
Process Based Service Composition

and Verification

By

Ashika Afreen

Nowshin Laila

&

Md Sathil Islam

Supervised By

Dr. Shamim H. Ripon

East West University

Department of Computer Science and Engineering

Spring 2017

ii | P a g e

Process Based Service Composition

and Verification

Submitted By

Ashika Afreen

2012-3-60-036

Nowshin Laila

2013-1-60-050

&

Md Sathil Islam

2013-1-60-012

A project submitted in partial fulfillment for the degree of

Bachelor of Science in Computer Science and Engineering

In the

Faculty of Science and Engineering

Department of Computer Science and Engineering

East West University

Spring 2017

iii | P a g e

Declaration

We, hereby certify that our thesis work solely to be our own scholarly work. To the best of

our knowledge, it has not been collected from any source without the due acknowledgement

and permission. It is being submitted in fulfilling the requirements for the degree of Bachelor

of Science in Computer Science and Engineering. It has not been submitted, either in whole

or in part for a degree or examination at this or any other university.

Ashika Afreen

(2012-3-60-036)

Nowshin Laila

 (2013-1-60-050)

Md Sathil Islam

(2013-1-60-012)

iv | P a g e

Letter of Acceptance

The Project entitled “Process Based Service Composition and Verification” submitted by

Ashika Afreen (2012-3-60-036), Nowshin Laila (2013-1-60-050) & Md Sathil Islam (2013-1-

60-012) to the Department of Computer Science and Engineering, East West University,

Dhaka, Bangladesh in the semester of Fall 2015 is approved satisfactory in partial fulfillment

of requirements for award of the degree of Bachelor of Science in Computer Science and

Engineering.

Dr. Shamim H. Ripon

SUPERVISOR

Department of Computer Science and Engineering

East West University

Dhaka-1212, Bangladesh

v | P a g e

Abstract

A platform-independent software component available in the distributed environment of the

Internet is titled as Web service. Many Business organizations are publishing their

applications functionalities on the web. A web service has a limited functionality alone. So to

support business to business interactions it is a crying need to aggregate web services and

assembled them in a goal oriented interface. To provide atomicity to a transaction where

multiple partners are involved handling faults are both difficult and critical. A possible

solution of the problem would be that the system designer can provide a mechanism to

compensate the actions that cannot be undone automatically. In this project we have

composed a car broker system and implemented a compensation mechanism that will

compensate all services from their point of cancelation. We have modeled the service

choreography in FSP and used LTSA tool to animate the transitions. Every model should be

verified before implementation, we tried to verify the system composition using property

processes available in FSP.

vi | P a g e

Acknowledgement

It is with enormous appreciation that we acknowledge the contribution of our supervisor, Dr.

Shamim H. Ripon, Associate Professor of Department of Computer Science and

Engineering, East West University. Without his proper guidance, encouragement and support

this thesis would have remained a dream. We consider it as an honor to work with him. We

are also indebted to our parents, other professors of the department and friends for their

support and encouragements. Finally, thanks to the Almighty, who gave us the patience to

complete the task successfully.

vii | P a g e

Table of Contents

Chapter 1 .. 1

Introduction ... 1

1.1 Introduction and Motivation ... 1

1.2 Objective .. 2

1.3 Contribution ... 2

1.4 Outline .. 3

Chapter 2 .. 4

Background .. 4

2.1 Web Service and Composition.. 4

2.1.1 Orchestration ... 4

2.1.2 Choreography .. 5

2.2 FSP .. 6

2.2.1 Modeling Processes in FSP ... 6

2.2.2 Property Processes to Verify the System .. 12

Chapter 3 .. 13

‘ONLINE MARKETPLACE’ Service Composition ... 13

3.1 ‘ONLINE MARKETPLACE’ Web Service .. 13

3.1.1 Buyer ... 14

3.1.2 Marketplace... 14

3.1.3 Seller ... 15

3.1.4 Supplier ... 15

3.1.5 Transaction .. 16

3.2 Compensation in Online Marketplace Web Service ... 18

3.2.1 Compensation ... 18

3.2.2 Compensation Mechanism for Online Marketplace Web Service 18

Chapter 4 .. 20

Service Composition in FSP ... 20

4.1 Coding Representation .. 20

4.2 Modeling the ‘ONLINE MARKETPLACE’ Service in FSP ... 20

viii | P a g e

4.2.1 Declaring Original Processes ... 20

4.2.2 Declaring Compensation Processes .. 24

4.2.3 Buyer & Marketplace Parallel Process ... 28

4.2.4 Main Compensation Compositions ... 29

4.2.5 Final Compositions ... 31

Chapter 5 .. 33

Composition Verification .. 33

5.1 Property Processes for Verification ... 33

5.2 Property Processes to Verify Compensation ... 33

5.2.1 Verifying Buyer Compensation .. 33

5.2.2 Verifying Seller Compensation ... 34

5.2.3 Verifying Marketplace Compensation .. 36

5.2.4 Verifying Supplier Compensation .. 38

5.2.5 Verifying Transaction Compensation .. 39

Chapter 6 .. 41

Conclusion ... 41

6.1 Summary .. 41

6.2 Future work .. 41

Appendix .. 42

A.1 Buyer Web Service ... 42

A.2 Seller Web Service .. 42

A.3 Marketplace Web Service ... 42

A.4 Supplier Web Service .. 43

A.5 Transaction Web Service ... 43

A.6 Main Process .. 43

A.7 Property Process ... 44

References .. 48

ix | P a g e

List of Figures

Figure 2.1 Composition of Web Services with Orchestration [3] ... 5

Figure 2.2 Composition of Web Services with Choreography [3] ... 5

Figure 2.3 LTSA Representation of CLOCK Process .. 7

Figure 2.4 LTSA Representation of Deterministic Process DRINKS. .. 7

Figure 2.5 LTSA Representation of Non-deterministic Process COIN. .. 8

Figure 2.6 LTSA Representation of LEVEL Process. ... 8

Figure 2.7 LTSA Representation of COUNT Process. .. 9

Figure 2.8 LTSA Representation of Composition CONVERSE_ITCH. ... 10

Figure 2.9 LTSA Representation of Composition MAKER_USER. ... 11

Figure 2.10 LTSA Representation of Relabeling in CLIENT_SERVER ... 12

Figure 2.11 LTSA Representation of Property POLITE ... 12

Figure 3.1 System Composition ... 13

Figure 3.2 BUYER ... 14

Figure 3.3 MARKETPLACE ... 14

Figure 3.4 SELLER .. 15

Figure 3.5 SUPPLIER .. 16

Figure 3.6 TRANSACTION .. 16

Figure 3.7 A Message Sequence Chart in ‘Process Based Service Composition and Verification’ 17

Figure 3.8 A Message Sequence Chart to describe Compensation …………………………………..19

Figure 4.1 LTSA Representation of BUYER Process .. 20

Figure 4.2 LTSA Representation of MARKETPLACE Process .. 20

Figure 4.3 LTSA Representation of SELLER Process ... 21

Figure 4.4 LTSA Representation of SUPPLIER Process ... 21

Figure 4.5 LTSA Representation of TRANSACTION Process .. 22

Figure 4.6 LTSA Representation of BUYER Process with compensation ... 22

Figure 4.7 LTSA Representation of MARKETPLACE Process with Compensation 23

Figure 4.8 LTSA Representation of SELLER Process with Compensation 24

Figure 4.9 LTSA Representation of SUPPLIER Process with Compensation 25

Figure 4.10 LTSA Representation of TRANSACTION Process with Compensation 25

Figure 4.11 LTSA Representation of Buyer & Marketplace Parallel Process 27

x | P a g e

Figure 4.12 LTSA Representation of Main Process ... 30

Figure 5.1 LTSA Representation of Safety Property SAFE_BYR ... 31

Figure 5.2 LTSA Representation of BYRSAFE Process .. 32

Figure 5.3 LTSA Representation of BYRSAFE Process with Invalid State 32

Figure 5.4 LTSA Representation of Safety Property SAFE_SLR .. 32

Figure 5.5 LTSA Representation of SLRSAFE Process ... 33

Figure 5.6 LTSA Representation of SLRSAFE Process with Invalid State 34

Figure 5.7 LTSA Representation of Safety Property SAFE_MP ... 34

Figure 5.8 LTSA Representation of MPSAFE Process ... 35

Figure 5.9 LTSA Representation of MPSAFE Process with Invalid State ... 35

Figure 5.10 LTSA Representation of Safety Property SAFE_SUP ... 36

Figure 5.11 LTSA Representation of Safety Property SUPSAFE Process .. 36

Figure 5.12 LTSA Representation of SUPSAFE Process with Invalid State 37

Figure 5.13 LTSA Representation of Safety Property SAFE_TRANS .. 37

Figure 5.14 LTSA Representation of Safety Property TRANSSAFE Process 38

Figure 5.15 LTSA Representation of TRANSSAFE Process with Invalid State 38

1 | P a g e

CHAPTER 1

Introduction

1.1 Introduction and Motivation

Business transactions need multiple partner involvement, coordination and interaction with
each other. Many business companies or enterprises publish their applications functionalities
on the web using a web service format. Web services are defined as self-contained, modular
units of application logic, which provide business functionality to other applications through
an Internet connection. Each service provider is a self-contained software system having its
own threads of control.

In this technological era business applications like web services allows greater efficiency and
availability for business. A web service alone has a limited functionality which may not be
sufficient to respond to the user's request. Whereas a composition of several web services can
achieve a specific goal. From a user perspective, the composition might be considered as a
simple web service, even though it is composed of several web services. In an essence, the
aggregation is a collaboration of many Web service providers.

Models are simplified representations of real-world entities. We model something to better
understand it. We can use models to focus on interesting aspects, visualize potential
outcomes and create mechanisms to test and verify an approach. We need model checking to
verify correctness properties such as the absence of deadlocks and similar critical states that
can cause the system to crash. Every model should be verified before implementation. There
are various languages to model a system and verify it properly. BPEL, cCSP and FSP are

most handful language to model a system with their notations. Among them FSP has the most
expressive and powerful approach to visualize the system. To provide atomicity to a
transaction handling faults where multiple partners are involved are both difficult and critical.
A possible solution of the problem would be that the system designer can provide a
mechanism to compensate the actions that cannot be undone automatically. In BPEL
compensation is expressed in a XML notation, in cCSP it is expressed in a compensation pair
but it can be expressed in FSP as a separate process and represented elaborately.

2 | P a g e

1.2 Objectives
The objectives of our project are as follows:

 Analyzing the web service composition in respect to the composition mechanism

orchestration and choreography.

 Modeling a composition using Finite State Process (FSP) notations and Labeled

Transition System Analyzer (LTSA) tool.

 Introducing a compensation mechanism as a fault handler that could handle all the

failed transactions and could manage all the compensation processes of every

component processes.

 Verifying the designed model as it is specified in the model specification. Ensuring

that in a concurrent execution all synchronizing points executes properly and no

deadlock and such critical states occur that violate the correctness properties.

1.3 Contribution
Our contributions in the project are as follows:

We have used Finite State Process (FSP) notations to describe the model and LTSA tool to
generate the corresponding Labeled transition Diagrams. We select Online Marketplace Web
Service as our model. We analyzed the model and identified various components of the web

service as well as the composition among the services. Then implement the system according
to their interactions.

We have implemented a compensation mechanism which will describe the compensation
actions from the point of cancelation. Each process has its own compensation process and a

main compensation process to control the whole mechanism. We added some safety
properties to verify synchronizations among processes in a concurrent execution and checked
the correctness properties such as the absence of deadlocks and similar critical states that can

3 | P a g e

1.4 Outline
Chapter 1: Firstly we represent about our motivation to work, Specify our objectives and

then the contribution that we have made.

Chapter 2: Web service composition and two ways to compose the web services

(Choreography and orchestration). Then a brief description is given about Finite State

Process (FSP) which is used to specify our model and about LTSA tool to compile FSP

notations. After that we discussed about Compensating CSP (cCSP).

Chapter 3: This chapter describes about car broker service composition including the

contribution of each web services in the system and how the compensation process works.

Chapter 4: The coding representation of our service in FSP.

Chapter 5: Define some Safety properties in order to verify our web service composition and

compensation by composing them with required safety properties.

Chapter 6: At last, in this chapter we summarized our work and give a definition about our

future plan.

4 | P a g e

CHAPTER 2

Background

2.1 Web Service and Composition
Web services are distributed, independent processes which communicate with each other
through the exchange of messages. The coordination between business processes is
particularly crucial as it includes the logic that makes a set of different software components
become a whole system. Web services provided by various organizations can be
interconnected to implement business collaborations, leading to composite web services.
Business collaborations require interactions driven by explicit process models. Web services
are driven by the paradigm of the so called service oriented architecture (SOA), which

describes the relationships, that exists among service providers, service consumers, and
service brokers and there by provides an abstract execution environment for web services.
We refer to a service implemented by combining the functionality provided by other web
services as a composite service, and the process of developing a composite web service as
service composition [1, 2].

There are two key aspects in web service composition those are choriography and
orchestration.

2.1.1 Orchestration
In Orchestration several web services are involved in an operation. In the operation one
central process, can be a web service, leads the other web services and coordinates the
execution of different parts of the operation on different web services. As all the data are
exchanged via the central coordinator of the orchestration so it needs to understand the
specific composition logic and other web services need not to know that they are being

incorporated in a composition process and taking part in a larger business process. Every
component service considers the central coordinator just as one consumer of its service.
Orchestration describes how web services interact with each other through messages,
including the business logic and execution order [3, 4].

5 | P a g e

Figure 2.1: Composition of Web Services with Orchestration [3]

2.1.2 Choreography
Choreography is based on collaboration; it does not rely on a central coordinator. In
choreography each web service needs to be aware of the business process. All participants
need to know when to execute its operations, what messages to exchange, when to exchange
the messages and with whom it to interact [3, 4].

Figure 2.2: Composition of Web Services with Choreography [3]

6 | P a g e

2.2 FSP

FSP stands for Finite State Processes. Finite State Processes is an algebraic notation to

describe process models. The constructed FSP can be used to model the exact transition of
workflow processes through a modeling tool such as the Labeled Transition System Analyzer
(LTSA), which provides compilation of an FSP into a Labeled Transition System. Models are
described using state machines, known as Labeled Transition Systems LTS. These are
described textually as finite state processes (FSP) and displayed and analyzed by the LTSA
analysis tool. This tool gives an opportunity to test the model workflows before implementing
the model. LTS is the graphical form and FSP is the algebraic form [5].

FSP consists of Action Prefix, Process Definition, Choice, Indexed Processes and Actions,
Guarded Actions, properties, Constant and Range Declarations, Variable Declaration, Process
Alphabets and so on.

2.2.1 Modeling Processes in FSP
A service can be a process or a composition of several processes. A process is the execution
of a sequential program. It is modeled as a finite state machine which transits from state to
state by executing a sequence of atomic actions. In practical terms, an action might be a
communication, a signals, or perhaps, traditional execution of a task [6].

In FSP processes are two types such as Primitive Processes and Composite Processes.

Primitive Processes

Primitive processes are defined using action prefix, choice and recursion. Both action labels
and local process names can be indexed or non-indexed.

Action Prefix "->"

Action prefix defines a transition between states. If x is an action and P a process then the

action prefix (x->P) describes a process that initially engages in the action x and then behaves
exactly as described by P. The action prefix operator “->” always has an action on its left and
a process on its right. In FSP, identifiers beginning with a lowercase letter denote actions and
identifiers beginning with an uppercase letter denote processes. A primitive process definition
is terminated by a full stop [6].

The following definition describes the process CLOCK which repeatedly engages in the
action tick.

CLOCK = (tick -> CLOCK).

7 | P a g e

The LTS corresponding to the definition above is:

Figure 2.3: LTSA representation of CLOCK process.

Choice "|"

Choice is represented as a state with more than one outgoing transition. Choice operator “|”
can express a choice of more than two actions. Choices are of two types, Deterministic and
Non-Deterministic. The FSP language provides mechanisms for deterministic and non-
deterministic choice. Their definitions are as follows:

Deterministic Choice: If x and y are actions then (x->P | y->Q) describes a process which
initially engages in either of the actions x or y. The execution of action x will have
subsequent behavior described by P. Similarly, the execution of y will have subsequent
behavior described by Q.

The example describes the behavior of a dispensing machine which dispenses coffee if the
red button is pressed and tea if the blue button is pressed.

DRINKS = (red->coffee->DRINKS | blue->tea->DRINKS).

Figure 2.4: LTSA representation of Deterministic process DRINKS.

Non-deterministic Choice: The process (x->P | x->Q) is said to be non-deterministic since

after the action x, it may behave as either P or Q. The COIN process defined below and
drowns as a state machine in Figure is an example of a non-deterministic process [6, 7].

8 | P a g e

COIN = (toss->heads->COIN | toss->tails->COIN).

Figure 2.5: LTSA representation of Non-deterministic process COIN.

Conditional

A conditional takes the form: if expr then local_process else local_process. FSP supports
only integer expressions. A non-zero expression value causes the conditional to behave as the
local process of the then part; a zero value causes it to behave as the local process of
the else part. The else part is optional, if omitted and expr evaluates to zero the conditional
becomes the STOP process.

Example:

LEVEL = (read[x:0..2] -> if x>=1 then (high -> LEVEL) else (low ->

LEVEL)).

Figure 2.6: LTSA representation of LEVEL process.

9 | P a g e

Guarded Actions

It is often useful to define particular actions as conditional, depending on the current state of

the machine. We use Boolean guards to indicate that a particular action can only be selected
if its guard is satisfied. The choice (When B x->P | y->Q) means that when the guard B is true
then the actions x and y are both eligible to be chosen, otherwise if B is false then the action x
cannot be chosen. The example below is a process that encapsulates a count variable. The
count can be increased by inc operations and decreased by dec operations. The count is not
allowed to exceed N or be less than zero [6].

COUNT (N=3) = COUNT[0],

COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

 |when(i>0) dec->COUNT[i-1]).

Figure 2.7: LTSA representation of COUNT process.

FSP supports only integer expressions; consequently, the value zero is used to represent false
and any non-zero value represents true.

Sequential Composition in FSP

If P is a sequential process and Q is a local process, then P;Q represents the sequential
composition such that when P terminates, P;Q becomes the process Q.

Composite Processes

Composite processes are defined using parallel composition, relabeling and hiding.

Parallel Composition in FSP

If P and Q are two processes then (P || Q) represents the concurrent execution of P and Q. The
operator || is the parallel composition operator. Parallel composition yields a process, which is
represented as a state machine in the same way as any other process. The state machine
representing the composition generates all possible interleaving of the traces of its component

10 | P a g e

processes. Composite process definitions are always preceded by “||” to distinguish them
from primitive process definitions. For example, the process:

ITCH = (scratch->STOP).

has a single trace consisting of the action scratch. The process:

CONVERSE = (think->talk->STOP).

has the single trace think->talk . The composite process:

||CONVERSE_ITCH = (ITCH || CONVERSE).

has the following traces

think->talk->scratch

think->scratch->talk

scratch->think->talk

The state machine representing the composition is formed by the Cartesian product of its
constituents [6].

Figure 2.8: LTSA representation of Composition CONVERSE_ITCH.

Modeling interaction - Shared Actions

If processes in a composition have actions in common, these actions are said to be shared.
Concurrent processes that share actions interact with each other for synchronization. A shared
action must be executed at the same time by all the processes that participate in that shared
action while unshared actions may be arbitrarily interleaved. For an example, a process that
manufactures an item and then signals that the item is ready for use by a shared ready action.
A user can only use the item after ready action occurs. Two items can be made before the
first is used which is an undesirable behavior and we do not wish the MAKER process to get
ahead in this way. The solution is to ensure that the user indicates that the item is used. The

11 | P a g e

used action is shared with the MAKER who now cannot proceed to manufacture another item
until the first is used. The interaction between MAKER and USER in such a way is an
example of a handshake. A handshake is an action acknowledged by another action.
Handshake protocols are widely used to structure interactions between processes [6].

MAKER = (make->ready->used->MAKER).

USER = (ready->use->used->USER).

||MAKER_USER = (MAKER || USER).

Figure 2.9: LTSA representation of Composition MAKER_USER.

Relabeling Actions in FSP

Relabeling functions are applied to processes and change the names of action labels. This is

usually done to ensure that composite processes synchronize on the desired actions. /

{newlabel_1/oldlabel_1,…newlabel_n/oldlabel_n} is the general form of the

relabeling function. For an example, a server process that provides some service and a client
process that invokes the service are described below.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

Using relabeling we can associate call action of the CLIENT with the request action of the
SERVER and similarly the reply and the wait actions.

||CLIENT_SERVER = (CLIENT || SERVER)

 / {call/request reply/wait}.

The effect of applying the relabeling function can be seen in the state machine as the label
call replaces request in SERVER and reply replaces wait in CLIENT [6].

12 | P a g e

Figure 2.10: LTSA representation of Relabeling in CLIENT_SERVER.

Hiding "\" and "@"

Hiding removes action names from the alphabet of a process and thus makes these concealed
actions "silent". By convention, these silent actions are labeled "tau". The general form of a
hiding expression is \ {set of labels to be hidden}. Sometimes it is more convenient to state
the set of action labels, which are visible and hide all other labels. This is expressed by @
{set of visible labels} [6].

2.2.2 Property Processes to verify the System
Safety Properties

Safety properties are specified to LTSA as deterministic primitive processes which contain no
silent (tau) transitions (no hiding). Safety property processes are denoted by the
keyword property. They are composed with a target system to ensure that the specified
property holds for that system. Composing a property process with a set of processes does not
affect their normal operation. If behavior can occur that violates the safety property, then a

transition to the ERROR state results. For example, the following property specifies that only
behavior in which knock occurs before enter is acceptable [6].

property POLITE = (knock->enter->POLITE).

Figure 2.11: LTSA representation of Property POLITE.

13 | P a g e

CHAPTER 3

‘ONLINE MARKETPLACE’ Service Composition

3.1 ‘ONLINE MARKETPLACE’ Web Service
“Online Marketplace” is an online service which designed for maintain communication

between Buyer and Seller for online purchase. Here, partner web service Marketplace uses
two separate partner web service – A Buyer who requests product to the Marketplace for
purchase; and A Seller who receives product request from Buyer via Marketplace and arrange
products for sell. There are supporting web services – SUPPLIER which is related to
SELLER and TRANSACTION which has connection with BUYER and TRANSACTION.

In this example model, a Buyer requests product to Marketplace, Marketplace receives the
request and forwards into the relevant seller for the price. Seller also forwards the request to
Supplier for the availability of products and wants quotation about price. If we take that all
actions are reacting positively then the scenario will be – Supplier have available products
and send product list with price to the seller, seller forward it to the Marketplace and
Marketplace forward it to the Buyer. Price argument is a possible scenario here where Buyer
requests for price changing to the seller through the MP. Again, we are taking positive action
that SELLER accepts the price and ready to sell. Buyer receives this acknowledgement
through MP and forward payment to transaction. MP will receive payment from Transaction

and forward it to the seller. After receiving payment seller will send the product to Buyer.
There can be negative possibilities also and they are considering as Compensation. Here,
supplier can be running out of stocks, Seller cannot be agreed to the demanding price of
Buyer or Buyer can cancel order anytime. For each negative action all the steps will be
canceled which has generated before. In the Transaction state, transfer of payment from
Buyer can be failed, forwarding payment to MP or Buyer can also fail. In each case
Transaction will start from the beginning.

Fig. 3.1: System Composition

14 | P a g e

3.1.1 BUYER
In the system, at first buyer request a product to the Marketplace to give an order and
Purchase it. According to order Buyer receives a price list of available product from
marketplace. Buyer can either accept the price or may bargain. For bargaining, Buyer
requests price to marketplace and receives reply from marketplace which could be positive or
negative. Buyer confirms the product by sending ACK or rejects it by sending NAK. The
rejection is a compensation state. Buyer transfer payment to the Transaction process and
receive confirmation of the success by ACK/NAK. After successful transaction Buyer
receives delivery.

Figure 3.2: BUYER

3.1.2 Marketplace
After receiving product requests from Buyer, the marketplace sends product query to seller

and receive product list with price from seller. Then the list is forwarded to Buyer and receive
price request from Buyer for beginning. Marketplace forwards the requested price to seller
and receives reply of agreement or rejection. Then marketplace receives both order
confirmation and product confirmation from Buyer and seller. After all positive actions,
marketplace receives payment from transaction and forwards it to the buyer. For all the
rejection or failed transaction, Compensation process will run where all the running states
will be terminate by throwing a packaging.

Figure 3.3: MARKETPLACE

15 | P a g e

3.1.3 SELLER
SELLER service is the connection between marketplace and supplier. It receives product
quotation from marketplace and forwards it to SUPPLIER. SUPPLIER replied the product
quotation with price list and SELLER forwards it to Marketplace. SELLER receive price
request from marketplace for bargain and can accept it or reject it. The rejection is the
compensation state and will undo all the previous states. For the acceptance of price, a
confirmation message will send to both marketplace and SUPPLIER. SUPPLIER receives
products from marketplace and then sends the product for delivery. Any rejection or failure
of transaction will throw a cancelation message.

Figure 3.4: SELLER

3.1.4 SUPPLIER
The SUPPLIER web service starts by receiving product quotation from SELLER. Then
SUPPLIER sends product information to SELLER. After receiving order confirmation
SUPPLLIER sends a reply message with positive or negative reply. The negative reply is
Compensation which will cancel all the running actions. Supplier will finally transfer product
to the Seller.

16 | P a g e

Figure 3.5: SUPPLIER

3.1.5 Transactions
The Transaction web service is responsible for all the payment transfer. At first it will receive
payment from the Buyer and reply confirmation by sending messages to Buyer. Then it
forwards payment to Marketplace and wait for reply message for confirmation. All successful
transfer of payment will close the service but a single failure will turn of all the running
states.

Figure 3.6: TRANSACTION

17 | P a g e

A message sequence chart is here to describe relations between the web
services:-

Figure 3.7: A Message Sequence Chart in ‘Process Based Service Composition & Verification’

18 | P a g e

3.2 Compensation in Online Marketplace Web Service

3.2.1 Compensation
To give a proper service it needs interaction between services. One service can call another
service and need to deals with error occurs during interaction. If any negative
acknowledgement is thrown by any service it is considered as a fault or error of the system
for which service cannot be continued anymore. That’s why we have to handle errors by
compensating the services. A mechanism is used to handle the errors that can arise in any
stage of communication between services is called compensation. Using the compensation
mechanism all services can reach in their initial state from where they have been interrupted.

3.2.2 Compensation Mechanism of Online Marketplace Web Service
In our model, we have designed each of the web services independently to handle
compensation. While a negative acknowledgement is thrown by any service then the service
itself will run the compensation process and also throws indication to the other services to
heading towards the compensation state. The reverse actions are performed to compensate the
other services from where the interruption occurs.

In the case of rejection, Buyer will send negative acknowledgement (NAK) which will
compensate Buyer’s activities and will throw a cancel message to compensate all the other
web services.

Marketplace will compensate when BUYER or SELLER sends NAK to marketplace. After
receiving NAK Marketplace itself will cancel all the actions and reverse the states and will
also send cancelation messages to other process to terminate all the actions.

SELLER can be disagreed to the requested price of BUYER and throw an interruption to its
related processes to compensate.

The failure message of the Supplier will be received by a compensation process which will
compensate Supplier’s activities and will throw an interrupt to the SELLER process to
terminate and forward messages to compensate others.

Transaction state will compensate for each failure of payment transfer. But if it receives NAK
then it will throw a wait messages to the related state and after the timeout it will run the
compensation to terminate and throw interruption to others for compensate also.

19 | P a g e

A message sequence chart is here to describe the web services with
Compensation:-

Figure 3.8: A Message Sequence Chart in ‘Process Based Service Composition & Verification’ with
Compensation

20 | P a g e

CHAPTER 4

Service Composition in FSP

4.1 Coding Representation
In our system we have five major processes which have their own compensation process and
safety property to ensure a good composition. In FSP we modeled the system like that, a
Buyer requests product to Marketplace, Marketplace receives the request and forwards into
the relevant seller for the price. Seller also forwards the request to Supplier for the
availability of products and wants quotation about price. If we take that all actions are

reacting positively then the scenario will be – Supplier have available products and send
product list with price to the seller, seller forward it to the Marketplace and Marketplace
forward it to the Buyer. Price argument is a possible scenario here where Buyer requests for
price changing to the seller through the MP. Again, we are taking positive action that
SELLER accepts the price and ready to sell. Buyer receives this acknowledgement through
MP and forward payment to transaction. MP will receive payment from Transaction and
forward it to the seller.

4.2 Modeling the ‘ONLINE MARKETPLACE’ Service in FSP
ONLINE MARKETPLACE is divided into five major services. Each service contains its own
general process and its compensation process. Main Compensation Process handles any kind
of anomaly that occurs in the System.

4.2.1 Declaring Original Processes
BUYER

Buyer process consists of a sequence of actions. The process starts the service by requesting a
product by sending pro.req.to.mp for a product to the MARKETPLACE. When Buyer
receives a list from MARKETPLACE named as rcv.prc.list. Then for bargaining BUYER
send a request price.req.to.mp and if got confirmation as ack then send order confirmation by
sending conf.ordr . If MARKETPLACE confirms product as pro.conf.mp then BUYER sends
the payment to TRANSACTION as pay.trans. After successful transaction notified by ack.tr
BUYER terminate through END.

 BUYER= (pro.req.to.mp->rcv.prc.list->price.req.to.mp->ack

->conf.ordr->pro.conf.mp->pay.trans->ack.tr->END).

21 | P a g e

Figure 4.1: LTSA representation of Buyer Process

MARKETPLACE

MARKETPLACE is a process interacts with other three partner service processes. This
process starts with receiving a request from BUYER labeled as rcvpro_req.It requested
product query from seller and receive quotation as pque_slr and rcv_prlist respectively. It

forwards BUYER’s bargaining price to SELLER and receive reply also. Positive reply is
received as and it is forwarded to BUYER. It receives both order and product confirmation
from both BUYER and SELLER respectively labeled as rcv_ordr_conf_buyer and
rcv_pro_conf. MARKETPLACE also receives payment by rcv_payment from
TRANSACTION and forward to SELLER as fwd_payment_slr.

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->fwd_prcreq_slr->rcv.ack.frm.slr

->send_ack_buyer->rcv_ordr_conf_buyer->send_ack_slr

->rcv_pro_conf->send.pro.conf.bur->rcv_payment

->fwd_payment_slr->END).

Figure 4.2: LTSA representation of MARKETPLACE Process

SELLER

SELLER process receives product quotation as rcv_pro_query and forwards it to SUPPLIER
by req_pro_qt . SUPPLIER replied the product quotation and SELLER forwards it to

Marketplace respectively by rcv.info and send_pro_list. SELLER receives price request from
BUYER through MARKETPLACE as rcv_prc_req and if agreed then it will send prc.agreed.

22 | P a g e

It sends confirmation messages to both MARKETPLACE as send_pro_conf and SUPPLIER
as send_or_conf_sup. SELLER receives products availability from supplier and also receives
payment from MARKETPLACE by rcvpayment.frm.mp.

SELLER=(rcv_pro_query->req_pro_qt->rcv.info->send_pro_list

->rcv_prc_req->prc.agreed->rcv_order_conf->send_or_conf_sup

->rcv.pro.avail->send_pro_conf->rcv_pro->rcvpayment.frm.mp

->send_for_pckg->END).

Figure 4.3: LTSA representation of SELLER Process

SUPPLIER

Supplier receives a request for quotes from the SELLER by rcv.pro.qt. According to the
request, Supplier sends accumulated quotes to the SELLER by send.info.slr. After receiving
order confirmation from MARKETPLACE, SELLER sends confirmation to SUPPLIER by
the action labeled rcv.pro.conf . If the Supplier able to deliver the order it confirms to
SELLER by a action pro.avail and then transfer product by trans.pro.

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf->pro.avail

->trans.pro->rcv.ack.slr->END).

Figure 4.4: LTSA representation of Supplier Process

TRANSACTION

Transaction receives payment from BUYER process by rcv.payment.buyer. And if receive
payment then sends positive acknowledgement send.ack.bur and then forward payment to

23 | P a g e

MARKETPLACE as paymentfwd.to.mp. It receives ack after successful transfer as a positive
reply.

TRANSACTION= (rcv.payment.buyer->send.ack.bur->paymentfwd.to.mp->ack

->END).

Figure 4.5: LTSA representation of Transaction Process

4.2.2 Declaring Compensation Processes
Compensation Process for BUYER

Buyer’s compensation process is completed by BUYER itself. Every time BUYER recives
any negative reply as mp.cancel.ordr, rcv.nak.tr, nak will compensate itself by undoBYR.

BUYER= (pro.req.to.mp->rcv.prc.list->prc.req.to.mp->(ack

->(cancel.ordr->END|ordr.conf->(mp.cancel.ordr->undoBYR

->BUYER|mp.conf->pay.trans->(rcv.ack.tr->END|rcv.nak.tr

->pay.trans->END))|nak->BUYER)).

24 | P a g e

Figure 4.6: LTSA representation of BUYER Process with compensation

Compensation Process for MARKETPLACE

Marketplace can receive negative reply from any process. BUYER can cancel order by
sending byr.cancel.ordr. SELLER can be disagreed to the price request by price.nak . Seller
can cancel order or transfer of payment may failed. For each scenario MARKETPLACE will
send a negative reply like cancel.ordr.to.slr, send_nak_buyer, price.nak.bur to the related
processes and reverse itself to terminate the process.

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->fwd_prcreq_slr->(rcv.ack.frm.slr

->send_ack_buyer->(byr.cancel.ordr->cancel.ordr.to.slr

->undomp->MP|rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv_payment->fwd_payment_slr

->END|rcv.nak.frm.slr->send_nak_buyer->thrws

->END)|slr.cancel.ord->send.cencel.to.bur->undomp

->MP)|price.nak->price.nak.bur->MP)).

Figure 4.7: LTSA representation of MARKETPLACE Process with compensation

Compensation Process for SELLER

25 | P a g e

SELLER process maintains relation between MARKETPLACE and SUPPLIER. Each time it
receives any negative action from them, it will throw a termination/reverse message to others
for running compensation. SELLER receives negative indications as mp.cancel.ordr,
rcv.cant.supp.SELLER can disagreed to price and then send messages to others for
compensation like send.nak.

SELLER= (rcv_pro_query->req_pro_qt->send_pro_list->rcv_prc_req

->(prc.agreed->rcv_order_conf->send_or_conf_sup

->(mp.cancel.ordr->send.canle.sup->undoslr

->SELLER|rcv.pro.avail->send_pro_conf->rcv_pro->(ack.to.sup

->rcvpayment.frmMP->send_for_pckg->END|rcv.cant.supp

->send.cancel.to.mp->cancel->END))|send.nak->END)).

Figure 4.8: LTSA representation of SELLER Process with compensation

Compensation Process for Supplier

SUPPLIER process will compensate and reverse itself when it receives slr.cancel.ordr or
rcv.nak.slr from SELLER. When SUPPLIER is unable to send product then it will run
compensation by reversing itself and will send messages to other processes to compensate
like cant.supply.to.slr.

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf->(slr.cancel.ordr

->undosup->SUPPLIER|pro.avail->trans.pro->(rcv.ack.slr

26 | P a g e

->END|rcv.nak.slr->trans.pro->END)|cant.supply.to.slr

->SUPPLIER)).

Figure 4.9: LTSA representation SUPPLIER Process with compensation

Compensation Process for TRANSACTION

If TRANSACTION process does not receive payment to BUYER then it will reverse itself
and send negative acknowledgement as to BUYER and it will terminate BUYER also.
Negative reply from MARKETPLACE is an indication towards compensation of
TRANSACTION.

TRANSACTION=(rcv.payment.buyer->(send.nak.bu->failed-

>TRANSACTION|send.ack->paymentfwd->(ack->END|nak->reverse->failed-

>TRANSACTION))).

Figure 4.10: LTSA representation of TRANSACTION Process with compensation

27 | P a g e

4.2.3 BUYER & MARKETPLACE Parallel Process
It is the parallel process of BUYER and MARKETPLACE. After process relabeling, there
are some common actions and messages which is throwing by a process and is receiving by
another one.

BUYER=(pro.req.to.mp->rcv.prc.list->prc.req.to.mp->(ack

->(cancel.ordr->END|ordr.conf->(mp.conf->pay.trans

->(rcv.ack.tr->END|rcv.nak.tr->undotr->END))|mp.canc.ordr

->END)|nak->END)).

MP=(rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->(rcv.ack.frm.slr->send_ack_buyer

->(byr.cancel.ordr->cancel.ordr.to.slr->END|

rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv.payment->fwd_payment_slr

->END|rcv.nak.frm.slr->send_nak_buyer->END)|slr.cancel.ord

->send.cencel.to.bur->undomp->MP)|prc.nak->fwd.prc.nak->END)).

SELLER=(rcv_pro_query->req_pro_qt->send_pro_list->(prc.agreed

->rcv_order_conf->send_or_conf_sup->(mp.cancel.ordr

->send.canle.sup->END|rcv.pro.avail->send_pro_conf->rcv_pro

->(ack.to.sup->rcvpayment.frm.mp->send_for_pckg

->END|rcv.cant.supp->send.cancel.to.mp->cancel

->END))|disagreed->END)).

SUPPLIER=(rcv.pro.qt->send.info.slr->rcv.pro.conf->(slr.cancel.ordr

->END|pro.avail->trans.pro->(rcv.ack.slr->END|rcv.nak.slr

->trans.pro->END)|cant.supply.to.slr->END)).

TRANSACTION=(rcv.payment.buyer->(send.nak.bu->failed

->TRANSACTION|send.ack->paymentfwd.to.mp->(ack.mp->END|nak.mp

->reverse->failed->END))).

||B= (BUYER||MP)/

{pro.req.to.mp/rcvpro_req,rcv.prc.list/fwd_prlist_buyer,prc.req.to.m

p/rcv_prcreq_buyer,pque_slr/rcv_pro_query,prc.agreed/rcv.ack.frm.slr

,send.nak/price.nak,send.cencel.to.bur/mp.canc.ordr,nak/fwd.prc.nak,

prc.nak/disagreed,prc.req.to.mp/rcv_prcreq_buyer,rcv.prc.req/fwd_prc

req_slr,prc.agreed/rcv.ack.frm.slr,send_ack_buyer/ack,

28 | P a g e

cancel.ordr/byr.cancel.ordr,cancel.ordr.to.slr/mp.cancel.ordr,cant.s

upply.to.slr/mp.send.nak,mp.send.nak/send_nak_buyer,pro.avail/mp.con

f,pay.trans/rcv.payment.buyer,rcv.ack.tr/send.ack,rcv.nak.tr/send.na

k.bu,paymentfwd.to.mp/rcvpayment.frm.mp,

ordr.conf/rcv_ordr_conf_buyer,send_ack_slr/rcv_order_conf,pro.avail/

rcv_pro_conf,pro.avail/rcv.pro.avail,rcv_prc_req/fwd_prcreq_slr,paym

entfwd.to.mp/rcv.payment,fwd_prlist_buyer/rcv_pro_query,rcv.pro.qt/r

eq_pro_qt,rcv_prlist/send_pro_list,prc.req.to.mp/rcv_prcreq_buyer,rc

vpayment.frm.mp/fwd_payment_slr,ack.to.sup/rcv.ack.slr,

rcv_pro/trans.pro,slr.cancel.ordr/send.canle.sup,slr.cancel.ordr/mp.

cancel.ordr,rcv_prlist/send_pro_list,cant.supply.to.slr/rcv.cant.sup

p}.

 Figure 4.11: LTSA representation of BUYER & MARKETPLACE Parallel Process

4.2.5 Main Compensation Process

BUYER= (pro.req.to.mp->rcv.prc.list->prc.req.to.mp->(ack

->(cancel.ordr->END|ordr.conf->(mp.conf->pay.trans->(rcv.ack.tr

->END|rcv.nak.tr->undotr->END))|mp.canc.ordr->END)|nak->END)).

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->rcv.ack.frm.slr->M|prc.nak->fwd.prc.nak

->END).

M= (send_ack_buyer->(byr.cancel.ordr->cancel.ordr.to.slr

->END|rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv.payment->fwd_payment_slr

29 | P a g e

->END|rcv.nak.frm.slr->send_nak_buyer->END)|slr.cancel.ord

->send.cencel.to.bur->undomp->MP)).

SELLER= (rcv_pro_query->req_pro_qt->send_pro_list->prc.agreed

->S|disagreed->END).

S= (rcv_order_conf->send_or_conf_sup->(mp.cancel.ordr->send.canle.sup

->END|rcv.pro.avail->send_pro_conf->rcv_pro->(ack.to.sup

->rcvpayment.frm.mp->send_for_pckg->END|rcv.cant.supp

->send.cancel.to.mp->cancel->END))).

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf->(slr.cancel.ordr

->END|pro.avail->trans.pro->(rcv.ack.slr->END|rcv.nak.slr

->trans.pro->END)|cant.supply.to.slr->END)).

TRANSACTION= (rcv.payment.buyer->(send.nak.bu->failed

->TRANSACTION|send.ack->paymentfwd.to.mp->(ack.mp->END|nak.mp

->reverse->END))).

||B= (BUYER||MP||TRANSACTION||SUPPLIER||SELLER)/

{pro.req.to.mp/rcvpro_req,rcv.prc.list/fwd_prlist_buyer,prc.req.to.mp/
rcv_prcreq_buyer,pque_slr/rcv_pro_query,prc.agreed/rcv.ack.frm.slr,sen
d.nak/price.nak,send.cencel.to.bur/mp.canc.ordr,nak/fwd.prc.nak,prc.na
k/disagreed,
prc.req.to.mp/rcv_prcreq_buyer,rcv.prc.req/fwd_prcreq_slr,prc.agreed/r
cv.ack.frm.slr,send_ack_buyer/ack,cancel.ordr/byr.cancel.ordr,cancel.o
rdr.to.slr/mp.cancel.ordr,cant.supply.to.slr/mp.send.nak,
mp.send.nak/send_nak_buyer,pro.avail/mp.conf,pay.trans/rcv.payment.buy
er,rcv.ack.tr/send.ack,rcv.nak.tr/send.nak.bu,paymentfwd.to.mp/rcvpaym
ent.frm.mp,
ordr.conf/rcv_ordr_conf_buyer,send_ack_slr/rcv_order_conf,pro.avail/rc
v_pro_conf,pro.avail/rcv.pro.avail,rcv_prc_req/fwd_prcreq_slr,paymentf
wd.to.mp/rcv.payment,
fwd_prlist_buyer/rcv_pro_query,rcv.pro.qt/req_pro_qt,rcv_prlist/send_p
ro_list,prc.req.to.mp/rcv_prcreq_buyer,rcvpayment.frm.mp/fwd_payment_s
lr,
ack.to.sup/rcv.ack.slr,rcv_pro/trans.pro,slr.cancel.ordr/send.canle.su
p,slr.cancel.ordr/mp.cancel.ordr,rcv_prlist/send_pro_list,
cant.supply.to.slr/rcv.cant.supp,send.ack/rcv.ack.tr,rcv.payment/ack.m
p
}.

30 | P a g e

We could not generate the LTSA representation of the main compensation process with our
tool LTSA because we have 101 states but LTSA tool only support up to 72 states.

4.2.5 Final Compositions

BUYER= (pro.req.to.mp->rcv.prc.list->price.req.to.mp->ack->conf.ordr

->pro.conf.mp->pay.trans->ack.tr->END).

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->fwd_prcreq_slr->END).

SEND= (send_ack_buyer->rcv_ordr_conf_buyer->send_ack_slr

->rcv_pro_conf->send.pro.conf.bur->rcv_payment->fwd_payment_slr

->END).

SELLER= (rcv_pro_query->req_pro_qt->rcv.info->send_pro_list

->rcv_prc_req->rcv_order_conf->send_or_conf_sup->rcv.pro.avail

->send_pro_conf->rcv_pro->rcvpayment.frm.mp->send_for_pckg

->END).

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf->pro.avail

->trans.pro->rcv.ack.slr->END).

TRANSACTION= (rcv.payment.buyer->paymentfwd.to.mp->ack->END).

||N=(BUYER||MP||SELLER||SUPPLIER||TRANSACTION)/

{pro.req.to.mp/rcvpro_req,pque_slr/rcv_pro_query,rcv.prc.list/fwd_prli
st_buyer,
price.req.to.mp/rcv_prcreq_buyer,fwd_prcreq_slr/rcv_prc_req,ack/send_a
ck_buyer,rcv.payment.buyer/pay.trans,
send.pro.conf.bur/pro.conf.mp,paymentfwd.to.mp/rcv_payment,rcvpayment.
frm.mp/fwd_payment_slr,req_pro_qt/rcv.pro.qt,
send.info.slr/rcv.info,send_or_conf_sup/rcv.pro.conf,rcv_order_conf/se
nd_ack_slr,pro.avail/rcv.pro.avail,
send_pro_list/rcv_prlist
}.

31 | P a g e

Figure 4.12: LTSA representation of Main Process

MAIN Process is the parallel composition of all engaged processes to the system with all
safety properties (that will be discussed in Chap. 5). All major services composed in MAIN.
All the services have been synchronized with each other through the relabeling. All the
compensation states are combined in MAIN COMPENSATION (B).

32 | P a g e

CHAPTER 5

Composition Verification

5.1 Property Processes for Verification
When a safety property is executed parallel y with a process and no trace violation is
generated after the execution, we can tell that the safety property verifies the process. If any
trace violation is generated we will understand that the safety property could not verify the
process.

5.2 Property Processes to Verify Compensation
5.2.1 Verifying Buyer Compensation

property SAFE_BYR = (nak->cancel_order->SAFE_BYR).

Figure 5.1: LTSA representation of safety property SAFE_BYR

The property SAFE_BYR consists of two actions nak and cancel_order. This property
ensures that when BUYER throws a negative acknowledgement, it synchronizes with the
compensation process of BUYER. From the two actions nak and cancel_order, nak is the
negative acknowledgement and cancel_order is the action which indicates the cancellation of
the order after throwing the nak.

When this property process is executed in parallel with Buyer process in BYRSAFE, the two

actions of the property process should be found in sequential manner, and should not show
any trace violations in the resulting LTS. If so then we can say that they are synchronized
with each other successfully and satisfied the condition of our property process, otherwise
not.

33 | P a g e

||BYRSAFE= (BUYER||SAFE_BYR).

Figure 5.2: LTSA representation of BYRSAFE process

If property process doesn’t synchronize with the BUYER process successfully, the LTSA
representation of BYRSAFE process would be following –

Figure 5.3: LTSA representation of BYRSAFE process with Invalid State

5.2.2 Verifying Seller Compensation

property SAFE_SLR=(send.nak->cancel->SAFE_SLR).

Figure 5.4: LTSA representation of safety property SAFE_SLR

34 | P a g e

Unlike the property process SAFE_BYR, SAFE_SLR is described with two actions, send.nak
and cancel. send.nak is the negative acknowledgement and cancel is the action which
indicates that the order is cancelled after throwing the send.nak.

When this property process is executed in parallel with SELLER process in SLRSAFE, the

two actions of the property process should be found in sequential manner, and should not
show any trace violations in the resulting LTS. If so then we can say that they are
synchronized with each other successfully and satisfied the condition of our property process,
otherwise not.

||SLRSAFE= (SELLER||SAFE_SLR).

 Figure 5.5: LTSA representation of SLRSAFE process

If property process doesn’t synchronize with the SELLER process successfully, the LTSA
representation of SLRSAFE process would be following –

35 | P a g e

Figure 5.6: LTSA representation of SLRSAFE process with Invalid State

5.2.3 Verifying Marketplace Compensation

Property SAFE_MP=(rcv.nak.frm.slr->send_nak_buyer->thrws->SAFE_MP).

Figure 5.7: LTSA representation of safety property SAFE_MP

36 | P a g e

The SAFE_MP property is used to ensure that when the negative acknowledgement is
received from the process SELLER using rcv.nak.frm.slr, it is transferred to the BUYER by
using send_nak_buyer.

By composing the property process with MP and observing the resulting LTS, if there is no
trace violation, we can conclude that they have been synchronized with each other
successfully and satisfied the condition of our property process, otherwise not.

||MPSAFE= (MP||SAFE_MP).

Figure 5.8: LTSA representation of MPSAFE process

If property process doesn’t synchronize with the MP process successfully, the LTSA
representation of MPSAFE process would be following –

Figure 5.9: LTSA representation of MPSAFE process with Invalid State

37 | P a g e

5.2.4 Verifying Supplier Compensation

property SAFE_SUP=(cant.supply.to.slr->cancel->SAFE_SUP).

Figure 5.10: LTSA representation of safety property SAFE_SUP

The property SAFE_SUP is used for the negative acknowledgement which is sent to the
SELLER if the requested product is not available using cant.supply.to.slr.

After composing the property process with SUPPLIER, if there is no trace violation, we can
say that they have been synchronized with each other and satisfied property processes’
condition, otherwise not.

||SUPSAFE= (SUPPLIER||SAFE_SUP).

Figure 5.11: LTSA representation of safety property SUPSAFE process

38 | P a g e

If property process doesn’t synchronize with the SUPPLIER process successfully, the LTSA
representation of SUPSAFE process would be following –

Figure 5.12: LTSA representation of SUPSAFE process with Invalid State

5.2.5 Verifying Transaction Compensation

property SAFE_TRANS=(nak->reverse->SAFE_TRANS).

Figure 5.13: LTSA representation of safety property SAFE_TRANS

The property SAFE_TRANS consists of two actions, nak and reverse. These properties
ensure that when TRANSACTION throws a negative acknowledgement, it synchronizes with
the compensation process of TRANSACTION. When this property process is executed in
parallel with TRANSACTION process in TRANSSAFE, the two actions of the property
process should be found in sequential manner, and should not show any trace violence in the

39 | P a g e

resulting LTS. . If so then we can say that they are synchronized with each other successfully
and satisfied the condition of our property process, otherwise not.

||TRANSSAFE= (TRANSACTION||SAFE_TRANS).

Figure 5.14: LTSA representation of safety property TRANSSAFE process

If property process doesn’t synchronize with the SUPPLIER process successfully, the LTSA
representation of SUPSAFE process would be following –

Figure 5.15: LTSA representation of TRANSSAFE process with Invalid State

40 | P a g e

CHAPTER 6

Conclusion

6.1 Summary

We have analyzed about web services and its composition. We have modeled the ONLINE

MARKETPLACE Web Service by composing several web services to create a composite

web service in a choreographic manner. In order to deal with transaction errors we included

compensation mechanism in our system. We have used FSP notations to model and

represented it with LTSA. We have also verified our desired system by using property

process.

6.2 Future Work

Our future plan is to add some other property processes in the system and observing the

impacts on our verification mechanism. We also want to model and verify service

orchestration with another system including compensation in a similar manner that we have

followed in this project.

41 | P a g e

Appendix A

A.1 Buyer Web Service

BUYER= (pro.req.to.mp->rcv.prc.list->prc.req.to.mp->(ack

->(cancel.ordr->END|ordr.conf->(mp.cancel.ordr->undoBYR

->BUYER|mp.conf->pay.trans->(rcv.ack.tr->END|rcv.nak.tr

->pay.trans->END)))|

nak->BUYER)).

A.2 Marketplace Web Service

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

 ->rcv_prcreq_buyer->fwd_prcreq_slr->(rcv.ack.frm.slr

->send_ack_buyer->(byr.cancel.ordr->cancel.ordr.to.slr

->undomp->MP|

rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv_payment->fwd_payment_slr

->END|rcv.nak.frm.slr->send_nak_buyer->thrws

->END)|slr.cancel.ord->send.cencel.to.bur->undomp

->MP)|price.nak->price.nak.bur->MP)).

A.3 Seller Web Service

SELLER= (rcv_pro_query->req_pro_qt->send_pro_list->rcv_prc_req

->(prc.agreed->rcv_order_conf->send_or_conf_sup

42 | P a g e

->(mp.cancel.ordr->send.canle.sup->undoslr

->SELLER|rcv.pro.avail->send_pro_conf

->rcv_pro->(ack.to.sup->rcvpayment.frmMP->send_for_pckg

->END|rcv.cant.supp->send.cancel.to.mp->cancel

->END))|send.nak->END)).

A.4 Supplier Web Service

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf->(slr.cancel.ordr

->undosup->SUPPLIER|pro.avail->trans.pro->(rcv.ack.slr

->END|rcv.nak.slr->trans.pro->END)|cant.supply.to.slr

->SUPPLIER)).

A.5 Transaction Web Service

TRANSACTION= (rcv.payment.buyer->(send.nak.bu->failed

->TRANSACTION|send.ack->paymentfwd->(ack->END|nak->reverse

->failed->TRANSACTION))).

A.6 Main Process

BUYER= (pro.req.to.mp->rcv.prc.list->prc.req.to.mp->(ack

->(cancel.ordr->END|ordr.conf->(mp.conf->pay.trans

->(rcv.ack.tr->END|rcv.nak.tr->undotr->END))|mp.canc.ordr

->END)|nak->END)).

43 | P a g e

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->(rcv.ack.frm.slr->send_ack_buyer

->(byr.cancel.ordr->cancel.ordr.to.slr->END|

rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv.payment->fwd_payment_slr

->END|rcv.nak.frm.slr->send_nak_buyer->END)|slr.cancel.ord

->send.cencel.to.bur->undomp->MP)|prc.nak->fwd.prc.nak->END)).

SELLER= (rcv_pro_query->req_pro_qt->send_pro_list->(prc.agreed

->rcv_order_conf->send_or_conf_sup->(mp.cancel.ordr

->send.canle.sup->END|rcv.pro.avail->send_pro_conf

->rcv_pro->(ack.to.sup->rcvpayment.frm.mp->send_for_pckg

->END|rcv.cant.supp->send.cancel.to.mp->cancel

->END))|disagreed->END)).

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf

->(slr.cancel.ordr->END|pro.avail->trans.pro->(rcv.ack.slr

->END|rcv.nak.slr->trans.pro->END)|cant.supply.to.slr->END)).

TRANSACTION= (rcv.payment.buyer->(send.nak.bu->failed

->TRANSACTION|send.ack->paymentfwd.to.mp->(ack.mp->END|nak.mp

->reverse->failed->END))).

||B= (BUYER||MP)/

{pro.req.to.mp/rcvpro_req,rcv.prc.list/fwd_prlist_buyer,prc.req.to.m

p/rcv_prcreq_buyer,pque_slr/rcv_pro_query,prc.agreed/rcv.ack.frm.slr

,send.nak/price.nak,send.cencel.to.bur/mp.canc.ordr,nak/fwd.prc.nak,

prc.nak/disagreed,prc.req.to.mp/rcv_prcreq_buyer,rcv.prc.req/fwd_prc

44 | P a g e

req_slr,prc.agreed/rcv.ack.frm.slr,send_ack_buyer/ack,cancel.ordr/by

r.cancel.ordr,cancel.ordr.to.slr/mp.cancel.ordr,cant.supply.to.slr/m

p.send.nak,mp.send.nak/send_nak_buyer,pro.avail/mp.conf,pay.trans/rc

v.payment.buyer,rcv.ack.tr/send.ack,rcv.nak.tr/send.nak.bu,paymentfw

d.to.mp/rcvpayment.frm.mp,ordr.conf/rcv_ordr_conf_buyer,send_ack_slr

/rcv_order_conf,pro.avail/rcv_pro_conf,pro.avail/rcv.pro.avail,rcv_p

rc_req/fwd_prcreq_slr,paymentfwd.to.mp/rcv.payment,fwd_prlist_buyer/

rcv_pro_query,rcv.pro.qt/req_pro_qt,rcv_prlist/send_pro_list,prc.req

.to.mp/rcv_prcreq_buyer,rcvpayment.frm.mp/fwd_payment_slr,ack.to.sup

/rcv.ack.slr,rcv_pro/trans.pro,slr.cancel.ordr/send.canle.sup,slr.ca

ncel.ordr/mp.cancel.ordr,rcv_prlist/send_pro_list,cant.supply.to.slr

/rcv.cant.supp

}.

A.7 Property Process

Buyer Property Process

BUYER= (pro.req.to.mp->rcv.pro.list->price.req.toMp->(ack

->(cancel.ordr->END|ordr.conf->(mp.cancel.ordr->undoBYR

->BUYER|mp.conf->pay.trans->(rcv.ack.tr->END|rcv.nak.tr

->pay.trans->END)))|

nak->cancel_order->BUYER)).

property SAFE_BYR = (nak->cancel_order->SAFE_BYR).

||BYRSAFE= (BUYER||SAFE_BYR).

45 | P a g e

Marketplace Property Process

MP= (rcvpro_req->pque_slr->rcv_prlist->fwd_prlist_buyer

->rcv_prcreq_buyer->fwd_prcreq_slr->(rcv.ack.frm.slr

->send_ack_buyer->(byr.cancel.ordr->cancel.ordr.to.slr

->undomp->MP|rcv_ordr_conf_buyer->send_ack_slr->rcv_pro_conf

->sendack_buyer->(rcv_payment->fwd_payment_slr

->END|rcv.nak.frm.slr->send_nak_buyer->thrws

->END)|slr.cancel.ord->send.cancel.to.bur->MP))).

property SAFE_MP=(rcv.nak.frm.slr->send_nak_buyer->thrws->SAFE_MP).

||MPSAFE= (MP||SAFE_MP).

Seller Property Process

SELLER= (rcv_pro_query->req_pro_qt->send_pro_list->rcv_prc_req

->(prc.agreed->rcv_order_conf->send_or_conf_sup

->(mp.cancel.ordr->send.cancle.sup->SELLER|rcv.pro.avail

->send_pro_conf->rcv_pro->(ack.to.sup->rcvpayment.frmMP

->send_for_pckg->END|send.nak->cancel->END)|

rcv.cant.supp->send.cancel.to.mp->END))).

property SAFE_SLR=(send.nak->cancel->SAFE_SLR).

||SLRSAFE= (SELLER||SAFE_SLR).

Supplier Property Process

SUPPLIER= (rcv.pro.qt->send.info.slr->rcv.pro.conf

->(slr.cancel.ordr->undosup->SUPPLIER|pro.avail->trans.pro

46 | P a g e

->(rcv.ack.slr->END|rcv.nak.slr->trans.pro

->END)|cant.supply.to.slr->cancel->SUPPLIER)).

property SAFE_SUP=(cant.supply.to.slr->cancel->SAFE_SUP).

||SUPSAFE= (SUPPLIER||SAFE_SUP).

Transaction Property Process

TRANSACTION= (rcv.payment.buyer->(send.nak.bu->failed

->TRANSACTION|send.ack->paymentfwd->(ack->END|nak->reverse

->failed->TRANSACTION))).

property SAFE_TRANS=(nak->reverse->SAFE_TRANS).

||TRANSSAFE=(TRANSACTION||SAFE_TRANS).

47 | P a g e

References

[1] Florian Daniel, Barbara Pernici, Politecnico deo Milano, Italy, ǲWeb Service Orchestration and Choreography: Enabling Business Processes on the Webǳ, Chapter
XII, January 2006.

[2] Shamim Ripon, Mohammad Salah Uddin and Aoyan Barua, ǲWeb Service
composition – BPEL vs cCSP Process Algebraǳ, Department of Computer Science and

Engineering, East West University, Dhaka, Bangladesh. [͵] Abdaladhem Albreshne, Patrik Fuhrer, Jacques Pasquier, ǲWeb Services Orchestration and Composition Case Study of Web services Compositionǳ, September
2009. [Ͷ] B. Margolis with J. Sharpe, ǲBased on SOA for Business Developer, Concepts, BPEL, and SCAǳ, McPress, Lewisville, TX, ʹ00͹.
[5] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, ǲModel-based Verification of Web Service Compositionsǳ, Department of Computing, Imperial College London. [͸] Jeff Magee, Jeff Kramer, ǲConcurrency: State Models and Java Programsǳ, Text Book,
2nd Edition, John Wiley & Sons, Ltd, 2006. [͹] Mark Austin, John Johnson, ǲCompositional Behavior Modeling and Formal Validation of Canal System Operations with Finite State Automataǳ, ISR Technical report
2011-04, The Institute for Systems Research.

[8] Shamim H. Ripon, Department of Computing Science, University of Glasgow, UK,

Michael Butler, School of Electronics and Computer Science, University of Southampton,

UK, ǲFormalizing cCSP Synchronous Semantics in PVSǳ.
[9] Shamim H. Ripon, Department of Computing Science, University of Glasgow, UK, ǲProcess Algebraic Support for Web Service Compositionǳ.
[10] Shamim H. Ripon, Farhana Sultana and Fahmida Rahman, ǲVerification Of Web

Service Composition And Compensation By Using FSPǳ, Department of Computer Science

and Engineering, East West University, Dhaka, Bangladesh.

	CHAPTER 1
	Introduction
	1.1 Introduction and Motivation
	1.2 Objectives
	1.3 Contribution
	1.4 Outline

	Background
	2.1 Web Service and Composition
	2.1.1 Orchestration
	2.1.2 Choreography
	2.2.1 Modeling Processes in FSP
	Figure 2.3: LTSA representation of CLOCK process.
	Figure 2.4: LTSA representation of Deterministic process DRINKS.
	Figure 2.5: LTSA representation of Non-deterministic process COIN.
	Figure 2.6: LTSA representation of LEVEL process.
	Figure 2.7: LTSA representation of COUNT process.
	Figure 2.8: LTSA representation of Composition CONVERSE_ITCH.
	Figure 2.9: LTSA representation of Composition MAKER_USER.

	2.2.2 Property Processes to verify the System

	CHAPTER 3
	‘ONLINE MARKETPLACE’ Service Composition
	3.1 ‘ONLINE MARKETPLACE’ Web Service
	3.1.1 BUYER
	3.1.2 Marketplace
	3.1.3 SELLER
	3.1.4 SUPPLIER
	3.1.5 Transactions
	3.2 Compensation in Online Marketplace Web Service
	3.2.1 Compensation
	3.2.2 Compensation Mechanism of Online Marketplace Web Service

	Service Composition in FSP
	4.1 Coding Representation
	4.2.1 Declaring Original Processes
	Figure 4.1: LTSA representation of Buyer Process
	Figure 4.2: LTSA representation of MARKETPLACE Process

	SELLER
	Figure 4.3: LTSA representation of SELLER Process
	Figure 4.4: LTSA representation of Supplier Process
	Figure 4.5: LTSA representation of Transaction Process
	4.2.2 Declaring Compensation Processes
	Figure 4.6: LTSA representation of BUYER Process with compensation
	Figure 4.7: LTSA representation of MARKETPLACE Process with compensation
	Figure 4.8: LTSA representation of SELLER Process with compensation
	Figure 4.10: LTSA representation of TRANSACTION Process with compensation

	4.2.3 BUYER & MARKETPLACE Parallel Process
	Figure 4.11: LTSA representation of BUYER & MARKETPLACE Parallel Process

	4.2.5 Main Compensation Process
	4.2.5 Final Compositions
	Figure 4.12: LTSA representation of Main Process

	CHAPTER 5
	Composition Verification
	5.1 Property Processes for Verification
	5.2 Property Processes to Verify Compensation
	5.2.1 Verifying Buyer Compensation
	Figure 5.7: LTSA representation of safety property SAFE_MP
	The SAFE_MP property is used to ensure that when the negative acknowledgement is received from the process SELLER using rcv.nak.frm.slr, it is transferred to the BUYER by using send_nak_buyer.
	By composing the property process with MP and observing the resulting LTS, if there is no trace violation, we can conclude that they have been synchronized with each other successfully and satisfied the condition of our property process, otherwise not.
	||MPSAFE= (MP||SAFE_MP).
	Figure 5.8: LTSA representation of MPSAFE process

	5.2.4 Verifying Supplier Compensation
	property SAFE_SUP=(cant.supply.to.slr->cancel->SAFE_SUP).
	Figure 5.10: LTSA representation of safety property SAFE_SUP

	5.2.5 Verifying Transaction Compensation
	property SAFE_TRANS=(nak->reverse->SAFE_TRANS).
	Figure 5.13: LTSA representation of safety property SAFE_TRANS

	CHAPTER 6
	Conclusion
	6.1 Summary
	6.2 Future Work

	References

