
I

Transforming a Multi-value Database System into a
Relational Database System for Faster Querying

Submitted By

Md. Zahid Hasan

ID: 2013-2-96-010

Supervised By

Dr. Mohammad Rezwanul Huq

Assistant Professor, Department of CSE, EWU

A thesis

in

The Department of

Computer Science and Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science

(Computer Science and Engineering)

East West University

Dhaka, Bangladesh

October, 2016

II

Declaration

This thesis has been submitted to the department of Computer Science and

Engineering, East West University in the partial fulfillment of the requirement for the degree

of Master of Science in Computer Science and Engineering by me under the supervision of

Dr. Mohammad Rezwanul Huq, Assistant Professor at Department of CSE at East West

University under the course 'CSE 599' . I am also declaring that this thesis has not been

submitted elsewhere for the requirement of any degree or any other purposes. This thesis

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality. I hereby release this thesis to the public. I also authorize the

University or other individuals to make copies of this thesis as needed for scholarly research.

Signature of the candidate

Md. Zahid Hasan

2013-2-96-010

III

Letter of Acceptance

The thesis entitled "Transforming a Multi-value Database System into a Relational

Database System for Faster Querying" submitted by Md. Zahid Hasan, ID 2013-2-96-010 to

the department of Computer Science and Engineering, East West University, Dhaka 1212,

Bangladesh is accepted as satisfactory for partial fulfillment of requirements for the degree of

Master of Science(M.Sc) in Computer Science and Engineering on October, 2016.

Board of Examiners

1.________________________

 Dr. Mohammad Rezwanul Huq Supervisor

 Assistant Professor

 Department of Computer Science and Engineering

 East West University, Dhaka, Bangladesh

2._________________________

 Dr. Md. Mozammel Huq Azad Khan Internal Member

 Professor and Chairperson

 Department of Computer Science and Engineering

 East West University, Dhaka, Bangladesh

3.__________________________

 Dr. Abu Raihan Mostofa Kamal External Member

 Associate Professor

 Department of Computer Science and Engineering

 Islamic University of Technology, Gazipur, Bangladesh

IV

Acknowledgments

During the course of this research I have learned time management, critical analysis,

research techniques, how to work independently. Although there was time pressure, I have

managed it as well.

Firstly, I would like to express my sincere gratitude to my advisor Dr. Mohammad

Rezwanul Huq, Assistant Professor at Dept. of CSE for the continuous support during my

thesis study and related research, for his patience, motivation, and immense knowledge. His

guidance helped me in all the time of research and writing of this thesis. I heartily thank my

advisors for helping me to complete this work.

I would like to thanks my employer Datasoft Systems Bangladesh Limited and

Temenos (a world renowned Core Banking Solution) for their opportunity to gain knowledge

on MVDBMS and allocate time for my research. I am also thankful to all my friends and

colleagues during my master’s program. We discussed and debate a lot on this topic which

enrich my knowledge for this thesis.

I am also grateful to my primary and secondary school teacher who are my first

teachers in my life and initiator of my basic knowledge.

Last but not the least; I would like to thank my parents and siblings for supporting me

spiritually throughout writing this thesis. And at the very last thanks to the creator Allah for

everything.

V

Abstract

Transforming a Multi-value Database System into a Relational Database

System for Faster Querying

Md. Zahid Hasan

When the data is fluid and relationships among attributes are getting complex and are

changing rapidly over time, a Multi-value Database Management System (MVDBMS) can

provide a great deal of support to handle that. MVDBMSs can handle attributes taking a list

of values unlike a Relational Database Management System (RDBMS) that can only accept

single-valued attributes to conform first normal form (1NF). It is suitable to use multi-valued

database in case where a list of values can be assigned to a single attribute in a particular

record. In this case, MVDBMS can save a lot of storage space and it is quite efficient to

retrieve a specific record. However, when it comes into retrieving data based on Select-

Project-Join (SPJ) queries, a multi-valued database cannot handle these queries in a

straightforward manner.

In this thesis, we propose techniques to transform a MVDBMS into a RDBMS for

faster querying and retrieval. Therefore, we introduce two novel techniques: one of them will

generate database schema conforming to Third Normal Form (3NF) and the other will be in

First Normal Form (1NF). 3NF is a normal form that is used in normalizing a database design

to reduce the duplication of data and ensure referential integrity. In 1NF the domain of each

attribute contains only atomic (indivisible) values, and the value of each attribute contains

only a single value from that domain. 1NF create a separate table for each set of related data,

so a large number of attributes can be stored into one table but in a set of related data there is

VI

a high possibility of data duplicity. In 3NF all the attributes in a table are determined only by

the candidate keys of that table and not by any non-prime attributes; so data duplicity will be

reduced but to establish referential integrity it requires more table. As the number of table

increase, it will require more joining operation which will cost time.

In out thesis we have found that at the time of 3NF conversion, number of tables

required to transform is dependent on some primary aspect of multi-value database systems

like number of multi-value attributes, number of sub-value attributes and number of

associated attributes. So as number of those types of attribute increase, number of tables

required will be increased in a extent. On the other hand, at time of 1NF conversion number

of table require for conversion is constant and is very negligible compared to 3NF

conversion. We also found that data are more redundant in 1NF compared to 3NF which also

conforms the property respectively. We also evaluate the performance of these two

techniques for different types of queries. During the transformation, we carefully considered

the trade-off in between execution time of queries and storage space consumed by data. By

analyzing the outcomes of conversion we called 3NF conversion as 'space efficient

conversion' and 1NF conversion as 'time efficient conversion'

VII

Contents

List of Figures .. VIII

List of Tables .. IX

1 Introduction .. 1

1.1 Data and Information ... 1

1.2 Database and DBMS .. 3

1.3 Motivation ... 7

1.4 Thesis Overview .. 8

2 Background .. 10

2.1 Relational Database ... 10

2.1.1 Relational Model ... 11

2.1.2 Database Schema... 14

2.1.3 RDBMS and SQL.. 16

2.2 Multi-value Database ... 18

2.2.1 Introduction to MVDBMS ... 18

2.2.2 Multi-value, Sub-value and Associated Value .. 20

2.2.3 Mechanism in MVDBMS .. 21

3 Related Work ... 23

4 Architecture ... 27

4.1 STD Unit ... 28

4.2 Workflow of STD unit ... 28

5 Working Principle .. 30

6 Implementation .. 40

7 Performance Evaluation ... 41

8 Conclusion And Future Work ... 44

References .. 45

VIII

List of Figures

Figure 2.1: An example database according to the relational model.......................................12

Figure 2.2: Relational model concepts..14

Figure 2.3: Logical Design Compared with Physical Design..16

Figure 4.1: Transformation mechanism...27

Figure 4.2: STD unit...28

Figure 4.3: Block diagram of STL Unit...29

Figure 5.1: Schema-A1...33

Figure 5.2: Schema-A2...33

Figure 5.3: Schema-A3...33

Figure 5.4: Schema-A4...34

Figure 5.5: Schema-A5...34

Figure 5.6: Schema-B1...37

Figure 5.7: Schema-B2...37

Figure 7.1: Space versus Time graph...43

IX

List of Tables

Table 2.1: Data Definition Language...17

Table 2.2: Data Manipulation Language..17

Table 2.3: Data Control Language...18

Table 2.4: Different types of delimiter...20

Table 2.5: Dictionary file of Account table..21

Table 2.6: Data representation of Account table..22

Table 3.1: A Comparison Of Different NoSQL Databases..25

Table 5.1: Metadata of Account file...32

Table 5.2: TABLE-A1..34

Table 5.3: TABLE-A2..35

Table 5.4: TABLE-A3..35

Table 5.5: TABLE-A4..36

Table 5.6: TABLE-A5..36

Table 5.7: TABLE-B1..37

Table 5.8: TABLE-B2..38

Table 7.1: Simulation of number of table required..42

Table 7.2: Space versus Time table..42

1

Chapter 1

1 Introduction

In the real world, every moment whatever happening or happened is related to data.

Someone is uploading image in facebook, someone has written poem with paper and pencil,

all the environment variables of a airplane are storing into black box, HR information of an

organization stored in computer memory, breaking news of military attack in news portal,

past weather forecast of pacific region etc. all are typical example of data of interest. Data are

stored in different format. Whatever the data type is or whatever the storage format is, most

important thing is to know about the insight of data. It is important to know about the future

trends or to make a business decision. When data is organized and analyzed data becomes

information. As information is so important in most organizations, computer scientists have

developed a large body of concepts and techniques for managing data. We will discuss on

data, how it can be stored and how we can get inner view of those data.

1.1 Data and Information

Data is a set of values of qualitative or quantitative variables. Data is distinct pieces

of information, usually formatted in a special way. Data can exist in a variety of forms as

numbers or text on pieces of paper, as bits and bytes stored in electronic memory, or as facts

stored in a person's mind. Data is measured, collected and reported, and analyzed, whereupon

it can be visualized using graphs, images or other analysis tools. Data is collected by a huge

range of organizations and institutions, ranging from businesses (e.g., sales data, revenue,

profits, stock price), governments (e.g., crime rates, unemployment rates, literacy rates) and

2

non-governmental organizations (e.g., censuses of the number of homeless people by non-

profit organizations).

Data as a general concept refers to the fact that some existing information or

knowledge is represented or coded in some form suitable for better usage or processing. Data,

information, knowledge and wisdom are closely related concepts, but each has its own role in

relation to the other, and each term has its own meaning.
Pieces of data are individual pieces of information. Data is raw, unorganized facts that

need to be processed. Data can be something simple and seemingly random and useless until

it is organized. Data are simply facts or figures — bits of information, but not information

itself. When data are processed, interpreted, organized, structured or presented so as to make

them meaningful or useful, they are called information. Data only becomes information

suitable for making decisions once it has been analyzed in some fashion. Data becomes

information by interpretation. Knowledge is derived from extensive amounts of experience

dealing with information on a subject. That is to say, data is the least abstract, information the

next least, and knowledge the most abstract. Information provides context for data. For

example, a list of dates — data — is meaningless without the information that makes the

dates relevant (dates of holiday). "Data" and "information" are intricately tied together,

whether one is recognizing them as two separate words or using them interchangeably, as is

common today.

Examples of Data and Information:

• The history of temperature readings all over the world for the past 100 years is data. If

this data is organized and analyzed to find that global temperature is rising, then that

is information.

3

• The number of visitors to a website by country is an example of data. Finding out that

traffic from the Dhaka is increasing while that from Chittagong is decreasing is

meaningful information.

• Often data is required to back up a claim or conclusion (information) derived or

deduced from it. For example, before a drug is approved by the FDA, the

manufacturer must conduct clinical trials and present a lot of data to demonstrate that

the drug is safe.

1.2 Database and DBMS

A database is an organized collection of data. It is the collection of schemas, tables,

queries, reports, views, and other objects. The data are typically organized to model aspects

of reality in a way that supports processes requiring information.

A database-management system (DBMS) is a collection of interrelated data and a set

of programs to access those data. The collection of data, usually referred to as the database,

contains information relevant to an enterprise. The primary goal of a DBMS is to provide a

way to store and retrieve database information that is both convenient and efficient.

Formally, a "database" refers to a set of related data and the way it is organized.

Access to these data is usually provided by a "database management system" (DBMS)

consisting of an integrated set of computer software that allows users to interact with one or

more databases and provides access to all of the data contained in the database (although

restrictions may exist that limit access to particular data). The DBMS provides various

functions that allow entry, storage and retrieval of large quantities of information and

provides ways to manage how that information is organized. Because of the close relationship

4

between them, the term "database" is often used casually to refer to both a database and the

DBMS used to manipulate it.

Databases are widely used. Here are some representative applications:

• Enterprise Information

o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other

accounting information.

o Human resources: For information about employees, salaries, payroll taxes,

and benefits, and for generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking

production

o of items in factories, inventories of items in warehouses and stores, and orders

for items.

• Online retailers: For sales data noted above plus online order tracking, generation of

recommendation lists, and maintenance of online product evaluations.

• Banking and Finance

o Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of

monthly statements.

o Finance: For storing information about holdings, sales, and purchases of

financial instruments such as stocks and bonds; also for storing real-time

market data to enable online trading by customers and automated trading by

the firm.

5

• Universities: For student information, course registrations, and grades (in addition to

standard enterprise information such as human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first to

use databases in a geographically distributed manner.

• Telecommunication: For keeping records of calls made, generating monthly

bills, maintaining balances on prepaid calling cards, and storing information about the

communication networks.

Over the course of the last four decades of the twentieth century, use of databases grew in all

enterprises. In the early days, very few people interacted directly with database systems,

although without realizing it, they interacted with databases indirectly—through printed

reports such as credit card statements, or through agents such as bank tellers and airline

reservation agents. Then automated teller machines came along and let users interact directly

with databases. Phone interfaces to computers (interactive voice-response systems) also

allowed users to deal directly with databases—a caller could dial a number, and press phone

keys to enter information or to select alternative options, to find flight arrival/departure times,

for example, or to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to

databases. Organizations converted many of their phone interfaces to databases into Web

interfaces, and made a variety of services and information available online. For instance,

when you access an online bookstore and browse a book or music collection, you are

accessing data stored in a database. When you enter an order online, your order is stored in a

database. When you access a bank Web site and retrieve your bank balance and transaction

information, the information is retrieved from the bank’s database system. When you access a

6

Web site, information about you may be retrieved from a database to select which

advertisements you should see. Furthermore, data about your Web accesses may be stored in

a database.

Thus, although user interfaces hide details of access to a database, and most people

are not even aware they are dealing with a database, accessing databases forms an essential

part of almost everyone’s life today.

Existing DBMSs provide various functions that allow management of a database and

its data which can be classified into four main functional groups:

• Data definition – Creation, modification and removal of definitions that define the

organization of the data.

• Update – Insertion, modification, and deletion of the actual data.

• Retrieval – Providing information in a form directly usable or for further processing

by other applications. The retrieved data may be made available in a form basically

the same as it is stored in the database or in a new form obtained by altering or

combining existing data from the database.

• Administration – Registering and monitoring users, enforcing data security,

monitoring performance, maintaining data integrity, dealing with concurrency control,

and recovering information that has been corrupted by some event such as an

unexpected system failure.

7

1.3 Motivation

There are some systems which use multi-value database as their data storage; a type

of NoSQL and multidimensional database. In this system a single field can store more than

one value in a single record. These values are called multi-value of that field. It can be extend

up-to sub-value for a specific field. Storing and updating a particular record in this method

works fine in applications where the relationships are complex and can change rapidly and

drastically over time. But when we consider the case of querying information by joining

table or extracting information of sub-values/multi-values within same table; performance

will degrade as number of records increase.

In multi-value database management systems there is no relationship between data

sets or among multi-value/sub-value fields or between one table with other tables. Database

native functionality like indexing, constraints can’t be imposed in multi-value database

systems. Each column data are independent with each other within a record as well as tables

are also independent. In this scenario it is difficult to extract data.

Some business cases where multi-value database suits more than RDBMS for storing,

retrieving (only a specific record) or updating record. If we efficiently query/extract data

from more than one table of multi-value database systems then its searching issue would be

resolved and it can be more usable. We are proposing a technique to convert multi-value

database systems to RDBMS, so that we can define relationship between tables, convert

multi-value/sub-value into a number of single values; so that we can search information by

join table or retrieve information of multi-value, sub-value in efficient way. In our thesis we

use MVDBMS and NoSQL as interchangeable.

8

1.4 Thesis Overview

Our main goal is to perform query faster for multi-value database management

systems(MVDBMS). It is suitable to use multi-valued database in case where a list of values

can be assigned to a single attribute in a particular record. In this case, MVDBMS can save a

lot of storage space and it is quite efficient to retrieve a specific record. But when it comes

into retrieving data based on Select-Project-Join (SPJ) queries, a multi-valued database

cannot handle these queries in a straightforward manner. In our thesis we propose to convert

MVDBMS to relational database to overcome scenario of SPJ and more complex query.

Our thesis has two main parts; first one is to transform multi-value database into

relational database and second one is to compare performance of different conversion

methods. We propose two technique to transform MVDBMS to RDBMS:

• Space Efficient Technique: In this technique we convert MVDBMS to RDBMS in

such a way that it generates data in 3NF and load data accordingly. In this form data

are in higher normal form, so it removes redundancy as much as possible; so it saves

memory space comparatively but for large number of generated table it decrease the

query performance in terms of time.

• Time Efficient Technique: In this technique we convert MVDBMS to RDBMS in

such a way that it generates data in 1NF and load data accordingly. In this form data

are in lesser normal form, so data redundancy is very common here and much more

than first technique; so it takes more memory space compared to first technique but

takes less time than first one to get insight data.

Later on we compare our two technique in respect of space and time at the time of getting

same insight data. We get result as the name indicates "Space Efficient Technique" is space

9

efficient and time inefficient; on the other hand "Time Efficient Technique" is time efficient

and space inefficient.

In this thesis, we use Amazon jBase as MVDBMS. The other multi-value databases

can be studied in the same way.

10

Chapter 2

2 Background

We live in an information-centric world. As a society, we have a growing reliance on

creating and consuming data, which must be available when and where it is needed. Data and

related information services are enabled or provided via information technology services

combining database applications, facilities, networks, servers, storage hardware, and software

resources. We will concentrate on database on this chapter.

A database management system is important because it manages data efficiently and

allows users to perform multiple tasks with ease. A database management system stores,

organizes and manages a large amount of information within a single software application.

Use of this system increases efficiency of business operations and reduces overall costs.

Without database management, tasks have to be done manually and take more time. Data can

be categorized and structured to suit the needs of the company or organization. Multiple users

can use the system at the same time in different ways.

There are various types of database based on their data restore technique. We will

concentrate only on relational database and multi-value database in our thesis.

2.1 Relational Database

A database can be understood as a collection of related files. How those files are

related depends on the model used. The relational database model allowed files to be related

by means of a common field. In order to relate any two files, they simply need to have a

common field, which makes the model extremely flexible. The foundational idea underneath

11

relational databases is a simple but powerful structure. Each table is a set of sets, and within a

single table all of these sets have the same data structure, containing a list of named fields and

their values. SQL is a declarative language in which the expected result or operation is given

without the specific details about how to accomplish the task. SQL, which is an abbreviation

for Structured Query Language, is a language to request data from a database, to add, update,

or remove data within a database, or to manipulate the metadata of the database. The steps

required to execute SQL statements are handled transparently by the database.

2.1.1 Relational Model

The relational model (RM) for database management is an approach to managing data

using a structure and language consistent with first-order predicate logic, first described in

1969 by Edgar F. Codd. In the relational model of a database, all data is represented in terms

of tuples, grouped into relations. A database organized in terms of the relational model is a

relational database. The purpose of the relational model is to provide a declarative method for

specifying data and queries: users directly state what information the database contains and

what information they want from it, and let the database management system software take

care of describing data structures for storing the data and retrieval procedures for answering

queries.

The relational model's central idea is to describe a database as a collection of

predicates over a finite set of predicate variables, describing constraints on the possible

values and combinations of values. The content of the database at any given time is a finite

(logical) model of the database, i.e. a set of relations, one per predicate variable, such that all

12

predicates are satisfied. A request for information from the database (a database query) is also

a predicate.

CourseCode CourseDesc

CSE101 Computer Basics

CSE102 Computer Programming

CSE103 Data Structure

 Key(CourseCode)

 Key(InstructorId)

InstructorId InstructorName

1001 Mr. X

1002 Mr. Y

1003 Mr. Z

Figure 2.1: An example database according to the relational model

Relational data model is the primary data model, which is used widely around the

world for data storage and processing. This model is simple and it has all the properties and

InstructorId CourseCode RoomNumber

1001 CSE101 601

1002 CSE102 602

1003 CSE103 603

13

capabilities required to process data with storage efficiency. The relational data model is

based on a collection of tables. The user of the database system may query these tables, insert

new tuples, delete tuples, and update (modify) tuples. There are several languages for

expressing these operations. Some important terms in relational data models:

Tables − In relational data model, relations are saved in the format of Tables. This

format stores the relation among entities. A table has rows and columns, where rows

represents records and columns represent the attributes.

Tuple − A single row of a table, which contains a single record for that relation is

called a tuple.

Relation instance − A finite set of tuples in the relational database system represents

relation instance. Relation instances do not have duplicate tuples.

Relation schema − A relation schema describes the relation name (table name),

attributes, and their names.

Relation key − Each row has one or more attributes, known as relation key, which

can identify the row in the relation (table) uniquely.

Attribute domain − Every attribute has some pre-defined value scope, known as

attribute domain.

14

Relational Variable Attribute(Column Name)

(Table name) Heading

 Tuple (Row)

Figure 2.2: Relational model concepts

2.1.2 Database Schema

A database schema of a database system is its structure described in a formal language

supported by the database management system (DBMS). A database schema is the skeleton

structure that represents the logical view of the entire database. It defines how the data is

organized and how the relations among them are associated. It formulates all the constraints

that are to be applied on the data. The term "schema" refers to the organization of data as a

blueprint of how the database is constructed (divided into database tables in the case of

relational databases). The formal definition of a database schema is a set of formulas called

integrity constraints imposed on a database. These integrity constraints ensure compatibility

between parts of the schema. All constraints are expressible in the same language. This

describes how real-world entities are modeled in the database.

A database schema specifies, based on the database administrator's knowledge of

possible applications, the facts that can enter the database, or those of interest to the possible

A1 An

Value11 Value1n

...

...

Valuen1 Valuenn

R

B
o
d
y

R
e
l
a
t
i
on

15

end-users. Thus a schema can contain formulas representing integrity constraints specifically

for an application and the constraints specifically for a type of database, all expressed in the

same database language. A database schema defines its entities and the relationship among

them. It contains a descriptive detail of the database, which can be depicted by means of

schema diagrams. It’s the database designers who design the schema to help programmers

understand the database and make it useful. In a relational database, the schema defines the

tables, fields, relationships, views, indexes, packages, procedures, functions, queues, triggers,

types, sequences, materialized views, synonyms, database links, directories, XML schemas,

and other elements.

A database schema can be divided broadly into two categories −

• A physical data model is a representation of a data design as implemented, or

intended to be implemented, in a database management system. In the lifecycle of a

project it typically derives from a logical data model, though it may be reverse-

engineered from a given database implementation. A complete physical data model

will include all the database artifacts required to create relationships between tables or

to achieve performance goals, such as indexes, constraint definitions, linking tables,

partitioned tables or clusters. Analysts can usually use a physical data model to

calculate storage estimates; it may include storage allocation details for a given

database system.

• Logical Database Schema − It defines all the logical constraints that need to be

applied on the data. It defines tables, views, and integrity constraints. Logical data

models represent the abstract structure of a domain of information. They are often

diagrammatic in nature and are most typically used in business processes that seek to

16

capture things of importance to an organization and how they relate to one another.

Once validated and approved, the logical data model can become the basis of a

physical data model and form the design of a database.
Logical Schema

 Physical Schema

Figure 2.3: Logical Design Compared with Physical Design

2.1.3 RDBMS and SQL

RDBMS stands for Relational Database Management System. A relational database

management system (RDBMS) is a database management system (DBMS) that is based on

the relational model as invented by E. F. Codd, of IBM's San Jose Research Laboratory.

RDBMS data is structured in database tables, fields and records. Each RDBMS table

consists of database table rows. Each database table row consists of one or more database

table fields. RDBMS store the data into collection of tables, which might be related by

common fields (database table columns). RDBMS also provide relational operators to

manipulate the data stored into the database tables. A relational database management system

(RDBMS) is a program that lets you create, update, and administer a relational database.

Entities

Relationships

Attributes

Unique Identifiers

Tables

Integrity
Constraints

-Primary Key

-Foreign Key
-Not Null

Columns Dimensions

Materialized
Views

Indexes

17

Most commercial RDBMS's use the Structured Query Language (SQL) to access the

database.

SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in relational database.SQL is the standard language

for Relation Database System. All relational database management systems like MySQL, MS

Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as standard database

language.

Originally based upon relational algebra and tuple relational calculus, SQL consists of

a data definition language, data manipulation language, and Data Control Language. The

standard SQL commands to interact with relational databases are CREATE, SELECT,

INSERT, UPDATE, DELETE and DROP. These commands can be classified into groups

based on their nature:

DDL - Data Definition Language:

Command Description
CREATE Creates a new table, a view of a table, or other object in database
ALTER Modifies an existing database object, such as a table.
DELETE Deletes an entire table, a view of a table or other object in the

database.

Table 2.1: Data Definition Language

DML - Data Manipulation Language:

Command Description
SELECT Retrieves certain records from one or more tables
INSERT Creates a record
UPDATE Modifies records
DELETE Deletes records

Table 2.2: Data Manipulation Language

18

DCL - Data Control Language:

Command Description
GRANT Gives a privilege to user
REVOKE Takes back privileges granted from user

Table 2.3: Data Control Language

2.2 Multi-value Database

MVDBMSs can handle attributes taking a list of values unlike a Relational Database

Management System (RDBMS) that can only accept single-valued attributes. It is suitable to

use multi-valued database in case where a list of values can be assigned to a single attribute

in a particular record. The first multi-value databases were designed in the 1960s and it was

developed for the army. multi-value databases are a type of NoSQL and multidimensional

databases that understand 3 dimensional data directly. MV databases can work with relatively

low-powered servers and achieve great performances. They are primarily giant strings that

are perfect for manipulating HTML and XML strings directly and they differ from relational

databases as they encourage using attributes that can take a list of values rather than just

single-values.

2.2.1 Introduction to MVDBMS

In case of relational database, it is not allowed to keep more than one instance of

value in any column, so we have to keep each instance separately against same record id. It

will make data redundant which can be solved using multi-valued database. The biggest

benefit is that it means you don't need to maintain more tables like RDBMS to fulfill the full

operational process of a business model. In case of MVDBMS, in one table you can

19

store/maintain large number of fields; sometimes all field values of a record in a single table.

As MVDBMS store data in flat file, it doesn’t establish relationship between them. So it easy

to store, retrieve, update that particular record. For this, sometimes refer to them as record

based database systems. jBASE, Revelation, Ladybridge, InterSystems are some examples of

multi-valued database. In a Multi-Value database system:

• a database or schema is called an "account"

• a table or collection is called a "file"

• a column or field is called a field or an "attribute", which is composed of "multi-value

attributes" and "sub-value attributes" to store multiple values in the same attribute.

• a row or document is called a "record" or "item"

For example, assume there's a file (table) called "CUSTOMER". In this file, there is an

attribute called "eMailAddress". The eMailAddress field can store a variable number of email

address values in a single record. The list [a@example.com, b@example.net,

c@example.org] can be stored and accessed via a single query when accessing the associated

record.

Achieving the same (one-to-many) relationship within a traditional relational database

system would include creating an additional table to store the variable number of email

addresses associated with a single "CUSTOER" record.

 Data is stored using two separate files: a file to store raw data and a dictionary to

store the format for displaying the raw data. Note that in case of MVDBMS term ‘file’ and

‘table’ are interchangeable.

20

2.2.2 Multi-value, Sub-value and Associated Value

In a multi-value database systems, more than one value may exists in an attribute.

Such multiple values within a single attribute/field is called multi-value. For example in a

'TRANSACTION' table(record id: account number), against a single account record multiple

transaction date may exists like "1001"^"20160901::2060902::20160903". Here 1001 is

account number as record id of "TRANSACTION" table and it has multiple value

20160901,2060902,20160903 as transaction date.

Same way in multi-value database systems, more than one value may exists in a

single multi-value of an attribute. Such multiple values within a single multi-value under a

single attribute/field is called sub-value. For example in a 'TRANSACTION' table(record id:

account number), against a single account record multiple transaction date may exists as well

as multiple transaction amount may exists against each transaction date like

"1001"^"20160901::2060902::20160903"^"10~-5::20~10~-15::-10~5". Here 1001 is account

number as record id of "TRANSACTION" table and it has multiple value 20160901,

2060902, 20160903 as transaction date. And on transaction date 20160901, 20160902,

20160903 it has transaction amount 10 and -5, 20 and 10 and -15, -10 and 5 respectively. So

each transaction amount is sub-value against corresponding transaction date.

In multi-value there are basically 3 levels of data storage within a record:

1 Attributes Separated by field delimiter (Here it is ^)
2 Multi-Values Separated by multi-value delimiter (Here it is ::)
3 Sub-Values Separated by sub-value delimiter (Here it is ~)

Table 2.4: Different types of delimiter

If more than one attribute/fields are grouped/associated with each other than that set

of fields are called associated field set and each field is called associated field. This property

21

is very common to multi-value database systems. For example in a 'TRANSACTION'

table(record id: account number), against a single account record multiple transaction date

and transaction number may exists like "1001"^"20160901::2060902::20160903"^"2::3::2".

Here 1001 is account number as record id of "TRANSACTION" table and it has multiple

transaction date 20160901,2060902,20160903 and 2,3,2 are number of transaction for each

transaction date respectively. So here transaction date and transaction number are associated

field. On our sub-value example transaction date and transaction amount are also associated.

2.2.3 Mechanism in MVDBMS

MVDBMS just simply use different methods to store values. It uses a set of delimiters

to separate the values, multi-values and sub-values of the record. Suppose we have meta data

of a table ‘Account’ under multi value database system is:

FIELD_NAME LEN MULTI_MARK ASSOC
Id 20
account_title 35
email_id 35 M
mobile_no 20 M
txn_date 8 M Y
no_of_txn 2 M Y
txn_type 2 S Y
txn_amt 20 S Y

Table 2.5: Dictionary file of Account table

Suppose there is a record with ID 10001 of ‘Account’ file:

10001

ZahidHasan,a@yahoo.com::b@yahoo.com,8801921033322::8801721033322,20141220::201

41221,1::2,CR::CR~DR,10::20~30

22

Data will be mapped against dictionary file as follows:

FIELD_NAME FIELD_VALUES
Id 10001
account_title Zahid Hasan
email_id a@yahoo.com::b@yahoo.com
mobile_no 8801921033322::8801721033322
txn_date 20141220::20141221
no_of_txn 1::2
txn_type CR::CR~DR
txn_amt 10::20~30

Table 2.6: Data representation of Account table

Here email_id, mobile_no, txn_date, no_of_txn are multi-value fields and separated

by ‘::’ delimiter. txn_type, txn_amt are sub-value fields and separated by ‘~’ delimiter.

Another important property of MVDBMS is field association. In dictionary file

example note that txn_date, no_of_txn, txn_type, txn_amt fields are associated (ASSOC

column is Y). We can observe the impact of this property on data part example. For Account

id 10001 there are two transaction date; one on 20/12/2014 with transaction type ‘Credit’

with transaction amount 10. For second multi-value of txn_date all other association can be

understood. For associated field set, values are grouped together. So for an associated field

set, no of multi-value for each member field under association must be same. Same way no of

sub-value for each sub-valued member field under association must be same. In example

txn_date, no_of_txn, txn_type, txn_amt all have 2 multi-values and under each multi-value of

a sub-valued field, no of sub-value is also equal. In example there are two sub-valued field

txn_type, txn_amt under association; for each field, for first multi-value set, no of sub-value

under this is 1 and for second multi-value set, no of sub-value under this are 2. We will

discuss the mechanism to transform MVDBMS to RDBMS for efficient query by joining

tables as well as extract multi-value, sub-value data to overcome the limitation of MVDBMS

on data query.

23

Chapter 3

3 Related Work

Our area of interest include multi value database. In [1] [5] it states for today's

interactive web and mobile applications the importance of flexibility and scalability in data

model can't be over-stated and NoSQL databases are currently being used by Google,

Amazon, Facebook and many other major organizations operating in the era of Web 2.0. In

addition to SQL databases, cloud applications usually store their data in NoSQL databases as

in[2]. It [4] shows every day people and companies generate enormous amounts of data and

this data may be structured, unstructured, semi-structured or a combination of all. This has

called [5] for the need to design NoSQL databases which can store this type and volume of

data.

In the circumstances like today's informative world where data comes from various

source like social media, news portal, renowned poet/novelist, financial institutes, search

engine, mechanical/electrical/electronic device in form of audio, video, image, number and

character, text etc. To simply store and retrieval of data is not easy as those data volume is

very huge and data are coming very fast. Companies are facing these challenges in a climate

where they have the ability to store anything and they are generating data like never before in

history. Storing those data in relational form is quite difficult for its volume, velocity and

variety of data. Nosql/multi-value is the ultimate choice to store those data.

However, in [4] shows the NoSQL solution to this Big Data problem has also lead to

several other problems. Storing or retrieving a particular record is good enough in multi-value

database but when it comes to query a data by join operation, most multi-value databases do

24

not support join operations[2]. Therefore, the traditional relational data modeling approach is

not suitable for NoSQL databases, and it makes data query more complex in NoSQL

databases[2]. The challenges of NoSQL databases specially in [2] [4] [6] the field of

'Business Intelligence and Analytics' can't be overlooked.

NoSQL databases have evolved to meet the scaling demands of modern Web 2.0

applications. Consequently, most of their feature set is oriented toward the demands of these

applications. However, data in an application has value to the business that goes beyond the

insert-read update-delete cycle of a typical Web application. Businesses mine information in

corporate databases to improve their efficiency and competitiveness, and business

intelligence (BI) is a key IT issue for all medium to large companies. NoSQL databases offer

few facilities for ad-hoc query and analysis[2]. Even a simple query requires significant

programming expertise, and commonly used BI tools do not provide connectivity to NoSQL.

It is very important to get the insight of data for making business decision. Business

Intelligence is a concept that typically involves the delivery and integration of relevant and

useful business information in an organization. As such, companies use business intelligence

to detect significant events and identify/monitor business trends in order to adapt quickly to

their changing environment or scenario. At the end of the day it is important to be able to

query data easily, reliably, accurately and declaratively. Existing relational database

technology experience tells us that declarative database query languages are beneficial for

different reasons, including application independence from access path considerations and

decades of sophisticated query optimization technologies [7]. To resolve the SPJ query on

multi-value data source, transforming it into relational model can be a good choice.

Transforming multi-value database into RDBMS also tends to build resourceful data

25

warehouse which lead to achieve business intelligence. An argument can be made that SQL

is actually going to be an important success factor for NoSQL databases [7].

Most NoSQL databases are extremely painful for their users when querying data: in

order to retrieve data, users must write a program in their favorite programming language and

execute it (rinse and repeat for every query). Most NoSQL databases expose only a limited

programming language interface[6][7][11], but usually not a declarative query language like

SQL. It is therefore not surprising that SQL compliance has been one of the most requested

additions to the Google App Engine platform [10].It shows [6][9] how different NoSQL

databases uses third party API for ad-HOC query generation ; even some don't have any

option to do that [11] but the level of programming expertise in writing queries needs to be

much higher than that of a relational database. Following table shows the comparison

between different NoSQL databases in respect of performing Ad-HOC query.

Database Tool Ad-HOC query
DynamoDB Built in API
Riak CorrugatedIron
Voldermort NO
Tokyo Cabinet NO
CouchDB Cloudant, Lucene
MongoDB BSON based format
RavenDB Built in, Limited
Cassandra HIVE, PIG
Hbase HIVE, PIG
Neo4j Chyper

Table 3.1: A Comparison Of Different NoSQL Databases

From the comparison table we can see that some of the NoSQL database even don't

have any Ad-HOC query facility; in addition some of them have their different API which are

distinct. Each have been built based on their own API, it requires programming language skill

to execute Ad-HOC query. Also for different NoSQL different programming language skill

required. However, their lack of SQL support represents a major hurdle for a wider adoption.

26

This arises at different levels due to the prevalence of SQL as the standard, widely mastered

and efficient query language for databases. A large number of tools and middleware coupled

to SQL have been developed and matured over the years and are currently at the basis of

most application development frameworks[10].

It will be very handy to build a common SQL interface which can give all multi-value

database for a standard query processing platform. As SQL has a common programming

language, it will diminish the need of different programming language skill or different

platform for different NoSQL databases in respect of query processing. In this scenario

converting NoSQL/ multi-value database into a relational database can be a unique Ad-HOC

query solution for all multi-value databases. Relational database has some other features like

expertise, administration, support, maturity level over NoSQL databases[4].

4 Architecture

Incoming data can come in various form; from external source or internal source.

Data sources can be database/csv files/

must have field marker, value marker and

value, multi-value and sub-value.

transformation process. On the other hand to identify

valued/multi-valued/sub-valued field,

require a metadata of source file. It can be found from existing multi

or from existing work flow. Metadata and

for Scan-Transform-Database unit.

Data Sources
Database
CSV Files
Flat Files

Metadata

Figure 4

27

Chapter 4

Incoming data can come in various form; from external source or internal source.

Data sources can be database/csv files/text files/flat file. Whatever source it can be; it will

field marker, value marker and sub-value marker to distinguish between field

value. Those marker/delimiter is very significant on

On the other hand to identify attribute property (like

valued field, associated or not, association group, field details etc.) it

require a metadata of source file. It can be found from existing multi-value database systems

tadata and data source handed over to STD unit,

Database unit. STD unit’s output is required relational schema with data.

STD Unit

Figure 4.1: Transformation mechanism

Incoming data can come in various form; from external source or internal source.

Whatever source it can be; it will

to distinguish between field

Those marker/delimiter is very significant on

attribute property (like single

associated or not, association group, field details etc.) it

value database systems

, which stands

unit’s output is required relational schema with data.

4.1 STD Unit

STD unit consists of three units:

• Scan unit: This unit reads the metadata of source data to find

well as parse incoming data to segregate field

• Transform unit: It takes input of scan unit.

schema according to metad

inserting into the respective table

• Database unit : It takes strings as input from transform unit.

to table schema prepared by transform unit; it also insert table rows

string prepared by transform unit.

4.2 Workflow of STD unit

Workflow of STD unit consists of following steps respectively:

1. First it scan unit scan metadata of received file to read the properties of

2. Transform unit capture table properties from scan unit; then

accordingly.

3. DB unit creates table according to table schema prepared by

 Scan Unit Transform Unit

28

STD unit consists of three units:

reads the metadata of source data to find-out the table property as

well as parse incoming data to segregate field value, multi-value and sub-

It takes input of scan unit. This unit prepares strings for table

schema according to metadata. It also prepare data string from source data

inserting into the respective table.

It takes strings as input from transform unit. It crate table according

to table schema prepared by transform unit; it also insert table rows according to data

string prepared by transform unit.

Figure 4.2: STD unit

4.2 Workflow of STD unit

unit consists of following steps respectively:

scan metadata of received file to read the properties of table

table properties from scan unit; then prepare table schema

DB unit creates table according to table schema prepared by transform unit.

Transform Unit DB Unit

out the table property as

-value.

This unit prepares strings for table

from source data for

It crate table according

according to data

table.

prepare table schema

transform unit.

29

4. Then scan unit parse the incoming data to find out distinct values, multi-values, sub-

values, associated fields.

5. Transform unit prepare string for insert command for each row according to scan unit

parsing.

6. Finally DB unit insert each row according to insert command prepared by transform

unit.

Building block of STD unit:

Scan Unit Transform Unit DB Unit

Figure 4.3: Block diagram of STD Unit

Scan dictionary
table for received

file

Prepare table
creation string and

execute

Create table

Scans received data
and parse it

Prepare data string
for each row of

each table

Load data into
table

30

Chapter 5

5 Working Principle

Our objective is to convert data from multi value database systems to RDBMS so that

data can be searched more efficiently. We propose two evaluation criteria to transform the

system:

A. Space efficient transformation

B. Time efficient transformation

A. Space efficient transformation

This technique transform source data into normal form as higher as possible. In this

technique source file generally split into many tables into RDBMS. In file, it will have data

consisting field values, multi values and sub values of records; values can be found in

association or non association mode. If is association found then a set of values are

related/grouped to each other within that associated group. In association it may have only

multi value set or mixed of multi value and sub value set. If multi value columns are not

associated then to normalize each multi value column of a records it will require a separate

table. Also in case of associated multi value set of column if it has no sub value then for that

whole associated set it will require one table. So it will require n number of separate columns

to normalize n number of associated multi value set of columns. Additionally columns which

are single valued; means which are not multi valued or sub valued, for all single valued

columns it will require one table. Now consider case when an associated value set consists of

multi value and sub value set. In this scenario for multi value data set it require one table as

31

well as for sub value data set it will require one more table to normalize the associated data

set. So we can list out the cases how data values can form a record:

Case-1: Data values will have some single-valued columns.

Case-2: Data values may have one or more non associated number of multi- valued columns.

Case-3: Data values may have one or more associated number of columns where association

exists only within multi-valued columns.

Case-4: Data values may have one or more associated number of columns where association

exists with mixed of multi-valued and sub-valued columns.

Note that if a sub value column is exists in any data position it must be under

association of a multi value column. A sub value column will never exist separately out of

association. In this technique we have taken first multi value column as its identity. In the

same way multi value column will never exists without a single value column but unlike sub

value it may come without association. Actually this multi value column is associated with

the first single value column (first column of a record, normally id of the record). So in case

of sub value column it will require record id along with first multi value column of its

association to fully identify it.

So we can set an expression for number of tables requires normalizing multi value

data systems. Suppose,

A=Number of non associated multi-valued column.

B= Number of associated value set which contain only multi-valued column set.

32

C= Number of associated value set which contain both multi- valued and sub-valued column

set.

Total number of table require in this technique,

� = 1 + � + � + 2� (5.1)

Suppose we have Meta data of a table ‘account’ under MVDBMS is:

FIELD_NAME LEN MULTI_MARK ASSOC
account_id 20
Category 5
first_name 35
email_id 35 M
txn_date 8 M Y
txn_type 2 S Y
txn_amt 20 S Y
int_rate 6
doc_name 20 M Y
doc_id 20 M Y
branch_id 20

Table 5.1: Metadata of Account file

In this method, number of table required as follows:

Number of non associated multi value column, A = 1(Column email_id)

Number of associated value set which contain only multi value column set, B = 1(Columns

doc_name, doc_id)

Number of associated value set which contain both multi value and sub value column set, C =

1(txn_date, txn_type, txn_amt)

Single value columns are account_id, category, first_name, int_rate, branch_id.

So total number of tables require to normalize according to this method,

� = 1 + � + � + 2� = 5

33

The table structure will be as follows:

For all single value columns, it create table account as:

CREATE TABLE account
(
 account_id varchar2(35),
 category number(3),
 first_name number(4),
 int_rate varchar2(1),
 branch_id varchar2(1)
)

Figure 5.1: Schema-A1

For non associated multi value column, it create table named account_email_id as follows:
CREATE TABLE account_email_id
(
 account_id varchar2(35),
 email_id varchar2(35)
)

Figure 5.2: Schema-A2

Note that all table (except single value columns) table name convention will be name

of the columns one after another prefixed by main table but maximum length will not exceed

30.

For associated value set which contain only multi value column set, it create table

account_doc_name_doc_id as:
CREATE TABLE account_doc_name_doc_id
(
 account_id varchar2(35),
 doc_name varchar2(20),
 doc_id varchar2(20)
)

Figure 5.3: Schema-A3

For associated value set which contain both multi value and sub value column set, it

will generate two tables. One named as account_txn_date as follows:

34

CREATE TABLE account_txn_date
(
 account_id varchar2(35),
 txn_date varchar2(8)
)

Figure 5.4: Schema-A4

Another one named as account_txn_date_txn_type_txn_amt as follows:

CREATE TABLE account_txn_date_txn_type_txn_amt
(
 account_id varchar2(35),
 txn_date varchar2(8),
 txn_type varchar2(2),
 txn_amt varchar2(20)
)

Figure 5.5: Schema-A5

Now concentrate on how data is going to be parsed and get populate into table in this

technique. Consider the case that already discussed above(Table-5.1)

Suppose value of the following column account_id, category, first_name, email_id,

txn_date, txn_type, txn_amt, int_rate, doc_name, doc_id, branch_id is stored like this:

0004121000001,6001,A,a@yahoo.com::b@yahoo.com,20141220::20141221::20141223,CR:

:CR~DR::DR,10::20~30::40,5.00,PASSPORT_NO::NID::BIRTH_REG,A1230::123450::987

60,BD0010004

Here ‘,’ is field value separator, ’::’ is multi value separator, ‘~’ is sub value separator.

Columns which have only single value will get populated into single value column table (as

per SCHEMA-A1); Table 5.2: TABLE-A1.

So it populate data columns of single value as follows:

account_id category first_name int_rate branch_id
0004121000001 6001 A 5.00 BD0010004

Table 5.2: TABLE-A1

35

Columns which are non associative multi value will get populated into separate table

TABLE-A2 as SCHEMA-A2. In this case number of inserted rows for that record will be

number of multi value of that column. So it populate data columns of non associative multi

value set as follows:

account_id email_id
0004121000001 a@yahoo.com
0004121000001 b@yahoo.com

Table 5.3: TABLE-A2

Columns which are associated with only multi value set will get populated into a

separate table TABLE-A3 as SCHEMA-A3. So if there is more than one associated multi

value set than it will get populated on separate table. On both cases number of inserted rows

for that record will be number of multi value of any of the associated column. Note that no of

multi value will be equal for each column that are associated with each other.

So it populate data columns of associative multi value set as follows:

account_id doc_name doc_id
0004121000001 PASSPORT_NO A1230
0004121000001 NID 123450
0004121000001 BIRTH_REG 98760

Table 5.4: TABLE-A3

Columns which are associated with both multi value and sub value set will get

populated into a two different table TABLE-A4 and TABLE-A5 as per SCHEMA-A4 and

SCHEMA-A5. One table to relate multi value data with record id say main_multi_set and

another to relate sub value data with record id as well as multi value say

main_first_multi_sub_set.

In main_multi_set table, columns which are multi-valued among the association get

populated. If there is more than one associated value set like this then it will populated on

36

same way on separate main_multi_set table. In all cases number of inserted rows for that

record will be number of multi value of any of the associated column. Number of multi value

will be equal for each multi value column that are associated with each other.

In main_first_multi_sub_set table, columns which are sub value among the

association get populated. In addition the first multi value of that association will be also

taken to relate this sub value. So if there is more than one associated value set like this then it

will get populated on same way on separate main_first_multi_sub_set table. In all cases no of

inserted rows for that record will be sum of sub values of each multi value of the associated

column. Number of sub value will be equal for each sub value column that are associated

with each other.

It populate data columns of associative multi value set as:

account_id txn_date
0004121000001 20141220
0004121000001 20141221
0004121000001 20141223

Table 5.5: TABLE-A4

account_id txn_date txn_type txn_amt
0004121000001 20141220 CR 10
0004121000001 20141221 CR 20
0004121000001 20141221 DR 30
0004121000001 20141223 DR 40

Table 5.6: TABLE-A5

B. Time efficient transformation

In this technique we concentrate on how much time it will take to process a query

after loading into data warehouse. In this technique simply we will create only two tables.

37

One for all the single value columns. Another one for all the multi-value and sub-

value columns whether it is associated or not. Number of table require on this technique is 2.

Considering scenario of Table 5.1, it will create one table for single value columns

named as account_main as follows:

CREATE TABLE account_main
(
 account_id varchar2(20),
 category varchar2(5),
 first_name varchar2(35),
 int_rate varchar2(6),
 branch_id varchar2(20)
)

Figure 5.6: Schema-B1

Another one for all the multi value and sub value columns whether it is associated or

not as account_multi_sub as follows:
CREATE TABLE account_multi_sub
(
 account_id varchar2(20),
 mv_seq number(3),
 sv_seq number(3),
 email_id varchar2(35),
 txn_date varchar2(8),
 txn_type varchar2(20),
 txn_amt varchar2(20),
 doc_name varchar2(20),
 doc_id varchar2(20)
)

Figure 5.7: Schema-B2

Now concentrate on how data is going to be parsed and get populate into table in this

technique. We will use same data set as used in previous technique.

Columns which have only single value will get populated into account_main table as

per SCHEMA-B1.

account_id category first_name int_rate branch_id
0004121000001 6001 A 5.00 BD0010004

Table 5.7: TABLE-B1

38

Columns which have multi value and sub value set will get populated into

account_multi_sub as per SCHEMA-B2.

account
_id

mv_se
q

sv_seq email_i
d

txn_date txn_type txn_a
mt

doc_nam
e

doc
_id

0004121
000001

1 1 a@yah
oo.com

20141220 CR 10 PASSPO
RT_NO

A12
30

0004121
000001

2 1 b@yah
oo.com

20141221 CR 20 NID 123
450

0004121
000001

2 2 b@yah
oo.com

20141221 DR 30 NID 123
450

0004121
000001

3 3 20141223 DR 40 BIRTH_
REG

987
60

Table 5.8: TABLE-B2

In account_multi_sub table, there will be a row for each multi-value position as well

as for each sub-value position under that multi-value position of a particular record.

Consider multi-value set of a record, for each multi-value element there will be a

separate row. So in this case actually it will insert maximum number of multi-value for any of

the fields on that record. Say if there are 3 multi-valued fields on a value set; first one has 1

multi-value, second has 3 and third has 2. When considering whole value set, it create 3 rows

to separately identify multi values and identify relationship between them.

Now consider case where there is sub-valued field among the whole value set (on

each multi-value, it may have more than one sub-value). Suppose there are two sub-valued

fields on a value set, where first one has 1 multi-value and under it 2 sub-values, it will

require 2(maximum number of sub-value for its only multi-value position) rows to be

inserted. Second has 2 multi-value where it has 2 and 3 number of sub-values under its first

and second multi-value respectively. For first multi-value position maximum number of sub-

value is 2 and for second multi-value position is 3. So for first multi-value position of the

value-set it will require 2(maximum number of sub-value for first multi-value position) rows

39

to be inserted and for second multi-value position of the value-set it will require 3(maximum

number of sub-value for second multi-value position) rows to be inserted.

Say n is the number of multi-value element of a field among a value set and

�,

,
�, ⋯⋯⋯⋯⋯ ,
� are the maximum number of sub-value for 1st, 2nd, ………, nth

multi-value element respectively. So total no of rows inserted for each record will be:

� =
� +

 +
� +⋯⋯⋯⋯⋯⋯⋯⋯⋯+
� = ∑
�
�
��� (5.2)

40

Chapter 6

6 Implementation

Working principle has been implemented using following:

• Java as programming language

• jdk-7 as development kit

• netbeans-7.4 as java editor

• oracle as RDBMS

• Toad as oracle editor

The flow of implementation is as follows:

• First we install the required software packages

• Then we take the metadata of our sample dataset and create a table in oracle database

to store it.

• After that we develop our programs to implement our proposed techniques.

• After successful run of the programs, it creates and populates table as discussed in

both the techniques.

We develop the following classes to implement the proposed methods:

• ReadTextFileTest: It is the main class which controls the flow of programs

• ReadMetaData: It parses the metadata of the file for further program actions.

• DbOperation: It controls all the database operations

• ReadTextFile: It implements the principle of space efficient technique

• TimeEffective: It implements the principle of time efficient technique

41

Chapter 7

7 Performance Evaluation

We measure space and time on both space and time efficient case and evaluate space

versus time to evaluate performance.

First we take a look back on how tables created and inserted data in space efficient

technique. By applying this method we will get schemas in third normal form; so except

foreign key we will not get data duplication. On the other hand in case of time efficient

method only two tables will be created. By applying this method we will get schemas in first

normal form; so in table there will be huge data duplication can be found.

Suppose there is a subvalue field which have 9 multivalues ��, �
, ��, ⋯⋯⋯��

and multivalues have 2, 4, 6, 8, 10, 12, 14, 16, 18 subvalues respectively. And another

subvalue field (not associated) have 9 multivalues ��, �
, ��, ⋯⋯⋯ , �� and multivalues

have 18, 16, 14, 12, 10, 8, 6, 4, 2 subvalues respectively. Now we will calculate number of

rows inserted by each technique.

In space efficient technique, number of inserted rows will

be=2+4+6+8+10+12+14+16+18=50*2=100

In time efficient technique, number of inserted rows will be=18*9=162. Also other

multi values and sub values data will get duplicated for same multi value and sub value

position. So it is clear that first method will take less space than second one.

Now take a look on time efficiency. Space efficient method generates schema in 3NF;

number of tables on this method is good in number (depends on dictionary file). So it requires

42

frequent joining operation to get expected query result. On the contrary time efficient method

generates schema in 1NF; number of tables on this method is only 2. So it requires very less

joining operation to get expected query result. Number of tables created in space efficient

method against a table follows:

No of non
associated MV

column(A)

No of associated
MV column

set(B)

No of associated set
which contain both MV
and SV column set(C)

� = 1 + � + � + 2�

1 1 1 5
2 2 2 9
3 3 3 13
4 4 4 17
5 5 5 21

Table 7.1: Simulation of number of table required

As the number of joining operation increase, time require executing query also

increase. It summarize that in space efficient technique it save space over time efficient

technique; first one is space efficient. But time efficient technique save time over space

efficient technique; second one is time efficient.

Sample data of MVDBMS taken and convert it into both techniques, calculate

occupied space. Then we perform various queries to get expected result set and calculate

elapsed time.

Space and time measurement for both techniques are as follows:

Sample
No

Space(MB) X Time(ms) Y
Space Efficient

Technique
Time

Efficient
Technique

Space Efficient
Technique

Time Efficient
Technique

1 0.43 1.28 162 9
2 2.59 7.74 345 23
3 59.91 180.33 540 227
4 99.45 300.34 2005 655
5 199.59 604.75 3107 904
6 1087.06 3304.66 33060 2137
7 3025.01 9150.51 52903 4007

Table 7.2: Space versus Time table

43

By plotting values obtained from Table 7.2, we get the following space versus time graph:

Figure 7.1: Space versus Time graph

44

Chapter 8

8 Conclusion And Future Work

In this thesis, we have identified that a multi-valued database cannot handle complex

queries well. Therefore, we have proposed and then elaborated two approaches to transform

multi-value database systems into relational database systems for faster querying and

supporting complex SPJ queries. One of the proposed approach transform multi-value source

data into 3NF and works well when only limited amount of storage space is available; hence

it is called "Space Efficient Technique". While the other approach transform multi-value

source data into 1NF and executes queries faster than the former which makes it more

suitable to online or streaming data platform; hence it called "Time Efficient Technique".

In future, we would like to extend this work and want to build an intelligent system

that will be capable of analyzing the current system and data characteristics to determine the

appropriate platform, i.e. either MVDBMS or RDBMS, as well as to transform MVDBMS

into RDBMS (if required) using which of these two proposed approaches. We would like to

also investigate the possibility of building a hybrid approach which can offer us the goods of

both of these proposed approaches. We would also like to develop a common API which can

be used on any NoSQL/multi-value database to transform into relational database for its

query processing. In addition to that a user interface can be built where user will just select

options of query and API will generate query against that selection to make complex data

retrieval more easy to person who don't know SQL scripting.

45

References

[1] Karamjit Kaur, Rinkle Rani: Modeling and querying data in NoSQL databases. In: IEEE

International Conference on Big Data, 2013

[2] Xiang Li, Zhiyi Ma, Hongjie Chen: QODM: A query-oriented data modeling approach

for NoSQL databases. In: IEEE Workshop on Advanced Research and Technology in

Industry Applications (WARTIA), 2014

[3] Anderson Chaves Carniel, Aried de Aguiar Sá, Vinícius Henrique Porto Brisighello,

Marcela Xavier Ribeiro, Renato Bueno, Ricardo Rodrigues Ciferri , Cristina Dutra de

Aguiar Ciferri: Query processing over data warehouse using relational databases and

NoSQL. In: XXXVIII Conferencia Latinoamericana En Informatica (CLEI), 2012

[4] Kudakwashe Zvarevashe, Tatenda Trust Gotora: A Random Walk through the Dark Side

of NoSQL Databases in Big Data Analytics. In: International Journal of Science and

Research (IJSR), ISSN (Online): 2319-7064, Volume 3 Issue 6, June 2014

[5] Mohamed A. Mohamed, Obay G. Altrafi, Mohammed O. Ismail: Relational vs. NoSQL

Databases: A Survey. In: International Journal of Computer and Information Technology,

(ISSN: 2279 – 0764) , Volume 03 – Issue 03, May 2014

[6] Biswajeet Sethi, Samaresh Mishra, Prasant ku. Patnaik: A Study of NoSQL Database. In:

International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181,

Vol. 3 Issue 4, April - 2014

[7] Christoph Bussler: SQL for NoSQL Databases: Déjà Vu. In: 7th Biennial Conference on

Innovative Data Systems Research (CIDR'15), Asilomar, California, USA, January 4-7,

2015

46

[8] Kavita Ozarkar, Rakesh Rajani: Optimization Technique for Efficient Dynamic Query

Forms with NoSQL. In: International Journal of Science and Research (IJSR), Volume 3

Issue 11, November 2014

[9] Haleemunnisa Fatima, Kumud Wasnik: Comparison of Sql, Nosql and New Sql

Databases in Light of Internet Of Things – A Survey. In: Proceedings of 48th IRF

International Conference, Pune, India, ISBN: 978-93-85973-21-5, 31st January 2016

[10] Ricardo Vilaca, Francisco Cruz, Jose Pereira, Rui Oliveira: An effective scalable SQL

engine for NoSQL databases. In: 13th IFIP WG 6.1 International Conference, DAIS

2013, Held as Part of the 8th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2013, Florence, Italy, pp 155-168, June 3-5, 2013

[11] Ramon Lawrence: Integration and Virtualization of Relational SQL and NoSQL Systems

Including MySQL and MongoDB. In: International Conference on Computational

Science and Computational Intelligence (CSCI), 10-13 March 2014

[12] http://www.jbase.com/products/jbase-multivalue-database/ (accessed on 19/09/16)

[13] Y. Zhao, K. Ramasamy, K. Tufte, J.F. Naughton: Array-based evaluation of multi-

dimensional queries in object-relational database systems. In:14th International

Conference on Data Engineering, pp- 241-249, 1998

[14] R. Kimball: Data Warehousing Toolkit. In: John Wiley & Sons, 1995

[15] M. Gyssens, L. V.S. Lakshmanan: A Foundation for Multi-Dimensional Databases. In:

VLDB 1997, pp.106 -115, 1997

[16] R. Agrawal, A. Gupta, S. Sarawagi: Modeling Multidimensional Databases. In: ICDE

97, pp.232 -243, 1997

47

[17] Suchitra Reyya, T. Summallika, G.V.M. Vasuki: An approach to store spatial big-data

using multi-valued database. In: International Journal of Research in Engineering &

Technology (IMPACT: IJRET), ISSN(E): 2321-8843, ISSN(P): 2347-4599, Vol. 1, Issue

6, Nov 2013

