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Abstract 

 
We present a program that implemented to execute Adaptive merge sort algorithm in parallel on 

a GPU based system. Parallel implementation is used to get better performance than serial 

implementation in runtime perspective. Parallel implementation executes independent executable 

operation in parallel using large number of cores in GPU based system. Results from a parallel 

implementation of the algorithm is given and compared with its serial implementation on 

runtime basis. The parallel version is implemented with CUDA platform in a system based on 

NVIDIA GPU (GTX 650). 
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Chapter 1 

Introduction 

 

1.1 Overview 

Parallel computation over the GPU is trending now. Compute and process a huge data set in 

minimal time is always an attraction to a programmer. Reducing time was always one of the 

major entities in performance improvement. In this Paper we work with an existed algorithm 

named Adaptive merge sort and investigate its behavior on GPU parallelism and compare the 

time consumption to get to a decision about GPU’s infrastructure behavior to this algorithm.  

Adaptive merge sort is a brand new approach to sort data where the data are first partitioned 

according to their initial status of either being descending or ascending . Once this partitions of 

ascended and descended nodes have been organized in a very fragmented manner the algorithm 

then advances to merge two of consecutive nodes at a time in sorted order . The process prolongs 

for (height -1) iterations to merge the complete set of data. 

Since the algorithm was designed to work only using the resource of CPU , we have decided to 

implement that same algorithm using the capability of parallel computation of GPU. For such 

implementation the algorithm required us to be able to alter keratin portions of the code without 

changing any outcome. The alterations includes – 

 Checking every nodes after fragmentation whether are they in ascending or descending 

order. If any of the nodes prevails anything otherwise than ascending those must be 

reverted  

 In parallel implementations as it is crucial for a randomly picked data to be traced back to 

its origin a simple frequency distribution has been implied to find the node where the data 

would most probably be residing. it also serves the purpose of comparing between two 

consecutive node 

 Lessening the number of instruction in the merging function  

 

1.2 Scope and limitation 

Scope: 

The parallel use of such algorithm might result in- 
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 Faster calculation of enormous size of data rather than serial implementations, 

 lesser memory consumptions, 

 rendition of previously introduced algorithms which lacks in the fields of requirements to 

be accepted as new standard. 

Limitations: 

 Memory must me calculated beforehand the parallel algorithm takes place in design 

board 

 Memory transfer time can be huge overhead to the total execution time 

 Variable handlers must be declared with precise accuracy to suffice the complete 

execution 

 Data that needs to merged might sometimes require to be declared as multiples of 1024 

 Number of instructions within one executable block should be as much decreased as 

possible compared to the serial implementation due to limiting warpsize 

 

1.3 Objective: 

 To investigate the complete workflow of GPU architecture (Case study 1 & 2)  

 Relating the parallel behavior to our redesigned algorithm (Case study 3) 

 Saving consumptions of time  

 Drawing a standard design so that the oversized data might not result in retaliate in long 

run by adding overhead to the total execution time 

 

1.4 Preface 

In next chapter there are described a concept of GPU architecture and a CUDA introduction 

along with its hardware co-relation. Chapter 3 contains methodology of our work and Chapter 4 

has the case studies and observation we did on matrix add, matrix multiplication and parallel 

application of Adaptive merge sort 
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Chapter 2 

Background Study 

 

Using GPU to compute general computational work is known as GPGPU (General purpose 

GPU). GPU has hundreds of cores that can execute multiple numbers of instructions in parallel 

and it is far greater than modern CPUs with 4 or 8 cores. GPU Processing Capacity limited to 

independent fragments. But these fragments can process in those cores in parallel. So, a 

programmer should choose those parts of a program that can be fragmented and those fragments 

are independent from each other. So, it can be said that, GPU can process a multiple times of a 

same operation on many records in a stream in parallel. A set of records needs similar 

computation is the Stream. We can say that, the parallelism is provided by Streams.  

 

2.1 GPU based system architecture 

The GPU multiprocessors are worked as co-processors for CPU. It more likes an acceleration 

device for CPU. When CPU invokes a kernel to GPU that kernel executes in parallel number of 

times in GPUs cores. So, how many tasks a GPU can complete at a time depends on its number 

of SM and cores per SM. Simple adding more SM can make a device completed more task.  

Total no. of SM and SP per SM depends on different architecture and model of device.   

The GPU architecture can be described using 3 key words [1] 

 Memory(register, shared global) 

 Multiprocessors (SM) 

 Stream processors (SP) or cores 

 

2.1.1 What is Streaming Multiprocessor (SM)?  

Streaming Multiprocessors(SM) are accumulation of multiple independent operators known as 

core/streaming processor.  Upon receiving an execution command from CPU, the GPU SMs are 

awaken and distributed with equalized workload of “responsibilities” which are so referred as 

“kernel”.   
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Having two SMs on the delineated GPU , it is capable of executing both SMs at the same time 

that is where the parallelism kicks in ; meaning each workload of two different SMs ends at the 

same given moment ensued by very same initiating moment . 

As each kernel is primarily composed of BLOCKS and THREADS, SMs are designed to execute 

the BLOCKS. Given (i.e.) out of two executable blocks each BLOCKs were accommodated by 

each SM starts execution at time=0; they are bound to terminate the both operations at the same 

latter time of time=3. 

Though the bigger picture can be convenient enough considering SMs to be responsible for 

parallelism in GPU it would not be possible without the contribution of streaming processors.   

 

2.1.2 What is a Streaming Processor / CUDA core? 

Throughout the course of development of  NVIDIA GPUs capacity enhancement marketing 

policy took a subtle turn of coining a term “core” ,  that has previously been always implied only 

to specify CPU configuration . 

A CUDA core is actually a rendition of streaming processor, which aside from assisting the 

parallelism it actually fuels the core mechanism of the desired process (requirement to execute 

Kernel). Each SMs are allotted with equal number of streaming processors (SPs). The role of SPs 

can sometimes be undermined by exploiting nature of SMs but it is the SPs that and only that 

enables the SMs to be exploited with such a high scale. 

SPs are capable of handling threads only. If a kernel is thrown into SMs, the SMs would 

distribute all the instructions residing in the kernel to all available SPs. As the GPU is designated 

to execute the same kernel depending on the number of iterations that must be executed to 

suffice the requirement demanded by user , SMs would follow the same rule of distribution , 

meaning that same kernel would be distributed as threads recurrently to all available SPs (lesser 

if requirement is set to a lower level)  

Considering the kernel would require the SMs to execute the same operations residing kernel for 

20 times and the SMs are sufficed with 192 SPs, each set of operations (THREADS) would be 

distributed to each available SPs. 

In short it could be expounded as each SP must execute at least one and more threads in parallel. 

Memory will be discussed in detail on next section. 
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2.1.3 System configuration 

Device Specifications: 

Processor: Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz (4 CPUs), 3.2GHz 

Memory: 8192 MB RAM 

Page File:  6004 MB  

GPU:  NVIDIA GeForce GTX 650 

 

Execution environment: 

OS: Windows 10 Pro 64-bit  

Compiler: Visual Studio 2013 integrated with CUDA 7.5 

 

GPU build specification: 

Device: "GeForce GTX 650 

Architecture: Kepler 

Type: GK 107 

 

GPU Clock rate: 1124 Mhz  

(SMX)Streaming Multiprocessor: 2  

(Core)Streaming Processor / (Core) Streaming processor per Multiprocessor: 384 / 192 

L2 Cache Size: 262144 bytes 

Total amount of shared memory per block: 49152 bytes 

Maximum number of threads per multiprocessor: 1024 

Maximum number of threads per block: 1024 

Maximum allocable number of block per multiprocessor: 16 

Total number of registers available per block: 65536 

Warp size: 32 

 

Total amount of global memory: 1024 MB 

Memory Clock rate/Memory Clock rate per SMX: 2500 Mhz/1250 Mhz 

Memory Bus Width: 128-bit 

Total amount of constant memory: 65536 bytes 

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) 

Max dimension size of a thread block (x,y,z): (1024, 1024, 64) 

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) 

Maximum memory pitch: 2147483647 bytes 

 

CUDA Capability Major/Minor version number: 3.0 

Concurrent copy and kernel execution: Yes with 1 copy engine(s) 

 

In our device specification we can see that, it is designed by Kepler architecture and uses GK107 

chip. The Device has clock rate of 1124 MHz. No. of multiprocessors (SM) in device is 2 with 

192 cores in each. Warp size of the device is 32. 

tel:%282147483647
tel:2147483647
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2.1.4 Memory Hierarchy 

We already know about multiprocessors in GPU. Under every multiprocessor there is large 

number of 32-bit register available. More than 8k registers space for devices with Compute 

capability 1.0 and 1.1. Compute Capability 1.2 to 1.3 has 16k registers space and 32k and 64k in 

Compute capability 2.0 or more [2].  

Registers: Register memory it the fastest memory among all. Each thread will be assigned one 

set of register memory and it uses them for fast store and fetching of data which are used by a 

thread frequently. 

Shared memory: Comparatively slower than registers but sharable between threads in a block. 

Because it in on chip, it has a higher bandwidth than global or local memory. It can be compare 

as a L1 cache in regular CPU. It shares a 64k memory segment per SM.  

Global memory: Global memory resides on the device but off chip from the multiprocessors. 

Because of that access to global memory is much more costly than accessing shared memory. All 

threads from any SMs have access to global memory.  

Local memory: Local memory is the private memory of threads. Local memory also is off chip 

and resides on the device. Local memory is specific for different thread. These memories are 

allocated for thread when kernel thinks there aren’t enough registers to hold thread’s all data. It 

is slow as global memory though called as ‘local’ 

Constant memory: 64k constant memory off-chip from multiprocessors and is read only. The 

Host code writes on constant memory before kernel launch. Then kernel may read these 

memories. Constant memory access is cached. Each multiprocessor cached an amount of 

constant memory, so that repeated reading from constant memory can be fast. 

 

2.2 CUDA programming model  

 

2.2.1 Overview 

Using GPUs massive parallelism to for supercomputing application is increasingly accepted by 

programmers to fast up the calculation. [9] NVIDIA provide one of such platform named CUDA 

(Compute Unified Device Architecture). CUDA programming model will be described in this 

chapter using a vector add application. Knowledge of C programming is only requirement for 

understand this chapter. 
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In this chapter CUDA programming model, Basic function of CUDA and interaction between 

CPU vs GPU will be discuss.  This section introduces the main concepts behind the CUDA 

programming model by outlining how they are exposed in C. 

 

2.2.2 Block, Thread and Grid 

 

‘Thread is the fundamental building block of a parallel program’[1]. CUDA threads have their 

own program counter and registers. “Global memory”- a memory address space access by all 

threads and “shared memory” accessed by all threads within a block. Shared memory is more 

limited size. All threads in a block share the instruction stream and execute instruction in 

parallel. The number of threads running in parallel varies on device model. Based on our device 

maximum thread each SM is 1024. 

Threads Running under CUDA must be grouped in a block [3]. The Shared memory can be 

accessed by the threads of the same block. That means for every block CUDA assign different 

shared memory space. Under every block each thread has a unique ID starts from 0. Blocks are 

assigned to SMs to execute. Threads can be positioned by one, two or three dimensional. 

blockDim.x returns the Thread numbers in the specific block in X axis and so does blockDim.y 

for Y axis and blockDim.z for Z axis. Limitation of Block in a single SM is 16 in our device. 

 
Figure 1 Block and threads 

GRID is group of block. By grid we mean total block space that kernel function use to execute. 

Blocks in grid can also be form in a three dimensional matrix. gridDim.x, blockDim.y, 

blockDim.z are three built in variable to define how many blocks there will be in a grid. Let’s 

consider a two dimensional grid, which has block of two dimensional thread.  
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Figure 2 Grid, Blocks and threads (two dimensional) [3] 

 

2.2.3 Kernels 

 

CUDA C allows programmers to define C functions, called Kernel. When a Kernel function is 

called it execute number of time equal to number of threads specified by programmers.  

Kernel function is defined by using __global__ declaration identifier and the number of thread 

specified by “<<<…>>>”execution configuration syntax. [1]  

Programmers have to specify 3 things to work a kernel function: 

1. The dimension of grid (That means how many blocks on each dimension will be used) 

2. The dimension of block (This means how many threads on each dimension inside a 

block ) 

3. The kernel function 

The grid dimension and block dimension have to write between the <<< and >>> syntax 

separated by a ‘,’ Comma. That defines total threads number will be equal to the multiplication 

of grid dimension and block dimension (which means the kernel function will execute number of 

threads times in parallel) 

A few things may help during write a kernel function: 

1. The computation inside kernel must be Independent 

2. Kernel function work with device memory 
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3. Every variable declared inside a kernel are completely different depending on threadID. 

Example: If thread 0 insert a value in variable X declared inside the kernel function, in 

thread 1 value of X doesn’t carry the value of X in thread 0. 

4. To share value between two threads in same block have to use shared memory. 

 
Figure 3 Example of a Sample CUDA C program of vector add [3] 

 

2.2.4 Heterogeneous Programming 

The CUDA programming model assumes that, the device where the threads execute exists as a 

coprocessor to the host running the C program. The CUDA kernel executes on the device and the 

rest of the C code are running on CPU [3]. 

The CUDA programming model maintains two separate memory space in Dram, One is Host 

memory and the other is Device memory by the Host and device, respectively. ‘Therefore, a 

program manages the global, constant, and texture memory spaces visible to kernels through 

calls to the CUDA runtime (described in Programming Interface). This includes device memory 

allocation and deallocation as well as data transfer between host and device memory.’[1]. See 

figure 4. 
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Figure 4 Heterogeneous Programming [3] 

 

2.2.5 Some CUDA syntax and qualifier 

To understand completely the next chapters we need to discuss some built in CUDA function 

and their use. To understand or write a simple CUDA program the code can be divided into two 

parts:  

1. Host Code 

2. Device code 

Host codes are execute serially on CPU and the device functions that means kernels are execute 

on GPU.  
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 __global__[3]: It is a qualifier that declares a function as being a kernel. It gives a 

function such characteristics: 

o Functions that execute on device 

o Can be called from Host function 

o Can be called form device function in device with compute capabilities 3.0 or 

more  

The function must have a void return type. A call to a __global__ is asynchronous, that 

means it returns before the device has completed its execution. 

 

Figure 5 Kernel definition [3] 

 Dim3: This type is an integer vector type based on uint3 that is used to specify 

dimensions.[3] When defining a variable of type dim3, any component left unspecified is 

initialized to 1. There are two Dim3 type built in variable in CUDA: gridDim and 

blockDim. 

o gridDim: This variable contains the value of all three dimension of a Grid.   

Dim3 gridDim(5,5) – means the block are formed a 2 dimensional matrix with 

both length and height 5. Total number of block 10. Inside the braces first value is 

length and second one is for width. If one of these values are absent the that axis 

set to 0  by default. 

 

Figure 6 gridDim (5, 5) 
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o blockDim: This variable contains the value of all three dimension of a Block.   

Dim3 blockDim(2,2) – means the threads are formed a 2 dimensional matrix with 

both length and height 2 inside the block. Total number of threads 4. 

 

Figure 7 blockDim (2, 2) 

 

 

 cudamalloc(): cudamalloc() has been used for typically allocate linear memory. It is used 

for allocating array for device memory. It is written as follows 

 cudafree(): Use to free the memory allocated by cudamalloc(). Call as:

 cudamemcpy(): Copy the data from Device memory to Host memory or Host memory to 

Device memory.  

 

 

 

 

 



xxiv 
 

2.3 Related works 

The Computational power of GPU is being discovered by the researcher in Time. Many research 

and new type of application are designed in GPGPU by programmers. Many complicated 

computational problem has been solved using GPU’s computational capability and gain better 

time performance using GPU’s parallelism.  

Some outstanding woks on GPGPU are given below: 

 Sanyam Mehta , Arindam Misra , Ayush Singhal , Praveen Kumar , Ankush Mittal & 

Kannappan Palaniappan worked on Parallel implementation of video surveillance 

algorithms on GPU architecture in CUDA. They implemented Gaussian Mixture 

Model (GMM), Morphological Image operations and Connected Component Labeling 

(CCL) In CUDA and solve the dependency problem in CCL algorithm [4]. 

 Yao Zhanga , John Ludd Reckerb , Robert Ulichneyc , Giordano B. Berettab , Ingeborg 

Tastlb , I-Jong Linb , John D. Owens worked on A Parallel Error Diffusion 

Implementation on a GPU and gain 10 – 30 x speedup over a two-threaded CPU error 

diffusion implementation with comparable image quality[5] 

 HETEROGENEOUS HIGHLY PARALLEL IMPLEMENTATION OF MATRIX 

EXPONENTIATION USING GPU presented by Chittampally Vasanth Raja, Srinivas 

Balasubramanian, Prakash S Raghavendra. The research  is on highly parallel 

implementation of Matrix Exponentiation and It employs many general GPU 

optimizations and architectural specific optimizations with 1000X speedup and 44 fold 

speedup with the naive GPU Kernel.[6] 

 Brij Mohan Singh, Rahul Sharma, Ankush Mittal, Debashish Ghosh observe the accuracy 

and performance characteristics of GPUs on well-known global binarization Otsu’s approach 

for Optical Character Recognition systems and implemented the algorithm in CUDA to 

make binarization faster for recognition of a large number of document images on 

GPU.[7] 

GPU computing makes parallelization more powerful and makes complex computation possible. 

For the advantage of GPU computing it is being developed in a large number. We, can say that 

GPU computing open the doors of supercomputing by remove the limitation of parallel 

computing using CPU. 

 

2.4 Some merging technique: 

In this section we will talk about merge sort algorithm invented by John Von Neumann in 

1945 and its’s one modified version Adaptive merge sort[8] proposed by Nenwani Kamlesh, 

Vanita Mane, Smita Bharne The algorithm we implemented in our work. 
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2.4.1 Merge sort [8] 

Let’s consider the sorting is working on data set of size N. Merge sort woks as follows: 

 Divide data set into sub list until get sub list of size 1 

 Get N number of sub list 

 Merge two nodes into new node; new node number will be exact. Repeat this step Log 

(N) times 

 

2.4.2 Adaptive merge sort [8] 

With data set of size N the steps are: 

 Start by finding the sub-lists which are already sorted in required or reverse order 

 

      
 

            

Figure 8 Adaptive merge sort step 1 

    

 If there is any sub-list with elements in reverse order, then reverse the sub-list by 

exchanging 1st element with last, 2nd element with 2nd last and so on. 

 

     

Figure 9 Adaptive merge sort step 2 

 

 Keep on merging sub-lists to produce new sub-lists until there is only 1 sub-list 

remaining. 

       
          Figure 10 Adaptive merge sort Final step 
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Our parallel implemented application works on 3 steps 

 Divide in sub list (node) which is already in required or reverse order. Then count the 

node and keep it in p 

 All nodes that are sorted in reverse order will reverse. This operation  will execute 

parallel 

 Merging nodes number of times equal to Log (p).  

 

Complexity of time and space [8] 

 Required order Random order Reversed order 

 Merge 

sort 

Adaptive 

merge 

sort 

Our 

implementation 

Merge 

sort 

Adaptive 

merge 

sort 

Our 

implementation 

Merge 

sort 

Adaptive 

merge 

sort 

Our 

implementation 

No. of 

merging 

step 

 

Log 

(n) 

 

1 

 

1 

 

Log 

(n) 

 

Log (n) 

 

Log (p) 

 

Log 

(n) 

 

1 

 

1 

Space 

complexity 

 

 

n 

 

 

2n 

 

 

3n 

 

 

N 

 

 

2n 

 

 

4n 

 

 

n 

 

 

2n 

 

 

3n 

Time 

complexity 

 

n 

log(n) 

 

n 

 

n 

 

n 

log(n) 

 

 

n log(n) 

 

 

n log(p) 

 

n 

log(n) 

 

n 

 

n 

   

Table 1 Time and space complexity comparison 
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Chapter 3 

Methodology 

 

To implement an application in parallel, have to understand the problem at first. Have to 

fragment the problem in independent section. Then searching those sections, if whether some of 

them have independent iteration in them or not so we can make those section execute in parallel. 

 

3.1 common parallel patterns [1] 

There Number of problem that we can call as parallel patterns. These patterns can be found in 

much application. We will discuss those in this chapter so that, it’ll be easier to find those 

fragmented section that can be executed as parallel. 

 

3.1.1 Loop-based patterns 

We all are familiar with loops. There are different kinds of loop all with an initial and 

terminating condition which the get even before the loop had been started. In serial 

implementation loop with dependencies doesn’t create any problem. Cause in serial 

implementation, only one iteration has performed at a time. But in parallel implementation if we 

The increment of loop can be relate with thread index and If the data dependencies can be handle 

than we can implement a kernel function instead of for loop. So, if we get a loop in our program 

we will know that could be implemented in parallel. 

 

3.1.2 Fork – join pattern 

Fork - join pattern is a huge common pattern found in serial implementation where, there will be 

a synchronization point and when the program comes at that point where the work can be 

distributed in multiple processors. The main process than “fork” or spawn in similar processes 

and execute in parallel. After the processes completion they join again with their processed result 

and complete the rest of part in serial 
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3.1.3 Divide and conquer 

Divide and conquer is one of the most common strategy to programmers to divide a big problem 

and conquer those division individually. Divide and conquer are mainly used in recursive 

application. Merge sort is a better example for divide and conquer pattern. At first it recursively 

divide the data set into small units the sort them while merged. 

 

3.2 Solving a problem –Our merge 

We already know that in Adaptive merge we divide the data set into small node based on their 

order. It is an iterative process and every iteration depends on previous iteration. That’s why we 

do the portioning part in serial.  

In 2nd step of Adaptive merge we reverse those nodes that are in reverse order. It is also a 

iterative process. In every iteration only one node will be reversed. This iterations and 

independent so, we do the reversing in parallel by writing a kernel. Where thread 0 will check 

node 0‘s order, thread 1 checks whether node 1 are in ascending or descending.  

We do the merging in parallel for the same reason we told just now.  In every step of iterations 

only one value finds its new position in the merged array and updates the node information. 

Every data do the same thing and they don’t have any data dependency  

 

In next chapter we will discuss 3 CPU bound program and their parallel implementation in 

CUDA. The memory passing operation from host to device memory or device to host memory is 

very time consuming. That means a CUDA application is a I/O bound program. So, it’s not a 

wise decision to implement an I/O bound application implementation in CUDA. 
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Chapter 4 

The Case studies 

 

Before getting into much of details or exposure we have decided to experiment with primitive concepts of 

CUDA which includes – 

 Threads and blocks manipulations 

 Consumption of time  

 Relative time comparisons between both CPU and GPU  

 

4.1 Case Study 1  

We came up with a very basic program to be executed on our GPU system which includes addition of two 

variables and then returning the final results to CPU.  

Objective of the experiment: 

 Understanding the basic requirements of CUDA  

 Optimizations of those requirements  

 

4.1.1 Implementation of SMs and SPs: 

4.1.1.1 Understanding THREADS and BLOCKS: 

These being the heart of CUDA parallel programming with a predefined minimalistic approach 

encourage the programmers to design the kernel with inclusive of all elements required for 

parallelism.  

A sample CUDA code 

#define gridsize 5 

#define blocksize 1024 

__global__ void adder(int *d_a,int *d_b,int *d_c) 

{ 

 int a = blockDim.x * blockIdx.x + threadIdx.x; 

 d_c[a] = d_a[a] + d_b[a]; 

} 

int main() 

{ 



xxx 
 

…………………… 

adder << <gridsize, blocksize >> >(d_a, d_b, d_c);  

…………………….. 

} 
The function labeled with __global__ type is function that our serial code can invoke for the 

GPU to execute. The instructions written inside the function are exactly the instructions each 

thread would execute. As the blocksize stands for the number of threads allocated in each block, 

the GPU will enumerate and create 5 blocks each accommodating 1024 threads in a logical 

partition of GPU. 

Once the enumeration is done blocks would be thrown to SMs to execute. Now there are some 

restriction imposed on the device we were working on due to resource constrains. As each 

threads are first being allocated in a block and the blocks are then superimposed on the SMs, by 

predefinition the users are bound to declare the size of block equal or lesser than the number of 

threads the SPs confined in a single SM are capable to accommodate. 

 

The maximum number of threads each 192 SPs within a SM can manage for our device has been 

confined within 1024 which means if the user tends to declare blocksize more than 1024 (i.e. 

1025 , 1250 , 2048) the kernel will not simply be executed . If the user declares blocksize  below 

1024 or equal which the example preferred to be referenced with the GPU will let the program to 

run utilizing the defined numbers of threads within each block. 

 

What backend execution would take place can be described as each SMs will accommodate 5 

(from example) in a row within 5 SMs sitting in a row (if available. GTX 650 only has 2. More 

explanations forthcoming). And accommodation of block is then followed by each blocks 

designating its 1024 threads to 192 SPs which resembles the capacity of operating on 1024 

threads at time (GTX 650 cannot operate on more than 1024 threads within each SPs) 

Bottom line: multiple threads creates a block, multiple threads creates a grid which determines 

the size of the total number of parallel calculations to be done. 

 

4.1.1.2 Equivalency and Relevance: 
 

Referring from the previous explanations there must arise some question of- 

 

 “what if the threads in a block (blocksize)  being defined tends to be smaller than the 

available accommodating space within your SMs” , 

 “ Would the rest of the core/SPs be sitting idle” , 

 “How GPU would overcome the burden of calculating blocks within a grid when the 

blocks in a grid (gridsize) tends to be defined more than the number of available SMs” 
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4.1.1.3 Explanations: 

 
How gridsize and blocksize is determined: 

 

From the example the user intended to calculate executing   5120 adding instructions in parallel. 

As each SM has capability of adding 1024 instructions (instructions per threads) within it 

gridsize X blocksize would be the determining factor for the iterations it requires to meet the 

requirement. 

gridsize = 5 , blocksize = 1024 creates a space of 5120 threads to be calculated at first . 

 

 “Should they really be executed on a single stride?”    

 

The answer to that is NO. It is impossible unless our GPU allocating 5120 threads to be executed 

in a single fly as GTX has the privilege of executing 2048 threads at a time. (Each SM handles 

1024 threads, 2 SMs available, 1024 X 2 = 2048 threads) 

 

The GPU will throw any two of the five blocks to the 2 available SMs in the device and they will 

be calculated with both maintaining precisely the same initiating and ending time for those 2 

executing blocks , which explains the parallelism of GPU . Once these two blocks are done with 

the calculation /execution a set of another two blocks are then thrown into the SMs in a serial 

manner .When these last two blocks are executed in parallel the remaining block (single block) is 

thrown to any of the SMs to be calculated. 

 

If each of the sets takes 3.200 micro seconds to be executed (two blocks are executing at the 

same time) 

The total execution time should be somewhere around 9.6 micro seconds. It can be decremented 

by decreasing the numbers of data are being written to the registers in serial. 

 

 “what if the threads in a block (blocksize)  being defined tends to be smaller than the 

available accommodating space within your SMs” , 

 “ Would the rest of the core/SPs be sitting idle” , 

 “How GPU would overcome the burden of calculating blocks within a grid when the 

blocks in a grid (gridsize) tends to be defined more than the number of available SMs” 

 

 

 

For example if the user defines the blocksize  to be 512 / 256 / 128 / 64 threads per each block 

should the SMs would only allocate a block of 512 / 256 / 128 / 64 threads [cite] to a single SM . 

NO.  

[cite: gridsize must be 10, 20, 40 and 80 to calculate same number of 5120 data] 

 

Steps of handling that situation: 
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1. Each SM would first allocate two 512 /256 / 128 / 64 sized blocks in them. 

2. The SMs would then calculate how many threads are available within them to be 

available which must allocate at least one complete block 

3. For each situations these SMs would be able to supply with 2 (1024/512), 4 (1024 / 256) , 

8 (1024/128) and 16 (1024/64) more spaces consecutively to be allocated . 

4. Given that the SMs are each supplied with one block already for those previously 

situations each SMs will then again be supplied with 1 , 3 , 7 and 15 blocks of predefined 

sizes. 

5. Now consider previous 4 steps being done in parallel rather than the serial nature it has 

been explained by. 

6. Which means for those required blocksize the SMs are filled with 4 , 8 ,16 , 32 (2 , 4 , 8 

,16 each SM) blocks per iteration and following the already explained serial scheduling 

of blocks after the running iteration  

7. Meaning the GPU would iterate 3 times for each of the given situations and consume 9.6 

microseconds just like the situation with (5 X 1024 ) data 

 

 

4.1.1.4 Time Complexity and Maximum blocks per SM: 
  

Nvidia has already limited 16 Blocks per SM for GTX 650.  If the user defines blocksize as 32 

threads per blocks the GPU should be able to inject 32 blocks per SM. Due to the shared memory 

constrain the SMs would not be able to accommodate more than 16 blocks. 

 

For calculation 5120 data defined with blocsksize 32 and gridsize 160 the GPU would push 32 

blocks in SMs (16 blocks per SM) accommodating 1024 threads in total (512 threads each SM) 

which indicates 1024 threads (512 threads) are being sit idle. Which implicates for the same size 

of data that we have previously worked on if the blocksize is somehow mismatched the program 

would execute with more iterations (11 for given example) consuming more times (35.2 

microseconds) 
 

Best Fit and Worst Fit : 

Best Fit:  

From our design perspective we have considered granting a set of data to be fit in the best case scenario if 

and only if the data fits within the block occupying exactly the same number of threads . If 1024 data is 

declared to be worked upon and perfectly fits within a blocksize of 1024 then this should considered as a 

Best Fit scenario.  

Worst Fit: 

From the exampled scenario if the data now takes an increment  of only one data making it 1025 ,to 

calculate the data the GPU would require to be iterated for a second Kernel launch which would consume 

as much time as a complete Kernel iteration . 
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Our approximations: 

Each kernel execution takes exactly the same amount of time due to thread and block level 

parallelism rather depending on the number of data to be executed on  

 

4.1.2 Experiments and results: 

Experiment 1: relevance and connection between blocksize and time consumption  

So we have decided to increase the blocksize per sample whether the gridsize would be unchanged.  

 

Gridsize: 1  

Blocksize: 32 to 1024 

 

Figure 11 Time graph for Gridsize: 1  & Blocksize: 32 to 1024 

  

 

Analysis:  

A single block took almost the same amount of time regardless the number of data or threads in flight that 

had been taken in consideration. The initial downtrend of the graph might play a little role of counterproof 

but in average the time taken to execute each of the blocks keeps a relatively static flow. 

 

 

Experiment 2: relevance and connection between gridsize and time consumption using the Best Fit 

and Worst Fit model 

Data: 4096 data 
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Gridsize: 4 to 128  

Blocksize: 1024 to 32 

 

 

Figure 12 Time Graph for best fit  

 

Analysis:  

Regardless of the number of threads and data time remains constant as long as the Kernel executes for the 

same amount of time (first 4 bar) . 5th and the 6th falls in the categories of over consumed block (more 

than 16 blocks) that had already been explained in the previous sections. 
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Figure 13 Time Graph for worst fit 

     

 

Analysis:  

To compute single more data the GPU had to iterate its Kernel for one more time adding more time as 

execution overhead.  
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Figure 14  Combined Time Graph for best and worst fit 

Findings:  

Blocksize and Gridsize must be manipulated with precautions and expectations of them being self-

manipulating for the given problem otherwise it can tear down the primary purpose of integration of GPU 

parallelism. 
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4.2 Case Study 2:  Matrix Multiplication    

Knowing CUDA A Little More 

 

To understand CUDA a little more and compare the runtime performance we will discuss in this 

chapter a sample case, Matrix Multiplication. We will discuss its algorithm, serial 

implementation, parallel implementation and runtime comparison. We assume that the reader are 

familiar with matrix. 

4.2.1 Matrix Multiplication 

To multiply two matrices the condition that must be followed is: ‘The column of 1st matrix must 

be equal with the row of 2nd matrix’. The dimension of the result matrix will be (column of the 

1st matrix × row of the 2nd matrix). That means, if we take two matrix A[2][3] & B[3][4] and 

multiply then the result matrix will be C[2][4].  

 

Figure 15 Matrix multiplication 

     

The equation to calculate the value of each position of C is: 

C0,0 = A0,0 × B0,0 + A0,1 × B1,0 + A0,2 × B2,0  or, 

C1,2 = A1,0 × B0,2 + A1,1 × B1,2 + A1,2 × B2,2 

 

 

4.2.2 Serial implementation 

In serial application the program determines every value in result array one at a time. We can 

describe the procedure as follows:  
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for i = 0 to < row of 1st matrix  

begin 

  for j = 0 to < column of 2nd matrix  

  begin 

    for k = 0 to < row of 2nd matrix  

    begin 

       sum = sum + matrix1[i][k]*matrix2[k][j]; 

        end 

  

        result_matrix[i][j] = sum; 

        sum = 0; 

      end 

    end 

 

This part calculates the value of each position of the result matrix.  As we can see to calculate the 

result matrix it needs 24 times to calculate the value of sum according to the example given 

above.  

 

It maybe seems very little number to a beginner level programmer and also took a tiny period of 

time to execute on the modern processor, but when we multiply matrices with hundreds of rows 

and columns then the time cost will be visible to us. Time consumption of matrix multiplication 

is mention in next section. 

We present some data of time to calculate to multiply two matrices. To avoid complexity we are 

using square matrices (matrix with same height and width) 

Size of matrices Time (sec) 

200 (A[200][200] & 

B[200][200]) 

0.037 

300 0.152 

400 0.408 

500 0.871 

600 1.555 

700 2.688 

800 5.469 

900 9.871 

1000 13.658 

Table 2 Average calculation time of matrix multiplication 
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Figure 16 Calculation time (sec) vs matrix size 

      

So, we can see a drastic change of time in such a small increment of array size. That’s where the 

concept of parallel execution comes.  

4.2.3 Parallel implementation 

Before understand the parallel application let’s recall the concept of two dimensional thread and 

block at first. We already know that every thread has an ID known as threadIDx start from 0 at 

every new block. To know position of a thread from the beginning of first block we can use the 

following equation: 

Position_of_thread = blockIDx × blockDim + threadIDx 

Here,  

 blockIDx is the block ID which contain that active thread 

 blockDim is the number of thread in a block 

 threadIDx is ID of that active thread 

So the idea is, value of every position of result matrix will be calculated in one different thread. 

That means, value of C0,0 will be calculated on threadIDx(0,0) and C1,2 on thradIDx(1,2), 
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Whether they belong on the same block or different. Which is completely depends on the value 

of blockDim defined by programmer. 

So, the Kernel function will be like:  

__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)  

{ 

// Each thread computes one element of C 

// by accumulating results into Cvalue 

float Cvalue = 0.0; 

int row = blockIdx.y * blockDim.y + threadIdx.y; 

int col = blockIdx.x * blockDim.x + threadIdx.x; 

if(row > A.height || col > B.width) return; 

for (int e = 0; e < A.width; ++e) 

Cvalue += A[row][col+e] * B[row+e] [ col]; 

C.elements[row][col] = Cvalue; 

} 

 

After compiling matrix multiplication program in CUDA based on different Block Size (number 

of thread in a block) the outputs are (all measurement of time are in µs) 
 

  Matrix 

Size                 block 32               block 16 

                      block 

8 

                          block 

4 

200 3080.054 2746.244 3742.556 12178.075 

400 45405.638 42524.052 67428.965 232724.521 

600 75183.699 84427.212 105658.493 362601.307 

800 157396.11 160046.887 249656.568 858890.919 

1000 327179.877 318410.165 486874.411 1677327.788     

Table 3 Matrix multiplication – kernel execution time 
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Figure 17  kernel execution time (µs) vs. matrix size based on various Block Sizes 

 

Analysis: 

As we can see, we are getting noticeable decrement of time on same size matrix calculation 

between serial and parallel implementation. A question can be arise here, why in 200 size square 

matrix multiplications there are no difference between 32 and 4 Block size but have huge 

difference on 1000 size square matrix multiplication? This answer would be found in section X. 

 

Findings:  

Matrix multiplication is a specific type of application where the charisma of CUDA really shines. To 

avoid multi-faceted iterations that might prove to be a huge deal of time consumption, it is a good idea to 

implement GPU parallelism rather than relying upon CPU’s serial implementations.  We have considered 

not including memory transfer time not to be included as it does not serve the purpose of our pursuit and 
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left it out of the complete equation. But if the user intends to compute the time inclusive of memory 

transfer time use of __shared__ memory can be good example for such problem. 

 

 

4.3 Case Study 3:  Adaptive Merge sort algorithm in GPU 

Serial and parallel implementation 

 

4.3.1 Overview 

The algorithm we work with is the modified version of adaptive merge sort. Any raw data set 

contains some natural order or sequence among them. Even in the most disordered situation at 

least two elements have an ordered sequence, may be increasing or decreasing. At first we are 

going to find those natural ordered sequence and mark them using flag based on ascending or 

descending means divide them into smaller sub list or node. After that every consecutive pair of 

one merge and create a new node in sorted order. 

4.3.2. Index based sorting in serial 

Key word that had been used:  

 high_node 

 low_node 

 total merge 

Every time merge operation occurs, it happens between two consecutive pair of node, like node0 

with node1 or node4 with node5. Here, for this example low_nodes are 0 and 4 and high_nodes 

are 1 and 5.  

A one-time merge is happened between two consecutive node from 0 to N nodes is termed here 

as total merge. And this total merge will be occurs (log2 (Number of nodes)) times, which is as 

height.  
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4.3.2.1 Program Flowchart 

 
Figure 18 Flow chart of serial implementation 

The Flow chart is described in the next  

Conversion of each 
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Merge 



xliv 
 

4.3.2.2 Description of flow chart 

 

Read arbitrary from File: 

At first it read the unsorted data set and store it in a array. This array will be processed and hold 

the final sorted array. To understand the total process let’s consider a data set with 20 values in 

it. Data set is 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

num[index] 20 45 8 8 4 4 32 51 76 7 3 7 91 64 89 0 31 19 15 0 

Table 4 array example of our implementation in serial of adaptive merge sort 

  

Partitioning the data into node 

The partition function divide the array into small nodes according to ascending or descending 

order and find out the start and ending index of every node along with assign a 0 for ascending or 

1 for descending. This function returns the total no. of node and use array “num[]” as parameter. 

We use three array name “start_ind[node], end_ind[node], as_ds[node]” to store the starting 

index, ending index and flag respectively. 

After processing we will get nodes like following:  

 

start_ind[0] = 0 start_ind[1] = 2 start_ind[2] = 6 start_ind[3] = 9 

end_ind[0] = 1  end_ind[1] = 5  end_ind[2] = 8  end_ind[3] = 10 

as_ds[0] = 0  as_ds[1] = 1  as_ds[2] = 0  as_ds[3] = 1 

start_ind[4] = 11 start_ind[5] = 13 start_ind[6] = 15 start_ind[7] = 17 

end_ind[4] = 12 end_ind[5] = 14 end_ind[6] = 16 end_ind[7] = 19 

as_ds[4] = 0  as_ds[5] = 0  as_ds[6] = 0  as_ds[7] = 1 

index_value = 8  [# of node is 8] 

 

Determining number of independent node 

Number of total node counted here. 

index_value = 8  [# of node is 8] 

Conversion of each descending nodes to ascending 
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Those nodes that have as_ds value ‘1’ are identifying as descending ordered. In this part all 

nodes with descending order convert into ascending order and change their ascending value into 

0 along with their starting or ending index unchanged. 

For node [1]:  

  start_ind[1] = 2 

  end_ind[1] = 5  

  as_ds[1] = 0 

 

So, the new array will be 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

num[index] 20 45 4 4 8 8 32 51 76 3 7 7 91 64 89 0 31 0 15 19 

Table 5 array example of our implementation in serial of adaptive merge sort  

 

Calculating height 

The function calculates the height of the binary tree than could be made by nodes. 

Height = 3 

Enumerating the sizes of the nodes and frequency of recurrence 

The function also will calculate the different sizes of nodes and the frequency of their appearance 

and to store that information it use two array name size and freq respectively. 

 

Index 0 1 2 

size[index] 2 4 3 

Table 6 array of size 

              

Index 0 1 2 

freq[index] 5 1 2 

Table 7 array of frequency 

  

Merging 

In merging section only one data of the data set is processed per iteration. The function ‘merge’ 

we define works in 3 steps 
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a. Find out probable node: When we work with one of the data in data set it finds 

the node no. which contains that data. If the node index is even then that node is 

low_node. So, high_node will be (low_node + 1). Values of size and freq will use 

to calculate approximate average size of nodes and use it to find out the node 

index in which the processing data is on. 

 

b. Position searching: merging are occurs between a low and high node. If the node 

that contains the value is low then it will check with all data in high node until it 

finds bigger value than itself and fetch the index of that data. Than it calculate the 

new position of that data in merged node using this equation: 

 

New position = start_ind[low] + (fetched index - start_ind[high]) + (index of itself in main 

dataset - start_ind[low]); 

 

c. Update new values: After sorting it will update the “start_ind[]”, “end_ind[]” 

with start index and end index of new merged node. Every merge node will have 

starting index equal to starting index of low node and ending index equal to 

ending index of high node. New merged node will be indexed as the ½ of index of 

low node. 

 

After that, section 5.2.1.4, 5.2.1.6 and 5.2.1.7 repeats for (height -1) times.   

 

Figure 19 merging 8 nodes represented by binary tree 
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4.3.3 Merging Procedure  

Merge (current index) 

Begin 

 Value position percentage = (current index * 100) / size of data; 

 Approx. node numbers = size of data / average node size; 

 Probable node = (approx. node numbers*value position percentage) / 100; 

 While (1) 

 Begin 

  If current index is between start and end index of probable node 

  Then Break 

 

  Else if for any other situation  

Then decrease or increase value of probable node until current index become in 

between start and end index of probable node, then Break 

 End  

 

If probable node is even and total nodes number is even and probable nodes isn’t the last 

node 

Then check, how many data in next node are less than or equal the data in current index 

and add this number with its own position in probable node then insert the data in that 

position. Create a new node with starting index equal to starting index of probable node 

and ending index equal to ending index of next node. New node will be indexed as the ½ 

of index of probable node. 

 

If probable node is even and total nodes number is odd and probable nodes is the last 

node 
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Then, create a new node with starting index equal to starting index of probable node and 

ending index equal to ending index of same node. New node will be indexed as the ½ of 

index of probable node. 

 

Else 

Then check, how many data in previous node are less than the data in current index and 

add this number with its own position in probable node then insert the data in that 

position. Create a new node with starting index equal to starting index of probable node 

and ending index equal to ending index of next node. New node will be indexed as the ½ 

of index of probable node. 

End  

 

 

4.3.4 Parallel implementation 

In parallel implementation is very similar with the serial one. Two procedures from serial 

implementation are executing in parallel on parallel implementation. Those processes are 

 Conversion of each descending nodes to ascending 

In serial application we have to convert every node which is in descending order one per 

iteration. Which can be equal to (size of data/2) in worst case scenario. But if we check 

all nodes in different threads and run in parallel we can check and convert multiple 

numbers of nodes in a single time period, 4096 nodes to be exact on the program we have 

written. 

 Merging 

We transform this part into kernel function as for the same reason we’ve done the 

previous one. Merge function must be invoke times equal to data size according to our 

design.  

Now we will observe parallel implementation using an example. Let’s consider a data set 

 

Figure 20 Sample Data set of parallel implementation of adaptive merge sort 

Green and red markings indicate start and ending index. 
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4.3.4.1 Step by Step workflow 

After completing the partitioning 

This partitioning is exactly same as portioning on serial implementation 

 

Figure 21   Overall status of all arrays after partition 

 

Convert all descending nodes to ascending 

This kernel will execute in GPU and will work with 5 threads only thread with ID 2, 3, 4 will 

execute the function. 

__global__ void merge_myway_ascend(int *d_num, int *d_start_ind, int *d_end_ind, int 

*d_as_ds, int *swapper) 

 

And invoking kernel function in main 

merge_myway_ascend << <1, nonodes >> >(d_num, d_start_ind, d_end_ind, d_as_ds, swapper); 
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And the outputs are 

 
Figure 22 Nodes after conversion 

   

 

Height = 3 

 

Parameter needs to invoke the merge kernel 

The following values need to pass as parameters to invoke a kernel 

Size of data = 20 

Aproxnode size = ∑(size[i]*freq[i]) / ∑ freq[i] = 4 

 

 

Invoke merge kernel 

On thread 0:  

Data [0] = 17, probable node = 0 & 0 is a low_node 1 is high_node 

17 will check in Node 1 that, at which index the data is bigger than 17, which is 1 

New position of 18 is  

New position = start_ind[low] + (fetched index - start_ind[high]) + (index of itself in main 

dataset - start_ind[low]); 

New position = 0 + (6 - 4) + (0 - 0) = 2 

The new merged node will be indexed as ½ of low which is 0 

Start index of new node 0 will be start_ind[low] = 0 

Ending index of new node will be end _ind[high] = 6 

Let’s observe thread 6:  

Data [6] = 18, probable node = 1 & 1 is a high_node 0 is low_node 

18 will check in Node 0 that, at which index the data is bigger or equal to 18, which is 3 
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New position of 17 is  

New position = start_ind[low] + (fetched index - start_ind[low]) + (index of itself in main 

dataset - start_ind[high]); 

New position = 0 + (1 - 0) + (6 - 4) = 3 

Start index of new node 0 will be start_ind[low] = 0 

Ending index of new node will be end _ind[high] = 6 

 

After first level merging 

 

 

Figure 23  Main data set and Start and end INDEX of node after 1st level merging 

 

 

After 2nd level merging 

 

Figure 24 Main data set and Start and end INDEX of node after 2nd level merging 
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After final merging 

 

 
Figure 25 Main data set and Start and end INDEX of node after 2nd level merging 

 

 

Total number of level needed = 3 = height 

 

4.3.5 Time Analysis 

 

The GPU and CPU performance will be compared in this section. We took data of time consumption to 

merge the nodes for both CPU and GPU. In figure 4.16 and table 4.6, we can see the CPU execution time 

is far more than GPU at 1024 block size 

 

Figure 26 Time comparison graph Between CPU and GPU 
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Table 8 CPU Vs GPU execution time (1024 blocksize) 

 

 

Optimum blocksize detection: 

In this section, we fixed the data size in 5120 and run the kernel in different block size. Our goal 

is to find the optimum Block size to get the best performance. We can see, 128 thread per block 

is the most optimum block size.  

 

 

Figure 27 Time comparison graph Between different CUDA block 
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         Table 9 block size vs. time of execution 

 

Now we have come to our decision about optimal size of Block. We have again done the 1st experiment 

and observe the result 

 

 

Figure 28 Time comparison graph Between CPU and GPU (128 block size) 

   

 

              Table 10 CPU Vs GPU execution time (block size 128) 
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Chapter 5  

Conclusion  

 

5.1 Conclusion  

Towards the end of our experiment we have been stalled with some recurring problem with our 

approach. We have been limited to experiment with 13312 values at a time. This problem can be 

referred to memory issues we have briefly explained in the previous sections. To overhaul such 

problem the programmer must limit the number of declared variables, use shared memories, and 

change the allocation of variables after each iterations depending on requirements.  

While designing the algorithm one must make sure of keeping the variables declared within 

65536 numbers of variables. Due to decision parameter we were not able to alter the maximum 

capacity of our program to run on by using shared memory.  

If the programmer intends to execute two Kernel in parallel then the only way to do so includes 

installing two device (GPU).  

Apart from those unexpected memory issues that we have experienced the execution time 

seemed to have a drastic improvement. From that perspective it can be stated that for adaptive 

merge sort it is a better solution to be implied in GPU rather than in CPU. And drawing from that 

experience that we have gathered we can also ensure that merging techniques are much more of 

calculation dependent which can only be done with effectiveness and lesser consumption of time 

if done in parallel .So we hope and believe that more merging techniques would evoke in the 

near future using the power of GPU and which for sure would become a smarter choice for the 

sorting techniques analysts.  

 

 5.2 Future work 

Concentrating on memory usage and reducing I/O time can make the application more efficient. 
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Appendix: 

Code for parallel implementation of Adaptive merge sort in 

CUDA 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <cuda_runtime.h> 

#include <cuda.h> 

#include <math.h> 

#include <time.h> 

#define numsize 20 

 

int maxnodesize = 0; 

int num[numsize]; 

int start_ind[numsize / 2]; 

int end_ind[numsize / 2]; 

int as_ds[numsize / 2]; 

int size[200], freq[200]; 

 

 

int ind = 0; 

 

 

void readnumbers() 

 

{ 

 int i = 0; 

 int var; 

 FILE *file = fopen("numbers.txt", "r"); 

 fscanf(file, "%d", &var); 

 while (!feof(file)) 

 { 

  num[i] = var; 

  i++; 

  fscanf(file, "%d", &var); 

 

 } 
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 fclose(file); 

} 

 

 

int partition(int *num) 

{  

 int nodesize; 

 int temp = num[0]; 

 int i = 1; int ind = 0; 

 int start = 0, end = 0, flag = 404; 

 while (1) 

 { 

  while (1) 

  { 

 

   if (temp <= num[i] && i < numsize) 

   { 

    temp = num[i]; 

    flag = 0; 

    end = i; 

    i++; 

    continue; 

   } 

   break; 

  } 

  if (!flag) 

  { 

   start_ind[ind] = start; 

   end_ind[ind] = end; 

   as_ds[ind] = flag; 

   ind++; 

 

   nodesize = (end - start) + 1; 

 

   start = end = i; 

   temp = num[i++]; 

 

 

   printf("\nnodesize:%d", nodesize); 

   int a = 0; 

   while (a < 200) 

   { 

    if (size[a] == nodesize) 
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    { 

     freq[a] = freq[a] + 1; 

     break; 

    } 

    else if (size[a] == 0) 

    { 

     size[a] = nodesize; 

     freq[a] = freq[a] + 1; 

     break; 

    } 

    else a++; 

   } 

  } 

 

  while (1) 

  { 

   if (temp >= num[i] && i < numsize) 

   { 

    temp = num[i]; 

    flag = 1; 

    end = i; 

    i++; 

    continue; 

   } 

   break; 

  } 

  if (flag) 

  { 

   start_ind[ind] = start; 

   end_ind[ind] = end; 

   as_ds[ind] = flag; 

   ind++; 

 

   nodesize = (end - start) + 1; 

 

   start = end = i; 

   temp = num[i++]; 

 

 

   printf("\nnodesize:%d", nodesize); 

   int a = 0; 

   while (a < 200) 

   { 

    if (size[a] == nodesize) 
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    { 

     freq[a] = freq[a] + 1; 

     break; 

    } 

    else if (size[a] == 0) 

    { 

     size[a] = nodesize; 

     freq[a] = freq[a] + 1; 

     break; 

    } 

    else a++; 

   } 

 

  } 

  if (end == numsize) { printf("indexvalue : %d", ind); break; } 

 } 

 

 return ind; 

} 

 

int approxnodesize() 

{ 

 int sumsizefreq = 0, sumfreq = 0; 

 for (int i = 0; size[i] != 0; i++) 

 { 

  if (size[i] > maxnodesize) { maxnodesize = size[i]; } 

  //printf("\nsize[%d]:%d\tfreq[%d]:%d", i, size[i], i, freq[i]); 

  sumsizefreq = sumsizefreq + (size[i] * freq[i]); 

  sumfreq = sumfreq + freq[i]; 

 } 

 //rintf("\n%d : %f", approxnodesize); 

 int approxnodesize = (sumsizefreq / sumfreq); 

 printf("\napproxnode : %d", approxnodesize); 

 return approxnodesize; 

 

} 

 

int height(int nodenumbers) 

{ 

 int node = nodenumbers; 

 int height = 0; 

 while (1) 

 { 

  node = node / 2 + node % 2; 



lx 
 

  height++; 

  if (node == 1) break; 

 

 } 

 printf("\n height : %d\n", height); 

 

 return height; 

} 

 

__global__ void merge_myway_ascend(int *d_num, int *d_start_ind, int *d_end_ind, int *d_as_ds, 

int *swapper) 

{ 

 int position_of_thread = blockIdx.x * blockDim.x + threadIdx.x; 

 int low = position_of_thread * 2; 

 int high = low + 1; 

 int nodelowstart = d_start_ind[low]; 

 int nodelowend = d_end_ind[low]; 

 int nodehighstart = d_start_ind[high]; 

 int nodehighend = d_end_ind[high]; 

 // int swapper[500]; 

 if (d_as_ds[low] == 1) 

 { 

  int z = nodelowstart; 

  int n = nodelowstart; 

  int s = nodelowend; 

 

  while (s >= nodelowstart) 

  { 

   swapper[z] = d_num[s]; 

   z++; s--; 

  } 

  z = nodelowstart; 

 

  while (n <= nodelowend) 

  { 

   d_num[n] = swapper[z]; 

   n++; z++; 

  } 

  d_as_ds[low] = 0; 

 } 

 

 if (d_as_ds[high] == 1) 

 { 

  int z = nodehighstart; 
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  int m = nodehighstart; 

  int r = nodehighend; 

 

  while (r >= nodehighstart) 

  { 

   swapper[z] = d_num[r]; 

   z++; r--; 

  } 

  z = nodehighstart; 

 

  while (m <= nodehighend) 

  { 

   d_num[m] = swapper[z]; 

   m++; z++; 

  } 

  d_as_ds[high] = 0; 

 } 

} 

 

 

__global__ void merge(int approxnodesize, int numsizee, int *d_num, int *d_start_ind, int 

*d_end_ind, int *store, int nonodes, int odd, int *new_d_start_ind, int *new_d_end_ind) 

{ 

 //printf("\nblock:%d\tthread:%d\ti:%d\td_num[%d]:%d,blockIdx.x,threadIdx.x,i,i,d_num

[i]"); 

 int low, high; 

 int i = blockIdx.x * blockDim.x + threadIdx.x; 

 int valuepositionpercentage = (i * 100) / numsizee; 

 int approxnodenumbers = numsizee / approxnodesize; 

 int probablenode = (approxnodenumbers*valuepositionpercentage) / 100; 

 //int new_d_start_ind[500], new_d_end_ind[500]; 

 while (1) 

 { 

   

   

 

 //printf("\nblock:%d\tthread:%d\ti:%d\td_num[%d]:%d,blockIdx.x,threadIdx.x,i,i,d_num

[i]"); 

  if (i >= d_start_ind[probablenode] && i <= d_end_ind[probablenode]) 

  { 

   break; 

  } 

  else if (d_start_ind[probablenode] == 0 && d_end_ind[probablenode] == 0) 

  {  
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   probablenode--; 

   break; 

  } 

  else if (i < d_start_ind[probablenode] && i < d_end_ind[probablenode]) 

  { 

   while (1) 

   { 

    probablenode--; 

    if (i >= d_start_ind[probablenode] && i <= 

d_end_ind[probablenode]){ break; } 

   } 

  }//break; 

  else if (i > d_start_ind[probablenode] && i > d_end_ind[probablenode]) 

  { 

   while (1) 

   { 

    probablenode++; 

    if (i >= d_start_ind[probablenode] && i <= 

d_end_ind[probablenode]){ break; } 

   } 

 

  }break; 

 } 

 

 printf("\nblock:%d\tthread:%d\ti:%d\td_num[%d]:%d", blockIdx.x, threadIdx.x, i, i, 

d_num[i]); 

  

 if (probablenode % 2 == 0) 

 {  

  if (odd == 1 && probablenode == nonodes - 1) 

  {  

   printf("\nstore[%d]:%d\td_num[%d]:%d", i, store[i], i, d_num[i]); 

   store[i] = d_num[i]; 

   new_d_start_ind[probablenode / 2] = d_start_ind[probablenode]; 

   new_d_end_ind[probablenode / 2] = d_end_ind[probablenode]; 

 

  } 

   

    

    

  else 

  { 

    

   low = probablenode; 
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   high = probablenode + 1; 

   int p = d_start_ind[high]; 

   while (p <= d_end_ind[high]) 

   { 

    if (d_num[i] >= d_num[p]) p++; 

    else break; 

   } 

   int newposition = d_start_ind[low] + (p - d_start_ind[high]) + (i - 

d_start_ind[low]); 

   __syncthreads(); 

   //printf("\nblock:%d\tthread:%d\ti:%d\td_num[%d]:%d", blockIdx.x, 

threadIdx.x, i, i, d_num[i]); 

   store[newposition] = d_num[i]; 

   new_d_start_ind[low / 2] = d_start_ind[low]; 

   new_d_end_ind[low / 2] = d_end_ind[high]; 

  } 

 } 

 else 

 { 

  high = probablenode; 

  low = probablenode - 1; 

  int p = d_start_ind[low]; 

  while (p <= d_end_ind[low]) 

  { 

   if (d_num[i] > d_num[p]) p++; 

   else if (d_num[i] == d_num[p]) break; 

   else break; 

  } 

  int newposition = d_start_ind[low] + (p - d_start_ind[low]) + (i - d_start_ind[high]); 

  __syncthreads(); 

  store[newposition] = d_num[i]; 

  new_d_start_ind[low / 2] = d_start_ind[low]; 

  new_d_end_ind[low / 2] = d_end_ind[high]; 

 

 } 

 printf("\nblock:%d\tthread:%d\ti:%d\td_num[%d]:%d\tstore[%d]:%d", blockIdx.x, 

threadIdx.x, i, i, d_num[i], i, store[i]); 

 

} 

 

void afterkernelnodesize(int nonodes_passingtodevice, int *host_new_end_ind,int 

*host_new_start_ind) 

{ 
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 for (int loop = 0; loop < nonodes_passingtodevice; loop++) 

 { 

  int j = 0; 

  int afterkernelnodesize = (host_new_end_ind[loop] - host_new_start_ind[loop]) + 1; 

  while (1) 

  { 

   if (afterkernelnodesize == size[j]) 

   { 

    freq[j] = freq[j] + 1; 

    break; 

   } 

   else if (size[j] == 0) 

   { 

    size[j] = afterkernelnodesize; 

    freq[j] = freq[j] + 1; 

    break; 

   } 

   else if (size[j] != afterkernelnodesize && size[j] != 0) 

    j++; 

 

  } 

 

 

 } 

 

 //int newappnodesize = approxnodesize(); 

 //return newappnodesize; 

} 

int main() 

{ 

 dim3 blockIdx; 

 dim3 threadIdx; 

 dim3 blockDim; 

 

 int i = 0; int nonodes; 

 int host_new_start_ind[200], host_new_end_ind[200]; 

 int odd; 

 //int size[200] = { 0 }, freq[200] = {0}; 

 readnumbers(); 

 

 while (i < numsize) 

 { 

  printf("num[%d] : %d \t", i, num[i]); 

  i++; 
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 } 

 nonodes = partition(num); 

  

 int h = height(nonodes); 

 printf("\nnodes: %d\n", nonodes); 

 printf("\nheight: %d\n", h); 

 for (int i = 0; i <= nonodes; i++) 

 { 

  printf("\nstart[%d]:%d\t", i, start_ind[i]); 

  printf("end[%d]:%d\t", i, end_ind[i]); 

  printf("as_ds[%d]:%d\t", i, as_ds[i]); 

 

 } 

  

  

 //printf("\n\napp nodesize:%d", y); 

 int *d_num, *d_start_ind, *d_end_ind, *d_as_ds, *swapper, *store, *new_d_start_ind, 

*new_d_end_ind; 

 

 cudaMalloc(&d_num, numsize*sizeof(int)); 

 cudaMalloc(&d_start_ind, numsize / 2 * sizeof(int)); 

 cudaMalloc(&d_end_ind, numsize / 2 * sizeof(int)); 

 cudaMalloc(&d_as_ds, numsize / 2 * sizeof(int)); 

 cudaMalloc(&swapper, maxnodesize * sizeof(int)* 500); 

 cudaMalloc(&store, numsize*sizeof(int)); 

 cudaMalloc(&new_d_start_ind, numsize / 2 * sizeof(int)); 

 cudaMalloc(&new_d_end_ind, numsize / 2 * sizeof(int)); 

 

 cudaMemcpy(d_num, &num, numsize*sizeof(int), cudaMemcpyHostToDevice); 

 cudaMemcpy(d_start_ind, &start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyHostToDevice); 

 cudaMemcpy(d_end_ind, &end_ind, numsize / 2 * sizeof(int), cudaMemcpyHostToDevice); 

 cudaMemcpy(d_as_ds, &as_ds, numsize / 2 * sizeof(int), cudaMemcpyHostToDevice); 

 

 

 merge_myway_ascend << <1, nonodes >> >(d_num, d_start_ind, d_end_ind, d_as_ds, 

swapper); 

 

 cudaMemcpy(&num, d_num, numsize*sizeof(int), cudaMemcpyDeviceToHost); 

 cudaMemcpy(&start_ind, d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

 cudaMemcpy(&end_ind, d_end_ind, numsize / 2 * sizeof(int), cudaMemcpyDeviceToHost); 

 cudaMemcpy(&as_ds, d_as_ds, numsize / 2 * sizeof(int), cudaMemcpyDeviceToHost); 
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 for (int i = 0; i <= nonodes; i++) 

 { 

  printf("\nAscendstart[%d]:%d\t", i, start_ind[i]); 

  printf("Ascendend[%d]:%d\t", i, end_ind[i]); 

  printf("Ascendas_ds[%d]:%d\t", i, as_ds[i]); 

 

 } 

 int u = 0; 

 while (u < numsize) 

 { 

  printf("num[%d] : %d \t", u, num[u]); 

  u++; 

 } 

 

 

 cudaMemcpy(d_num, &num, numsize*sizeof(int), cudaMemcpyHostToDevice); 

 cudaMemcpy(d_start_ind, &start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyHostToDevice); 

 cudaMemcpy(d_end_ind, &end_ind, numsize / 2 * sizeof(int), cudaMemcpyHostToDevice); 

 cudaMemcpy(d_as_ds, &as_ds, numsize / 2 * sizeof(int), cudaMemcpyHostToDevice); 

 

 int approxnodeSize = approxnodesize(); 

 printf("\nbefore karnel app node size :%d", approxnodeSize); 

 

 int n = numsize; 

 int nonodes_passingtodevice = nonodes; 

  

 for (int ll = 0; ll <= h; ll++) 

 {  

   

  if (nonodes_passingtodevice % 2 == 0) 

  { 

   odd = 0; 

  } 

  else 

  {  

   odd = 1;  

  } 

 

   

    

   merge <<< 1, n >>>(approxnodeSize, n, d_num, d_start_ind, d_end_ind, 

store, nonodes_passingtodevice, odd, new_d_start_ind, new_d_end_ind); 
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  nonodes_passingtodevice = ((nonodes_passingtodevice / 2) + 

(nonodes_passingtodevice % 2)); 

 

  printf("\nNODES:%d", nonodes_passingtodevice); 

   

   

  cudaMemcpy(&host_new_start_ind, new_d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); //rework 

  cudaMemcpy(&host_new_end_ind, new_d_end_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); //rework 

  cudaMemcpy(&num, store, numsize*sizeof(int), cudaMemcpyDeviceToHost); 

 

  cudaMemcpy(d_num, &num, numsize*sizeof(int), cudaMemcpyHostToDevice); 

  cudaMemcpy(d_start_ind, &host_new_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyHostToDevice); 

  cudaMemcpy(d_end_ind, &host_new_end_ind, numsize / 2 * sizeof(int), 

cudaMemcpyHostToDevice); 

 

 

  size[200] = { 0 }; freq[200] = { 0 }; 

  afterkernelnodesize(nonodes_passingtodevice, host_new_end_ind, 

host_new_start_ind); 

  int approxnodeSize = approxnodesize(); 

  printf("\ninkarnel app node size :%d", approxnodeSize); 

 } 

  

 /* 

 //int newsize[20] = { 0 }, newfreq[20] = {0}, afterkernelnodesize; 

  

  

 

 

 //cudaMemcpy(&num, store, numsize*sizeof(int), cudaMemcpyDeviceToHost); 

 

 cudaMemcpy(&num, store, numsize*sizeof(int), cudaMemcpyDeviceToHost); 

 int v = 0; 

 while (v <numsize) 

 { 

  printf("\nafter 1st merge-->num[%d] : %d \t", v, num[v]); 

  v++; 

 } 

 //cudaMemcpy(&start_ind, d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 
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 //cudaMemcpy(&end_ind, d_end_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

 //cudaMemcpy(&as_ds, d_as_ds, numsize / 2 * sizeof(int), cudaMemcpyDeviceToHost); 

 //cudaMemcpy(&start_ind, d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

 //cudaMemcpy(&end_ind, d_end_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

  

 

 

 

 //cudaMemcpy(&start_ind, d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

 //cudaMemcpy(&start_ind, d_start_ind, numsize / 2 * sizeof(int), 

cudaMemcpyDeviceToHost); 

   

  

 for (int loop = 0; loop < nonodes_passingtodevice; loop++) 

 { 

 printf("\nafter 1st merge-->newsize[%d]:%d", loop, newsize[loop]); 

 printf("\nafter 1st merge-->newfreq[%d]:%d", loop, newfreq[loop]); 

 } 

  

 printf("\nafter 1st merge-->newapproxnodesize:%d",newappnodesize); 

 

 printf("\nafter 1st merge--> nodes:%d", nonodes_passingtodevice); 

 printf("\nafter 1st merge-->odd=%d", odd); 

 for (int i = 0; i < 10; i++) 

 { 

  printf("\nafter 1st merge -->start[%d]:%d\tend[%d]:%d", i, host_new_start_ind[i], 

i, host_new_end_ind[i]); 

 } 

 

  

 

 

  merge << <1, n >> >(newappnodesize, n, d_num, d_start_ind, d_end_ind, store, 

nonodes_passingtodevice, odd, new_d_start_ind, new_d_end_ind); 

  */ 

 cudaMemcpy(&num, store, numsize*sizeof(int), cudaMemcpyDeviceToHost); 

 int vv = 0; 

 while (vv <numsize) 

 { 

  printf("\n num[%d] : %d \t", vv, num[vv]); 
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  vv++; 

 } 

 

 

 

 

 

 

 

 

 

 cudaFree(d_num); 

 cudaFree(d_start_ind); 

 cudaFree(d_end_ind); 

 cudaFree(d_as_ds); 

 cudaFree(swapper); 

 cudaFree(store); 

 cudaFree(new_d_start_ind); 

 cudaFree(new_d_end_ind); 

 //cudaFree(p); 

 

 return 0; 

} 
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