               

Dsi =   √(𝒙 −  𝒙𝒊 )
𝟐 + (𝒚 −  𝒚𝒊)𝟐, si is the estimated range from S to i, i = A,B,C,D,E. This 

technique can improve accuracy but involves higher computation overhead. For details on 

multilateration, we refer the readers to [32]. Both trilateration and multilateration require at least 

3 base stations. TPS uses trilateration with range difference information. We compute a sensor's 

position and its range to the master base station at the same time. 
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2.2.4 Existing Sensor Location Detection Schemes 

GPS is the most popular localization system but may not be desirable in a sensor network due to 

cost, form factor, energy consumption, and the requirement for a second radio. GPS-less 

localization techniques have been researched extensively. For example, Ref. [44] proposes to use 

the centroid of multiple base stations to approximate the sensor location. In this subsection, we 

are going to overview in detail several works designed for outdoor sensor networks. For a 

taxonomy of location systems for ubiquitous computing we refer the readers to [45]Ref. 

[32]proposes a TDoA based scheme(AHLQS) that requires base stations to transmit both 

ultrasound and RF signals simultaneously. The RF signal is used for synchronization purposes. A 

sensor will measure the difference of the arrival times between the two signals and determine the 

range to the base station. Multilateration is applied to combine range estimates to generate 

location data. Testbed experiments demonstrate that AHLoS provides fine-grained localization 

capability. However, ultrasound transceivers can only cover a short range (several meters) and 

large numbers of base stations may be required to cover large areas. Other contributions by [32] 

include the introduction of iterative multilateration and collaborative multilateration. In iterative 

multilateration, a sensor becomes a base station after its position is determined. Whenever a 

sensor has range estimates to at least three base stations, multilateration is used to compute its 

position; otherwise, it continues to listen to beacon signals from base stations. If it is impossible 

for a sensor to find 3 base stations, collaborative multilateration can be used. In collaborative 

multilateration two or more sensors (which can be multiple hops apart) can form an over 

determined system of equations with a unique solution set. Feasible conditions for collaborative 

multilateration are further explored in [33]. Ref. [17] compares the performance of different 

multilateration methods by simulation and proposes a new and fast iterative improvement 

algorithm to optimize location discovery. Ref. [8] designs and analyzes an acoustic ranging 

system for robotics applications and embedded sensor technology. This paper examines methods 

to detect and eliminate various types of interference. 
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As mentioned earlier, AoA techniques require special antennae and may not perform well due to 

omnidirectional multipath reflections. To avoid requirements for directional antennae, Ref. [25] 

first transforms TDoA measurements in to AoA information and then applies triangulation to 

compute location. This scheme requires at least 3 base stations with synchronized rotating 

directional antennae. Non-zero antennae beam width and imperfect synchronization contributes 

to decrease system accuracy. A prototype navigation system based on AoA measurements for 

autonomous vehicles is presented in [23]. It estimates AoA by means of a set of optical sources 

and a rotating optical sensor. This system is not suitable for outdoor sensor networks due to its 

cost and complexity. Our scheme is similar to the one in Ref. [25] in that TPS measures TDoA at 

each sensor and has no additional special requirements for sensors. However, we do not use 

directional antenna in base stations and we do not require any kind of synchronization in the 

whole network. 

 

 The works mentioned above are all based on straight line range estimation to base stations. Ad 

Hoc positioning system (AI'S) [26] first estimates ranges based on DV-hop, DV-distance, or 

Euclidean, and then applies trilateration to compute the location of each sensor. If enough base 

stations are available, location errors for APS with DV-hop can be about 30% of radio range in a 

dense and regular topology. For sparse and irregular network topologies, the accuracy degrades 

to roughly the radio range. For DV distance and Euclidcan, the performance of APS also 

depends on the accuracy of the distance measured between neighboring sensors. Ref. [31] goes 

one step further: it refines location estimates computed by APS with DV-hop by using 

neighboring sensor position and distance estimates to help convergence to a better solution. To 

mitigate error propagation, a confidence weight from 0 to 1 is associated with each estimated 

position. With measured distance errors of 5% , [31] produces an error of 33% of radio range on 

average for random graphs. Another work is [33], which uses DV-distance to compute range and 

Min-Max to compute position. To refine position estimates, [33] uses a computation tree. Ref. 

[46] compares [26], [31], and [33] in simulation. 
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 Locating a subscriber in cellular networks or PCS systems has been well studied in literature  [5] 

The techniques involved produce coarse location granularity (tens or hundreds of meters), thus 

may not he suitable for outdoor sensor networks. Research on indoor or in-building localization 

is on-going and many interesting systems have been designed. Examples include Active Badge 

[36] Active Bat, RADAR, Cricket, and Spot ON, to name a few. Some of these systems require 

location surveys which are not possible with an air deployed outdoor sensor network. For a brief 

overview on these systems, we refer the readers to [17]. Other interesting works in sensor 

networks include [35]. 
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Chapter 3 

Network Model 

We assume that the sensors are deployed randomly over a 2-dimensional monitored area (on the 

ground). (However, Our proposed sensor positioning scheme can be easily extended to 3-

dimensional space.) Each sensor has limited resources (battery, CPU, etc), and is equipped with 

an omni-directional antenna. Three base stations A, B, C, with known coordinates (xa,ya), (xb,yb), 

and (xc,yc), respectively, are placed beyond the boundary of the monitored area, as shown in Fig. 

6. Let us assume A be the master base station. Assume the monitored area is enclosed within the 

angle ∠BAC. Let the unknown coordinates of a sensor be (x, y), which will he determined by 

Time-Based Positioning Scheme (TPS). Each base station can reach all sensors in the monitored 

area. One restriction on the placement of these base stations is that they must be non-collinear, as 

otherwise, the sensor locations will be indistinguishable. 

 

 

Fig. 6 An example sensor network 
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Note that these base stations will transmit RF beacon signals periodically to assist each sensor 

with location discovery. They have long-term power supplies and can receive RF signals from 

each other. Note that there is no time synchronization among these three base stations. However, 

we require base stations to detect signal arrival times with precision and to accurately calculate 

total turnaround delay. This calculated turn-around delay consists of a random delay combined 

with known system transmission and reception delays. 

 

Remark: If the monitored area is so large that 3 base stations can not cover the whole area 

completely, we can always divide the area into smaller subareas and place more 

base stations. 
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Chapter 4 

TDOA: Time Difference of Arrival Scheme 

In this section, we propose TPS, OUT time-based positioning scheme for outdoor wireless sensor 

networks. This scheme consists of two steps. The first step detects the time difference of signal 

arrival times from three base stations. We transform these time differences in to range 

differences from the sensor to the base stations. In the second step, we perform trilateration to 

transform these range estimates into coordinates. 

 

4.1 A Time –Based Location Detection Scheme 

Given the locations (xa,ya,), (xb,yb), and (xc,yc) of base stations A, B, and C, respectively, we are 

going to determine the location (x,y) of sensor S, as shown in Fig. 7. Let v be the speed of RF 

beacon signals from A, B, and C. Let dab be the distance between base stations A and B and dac, 

be the distance between base stations A and C. Thus dab=   √(𝒙𝒂 −  𝒙𝒃 )
𝟐 + (𝒚𝒂 −  𝒚𝒃 )

𝟐  and dac=

  √(𝒙𝒂 − 𝒙𝒄 )
𝟐 + (𝒚𝒂 − 𝒚𝒄 )

𝟐  Let dsa, dsb, dsc be the unknown distances from S to A, B, and C 

respectively. Our time-based location detection scheme TPS consists of two steps. 

 

Fig. 7. Sensor S will measure TDoA of beacon signals from base stations A. B. and C locally. S 

also will receive the turn-around delay information from B and C .B's transmission will start 

after it receives A s beacon signal, while C's transmission will start after it receives 

both A and B's beacon signals. This procedure will be repeated once every T seconds. 
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Step 1: Range Detection. 

Let A be the master base station, which will initiate a beacon signal every T seconds. Each 

beacon interval begins when A transmits a beacon signal. Consider any beacon interval i, at 

times t i
1, t i

b, t i
c, sensor S, base stations B and C will all receive A's beacon signal respectively. 

At time t i'
b, which is ≥ t i

b, B will reply to A with a beacon signal conveying information               

t i'
b - t i

b = ∆ t i
b. This signal will reach S at time t i

2. After receiving beacon signals from both A 

and B, at time t i'
c, C will reply to A with a beacon signal conveying information t i'

c - t i
c = ∆ t ic. 

This signal will reach S at time t i3. Based on triangle inequality, t i
1 <  t i2 < t i

3. Let ∆ t i
1= t i2 - t i

1,  

∆ t i
2 = t i

3 - t i
1, we obtain 

dab + dsb - dsa + v.∆ t i
b= v.∆ t i

1 (1) 

dac + dsc - dsa + v.∆ t i
c= v.∆ t i

2 (2) 

which gives  

dsb =  dsa + v.∆ t i
1  - dab - v.∆ t i

b  =  dsa + k i
1 (3) 

dsc =  dsa + v.∆ t i
2  - dac  - v.∆ t i

c  =  dsa + k i
2 (4) 

Where dsa,  dsb and dsc, are positive real numbers and 

k i
1  =  v.∆ t i

1  - v.∆ t i
b  -  dab (5) 

k i
2  =  v.∆ t i

2  - v.∆ t i
c -  dac (6) 

 

Averaging k i
1 and k i

2 over I intervals gives 

k 
1 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
1 - ∆ t ib )] - dab (7) 

k 
2 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
2  - ∆ t i

c)] - dac (8) 

We are going to apply trilateration with k1 and k2 to compute coordinates (x,y) for sensor S in the 

next step. 
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Remarks:  

(i) All arrival times are measured locally. In other words, tl, t2, t3 are measured based on sensor 

S's local timer; t i
b and t i'

b are based on B's local timer and known system delays; while t i
c, and    

t i'
c  are based on C's local timer and known system delays. There is no global synchronization.  

(ii) We require A to periodically initiate the beacon signal transmission for two reasons.  

First, averaging k i
1 and k i

2 over multiple beacon intervals helps to decrease the measurement 

error. The number of beacon intervals I can be a trade-off between potential accuracy 

improvement and power consumption.  

Second, sensors may sleep to save energy; or they may be deployed at different times; or they 

may move during their lifetime. The periodic beacon signals from A and the reply signals from B 

and C can facilitate location discovery at any time. 

 

Step 2: Location Computation. 

From Eqs. (3), (4), (7) and (8), we have 

dsb =  dsa + k1 (9) 

dsc =  dsa + k2 (10) 

 

Based on trilateration, we obtain three equations with three unknowns x,y, and dsa, where dsa > 0 

(x-xa )2 +(y-ya )2 = d2
sa (11) 

(x-xb )2 +(y-yb )2 =(dsa +  k1 )2 (12) 

(x-xc )2 +(y-yc )2 =(dsa +  k2 )2 (13) 

 

In the next Subsection, we will show how to compute x,y and dsa efficiently. We will also give 

the conditions under which the solution set is unique. 
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4.2 An Efficient Solution for Location Detection by Trilateration 

Without loss of generality, we assume the three base stations are located at (0,0), (x1,0), and 

(x2,y2), respectively, where x1 > 0, y2 > 0. In other words,  xa = ya=yb =0, xb = x1, xc= x2 and       

yc =y2. 

Let sensor S he located at (x,y). Note that we can always transform real positions to this 

coordinate system through rotation and translation. We want to compute the location for S. 

 

From Eqs.(l1),(l2),and (13), we have  

x2 + y2 = d2
sa (14) 

x2  - 2xx1 + x2
1 + y2 = d2

sa + 2dsak1  + k2
1  (15) 

x2  - 2xx2 +  x2
2 + y2 - 2yy2 + y2

2 = d2
sa + 2dsak2  + k2

2 (16) 

 

Subtracting Eq. (14) from Eq.(15), we obtain 

2x1x = -2k1dsa  - k2
1 + x2

1 (17) 

 

Subtracting Eq. (14) from Eq. (16), we obtain 

2x2x +2y2y = -2k2dsa  - k2
2  +  x2

2  + y2
2 (18) 

 

Multiplying Eq. (18) with xl and Subtracting the product of Eq. (17) with x2, we obtain 

2x1y2y = (2k1x2 – 2k2x1) dsa + k2
1 x2  -  k2

2 x1 +  x2
2 x1 + y2

2x1 – x2
1x2 (19) 

 

Since x1 > 0, y2 > 0, Eq. (17) and (19) can be rewritten as 

x =( -2k1dsa  - k2
1 + x2

1 )/ 2x1 (20) 

y =[(2k1x2 – 2k2x1) dsa + k2
1 x2  -  k2

2 x1 +  x2
2 x1 + y2

2x1 – x2
1x2]/ 2x1y2 (21) 
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Substituting Eqs. (20) and (21) into (14), we obtain 

αd2
sa + β dsa + γ = 0 (22) 

 

Where 

α = 4[k2
1y2

2 + (k1x2 – k2x1)2 – x2
1y2

2] (23) 

β = 4[k1(k2
1-x2

1)y2
2 + (k1x2 – k2x1)(k2

1x2 –k2
2x1+x2

2x1+y2
2x1-x2

1x2)] (24) 

γ = (k2
1 – x2

1)2y22 + (k2
1 x2 – k2

2x1 + x2
2x1 +y2

2x1 – x2
1x2)2 (25) 

Theorem:  

Eq.(22) has a unique positive root for dsa, if and only if one of the following three conditions 

holds 

1) α = 0, β < 0, and γ > 0; 

2) αγ <0; 

3) αβ < 0, γ = 
β2

4𝛾
, 

PROOF 

We prove the theorem by case study. First, we consider the case where both α and β  are zero. In 

this case, (22) is either satisfied by all values of d (when γ = 0) or violated by every value of d 

(when γ ≠ 0). 

 

Next we consider the case where α = 0 and β ≠ 0. In this case, (22) has a unique root dsa = - 
𝛾

𝛽
. 

Since γ ≥ 0, - 
𝛾

𝛽
 is positive if and only if β < 0 and γ > 0. This corresponds to the first condition in 

the theorem. 

In the rest of the proof, we will consider the cases where α ≠ 0. Consider the case where αγ < 0. 

This implies that γ > 0 and α < 0. It also implies that β2 - 4αγ > β2 .Therefore (22) has a unique 

positive root, dsa  =
−𝜷±√𝜷𝟐−𝟒𝜶𝜸

𝟐𝜶
. This corresponds to the second condition in the theorem. 

In the case where 4αγ > β2, the equation does not have any root in the real field. 
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In the case where 0 < 4αγ < β2, the equation has two roots d(1)
sa=  

−𝜷+√𝜷𝟐−𝟒𝜶𝜸

𝟐𝜶
 and               

d(2)
sa=  

−𝜷−√𝜷𝟐−𝟒𝜶𝜸

𝐨𝟐𝜶
 which have the same sign. 

In the case where 4αγ =β2, the unique root of the equation is dsa = - 
𝛽

2𝛼
 which is positive if and 

only if β < 0. This corresponds to the third condition in the theorem. 

Next consider the case where γ = 0. Note that γ = 0 implies that k2
1 = x2

1 which in turn implies 

that k2
1 x2– k2

2x1 + x2
2x1 +y2

2x1 – x2
1x2 = 0.  Therefore  γ = 0 implies that β = 0. In this case, the 

equation does not have a positive root. This completes the proof of the theorem.  

Substituting the value of dsa into Eqs. (20) and (21), we will have the coordinates x and y for S. 

In the above solution, we have used the square root function. Note that computing the square root 

X of a positive number N only requires a few iterations of Newton’s method [24] in the form of  

X := 0.5 * ( X+ N / X ) .Our simulation results show that four iterations are sufficient to produce 

accurate solutions 

Remarks: 

(i)Newton’s method converges quadratically, thus solving trilateration functions can be done in a 

fast fashion.  

(ii) Compared to the other location detection methods in literature [17], [32], [33], [l5], our 

scheme has an important advantage: we improve performance by refining in the first step-

averaging time differences over multiple beacon intervals, which involve only simple algebraic 

operations. Refining through popular strategies like maximum likelihood or minimum mean 

square require more computation 

 

We note that data collected may have errors. When solving s system of linear equations such as 

those defined by (20) and (21), solutions are more accurate when the condition number (the 

condition number of a system of linear equations is the ratio of the largest eigen value over the 

smallest eigesn value) is small [9]. We note that the condition number of the system of linear 
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equations (20) and (21) is max {
𝑥1

𝑦2 
 , 

𝑦2

𝑥1
}.When designing the system, it is better to choose the 

locations of base stations so that the ratio 
𝑥1

𝑦2 
 is as close to 1 as possible. It is interesting to note 

that the value of x2 does not affect the condition number of the system. In practice, we may 

choose the locations of the base stations so that they are sitting at the vertices of an equilateral 

triangle. In this case, the condition number will be 1.155, which is very close to 1, resulting in a 

very stable system. 

To ensure the unique positive solution for dsa, it suffices to have αγ < 0. From Eq. (25), γ > 0. 

Thus the sufficient condition is reduced to α < 0. That is 

k2
1y2

2 + (k1x2 – k2x1)2 < x2
1y2

2 (26) 

which gives 

k2
1y2

2 + k2
1x2

2 – k2
2x2

1 – 2k1k2x1x2 < x2
1y2

2 (27) 

 

In our simulation, this condition is satisfied in all cases where sensors are not in close proximity 

to or behind a base station. Near the base stations (interior to triangle), the solutions for dsa are 

both positive. If the position that corresponds to our measurements is interior to the triangle, 

d(2)
sa=  

−𝜷−√𝜷𝟐−𝟒𝜶𝜸

𝟐𝜶
 is the correct calculation. 

 

Similarly, 

B send signal to S and at times t i
4, t i

a2, t i
c2, sensor S, base stations A and C will all receive B's 

beacon signal respectively. At time t i'
a2, which is ≥ t ia2,  A will reply to B with a beacon signal 

conveying information  t i'
a2 - t i

a2 = ∆ t i
b. This signal will reach S at time t i

5. After receiving 

beacon signals from both B and A, at time t i'
C2, C will reply to B with a beacon signal conveying 

information t i'
c2 - t i

c2 = ∆ t i
c2. This signal will reach S at time t i

6. Based on triangle inequality,       

t i
4<  t i5 < t i6.  
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Let  

,∆ t i
3= t i

5- t i
4,   

  ∆ t i
4 = t i

6- t 4
,  

we obtain 

dab + dsa - dsb + v.∆ t i
a2= v.∆ t i

3 (28) 

dbc + dsc - dsb + v.∆ t i
c2= v.∆ t i

4 (29) 

 

which gives  

dsa=  dsb + v.∆ t i
3  - dab - v.∆ t i

a2  =  dsb + k i
3 (30) 

dsc =  dsb + v.∆ t i
4  - dbc - v.∆ t i

c2  =  dsb + k i
4 (31) 

 

Where dsa,  dsb and dsc, are positive real numbers and 

k i
3  =  v.∆ t i

3  - v.∆ t i
a2  -  dab (32) 

k i
4  =  v.∆ t i

4  - v.∆ t i
c 2 -  dbc (33) 

 

Averaging k i
3and k i

4 over I intervals gives 

k 
3 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
3  - ∆ t i

a2 )] - dab (34) 

k 
4 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
4  - ∆ t i

c2)] – dbc (35) 

 

We are going to apply trilateration with k3 and k4  to compute coordinates (x,y) for sensor S in 

the next step. 

From (30),(31),(34),(35),(36) we get 

dsa=  dsb + k 
3 (36) 

dsc =  dsb + k 
4 (37) 
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x2 + y2 = d2
sa  =    (dsb + k 

3)2  
                                                                                                 (38) 

(x  - x1)2
  + y2 = d2

sb (39) 

(x  - xc)2
  + (y - yc

 )2= d2
sc = (dsb + k 

4)2 
                                                                             (40) 

 

From (38),(39),(40) we get 

x2 + y2 = d2
sb + 2 dsb k 

3 + k2
3 (41) 

x2  - 2xx1 + x2
1 + y2 = d2

sb (42) 

x2  - 2xx2 +  x2
2 + y2 - 2yy2 + y2

2 = d2
sb + 2dsbk4  + k2

4 (43) 

 

Subtracting Eq. (42) from Eq.(41), we obtain 

2x1x  =2k3dsb  + k2
3 + x2

1  

2x1x  -  x2
1 =2k3dsb  + k2

3 (44) 

x =  (2k3dsb  + k2
3 + x2

1) /  2x1 (45) 

 

Subtracting Eq. (43) from Eq.(41), we obtain 

2xc x  - x2
c  + 2ycy – y2

c = 2 dsb k 
3 + k2

3 - 2dsbk4  - k2
4 (46) 

 

Multiplying eqs. (44) into xc  and (46) into x1 we obtain    

2x1xc x  -  x2
1xc  = 2xc k3dsb  + xck2

3 (47) 

2x1 xc x  - x1 x2
c  + 2x1 ycy – x1 y2

c = 2x1 k 
3 dsb + x1 k2

3 - 2x1 k4dsb - x1k2
4 (48) 

 

Subtracting Eq. (47) from Eq. (48), we obtain  

y = dsb(x1k3 - x1k4 -  xck4) /x1yc + (x1k2
3 – x1k2

4 – xck2
4 +x1x2

c + x1y2c – x2
1xc) / 2x1yc (49) 
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Substituting (44) , (49) in (41) we obtain  

[(2k3dsb  + k2
3 + x2

1) /  2x1 ]2 + [dsb(x1k3 - x1k4 -  xck4) /x1yc + (x1k2
3 – x1k2

4 – xck2
4 +x1x2

c + 

x1y2c – x2
1xc) / 2x1yc ]

2 = d2
sb + 2k3dsb + k2

3                                                                                 

 

(50) 

α1d2
sa + β1 dsa + γ1 = 0 (51) 

 

where 

α1 = k2
3y2

2+ (x1k3 - x1k4)2 +(x2k4 +x1k4)2 -2x1x2k3k4 – x2
1y2

2 

β 1= k3
3y2

2  + k3x2
1y2

2 + x2
1k3

3 – x2
1k3k2

4 – x1x2k3k2
1 + x2

1x2
2k3 + x2

1y2
2k3 – x3

1x2k3 – x2
1k2

3k4 + 

x2
1k3

4 + x1x2k3
4 – x2

1x2
2k4 – x2

1y2
2k4 + x3

1x2k4 - x1x2k2
3k4 + x1x2k3

4  + x2
2k3

4 –x1x3
2k4 – x1x2y2

2k4 

+ x2
2x2

1k4 – 2x2
1y2

2k3 

γ1 =  (x1k2
3 – x1k2

4 – x2k2
4 – x1x2

2 + x1y2
2 – x2x2

1)2 – 4x2
1y2

2k2
3 

 

d(2)
sb = 

−𝜷𝟏− √𝜷
𝟏𝟐−𝟒𝜶𝟏𝜸𝟏

𝟐𝜶𝟏
 

 

Consider any beacon interval i, at times t i
7, t i

a3, t i
b3, sensor S, base stations A and B will all 

receive C's beacon signal respectively. At time t i'
a3, which is ≥ t i

a3, A will reply to C with a 

beacon signal conveying information t i'
a3- t ia3 = ∆ t i

a3. This signal will reach S at time t i
8. After 

receiving beacon signals from both A and C, at time t i'
b3, B will reply to C with a beacon signal 

conveying information t i'
b3 - t i

 b3 = ∆ t i
 b3. This signal will reach S at time t i

9. Based on triangle 

inequality, t i
7 <  t i

8< t i9. 

 Let ∆ t i
5= t i

8- t i7,   

        ∆ t i
6= t i9 - t i

7, we obtain 

dac + dsa - dsc + v.∆ t i
a3= v.∆ t i

5 (52) 

dbc + dsb - dsc + v.∆ t i
b3= v.∆ t i

6 (53) 
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Which gives  

dsa =  dsc + v.∆ t i
5  - dac - v.∆ t i

a3  =  dsc + k i
5 (54) 

dsb=  dsc + v.∆ t i
6 – dbc  - v.∆ t i

b3  =  dsc + k i
6 (55) 

 

Where dsa,  dsb and dsc, are positive real numbers and 

k i
5  =  v.∆ t i

5  - v.∆ t i
a3  -  dac (56) 

k i
6  =  v.∆ t i

6  - v.∆ t i
b3 -  dbc (57) 

 

Averaging k i
5 and k i

6 over I intervals gives 

k 
5 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
5 - ∆ t ia3 )] - dac (58) 

k 
6 =  

𝑉

𝐼
[∑ (𝐼

𝑖=1 ∆ t i
6  - ∆ t i

b3)] – dbc (59) 

 

We are going to apply trilateration with k5  and k6  to compute coordinates (x,y) for sensor S in 

the next step. 

 

 

From (54),(55),(58),(59) we obtain 

dsa=  dsc + k 
5 (60) 

dsb=  dsc + k 
6 (61) 

x2 + y2 = d2
sa  =    (dsc + k5)2 (62) 

(x  - x1)2
  + y2 = d2

sb   =    (dsc + k6)2 (63) 

(x  - x2)2
  + (y – y2

 )2  = d2
sc (64) 
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From (62),(63),(64) we obtain 

x2 + y2 = d2
sc + 2 dsc k 

5 + k2
5 (65) 

x2  - 2xx1 + x2
1 + y2 = d2

sc  +  2 dsc k 
6 + k2

6 (66) 

x2  - 2xx2 +  x2
2 + y2 - 2yy2+ y2

2 = d2
sc (67) 

 

Subtracting Eq. (65) from Eq.(66), we obtain 

2x1x = - 2k6dsc +2k5dsc - k2
6+ k2

5 + x2
1 (68) 

 

Subtracting Eq. (67) from Eq.(65), we obtain 

2x2 x  - x2
2 + 2y2y – y2

2 = 2 k5dsc + k2
5 (69) 

 

Multiplying eqs. (68) into x2 and (69) into x1 we obtain    

2x1x2 x  =  -2k6x2dsc + 2k5x2dsc – x2k2
6 + x2k2

5 + x2x2
1 (70) 

2x1x2x  + 2x1y2y = 2x1k5dsc+ x1k2
5 + x1x2

2 + x1y2
2 (71) 

 

From eq. (68) we obtain 

x = [ dsc (2k5 -2k6)  + k2
5 - k2

6 + x2
1]/2x1 (72) 

 

Subtracting Eq. (70) from Eq. (71), we obtain  

y = dsc(x1k5 + x2k6 - x2k5) /x1y2+ (x1k2
5 + x1x2

2 +x1y2
2 + x2k2

6 – x2k2
5 – x2x2

1)/2x1y2 (73) 

 

Substituting (72) , (73) in (65) we obtain  

[(dsc(2k5 -2k6)+k2
5-k2

6 +x2
1)/2x1 ]2+ [dsc(x1k5+x2k6- x2k5)/x1y2+(x1k2

5+ x1x2
2 

+x1y2
2+x2k2

6 – x2k2
5 –x2x2

1)/2x1y2]2= d2
sc+2dsck5+k2

5 

 

(74) 
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α2d2
sc + β2dsc + γ2  = 0 (75)      

Where    

 α2 = y2
2k2

5 – 2y2
2k5k6 + y2

2k2
6 + x2

1k2
5 + x2

2k2
6 + x2

2k2
5 – 2x1x2k5k6 + 2x2

2k5k6 – 2x1x2k2
5 – x2

1y2
2 

β2 =y2
2k3

5 – y2
2k6k2

5 – y2
2k5k2

6 + y2
2k3

6 + y2
2x2

1k5 – x2
1y2

2k6 + x2
1k3

5 +x1x2k6k2
5 – x1x2k3

5 + 

x2
1x2

2k5 + x1x3
2k6 – x1x3

2k5 + x2
1y2

2k5 + x1x2y2
2k6 – x1x2y2

2k5 + x1x2k5k2
6 + x2

2k3
6 – x2

2k5k2
6 – 

x1x2k3
5 – x2

2k2
5k6 + x2

2k3
5 – x3

1x2k5 – x2
2x2

1k6 + x2
2x2

1k5 – 2x2
1y2

2k5 

γ2 = (x1k2
5 + x1x2

2 + x1y2
2 – x2k2

5 + x2k2
6 – x2x2

1)2 – 4x2
1y2

2k2
5 

d(2)
sc = 

−𝜷𝟐− √𝜷
𝟐𝟐−𝟒𝜶𝟐𝜸𝟐

𝟐𝜶𝟐
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Chapter 5 

Theoretical Performance Analysis 

The trilateration equations (11), (12). and (13) determine coordinates (x,y) for sensor S based on 

the measured values k1 and k2. The inaccuracies of k1 and k2 cause sensor position errors. From 

Eqs. (7) and (8). k1 and k2 are the averaged results over I bcacon intervals, and based on the 

Central Limit Theorem, k1 and k2 are approximately normally distributed when I is large. 

Therefore, without loss of generality, may assume k1 and k2 are distributed according to  

N(µ1,σ2
1) and N(µ2, σ2

2), respectively. In this Section, we first give a statistical error analysis of 

sensor coordinate estimation. We then identify the major sources of errors affecting TPS’s 

location detection accuracy based on the network model described in Section 3 

 

5.1Theoretical Error Analysis 

To simplify the elaboration, we consider the case when base stations A, B, and C are located at 

(0, 0), (R,0), and (0,R ) ,respectively. This base station placement corresponds to condition 

number 1, which results in the most stable system. To further simplify the analysis, we consider 

the case when S is equidistant to any base station. The general case can be analyzed similarly. 

In our case, it is reasonable to assume µ1 = µ2 = 0, and thus k1 / R≈ 0, k2 / R≈0. To facilitate our 

analysis, we further assume that k1 and k2 are independent. (In general, one can introduce 

correlation between k1 and k2.) Plugging x1 = R, x2 = 0, and y2 = R into Eqs. (23), (24), and (25), 

and simplifying the solution to Eq. (22) by approximating k2
1/R2 and k2

2/R2with 0, we end up 

with 

dsa ≈ 
√2𝑅2+2𝑘1𝑘2

2
 – (

𝑘1+𝑘2

2
) 

(76) 

Substituting the above into Eq. (20) yields 

x ≈ 
𝑅

2
 + 

𝑘1 𝑘2

2𝑅
 - 

𝑘1

2
√2 +

2𝑘1𝑘2

𝑅2  
(77) 
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Now replacing (k1k2)/R2 =(k1/R)(k2/R)=0 we obtain  

x ≈ 
𝑅

2
 + 

𝑘1 𝑘2

2𝑅
 – k1√

1

2
 

 

= 
𝑅

2
 + k1k

*
2 (78) 

Where k*2 =
𝑘2

2𝑅
 - √

1

2
Similarly, from Eq. (21) we have 

Y ≈ 
𝑅

2
 + 

𝑘1 𝑘2

2𝑅
 – k2√

1

2
 

 

= 
𝑅

2
 + k2k

*
1 (79) 

 

Where  k*1=
𝑘1

2𝑅
 - √

1

2
 

 

Since (x,y) is used to estimate the location of S, the error in the estimation must be addressed. 

There are several ways to do this. The following is a common practice, where the variance of 

each variable is computed and the size of the variance or standard deviation is used as a measure 

of estimation error. 

 As k1 has a Gaussian distribution with mean µ1 and variance σ2
1, and k2 has a Gaussian 

distribution with mean µ2 and variance σ2
2,the linear combination k*

1 ; has a Gaussian 

distribution with mean 
µ𝟏

2𝑅
 – √

1

2 
 and variance 

𝜎12

4𝑅2, and k*
2 has a Gaussian distribution with mean 

µ𝟐

2𝑅
 – √

1

2 
 and variance 

𝜎22

4𝑅2 . Denote by E (X)and V (X)the mean and variance of a random variable 

X . We have, from Eq. (78). 

V(x) ≈ V(k1k
*
2)  

= E(k1k
*
2)

2 – [E(k1k
*
2)]

2  

= E(k1(k
*
2)

2 ) – [E(k1k
*
2)]

2 (80) 
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By the independence between k1and k2, we have 

E(k1k
*
2) = E(k1)E(k*

2) (81) 

E(k2
1(k

*
2)

2) = E(k2
1)E(k*

2
2)  

=[V(k1) + E(k1))
2] [V(k*2) + E(k*

2))
2] (82) 

 

Therefore substitution gives 

V(x) ≈ V(k1) [E(k*
2)]

2  + V(k*
2) [E(k1)]

2 + V(k1) V(k*
2) 

= σ2
1(

µ2

 2𝑅
 – √

1

2 
 )2 + 

𝜎22

4𝑅2 µ2
1 +  σ

2
1  

𝜎22

4𝑅2 

=   
   𝜎12µ22+𝜎22µ12+𝜎12𝜎22

4𝑅2  +σ2
1( 

1

2
 - 

µ2

 𝑅
 √

1

2 
 ) 

 

Since µ1 = µ2 = 0, the above reduces to  

V(x) ≈ 
𝜎

12

2
 + 

𝜎
12𝜎

22

4𝑅2   

= 
𝜎

12

2
 (1 + 

𝜎
22

4𝑅2  ) (83) 

 

Similarly, we have  

V(y) ≈ V(k*
1) [E(k2)]

2  + V(k2) [E(k*
1)]

2 + V(k*
1) V(k2)  

= 
   𝜎12µ22+𝜎22µ12+𝜎12𝜎22

4𝑅2  +σ2
2( 

1

2
 - 

µ1

 𝑅
 √

1

2 
 ) 

 

=  
𝜎

22

2
 + 

𝜎
12𝜎

22

4𝑅2   

= 
𝜎

22

2
 (1 + 

𝜎
12

4𝑅2
 ) (84) 

 

From the above analysis, we have the following observations.  

First, the variance of both x and y depend on the variances of k1 and k2.  
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Second, the variance of k1contributes more to that of x than the variance of k2; And the variance 

of k2 contributes more to that of y than the variance of k1. 

 Third, when R is large, V(x) ≈ 
𝜎

12

2
, V(y) ≈ 

𝜎
22

2
,  showing that the variance of x is dependent on 

that of k1 while the variance of y is dependent on that of k2.  

Fourth, if 𝜎12 =𝜎22;, the variances of x and y can be treated the same in practice. 

 

We note that the above discussion is based only on the first two moments of the random 

variables k1 and k2. We have not taken advantage of the normality assumption of these two 

variables. In fact, with additional normality assumption on k1 and k2, we can obtain 

approximations to the distributions of x and y. For example, since k1 and k2are independent, the 

CDF P(x≤ 𝛼) of x can he approximated by (for any real number αs). 

∬
R

πσ1σ2ξη≤α−R/2
exp{- 

1

2
f(ξ, η)}dξdη, 

Where 

f(ξ, η) = ( 
ξ− μ1

𝜎1
 )2 +( 

2𝑅𝜂− 𝜇2+√2𝑅2 

𝜎2
)2 

 

= ( 
ξ

𝜎1
 )2 + R2 (

2𝜂+ √2

𝜎2
)2 

 

= ( 
ξ

𝜎1
 )2 + 2R2 (

1+ √2𝜂

𝜎2
)2 

(87) 

 

The above results will help us to explain simulation results. In our simulation study (Section 6), 

we consider the cases when the errors of TDoA measurements at the sensor are normally 

distributed or uniformly distributed. The variance of TDoA measurements determines the 

variances of kl and k2 . Simulation results show that position error strongly depends on the 

variance of TDoA measurements. 
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5.2 Sources of Errors 

There are three major sources of errors for our time based location detection scheme: the receiver 

system delay, the wireless multipath fading channel, and the non-line-of-sight (NLOS) 

transmission. The receiver system delay is the time duration from which the signal hits the 

receiver antenna until the signal is decoded accurately by the receiver. This time delay is 

determined by the receiver electronics. Usually it is constant or varies in very small scale when 

the receiver and the channel is free from interference. This system delay can he predetermined 

and can be used to calibrate the measurements. For example, base stations B and C can always 

eliminate the system delay from ∆ti
b and ∆ti

c before these values are conveyed to the sensors in 

their reply messages to A's beacon signal. Meanwhile, as ∆ti
1 and ∆ti

2; arc measured by one 

sensor, the effect of receiver system delay may cancel out. Thus in our model, if base stations B 

and C can provide precise a priori information on receiver system time delay, their effect will be 

negligible. 

The wireless multipath fading channel will greatly influence the location accuracy of any 

location detection system. Major factors influencing multipath fading [29] include multipath 

propagation, speed of the receiver, speed of the surrounding objects, and the transmission signal 

bandwidth. Multipath propagation refers to the fact that a signal transmitted from the sender can 

follow a multiple number of propagation paths to the receiving antenna. In our system, the 

performance is not affected by the speed of the receivers since all sensors and base stations are 

stationary. However, a moving tank in the surrounding area can cause interference. 

 

 There are two important characteristics of multipath signals. First, the multiple non-direct path 

signals will always arrive at the receiver antennae latter than the direct path signal, as they must 

travel a longer distance. Second, in LOS transmission model, non-direct multipath signals will 

normally be weaker than the direct path signal, as some signal power will be lost from scattering. 

If NLOS exists, the non-direct multipath signal may be stronger, as the direct path is hindered in 

some way. Based on these characteristics, scientists can always design more sensitive receivers 

to lock and track the direct path signal. For example, multipath signals using a pseudo-random 

code arriving at the receiver later than the direct path signal will have negligible effects on a 
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high-resolution DS-BPSK receiver [4]. Our location detection scheme mitigates the effect of 

multipath fading by measuring TDoA over multiple beacon intervals. TDoA measurements have 

been very effective in fading channels, as many detrimental effects caused by multipath fading 

and processing delay can be cancelled [5]. 

Another factor related to wireless channels that causes location detection errors is NLOS 

transmission. To mitigate NLOS effects, base stations can be placed well above the surrounding 

objects such that there are line-of-sight transmission paths among all base stations and from base 

stations to sensors. 

In the next section, we are going to study the performance of our TPS positioning scheme over 

fading channels. We will consider the inaccuracy of TDoA information measured at sensors 

only. The sources of errors under consideration include multipath fading and NLOS. Thus we are 

going to assume the TDoA measurements are either normally distributed or uniformly 

distributed. These assumptions are popular in literature for TDoA measurements [5], [17] in 

fading channels. 
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Chapter 6 

Simulation 

Eqs. ( 11), (12), and (13) compute coordinates x and y for sensor S based on k1 and k2, which are 

determined by the time-related values at the sensor (∆ti
1 and ∆ti

2) and base stations B (∆ti
b)and C 

(∆ti
c) over beacon interval I (see Eqs. (7) and (8)). Thus the errors of x and y result from the 

measuring errors of ∆ti
1, ∆ti

2, ∆ti
b, and ∆tic. In this simulation, we assume the measuring errors 

of ∆ti
b, and ∆ti

c are negligible. This is reasonable, as we can always take possible measures (see 

Subsection 5-2) to decrease the measuring errors of base stations when the number of base 

stations is small (only 3 in our case). For example, base stations can be placed well above the 

surrounding objects to avoid multipath fading and NLOS transmission, and the system delay can 

be predetermined to calibrate the ToA measurements. (In this case, the sensor network resides in 

a 3-dimensional space. TPS needs to be modified accordingly.) On the other hand, Eqs. (7) 

and (8) tell us that the measuring error of ∆ti
b ( ∆ti

c) plays the same role as that of ∆ti
1 ( ∆ti2) in 

the computation of k1 (k2). Thus in our simulation study, we only consider the measuring errors 

of (∆ti
1 and ∆ti

2), which are termed TDoA measuring errors in the following description. We 

will study the influence of I and σ2 upon position error. Where I is the number of beacon 

intervals used to compute k1 and k2, 𝜎2 is the variance of the TDoA measuring error. 

 

We use Matlab to code TPS. This tool provides procedures to generate normally distributed and 

uniformly distributed random numbers. Measure distance from time delay and velocity of wave. 

We use the sqrt function in Matlab. Take 10 trials and generate position of source. Generate 

distances from trails and use the sqrt function in Matlab and we generate the signals for each 

sensor and determine the position of sensor. We show the true position and estimated position of 

the sensor. Finally we use time delay function for output that shows in figure 8 the simulation of 

true position and estimated position of sensors. 
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Fig 8:    3D Simulation of True position and Estimated position of Sensors 

We first check the correctness of our scheme. In this simulation, no measuring errors are 

introduced. Base station A is the master base station. We randomly place sensors within the open 

area formed by the acute angle ∠BAC, as shown in Fig. 5. This area is termed feasible area. We 

found that sensors close to the base stations may have two computed locations: one within the 

feasible area, and one outside. This is because Eq. (22) generates two positive roots for dsa. But if 

we throw away the solution that is outside the feasible area, we can always compute the location 

for each sensor correctly (uniquely). Thus in the following simulation, we only consider the 

solutions that are within the open area formed by ∠BAC. This is reasonable, as (77) and (78) we 

determine in equation (77) and (78), the position of unknown sensor S. dsa=  
−𝜷−√𝜷𝟐−𝟒𝜶𝜸

𝟐𝜶
,  dsb = 

−𝜷𝟏− √𝜷
𝟏𝟐−𝟒𝜶𝟏𝜸𝟏

𝟐𝜶𝟏
, dsc = 

−𝜷𝟐− √𝜷
𝟐𝟐−𝟒𝜶𝟐𝜸𝟐

𝟐𝜶𝟐
  are the distance of S from A,B and C respectfully. 
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Fig 9: Determination the position of sensor by Trilateration 

Fig 9 illustrates the determination the position of sensor by Trilateration. In Figure 9 the three 

base station positions are (0,0), (20,0) and (0,20). 

 

 

 

 

 

 

 

 

 

-20 -10 0 10 20 30 40

-15

-10

-5

0

5

10

15

20

25

30

35

 A  B

 C

 S



43 
 

Chapter 7 

Conclusion 

 

In this paper, we presented TPS, a time based positioning scheme for outdoor sensor networks. 

This is a time-based localization scheme that uses only short-range beacons. This scheme is 

superior to existing systems in many aspects such as computation overhead and scalability. As 

our scheme requires no time synchronization in the network and minimal extra hardware in 

sensor construction, thus the scheme is not expensive. The scheme has the strict requirement that 

the base stations should be able to reach all the sensor nodes in the network. To evaluate the 

performance of TPS, we conduct both theoretical analysis and simulations, our scheme is simple 

and effective and practical for location discovery. 
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Chapter 8 

Future Detections 

 

Since the proposed method is designed with detection accuracy as a high 

priority, extension of the method to a large-scale data set requires a significant 

improvement of the computational complexity of the proposed method. Toward 

this end, we could benefit from an efficient searching method . These aspects of 

the work are the subject of ongoing research. 
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