
Gradient Based Power Line Insulator

Detection

Submitted By

MD.Raihan

ID: 2012-2-60-040

S.M.Imran Hossain

ID: 2012-2-60-012

Kuntal Ghosh

ID: 2012-2-60-001

Supervised By

Dr. Taskeed Jabid

Assistant Professor

Department of Computer Science & Engineering,

East West University

A project submitted in partial fulfillment for the degree of Bachelor of

Science in the Department of Computer Science and Engineering

East West University

August, 2017

1

Declarations

The project has been submitted to the Department of the Computer Science &

Engineering, East West University in the partial fulfillment of the requirement for the

degree of Bachelor of Science in Computer Science & Engineering. We hereby,

declare that this project has not been submitted elsewhere for the requirement of any

degree or diploma or any other purposes.

Signature of the students

…………………………..

(Md.Raihan)

(ID: 2012-2-60-040)

…………………………….

(S.M.Imran Hossain)

(ID: 2012-2-60-012)

…………………………….

(Kuntal Ghosh)

(ID: 2012-2-60-001)

2

Letter of Acceptance

This project is entitled “Gradient Based Power Line Insulator Detection” submitted

by: Md.Raihan ID:2012-2-60-040, S.M.Imran Hossain ID:2012-2-60-012 and Kuntal

Ghosh ID:2012-2-60-001 to the department of Computer Science & Engineering, East

West University, Dhaka, Bangladesh is accepted as satisfactory for partial fulfillment

of the requirement for the degree of Bachelor of Science in Computer Science &

Engineering on August 2017.

Supervisor

………………………………………….

Dr. Taskeed Jabid

Assistant Professor

Department of Computer Science & Engineering

East West University, Dhaka, Bangladesh.

Chairperson

………………………………………….

Dr. Md. Mozammel Huq Azad Khan

Chairperson and Professor

Department of Computer Science & Engineering

East West University, Dhaka, Bangladesh.

3

Acknowledgement

First of all, we would like to thank almighty Allah for giving us strength, patience and

knowledge to complete this project work.

Our most heartfelt gratitude goes to our beloved parents for their endless support,

continuous inspiration, great contribution and perfect guidance from the beginning to

end.

We would like to express our sincere gratitude to our supervisor Dr. Taskeed Jabid for

the continuous support, for his patience, motivation, and immense knowledge. His

guidance helped us in all the time of our work. We could not have imagined having a

better supervisor and mentor for this project.

4

Abstract

Insulators are widely used in the power system to provide electrical insulation and

mechanical support for high voltage transmission lines. Detecting and localizing the

insulators automatically are very important to intelligent inspection, which are the

prerequisites for fault diagnose. A method for insulator detection in the image of overhead

transmission lines based on Histogram Oriented Gradient(HOG) is presented in this

paper.

Dividing our work into two phases- electrical pole detection and power line

insulator detection. In the first context, present a line based approach for automated

detection of electrical poles. The detection is performed by first applying edge detection

algorithm. Then, Applying Probabilistic Hough Transform to extract line information

from the image. We Prepare data by considering only vertical lines and a variation in

angle of ±5-degree as an empirical value. Group the pre-processed data and find the

coverage area by applying a Heuristic function. Take the best three coverage group which

consists of lines that create three individual lines. In those best three lines at least one line

detects a pole which maximize the coverage area.

After detecting electrical pole, we go to the top of the pole and take a zoom in

picture where we search for insulator. Before test the image we take different insulator

and non-insulator images as our training Dataset. To train a classifier using support vector

machine in its LIBSVM tools, extract HOG features of training Dataset. As classifier

have been trained we apply Sliding-window object detection technique for identifying

and localizing insulators in an image. The approach involves scanning the image with a

fixed-size rectangular window. Extract HOG features of the sub-image defined by the

window and apply classifier to check that the window bounds an insulator or not. The

process is repeated on successively scaled copies of the image so that objects can be

detected at any size. To detect angled insulator, rotate the image into 360-degree and

apply sliding window technique with image pyramids to detect insulators at

varying scales and locations in the image. Sliding window technique detects some non-

http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/

5

insulator images as an insulator called false positive. To remove false positive Hard

Negative Mining is applied and re-train classifier using those false positive samples which

improve the performance of the classifier from an initial run of the classifier. Usually non-

maximal suppression is applied to the output to remove multiple detections of the same

insulator.

Experimental results showed that the method could extract the insulator from the

image precisely, and it was suitable for many practical applications such as insulator fault

diagnosis, insulator contamination grade determination and so on. Compare to the other

Features like -LBP, experimental results indicate that HOG based feature detect insulator

more effectively and accurately and detect insulators in different angle under complex

background.

6

Table of Contents

Declaration 1

Letter of Acceptance 2

Acknowledgement 3

Abstract 4

List of figures 8

List of tables 10

Chapter 1: Introduction 11

 1.1Motvation 11

 1.2 Objectives 12

 1.3 System Procedure 12

Chapter 2: Existing Work review 16

 2.1 Existing work on Pole 16

 2.1.1 Image Analysis-Based Approach 17

 2.1.2 Graph Cut Approach 17

 2.1.3 LIDAR Databased approach 17

 2.1.4 Urban point clouds approach 18

 2.2 Existing work on Insulator 18

 2.2.1 Local Features and Spatial Orders approach 18

 2.2.2 Local Gradient-Based Descriptors approach 19

 2.2.3 Color Image Based Approach 19

 2.2.4 Visual Attention Mechanism 19

 2.2.5 Profile Projection Approach 20

 2.3 Rigid kernel based detection 20

 2.3.1 The Viola-Jones Face Detector 20

 2.3.1.1 The Integrnal Image 21

 2.3.1.2 ADaBoost Learning 21

 2.3.1.3 The Cascade Structure 21

 2.4 Insulator classification 22

 2.4.1 SVM (Support Vector Machine) 23

 2.4.1.1 Definition 24

 2.4.1.2 Non-linear SVM 26

 2.4.1.3 Overfitting by SVM 27

 2.4.2 LIBSVM 28

 2.4.2.1 Cross-validation and Grid-search 29

 2.4.3 Sliding window 30

7

 2.4.4 Pyramid image 31

Chapter 3: Proposed system Discussion 34

3.1 Pole detection 34

3.1.1 Methodologies 34

3.1.2 Edge Detection 35

3.1.3 Line Detection 36

3.1.3.1 Probabilistic Hough Transform 38

3.1.4 Grouping lines 39

3.1.5 Coverage Area 40

3.2 Insulator detection 42

 3.2.1 Methodologies 42

 3.2.2 Histogram oriented Gradient 42

 3.2.2.1 Feature Descriptor 43

 3.2.3 Feature extraction Method 46

 3.2.4 Alternative feature extraction method 49

 3.2.5 Training for Insulator Detection 51

 3.2.5.1 Image Data-set 51

 3.2.5.2 Training Using LIBSVM 52

 3.2.5.3 Hard-negative mining 53

 3.2.6 Classification (Insulator Detection) 54

 3.2.7 Non-maximum suppression (NMS) 56

Chapter 4: Experimental Result and Performance Analysis 58

 4.1 Experimental result 58

 4.1.1 Pole Detection result 58

 4.1.2 Insulator result 60

 4.1.2.1 Visualize Experimental Result 62

 4.2 Performance Analysis 63

Chapter 5: Conclusion 67

 5.1 Contribution of proposed system 67

 5.2 Limitation of the System 67

 5.3 Future Work and Improvement 68

References 69

8

List of Figures

Figure 1.1 Pole Detection Procedure 14

Figure 1.2: Insulator Detection Procedure 15

Figure 2.1: Maximum Margin Classifier 23

Figure 2.2: Support Vectors 24

Figure 2.3: Support Vector moves to the decision boundary 25

Figure 2.4: Non-linear Data Separation 26

Figure 2.5: Kernel Trick 27

Figure 2.6: Non-linear SVMs 2- Gaussian Kernel 27

Figure 2.7: Overfitting problems 27

Figure 2.8: Grid Search 30

Figure 2.9: Examples of the sliding window approach 31

Figure 2.10: Pyramid image Example 32

Figure 2.11: Multi-Layer Images 32

Figure 3.1: Original Image and Edge Image 36

Figure 3.2: Polar System 36

Figure 3.3: Sinusoidal Curve in the rho-theta Space 37

Figure 3.4: Intensity curve 37

Figure 3.5: Comparison between Hough Transform and Probabilistic

Hough Transform 38

Figure 3.6: Grouped Lines 40

Figure 3.7: Calculate Length and Distance 41

Figure 3.8: Final Result (Pole Detection) 41

Figure 3.9: Filtering Kernel 44

Figure 3.10: Absolute Gradient Values 44

Figure 3.11: 9-bin Histogram 45

Figure 3.12: Prepare Image for HOG Descriptor 46

Figure 3.13: 8x8 Cells of HOG 47

Figure 3.14: Magnitude and Direction Look Up Table 47

9

Figure 3.15: Positive Image and HOG Visualization 49

Figure 3.16: Mechanism of LBP Feature 49

Figure 3.17: 8-bit Binary Code to Decimal 50

Figure 3.18: Calculated LBP Value Stored into Output Array 50

Figure 3.19: Images Divided into 2x2 and 2x4 Sub-Division 51

Figure 3.20: Positive Image Dataset 52

Figure 3.21: Scan with Fixed Window 54

Figure 3.22: Sliding window On Rotated Image 55

Figure 3.23: Appling Non-Maximum Suppression 57

Figure 4.1: Detected Pole Shown with Best Three Lines 59

Figure 4.2: Non Pole Detection Image 59

Figure 4.3: Contour plot 61

Figure 4.4: ROC Curve 61

Figure 4.5: Horizontal Insulator Detection Result 62

Figure 4.6: Angled Insulator Detection Result 62

Figure 4.7: Comparison between Different Empirical Values Array 63

10

List of Tables

Table 4.1 Accuracy of Pole with Different Empirical Values 58

Table 4.2 Accuracy of Classifier for HOG 60

Table 4.3 Performance Evaluation for Different Empirical Values 63

Table 4.4 Accuracy of Classifier for LBP(2x2) 64

Table 4.5 Accuracy of Classifier for LBP(2x4) 64

Table 4.6 Accuracy of Classifier for LBP-HOG 65

Table 4.7 Accuracy of Classifier for LBP-HOG(2x2) 65

Table 4.8 Overall Performance of different Features Accuracy 66

11

Chapter 1

Introduction

Monitoring the status of Insulators on power lines is one of the most important jobs in power

system operation. Insulators play an important role in power system safe operation. It is usually

used to fix the transmission lines. Since it has to bear high mechanical tension and high voltage,

it is easily to be damaged. Defects in ceramic insulators like broken, cracked and punctured discs

give rise to the initiation of partial discharge (PD) activities within the samples which will

threaten the safety of the electric power [1]. Hence Inspecting the status of the insulators is needed

to identify such defective samples as early as possible so that appropriate replacement strategies

can be devised.

To improve the efficiency of inspection, the traditional manual inspection technology is being

replaced by new technology. Computer vision technology can quickly and efficiently detect

defects of insulators, and greatly reduce the work load by automatically detecting and segmenting

the power line insulators. The captured images often include various cluttered backgrounds such

as mountains, rivers, grassland, and farmland thus, the processing of original images is

complicated, which will easily lead to a wrong result [2].

In our project we, proposed a system that will detect the insulators and will help to detect faulty

insulators more efficiently.

1.1 Motivation

The world economy is increasing day by day. With the economic growth, the demand for the

power consumption has been increasing gradually. High voltage power lines and transmission

systems become more and more important with the raising demand of energy. The distance over

which electrical power is transmitted has been continuously increasing along with system voltage

levels. This has led to a significant increase in the number of insulators in use on power lines.

Insulators are used to isolate the naked power lines of the power transmission lines and to support

the lines mechanically. Since the service life of the individual insulator making up these strings

is difficult to predict, they must be tested periodically to maintain adequate line reliability at all

times. It’s a challenge to test insulators periodically by using man power [3].

12

Many paper has been published in recent years to reduce faultiness after detecting insulator using

computer vision. They concentrate on insulator detection by using Deep Neural Network, Naïve

Bayes classifier, support vector machine etc. Now, we want to use a new SVM tool called

LIBSVM which will help in power line system by detecting insulator.

1.2 Objective

The objective of our work is to take computer vision technology one step forward in the sector

of power lines by representing a computer vision based system to detect power line insulators.

We are studying in power line insulator representation on histogram oriented gradient (HOG) to

automatically detect insulator for finding its faultiness where a set of image’s features are trained

by LIBSVM tool.

We want to design a system that will help to detect the injury of insulator for monitoring the

status as well as want to improve the diagnosis efficiency. we want to test the system using a set

of positive and negative image to detect insulators more effectively and efficiently. We hope that

our approach significantly outperforms in the power line system in term of both accuracy and

efficiency.

.1.3 System Procedure

In our work, we proposed a computer vision based approach to detect power line insulator. We

divided our work into two phases. In the first phase, we detected electrical pole and in the second

phase, we detected insulators associated with electrical poles.

First, we took a close picture in a certain region where we would find a pole. To detect pole first,

we extracted lines from the image. To do that we applied canny to find edge of the image and

then applied Hough Transform to extract lines. As pole is a vertical object so we took lines only

which were vertical. In real life, poles are not always vertical, sometimes it seems skewed so we

took a variation in angle of ±5-degree for grouping lines. After that extracted lines are grouped

in such way so that their end point stays close. After grouping, we calculated the coverage area

of each group by using a Heuristic function. we selected the best three groups whose coverage

area were maximum. As groups were consisting of lines so we found the best coverage lines that

cover the most area in the image. In those best three lines we had our electrical pole.

13

In the second phase, we looked for the top of the pole as well as took a zoom picture and this is

our test image. To classify insulator from test image we trained a classifier with a set of insulator

image and non-insulator image using LIBSVM by extracting feature value based on Histogram

Oriented Gradient (HOG).

Utilizing both a sliding window and an image pyramid we were able to detect insulators in images

at various scales and locations. We applied Hard-negative mining to remove false positives and

used non-maximal suppression method to the output for removing multiple detections of the same

Insulator.

14

Pole Detection: Procedure

Figure 1.1: Pole Detection Procedure

15

Insulator Detection: Procedure

Figure 1.2: Insulator Detection Procedure

16

Chapter 2

Existing Work review

As a scientific discipline, computer vision is concerned with the theory and technology for

building artificial systems that obtain information from images or multi-dimensional data. A

significant part of artificial intelligence deals with planning or deliberation for system which can

perform mechanical actions such as moving a robot through some environment. This type of

processing typically needs input data provided by a computer vision system, acting as a vision

sensor and providing high-level information about the environment and the machine [4].

In this chapter, we discuss about the pole detection and insulator detection early work. We discuss

the pole related existing work in section 2.1 and insulator related work in section in 2.2. We

discuss Rigid kernel based detection of viola-jones work in section 2.3. The classification

methods and related processes which we used in our proposed system that describe in section

2.4.

2.1 Existing work On Pole

A electrical pole or utility is used to support overhead power lines and various other public

utilities, such as electrical cable, fibre optic cable, and related equipment such as transformers,

insulator and street lights. It can be referred to as a transmission pole or power pole depending

on its application. Electrical wires and cables are routed overhead on utility poles as an

inexpensive way to keep them insulated from the ground and out of the way of people and

vehicles. Electrical poles can be made of wood, metal, concrete, or composites like fiberglass.

They are used for two different types of power lines; sub-transmission lines which carry higher

voltage power between substations, and distribution lines which distribute lower voltage power

to customers [5].

There are many approaches to detect pole like Image Analysis-Based approach [6], Graph Cut

approach [7], LIDAR Data based approach [8], urban point clouds approach [9], Analysis-

Based approach focuses on the shape of the pole. Graph cut for image segmentation [10,11] is

a newly developing graph based image segmentation technique. Other approaches also describe

different method for detecting pole.

https://en.wikipedia.org/wiki/Overhead_power_line
https://en.wikipedia.org/wiki/Electrical_cable
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Distribution_transformer
https://en.wikipedia.org/wiki/Street_light
https://en.wikipedia.org/wiki/Fiberglass

17

2.1.1 Image Analysis-Based Approach

From the remote surveillance video of any wide disaster area that is fairly long, it is important to

extract key frames that contain specific component structures of the power grid. The key frames

can then be analyzed for possible damage to the specific structure. In his context, they present an

algorithm for automated detection of utility poles. Specifically, they show robust detection of

poles in frames of videos available from various sources. The detection is performed by first

extracting 2D shapes of poles as analytically defined geometric shape, quadrilateral, whose edges

exhibit noise corruption. A pole is then detected as a shape-based template, where one long

rectangular trapezium, is perpendicularly intersected by at least one trapezium representing a

cross arm that suspends the conductors. Via testing and comparison, their algorithm is shown to

be more robust as compared to other approaches, especially against highly variable background.

They believe such detection, with limited false negatives, will form stepping stone towards future

detection of damages in utility poles [6].

2.1.2 Graph Cut Approach

A precise detection is essential to inspect the defects of a power pole. In the paper, they propose

a novel approach to detect the power pole object from images. Graph cut for image segmentation

is a newly developing graph based image segmentation technique. It is effective but takes huge

computation burden. The proposed approach combines prior knowledge with graph cut into

detection. Firstly, it locates the rough region of the power pole to obtain two restricted regions

based on prior rules. Then, a traditional graph cut framework is used in the restricted regions to

improve the precision of segmentation. Experimental results verify its efficiency and accuracy

[7].

2.1.3 LIDAR Databased approach

The paper presents a novel approach for detection of pole-like objects from LIDAR data. The

designed method uses directional vector to detect pole-like structures in unordered point clouds.

A new segmentation algorithm is presented as well. The segmentation is designed to overcome

a common problem found in LIDAR data of urban environments, where a lot of poles are

connected together with various types of wires. The method is tested on real world point clouds

captured during mobile mapping process [8].

18

2.1.4 Urban point clouds approach

This approach focuses on detecting and classifying pole-like objects from point clouds obtained

in urban areas. To achieve the goal, they propose a system consisting of three stages: localization,

segmentation and classification. The localization algorithm based on slicing, clustering, pole seed

generation and bucket augmentation takes advantage of the unique characteristics of pole-like

objects and avoids heavy computation on the feature of every point in traditional methods. Then,

the bucket-shaped neighbourhood of the segments is integrated and trimmed with region growing

algorithms, reducing the noises within candidate’s neighbourhood. Finally, we introduce a

representation of six attributes based on the height and five-point classes closely related to the

pole categories and apply SVM to classify the candidate objects into 4 categories, including 3

pole categories light, utility pole and sign, and the non-pole category. The performance of our

method is demonstrated through comparison with previous works on a large-scale urban dataset

[9].

2.2 Existing Work On Insulator

Transmission and distribution system leak overhead line of the by chance current cannot flow, so

that the line from the Earth, the Insulator is used for the line. Insulator plays an important role in

system operation. Transmission line insulators are devices used to contain, separate or support

electrical conductors on high voltage electricity supply networks. Transmission insulators come

in various shapes and types, including individual or strings of disks, line posts or long rods. They

are made of polymers, glass and porcelain--each with different densities, tensile strengths and

performing properties in adverse conditions.

There are many approaches to detect power line insulator like- Local Features and Spatial Orders

approach [12], local gradient-based descriptors approach [13], color image based approach [14],

visual attention mechanism [15], Profile projection approach [16].

2.2.1 Local Features and Spatial Orders approach

The detection of targets with complex backgrounds in aerial images is a challenging task. In their

work, they propose a robust insulator detection algorithm based on local features and spatial

orders for aerial images. First, they detect local features and introduce a multiscale and multi

featured descriptor to represent the local features. Then, they get several spatial orders features

by training these local features, it improves the robustness of the algorithm. Finally, through a

coarse-to-fine matching strategy, they eliminate background noise and determine the region of

19

insulators. they test their method on a diverse aerial image set. The experimental results

demonstrate the precision and robustness of our detection method, and indicate the possible use

of their method in practical applications [12].

2.2.2 Local Gradient-Based Descriptors Approach

This approach is based on discriminative training of local gradient-based descriptors and a

subsequent voting scheme for localization. Further, they introduce an automatic extraction of the

individual insulator caps and check them for faults by using a descriptor with elliptical spatial

support. They demonstrate their approach on an evaluation set of 400 real-world insulator images

captured from a helicopter and evaluate our results with respect to a manually created ground-

truth. The performance of their insulator detector is comparable to other state-of-the-art object

detectors [13].

2.2.3 Color Image Based Approach

Helicopter patrol inspection system has been applied to diagnose the insulator injuries of

overhead transmission lines. This method is proposed to improve the diagnosis efficiency. Firstly,

the statistical information of blocked image, the form of connected domain and the characteristics

of edge chain code are utilized to recognize the area where the defective glass insulator locates;

then by use of sliding window histogram statistic and histogram matching judgment, the damaged

region of glass insulator is recognized. The proposed method is suitable to real-time detection in

field environment, and it can diagnose the injury of insulator under a certain light variation range

and background complexity [14].

2.2.4 Visual Attention Mechanism

This detection method based on visual attention mechanism. Firstly, the local and global saliency

for the aerial images were calculated. Secondly, the local and global saliency maps

were combined together to get the final saliency map. Thirdly, the saliency region was extracted

from the saliency map and the non-insulator region was excluded by a pro-processing method.

Lastly, the saliency map was converted into binary map and the insulator was separated from the

background by adding the binary map to the original image. Experimental results showed that

20

the method could extract the insulator from the aerial image precisely, and it was suitable for

many practical applications such as insulator fault diagnosis, insulator contamination grade

determination and so on [15].

2.2.5 Profile Projection Approach

Unlike previous texture-based approach, in this approach they directly search insulators location

in the images by using Profile projection. For overcoming the negative effect of image noise on

object detection, they pre-process insulators image by thresholding method. To make insulators

detection more effective and efficient, they design a tilt correction method based on principal

component analysis. The correction enables their method to derive accurate feature extraction

curve from insulators image, then they extract five features from the feature curve, which are

related to the number of binary sequence and the normalized variance of the binary sequence

length. After obtaining the insulators feature from an image, they apply SVM to identify

insulators with the five features [16].

2.3 Rigid kernel based detection

In this section, we discuss detection algorithms that are based on learning a set of rigid kernels.

In this class of algorithms, learning rigid templates and boosted cascades of classifiers are used.

The Viola-Jones detection algorithm is the prime example, which also motivated many

researchers in detection. Another line of research on rigid templates, which currently gains

momentum, is based on Deep Convolutional Neural Networks (DCNNs).

2.3.1 The Viola-Jones Face Detector

The seminal work by Viola and Jones [17] had the most impact in the 2000s.The Viola-Jones

detection method has three ideas that made it fast: the integral image, classifier learning with

AdaBoost, and the attentional cascade. The first major development was achieved by the seminal

work of Viola and Jones [17] on boosting based detection, which was the first algorithm that

made face detection practically feasible in real-world applications. Today it is widely applied in

photo organization software. Research in face detection has progressed significantly in the

direction of providing algorithms that are able to detect faces as well as other objects like

insulator. Modern detection algorithms have benefited from various methods, algorithms and

features. structure.

21

2.3.1.1 The Integral Image

The integral image (summed area table) algorithm, computes quickly and efficiently the sum of

values in a rectangle subset of a grid. It was introduced to the computer graphics field in [18].

2.3.1.2 AdaBoost Learning:

Boosting method finds a highly accurate hypothesis by combining many weak hypotheses, each

with moderate accuracy. The AdaBoost (Adaptive Boosting) algorithm is generally considered

as the first step towards more practical boosting algorithms [19,20].

2.3.1.3 The Cascade Structure:

The cascade is an important component of Viola-Jones detector. This boosted classifier can be

built that reject most of the negative sub-windows while keeping almost all the positive examples.

Majority of the sub-windows will be rejected in early stages of the detector, making the detection

process extremely efficient. The process of classifying a sub-window forms a degenerate decision

tree, which is called a cascade. It was presented in [17]. The cascade structure also has an impact

on the training process. There are billions of negative examples needed to train a high-

performance face detector. To handle the huge amount of negative training examples, the Viola-

Jones face detector [17] used a bootstrap process. At each node, a threshold was manually chosen.

A partial classifier was used to scan the negative example set to find more unelected negative

examples for the training of the next node. Each node is trained independently, as if the previous

nodes does not exist. One argument behind such a process is to force the addition of some

nonlinearity in the training process, which could improve the overall performance. However,

recent works showed that it is actually beneficial not to completely separate the training process

[16] of different nodes, the cascade is constructed manually. That is, the number of weak

classifiers and the decision threshold for early rejection at each node are both manually specified.

This is a non-trivial task. If the decision thresholds were set too aggressively, the final detector

will be very fast, but the overall detection rate may be affected. On the other hand, if the decision

thresholds are set very conservatively, most sub-windows will need to pass through many nodes,

making the detector very slow. Combined with the limited computational resources available in

the early 2000s, it is no wonder that training a good face detector can take months of fine-tuning [21].

22

2.4 Insulator classification:

Classification of remotely sensed data is used to assign corresponding levels with respect to

groups with homogeneous characteristics, with the aim of discriminating multiple objects from

each other within the image. The level is called class. Classification will be executed on the base

of spectral or spectrally defined features, such as density, texture etc. in the feature space. It can

be said that classification divides the feature space into several classes based on a decision rule

[22].

In many cases, classification will be undertaken using a computer, with the use of mathematical

classification techniques. Various classification techniques will be compared with the training

data, so that an appropriate decision rule is selected for subsequent classification. Depending up

on the decision rule, all pixels are classified in a single class. There are two methods of pixel by

pixel classification and per-field classification, with respect to segmented areas.

Popular techniques are as follows.

• Multi-level slice classifier

• Minimum distance classifier

• Maximum likelihood classifier

• Other classifiers such as fuzzy set theory and expert systems

There are several types of classification- Categorical (Nominal): Classification of entities into

particular categories, Ordinal: Classification of entities in some kind of ordered relationship,

Adjectival or Predicative: Classification based on some quality of an entity. And Cardinal:

Classification based on a numerical value. [23]

Classifiers are different algorithms or data structure to perform classification. The most

commonly use classifiers are support vector machine, Neural Network, Naïve Bayes classifier,

Decision tree, K-nearest Neighbours etc. Now-a days, Deep learning is most popular for

classification. In our work, we have used support vector machine to train and detect insulator.

23

2.4.1 SVM (Support Vector Machine)

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating

hyperplane. In other words, given labelled training data (supervised learning), the algorithm

outputs an optimal hyperplane which categorizes new examples. [24]

Support Vector Machines were first introduced by Vapnik and Chervonenkis in [25]. The core

idea is to find the optimal hyperplane to separate a dataset, while there are theoretically infinite

hyperplanes to separate the dataset. A hyperplane is chosen, so that the distance to the nearest

data point of both classes is maximized. The points spanning the hyperplane are the Support

Vectors, hence the name Support Vector Machines [26,27].

 Figure 2.1: Maximum Margin Classifier

Due to their superior performance in general machine learning problems, they have also become

a very popular approach for detection [28,29]. However, the detection speed of SVM based face

detectors was generally slow. Thus, various schemes have been proposed to speed up the process.

For instance, in [30] a method that computes a reduced set of vectors from the original support

vectors was proposed. These reduced set vectors are then tested against the test example

sequentially, making early rejections possible. In [31], detection speed was further improved by

approximating the reduced set vectors with rectangle groups, gaining another 6-fold speedup. A

hierarchy of SVM classifiers with different resolutions in order to speed up the overall system

was applied. The early classifiers were at low resolution, say, 3×3 and 5×5 pixels, which can be

computed very efficiently to prune negative examples. Multiview detection has also been

explored with SVM based classifiers.

24

A cascade of SVMs were first trained through bootstrapping. The remaining positive and

negative examples were then randomly partitioned to train a set of SVMs, whose outputs were

then combined through majority voting. In [33] a single SVM for Multiview detection was used,

and relied on the combination of local and global kernels for better performance. No experimental

results were given in [32, 33] to compare the proposed methods with existing schemes on

standard data sets, hence it is unclear whether these latest SVM based detectors can outperform

those learned through boosting.

Support Vectors: Input vectors that just touch the boundary of the margin (street) – circled

below, there are 3 of them (or, rather, the ‘tips’ of the vectors. Here, we are the actual support

vectors, v1, v2, v3, instead of just the 3 circled points at the tail ends of the support vectors. D

denotes 1/2 of the street ‘width. [34]

Figure 2.2: Support Vectors

2.4.1.1 Definition

Define a hyperplane H such that:

W*xi +b ≥ +1 when yi=+1

W*xi +b ≤ -1 when yi=-1

H1 and H2 are the planes:

H1: W*xi +b ≥ +1 when yi=+1

H2: W*xi +b ≤ -1 when yi= -1

The points on the planes H1 and H2 are the tips of the Support Vectors [35].

25

The plane H0 is the median in between, where w•xi+b =0

d+ = the shortest distance to the closest positive point

d- = the shortest distance to the closest negative point

The margin (gutter) of a separating hyperplane is d+ + d–

The optimization algorithm to generate the weights proceeds in such a way that only the

support vectors determine the weights and thus the boundary [34],

Figure 2.3: Support Vector Moves to The Decision Boundary

Form of equation defining the decision surface separating the classes is a hyperplane of the

form: wTx + b = 0 where

 – w is a weight vector

 – x is input vector

 – b is bias

We can write

• wTx + b > 0 for di = +1

• wTx + b < 0 for di = –1

We want a classifier (linear separator) with as big a margin as possible. Recall the distance

from a point (x0, y0) to a line: Ax+By+c = 0 is: |Ax0 +By0 +c|/sqrt (A2+B2), so, the distance

between H 0 and H1 is then:

|w•x+b|/||w||=1/||w||, so the total distance between H1 and H2 is thus: 2/||w|| [34].

26

In order to maximize the margin, we thus need to minimize ||w||. With the condition that there

are no data points between H1 and H2:

 xi•w+b ≥ +1 when yi =+1…. (i)

 xi•w+b ≥ –1 when yi =–1 …. (ii)

(i) & (i) Can be combined into: Vi(xi•w) ≥ 1 [34]

2.4.1.2 Non-linear SVM

The idea is to gain linearly separation by mapping the data to a higher dimensional space. The

following set can’t be separated by a linear function, but can be separated by a quadratic one.

Figure 2.4: Non-linear Data separation

The kernel trick is used for classifying non-linear datasets. It works by transforming data points

into a higher dimensional feature space with a kernel function, where the dataset can be separated

again. The linear classifier relies on inner product between vectors K(xi,xj) = xi
Txj. If every data

point is mapped into high dimensional space via some transformation Φ: x → φ(x), the inner product

becomes: K(xi,xj) = φ(xi)
T

φ(xj) . kernel function corresponds to an inner product into some feature

space [35].

Some Commonly used kernel functions:

• Linear: K(xi,xj)= xi
Txj

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)p

• Gaussian (radial-basis function network): K(xi,xj)= 2

2

2

ji

e

xx 


27

Figure 2.5: kernel trick

Figure 2.6: Non Linear SVMs 2 –Gaussian Kernel

2.4.1.3 Overfitting by SVM

Figure 2.7: Overfitting Problem

=
=

A well-known problem with machine learning methods is overtraining. This means that we

have learned the training data very well, but we cannot classify unseen examples correctly.

Every point is a support vector too much freedom to bend to fit the training data – no

generalization. In fact, SVMs have an ‘automatic’ way to avoid such issues. [Vapnik, 1995.]

We add a penalty function for mistakes made after training by over-fitting: recall that if one

over-fits, then one will tend to make errors on new data. This penalty function can be put into

the quadratic programming problem directly [34].

28

2.4.2 LIBSVM:

LIBSVM is a simple, easy-to-use, and efficient software for SVM classification and regression

[36]. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM

regression, and nu-SVM regression. It also provides an automatic model selection tool for C-

SVM classification. In LIBSVM training vectors xi are mapped into a higher (maybe infinite)

dimensional space by the function φ. SVM finds a linear separating hyperplane with the maximal

margin in this higher dimensional space. C > 0 is the penalty parameter of the error term.

Furthermore, K(xi; xj) ≡ φ(xi)Tφ(xj) is called the kernel function. Though new kernels are being

proposed by researchers [36].

Following procedures are done by LIBSVM: Transform data to the format of an SVM package,

conduct simple scaling on the data, Consider the RBF kernel, Use cross-validation to find the

best parameter C and γ, Use the best parameter C and γ to train the whole training set5.LIBSVM

includes the following methods [36]:

svm_type:

• C_SVC n-class classification (n ≥ 2), allows imperfect separation of classes with penalty

multiplier C for outliers.

• NU_SVC n-class classification with possible imperfect separation. Parameter nu (in the

range 0 … 1, the larger the value, the smoother the decision boundary) is used instead of

C.

• ONE_CLASS one-class SVM. All the training data are from the same class, SVM builds

a boundary that separates the class from the rest of the feature space.

• EPS_SVR regression. The distance between feature vectors from the training set and the

fitting hyper-plane must be less than p. For outliers, the penalty multiplier C is used.

• NU_SVR regression; nu is used instead of p.

LIBSVM uses a decomposition method for classification [37]. It used in a simple working set

selected which lead to a faster convergence for different and difficult cases. Parameters in

LIBSVM are

• svm_type: C_SVC, NU_SVC, ONE-CLASS, EPS_SVR, NU_SVR

29

• kernel_type: linear: d(x; y) = x · y == (x; y) ,polynomial: d(x; y) = (gamma ∗ (x · y) +

coef0)degree ,RBF: d(x; y) = exp(-gamma∗ |x - yj2),sigmoid: d(x; y) =

tanh(gamma∗(x·y)+coef0),precomputed kernel

• C, nu, p Parameters in the generalized SVM optimization problem.

• lass_weights Optional weights, assigned to particular classes. They are multiplied by C

and thus affect the misclassification penalty for different classes. The larger weight, the

larger penalty on misclassification of data from the corresponding class.

• term_criteria Termination procedure for iterative SVM training procedure (which solves

a partial case of constrained quadratic optimization problem)

▪ type is either CV_TERMCRIT_ITER or CV_TERMCRIT_ITER

▪ max_iter is the maximum number of iterations in training.

▪ epsilon is the error to stop training.

2.4.2.1 Cross-validation and Grid-search

There are two parameters for an RBF kernel: C and γ. It is not known beforehand

which C and γ are best for a given problem; consequently, some kind of model selection

(parameter search) must be done. The goal is to identify good (C; γ) so that the

classifier can accurately predict unknown data (i.e. testing data). Note that it may

not be useful to achieve high training accuracy (i.e. a classifier which accurately

predicts training data whose class labels are indeed known).

A common strategy is to separate the data set into two parts, of which one is considered unknown.

The prediction accuracy obtained from the unknown" set more precisely reflects the performance

on classifying an independent data set. An improved version of this procedure is known as cross-

validation. In v-fold cross-validation, we first divide the training set into v subsets of equal size.

Sequentially one subset is tested using the classifier trained on the remaining v - 1 subsets. Thus,

each instance of the whole training set is predicted once so the cross-validation accuracy is the

percentage of data which are correctly classified [36].

The cross-validation procedure can prevent the overfitting problem. We use a grid-search" on C

and γ using cross-validation. Various pairs of (C; γ) values are tried and the one with the best

cross-validation accuracy is picked. We found that trying exponentially growing sequences of C

30

and γ is a practical method to identify good parameters (for example, C = 2-5; 2-3… 215, γ = 2-15;

2-13… 23). The grid-search is straightforward but seems naive. In fact, there are several advanced

methods which can save computational cost by, for example, approximating the cross-validation

rate. After “grid-search” the best (C; γ) is found, the whole training set is trained again to generate

the final classifier [36].

Figure 2.8: grid search in LIBSVM (image curtesy: Chih-Chung Chang and Chih-Jen Lin)

2.4.3 Sliding window

Sliding windows play an integral role in object classification, as they allow us to localize

exactly “where” in an image an object resides. Utilizing both a sliding window and an image

pyramid we are able to detect objects in images at various scales and locations [38]. The approach

involves scanning the image with a fixed-size rectangular window and applying a classifier to

the sub-image defined by the window. Successively scaled copies of the image we apply sliding

window technique for identifying and localizing objects. A sliding window is rectangular region

of fixed width and height that “slides” across an image.

https://www.csie.ntu.edu.tw/~cjlin/index.html

31

Figure 2.9: Example of the sliding window approach

For each of these windows, we normally take the window region and apply HOG to determine if

the window has an object that interests us. Combined with image pyramids we can create image

classifiers that can recognize objects at varying scales and locations in the image. These

techniques, while simple, play an absolutely critical role in object detection and image

classification [38].

Usually non-maximal neighbourhood suppression is applied to the output to remove multiple

detections of the same object after apply sliding approach classification. We apply this technique

not only on scaled based image but also rotation with pyramid image. We rotate image then we

apply sliding technique with that fixed window for every scaled copy and continue rotating until

we rotate the image in 360-degree. Hence, sliding window technique posses a great contribution

for identifying and localizing objects in an image.

2.4.4 Pyramid Image

An image pyramid is a collection of images - all arising from a single original image - that are

successively down sampled until some desired stopping point is reached. [39]. An “image

pyramid” is a multi-scale representation of an image. Utilizing an image pyramid allows us

to find objects in images at different scales of an image. And when combined with a sliding

window we can find objects in images in various locations. At the bottom of the pyramid we

have the original image at its original size (in terms of width and height). And at each

subsequent layer, the image is resized (subsampled). [40]

http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/

32

Figure 2.10: Example of Pyramid image. At each layer image is downsized

(image curtesy: Adrian Rosebrock page)

The image is progressively subsampled until some stopping criterion is met, which is normally

minimum size has been reached and no further subsampling needs to take place.

There are two common kinds of image pyramids:

• Gaussian pyramid: Used to downsample images

• Laplacian pyramid: Used to reconstruct an upsampled image from an image lower in

the pyramid (with less resolution) [39]

In our project to construct image pyramids we utilize C++ with OpenCV. As a convention, we

took a zoom picture so we Perform downsampling. First, we reduce our image by 25% every

time. Using a scale factor of 1.3333, 2, and 4, only 4 layers have been generated.

 100% 75% 50%

Figure 2.11: Multi Layer images

33

Hence, we are using the HOG descriptor for object classification so we do not use smoothing

since smoothing tends to hurt classification performance.

In general, there is a trade-off between performance and the number of layers that we generate.

The smaller the scale factor is, the more layers need to create and process — but this also gives

an image classifier a better chance at localizing the object we want to detect in the image.

A larger scale factor will yield less layers, and perhaps might hurt our object classification

performance; however, we have obtained much higher performance gains since we will have less

layers to process.

34

Chapter 3

Proposed System Discussion

In this chapter we describe our proposed system to detect pole and insulator. First, we describe

pole detection in section 3.1. In section 2 we describe insulator detection process.

3.1 Pole Detection

For carrying of overhead line, wooden poles, concrete poles, steel poles and rail poles are used.

Which poles are to be used, depend on the importance of load, location and place, cost effect of

such construction, including maintenance cost, and keeping its profit element in mind. In low

voltage line for all phases, natural and earth single pole line is used. [41]

We have found insulator on the top of the pole so it was important for us to detect electrical pole

first to find to insulator.

3.1.1 Methodologies

A electrical pole is a column or post used to support overhead power lines and various other

public utilities, such as electrical cable, fibre optic cable, and related equipment such

as transformers and insulator. Electrical wires, cables and insulators are routed overhead on

utility poles as an inexpensive way to keep them insulated from the ground and out of the way of

people and vehicles. [wiki]. As we found insulator on the top of the electrical pole so before

detecting insulator first we had to detect pole. First we took a close picture in a certain area where

an electrical pole can be founded. Then we try to extracted lines from the image. To do that we

applied edge detection algorithm to find out the edge of the image. After that, we applied Hough

line transform to extract lines. Next. we discard all the horizontal lines. As pole is a vertical object

so we took lines only which angle, θ is 900 and -900. In real life, we see that pole is not always

vertical, we see sometimes it skewed so took a variation in angle of ±50 (900> θ >=85 and -85 =>

θ >-900) as an empirical value. After extracted the lines, we grouped the lines in a way so that

their end point stays closer. After finished the grouping we calculated the coverage area for every

group by using heuristic function. We took three best group which were consists of lines. In this

three best lines we had our pole.

https://en.wikipedia.org/wiki/Column
https://en.wikipedia.org/wiki/Overhead_power_line
https://en.wikipedia.org/wiki/Electrical_cable
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Distribution_transformer
https://en.wikipedia.org/wiki/Street_light

35

3.1.1 Edge detection

In an image, an edge is a curve that follows a path of rapid change in image intensity. Edges are

often associated with the boundaries of objects in a scene. Edge detection is used to identify the

edges in an image. To find edges, we can use the edge function. This function looks for places in

the image where the intensity changes rapidly, using one of these two criteria: Places where the

first derivative of the intensity is larger in magnitude than some threshold and Places where the

second derivative of the intensity has a zero crossing [42].

We use canny in our project to find to the edges. Canny is the most powerful edge detection

method. It is different from other edge detection methods that detects strong and weak edges.

The Canny edge detection algorithm can be broken down into 5 steps:

▪ Smooth the image using a Gaussian filter to remove high frequency noise.

▪ Compute the gradient intensity representations of the image

▪ Apply non-maximum suppression to remove “false” responses to edge detection

▪ Apply thresholding using a lower and upper boundary on the gradient values

▪ Track edges using hysteresis by suppressing weak edges that are not connected to strong

edges. [43]

OpenCV puts all the above in single function and the function signature looks like this:

C++: Canny (InputArray image, OutputArray edges, double threshold1, double threshold2, int

apertureSize=3, bool L2gradient=false)

C: void cvCanny(const CvArr* image, CvArr* edges, double threshold1, double threshold2, int

aperture_size=3)

We use the second one to find out the edges. First argument is our input image. Second is the

output edge map; it has the same size and type as input image. Third and fourth arguments are

our minVal and maxVal respectively for the hysteresis procedure. Last, argument is aperture size.

It is the size of Sobel kernel used for find image gradients. By default, it is 3 [44].

First, we convert the image into gray scale image and then we apply canny function.

Canny function in OpenCV we have used:

Canny (src, dst, 50, 200, 3);

https://www.mathworks.com/help/images/ref/edge.html

36

 (a) (b)

Figure 3.1: (a) Original Image (b) Detected Edge after using canny

3.1.3 Line detection:

Hough lines transform The Hough transform is a feature extraction technique. The purpose of the

technique is to find imperfect instances of objects within a certain class of shapes by a voting

procedure. It means that in general, a line can be detected by finding the number of intersections

between curves [45].

We will see how Hough transform works for line detection using the HoughLine transform

method. To apply the Transform, first an edge detection pre-processing is desirable.

Hough transform is based on the fact that a line in the x-y cartesian coordinate system can be

mapped onto a point in the rho-theta space. [46]

Figure 3.2: Polar system

Hough Transforms, we will express lines in the Polar system. Hence, a line equation can be

written as:

 y= −
𝑐𝑜𝑠θ

𝑠𝑖𝑛θ
𝑥 +

𝑟

𝑠𝑖𝑛θ

Arranging the terms: r = x sin θ +y sin θ

37

when we see a point on an image, and we are not sure whether or not it belongs to a line like

structure in the image, we just go ahead and plot a point for all possible lines that can pass

through that point. That would result in a sinusoidal curve in the rho-theta space. [46]

Figure 3.3: Sinusoidal curve in the rho-theta space

If the point actually does belong to a line, the actual rho-theta coordinate in the rho-theta plane

will be reinforced by all points that belong to the line.

Figure 3.4: Intensity curve of the reinforcement strength

If we plot an intensity curve of the reinforcement strength (number of curves that cross a point in

the rho-theta space), we can see peaks at the values that correspond to possible lines. These points

can be isolated and picked up by applying a threshold value. [46]

OpenCV already has an implementation of the Hough transform:

a. The Standard Hough Transform

▪ It consists in pretty much what we just explained in the previous section. It gives

you as result a vector of couples

▪ In OpenCV it is implemented with the function HoughLines

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlines#houghlines

38

b. The Probabilistic Hough Line Transform

▪ A more efficient implementation of the Hough Line Transform. It gives as output

the extremes of the detected lines

▪ In OpenCV it is implemented with the function HoughLinesP [47]

3.1.3.1 Probabilistic Hough Transform

In the Hough transform, you can see that even for a line with two arguments, it takes a lot of

computation. Probabilistic Hough Transform is an optimization of Hough Transform we saw. It

doesn’t take all the points into consideration, instead take only a random subset of points and that

is sufficient for line detection. Just we have to decrease the threshold. See below image which

compare Hough Transform and Probabilistic Hough Transform in Hough space. [48]

Figure 3.5: Compare Hough Transform and Probabilistic Hough Transform in Hough space

(Image Courtesy: Franck Bettinger’s home page)

OpenCV implementation is based on Robust Detection of Lines Using the Progressive

Probabilistic Hough Transform by Matas, J. and Galambos, C. and Kittler, J.V. The function used

is

C++: void HoughLinesP(InputArray image,OutputArray lines,double rho, double theta,

int threshold, double minLineLength=0, doublemaxLineGap=0)

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp
http://phdfb1.free.fr/robot/mscthesis/node14.html

39

Parameters:

▪ image – 8-bit, single-channel binary source image. The image may be modified by the

function

▪ lines – Output vector of lines. Each line is represented by a 4-element

vector , where and are the ending points of each

detected line segment.

▪ rho: The resolution of the parameter in pixels. We use 1 pixel.

▪ theta: The resolution of the parameter in radians. We use 1 degree (CV_PI/180)

▪ threshold: The minimum number of intersections to “detect” a line

▪ minLinLength: The minimum number of points that can form a line. Lines with less than

this number of points are disregarded.

▪ maxLineGap: The maximum gap between two points to be considered in the same line

[49]

3.1.4 Grouping lines:

After applied probabilistic Hough transform we got a vector of [x0, y0, x1, y1] with lots of line.

But, all the lines were not needed for grouping. So, we discarded the horizontal lines first then

we took the vertical lines. It was known that always pole was not found vertical sometimes it

founded skewed. So, we granted angle 900 and -900 as well as we also allowed which lines angle

is between 900> θ >=85 and -85 => θ >-900. We allowed an empirical value of 50 in the angle.

We use this formula to find out the angle:

Angle, θ = tan-1(
Δy

Δx
) = tan-1(m) Where, m =

Δy

Δx
 is the slope of the line.

For grouping lines, first we had to check if the lines were in correct order or not. If not, then we

pre-processed the lines. First, we checked first end point every line’s two and rearranged the

values according every line’s first end point.

Next. we arbitrarily choose a line from all the lines as a first line in one group. we did it for every

time for grouping. For the first group we selected a line as group’s first line. From the first line’s

first end point we calculated the distance of all line’s first end point and store them as well as

find the minimum distance. The minimum distance line in respect to the first line is our candidate

for the next line. We took an empirical value of 5 pixels as a threshold1. We took the average of

previously detected line’s x-axis difference which is our threshold2. if our candidate line’s and

first line’s x-axis difference is less or equal to threshold1 and threshold2 then went to the next

step. Next step we checked that was our candidate line’s first endpoint y-value is less than our

40

first line’s first endpoint. If all the requirement fulfilled, then we granted candidate line to enter

into that group. And, candidate line was our nest first line whom we have found out the next

line’s in that particular group. In this way we continued the whole process until all the line’s not

grouped.

Figure 3.6: Left-Top: Canny edge detected image, Right-Top: Extracted lines, Left-Bottom:

vertical lines with ±50, Right-Bottom: Grouped lines (shown in different colour)

3.1.5 Coverage area:

After finished the grouping, we had the grouped data for finding out how much a line cover in

the image. By finding out the coverage we could find out which group of lines covered most of

the area in the image. So, to find out the coverage we applied a heuristic. First, we calculated the

length of that group which was consist lines. After that we calculated every single line’s distance.

And, finally we multiplied the length with the total distance. This is our heuristic.

first, we had find out the length of a group. We took the first and last line of the group. And,

41

measured the difference between first line’s first end point y value and last line’s last endpoint y

value.

Hence, length, l = (y0 – y1) [y0= first line first end point’s y-axis, y1=last line last end point’s y-axis]

We did that for all the group.After we calculated the total distance. In a group, there were more

than one lines. First, we calculated the last and first end point’s difference of a line and took the

absolute value of it. We did it for all the lines in a group. After that we added them up all which

gave the total distance.

Hence, total distance, d = |d1|+ |d2 | + |d3| + … + |dn|

 Coverage area= length * total distance

 = l * d

 Figure 3.7: calculate length and distance

Now, we had the coverage area for all the group. We pick the best three coverage group. This

three groups had the possibility to be a pole. The first one had a better possibility to be a pole if

it misses then the next one had. If the first two missed, then we had to look for the third one was

that a pole or not.

Figure 3.8: Final result (pole detect)

d1

d2

d3

l

42

3.2 Insulator detection

Insulators are materials that have just the opposite effect on the flow of electrons. They do not let

electrons flow very easily from one atom to another. Insulators are materials whose atoms have

tightly bound electrons. These electrons are not free to roam around and be shared by neighboring

atoms It is a device that used to contain, separate or support electrical conductors on high voltage

electricity supply networks. It protects us from the dangerous effects of electricity flowing

through conductors. [50] So, insulator detection is important to find out its faultiness and reduce

time consumption and risk as well as increase diagnosis efficiency.

3.2.1 Methodologies

Insulator detection poses a vital role in inspection of faulty insulators which is the most common

problems in power line transmission networks. It is a computer vision based method that will

detect power line insulator which automatically analyses the images. To detect insulator

perceiving insulator features are very important. We take lots of positive and negative image in

a uniform manner to extract features from them. We used Microsoft visual studio using openCV

to extract the features from those datasets. By using this feature, we trained the computer in

LIBSVM tool to detect insulator. After training, we used Sliding-window object detection

technique for identifying and localizing insulators in an image. It scans image with a fixed-size

rectangular window. Then, extracting features of that window(sub-image) and applying SVM to

classify that the sub-window bounds an insulator. The process is repeated on successively scaled

copies of the image so that insulators can be detected at any size.We rotate the image with 100

increments from 00 to 3600 as well as we apply sliding window technique and repeat the process

on successively scaled copies to detect insulators at any size. By using negative mining, we

reduce the detection of false positive rate. After that non-maximal neighborhood suppression is

applied to the output to remove multiple detections of the same insulator.

3.2.2 Histogram oriented gradient

Detection in images is a challenging task owing to their variable appearance and the wide range

of poses that they can adopt. The first need is a robust feature set that allows the insulator form

to be discriminated cleanly, even in cluttered backgrounds under difficult illumination. The issue

of feature sets for human detection, showing that locally normalized Histogram of Oriented

Gradient (HOG) descriptors provide excellent performance relative to other existing feature sets

[51].

43

3.2.2.1 Feature descriptor

A feature descriptor is a representation of an image or an image patch that simplifies the image

by extracting useful information and throwing away extraneous information. Typically, a feature

descriptor converts an image of size width x height x 3 (channels) to a feature vector / array of

length n. In the case of the HOG feature descriptor, the input image is of size 64 x 128 x 3 and

the output feature vector is of length 3780 [51]. Hence, HOG descriptor can be calculated for

other sizes. the feature vector is not useful for the purpose of viewing the image. But, it is very

useful for tasks like image recognition and object detection. The feature vector produced by these

algorithms when fed into an image classification algorithm like Support Vector Machine (SVM)

produce good results. Good features extracted from an image should be able to tell the difference

between one object and other objects. In the HOG feature descriptor, the distribution (histograms)

of directions of gradients (oriented gradients) are used as features. Gradients (x and y derivatives)

of an image are useful because the magnitude of gradients is large around edges and corners

(regions of abrupt intensity changes) and we know that edges and corners pack in a lot more

information about object shape than flat regions.

Compute a Histogram of Oriented Gradients (HOG) by [52]

• (optional) global image normalisation

• computing the gradient image in x and y

• computing gradient histograms

• normalising across blocks

• flattening into a feature vector

The first stage applies an optional global image normalisation equalisation that is designed

to reduce the influence of illumination effects. In practice, we use gamma (power law)

compression, either computing the square root or the log of each colour channel. Image

texture strength is typically proportional to the local surface illumination so this compression

helps to reduce the effects of local shadowing and illumination variations.

The second stage computes first order image gradients. These capture contour, silhouette

and some texture information, while providing further resistance to illumination variations.

The locally dominant colour channel is used, which provides colour invariance to a large

extent. Variant methods may also include second order image derivatives, which act as

44

primitive bar detectors - a useful feature for capturing, e.g. bar like structures in bicycles

and limbs in humans.

This gradient can easily have achieved by filtering the image with the following kernels.

Figure 3.9: Horizontal and Vertical gradients filtering kernel

We can also achieve the same results, by using Sobel operator in OpenCV with kernel size 1.

Next, we can find the magnitude and direction of gradient using the following formula

 g=√gx2 + gy2

 θ = tan-1(
gy

gx
)

By using OpenCV, the calculation can be done using the function cartToPolar.

Figure 3.10. Left: Absolute value of x-gradient. Centre: Absolute value of y-gradient. Right:

Magnitude of gradient (image curtesy: Satya Mallick Blog)

The luminance gradient is calculated at each pixel. The luminance gradient is a vector with

magnitude m and orientation θ represented by the change in the luminance.

The equation is:

 m (x, y) =√((L(x + 1, y) − L(x − 1, y)) 2+((L(x, y + 1) − L(x, y − 1))2

Where, L is the luminance of pixel.



(x,y)  tan1 L(x,y 1)  L(x,y 1)

L(x 1,y)  L(x 1,y)











45

The third stage aims to produce an encoding that is sensitive to local image content while

remaining resistant to small changes in pose or appearance. The adopted method pools

gradient orientation information locally in the same way as the SIFT [53] feature. The image

window is divided into small spatial regions, called “cells”. For each cell, we accumulate a

local 1-D histogram of gradient or edge orientations over all the pixels in the cell. This

combined cell-level 1-D histogram forms the basic “orientation histogram” representation.

Each orientation histogram divides the gradient angle range into a fixed number of

predetermined bins. The gradient magnitudes of the pixels in the cell are used to vote into

the orientation histogram.

8×8 cells 9-bin histogram looks like this [54]:

Figure 3.11: 9-bin histogram

The fourth stage computes normalisation, which takes local groups of cells and contrast

normalises their overall responses before passing to next stage. Normalisation introduces

better invariance to illumination, shadowing, and edge contrast. It is performed by

accumulating a measure of local histogram “energy” over local groups of cells that we call

“blocks”. The result is used to normalise each cell in the block. Typically, each individual

cell is shared between several blocks, but its normalisations are block dependent and thus

different. The cell thus appears several times in the final output vector with different

normalisations. This may seem redundant but it improves the performance. We refer to the

normalised block descriptors as Histogram of Oriented Gradient (HOG) descriptors.

The final step collects the HOG descriptors from all blocks of a dense overlapping grid of

blocks covering the detection window into a combined feature vector for use in the window

classifier.

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#id4

46

3.2.3 Feature extraction method:

In order to extract feature (values) from an image first, we convert the original image into a

gray scale image. Before gray scaling we cropped the image from the selected area then resized

the image into a fixed aspect ratio of 8:3. The image patch is 128×48 which ratio is 8:3 and

ready for calculating the HOG descriptor.

 resized

 Cropped image 128×48

Figure 3.12: Prepare image to calculate the HOG descriptor

To calculate a HOG descriptor, we need to first calculate the horizontal and vertical gradients;

after all, we want to calculate the histogram of gradients. We can achieve the results, by

using Sobel operator in OpenCV with kernel size 1.

gx = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=1)

gy = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=1)

we can find the magnitude and direction of gradient using the following formula:

 g = √gx2 + gy2

 θ = tan-1(
gy

gx
)

At every pixel, the gradient has a magnitude and a direction. The magnitude of gradient at a pixel

is the maximum of the magnitude of gradients of the three channels, and the angle is the angle

corresponding to the maximum gradient.

In next step, the image is divided into 8×8 cells and a histogram of gradients is calculated for

each 8×8 cells. The histogram is essentially a vector (or an array) of 9 bins (numbers)

corresponding to angles 0, 20, 40, 60 … 160. the angles are between 0 and 180 degrees instead

of 0 to 360 degrees. These are called “unsigned” gradients because a gradient and it’s negative

are represented by the same numbers [54]. Next step is to create a histogram of gradients in these

8×8 cells. The histogram contains 9 bins corresponding to angles 0, 20, 40 … 160.

47

Figure 3.13: 8×8 cells of HOG

We are looking at magnitude and direction of the gradient of the 8×8 patch. A bin is selected

based on the direction, and the vote (the value that goes into the bin) is selected based on the

magnitude. Let’s first focus on the pixel encircled in blue. It has an angle (direction) of 80 degrees

and magnitude of 2. So, it adds 2 to the 5th bin. The gradient at the pixel encircled using red has

an angle of 10 degrees and magnitude of 4. Since 10 degrees is half way between 0 and 20, the

vote by the pixel splits evenly into the two bins.

Figure 3.14: Magnitude and Direction look up table (image curtesy: Satya Mallick Blog)

 If the angle is greater than 160 degrees, it is between 160 and 180, and we know the angle wraps

around making 0 and 180 equivalents [54]. So, in the example below, the pixel with angle 165

degrees contributes proportionally to the 0-degree bin and the 160-degree bin.

we created a histogram based on the gradient of the image. Let’s say we have an RGB color

vector [128, 64, 32]. The length of this vector is . This is also

called the L2 norm of the vector. Dividing each element of this vector by 146.64 gives us a

normalized vector [0.87, 0.43, 0.22] [54] .

No, we simply normalize the 9×1 histogram the same way we normalized the 3×1 vector. A

48

16×16 block has 4 histograms which can be concatenated to form a 36 x 1 element vector and it

can be normalized just the way a 3×1 vector is normalized. The window is then moved by 8 pixels

and a normalized 36×1 vector is calculated over this window and the process is repeated.

To calculate the final feature vector for the entire image patch, the 36×1 vectors are concatenated

into one giant vector.

There are 15 horizontals and 5 verticals positions making a total of 15 x 5 = 75 positions.

Each 16×16 block is represented by a 36×1 vector. So, when we concatenate them all into one

giant vector we obtain a 36×75 = 2700-dimensional vector.

We use GPU based HOGDescriptor in openCV for extracting the feature from the image. We

have a compute function in OpenCV to extract Descriptors values.

HOGDescriptor function in OpenCV is

Gpu: HOGDescriptor (Size win_size=Size(64, 128), Size block_size=Size(16, 16),

Size block_stride=Size(8, 8), Sizecell_size=Size(8, 8), int nbins=9,

double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2,

bool gamma_correction=true, intnlevels=DEFAULT_NLEVELS)

where

• win_size – Detection window size. Align to block size and block stride.

• block_size – Block size in pixels. Align to cell size. Only (16,16) is supported for now.

• block_stride – Block stride. It must be a multiple of cell size.

• cell_size – Cell size. Only (8, 8) is supported for now.

• nbins – Number of bins. Only 9 bins per cell are supported for now.

• win_sigma – Gaussian smoothing window parameter.

• threshold_L2hys – L2-Hys normalization method shrinkage.

• gamma_correction – Flag to specify whether the gamma correction preprocessing is

required or not.

• nlevels – Maximum number of detection window increases.

We set the HOGDescriptor function parameter according to our program. We set window size

(128×48) , block size (16 × 16). Block stride or overlapping (8×8) , cell size (8×8) and number

of bins 9.

This function computes the hog features

 Compute (image, descriptors, winStride, padding, locations)

Which give us the descriptors value. We set padding and winStride to (0,0).

By applying this we get 2700 descriptors value. And, we use this function for every image to

extract feature. After find, the value we save them into a text file to train the system. We have

49

libsvm training procedure so we have to format the file according to lib-svm. The format looks

like

+1 1:0.117419 2:0.0915074 3:0.0575953 4:0.0183482 5:0.0274423 6:0.0192094 7:0.177189

8:0.17299 9:0.143298 10:0.129288 11:0.0972997 12:0.0313414 13:0.00684788 …………...

+1: represents the positive image.

Figure 3.15: Left: original positive image, Right: Extracted HOG feature visualization

3.2.4 Alternative feature extraction method

Rather than HOG there are other methods too which extract feature from the image one of this

is Local Binary Pattern (LBP).

We use OpenCV in C++ for extracting the feature from the image. We implement the local

Binary Pattern (LBP) method by a code on every image. The code is implemented in C++

language. Now, we explain the LBP method which applying in code. We are applying the LBP

count from row 2 and column 2. It assigns 3×3 neighbourhood of each pixel with the center

pixel value and the result is considering as a binary number which is calculated by clockwise

way. This way it is applicable for the image for every pixel. An example is given below for

LBP calculation [55]

Figure 3.16: The first step in constructing a LBP is to take the 8-pixel neighborhood

surrounding a center pixel and threshold it to construct a set of 8 binary digits

5

8

1

5

4

1

3

7

2

1

1

0

1

0

0

1

0

50

Figure 3.17: 8-bit binary Decimal value

 Input Image Output LBP Image

Figure 3.18: Calculated LBP value stored into output array

We compared each pixel with its 8 neighbors where which pixel is greater than the center pixel

then it encoded with 1 otherwise with 0. Then we converted those binaries encoded to decimal

number in clock wise order. After calculating all values in this way then we count the pixel values

range are within 0 to 255. For other variation in encoded values, we follow same procedure, but

those values saved another file.

We divide the whole image first in such way (here 2×2) that full image divided equally. We count

the pixel values of every divided part (which in number 4) ranged to 0 to 255. This process will

be followed for every image. We also divide the image into 2×4 where image not equally divided.

And, we also have to count the pixel value of all 8 part in range of 0 to 255.

1

1

0

1

0

0

1

0

1 0 1 0 0 0 1 1

 163

5

4

2

2

1

3

5

8

1

3

2

5

4

1

2

4

3

7

2

7

1

4

4

2

6

Decimal: 163

51

Figure 3.19: Left: An insulator image divided into 2×2 sub-regions, Right: An insulator image

divided into 2×4 sub-regions

For an image, we count the pixel value from 0 to 255 that save count 1 to 256 positions to a text

file in libsvm tool format. This is for non-divided image. For dividing image, we count pixel

value for every partition from 0 to 255 and save count 1 to 256 positions. For the second portion

the count value increase which starts from 257 and represents how many zeros count in that

portion. The other portions counting value of same image will be increase same way. For the 2×2

divided image we found 1024 values and 2×4 divided image we found 2048 values. For 2×2

divided image we have four portion in that for every portion we get 1364 value from 0 to 255.

We count them as how many zeros or ones in them like this. And, we store them into a file in

libsvm format start with 1. For first portion we have 256 values and we store them in 1 to 256 as

well as for the other portion we have also 256 values and we start store them from 257 which

represent the count value of zeros.

Text file format is given bellow:

256:971 257:2 258:0 259:0 260:0 261:0 262:0 263:1 264:2 265:2 266:0 267:0 268:0 269:1

1013:0 1014:0 1015:0 1016:1 1017:9 1018:1 1019:0 1020:6 1021:1 1022:3 1023:5 1024:1173

Here, the value we have found after counted is our feature value as like here in 256 we have the

value of 971 which is the value of zeros. And, 1024 is the value of 255 as we counted 1173 in the

fourth portion.

We run this process for all the image in our dataset and save the counted value in the text file.

3.2.4 Training For Insulator Detection

3.2.4.1 Image Data-set:

For training, we used cropped version of the insulator images. First, we cropped down insulator

from different images. As all the insulator are not horizontal some are rotated so we fixed them.

And, make sure that all the insulator in the same uniform manner. We not only take the insulator

but also take insulator with some part wire or other parts of the power line that cover insulator.

There are almost 215 insulators which is counted as our positive dataset. All the positive images

52

have a fixed aspect ratio of 8:3. So, when we train our data we resized images into (128×48) so

that they maintain the ratio. We also used 385 non-insulator images in training to define the non-

insulator class. This non-insulator images are our negative sample. We also resized our negative

samples into (128×48) so that they maintain aspect ratio. Totally, we have 600 positive and

negative images in our dataset [21].

Figure 3.20: positive image dataset

3.2.4.2 Training Using LIBSVM

After taking all the images into GRAY scale we apply HOG for each insulator and non-insulator

image we obtain feature values to construct a feature-vector. Each image is of size 128 × 48. As

our window is 128 × 48, block size is 16×16, block overlapping 8×8, cell size 8×8 and bins are

9. 16×16 block means it will take 4 cells which has 9 bins individually. So, from our calculation

the descriptors value should be 4×9×15×5= 2700. So, after applying HOG on our image we also

got 2700 descriptors value. We apply HOG on every image and get training feature vector xi.

These feature vectors were saved in a text file with a label as a training file. For an insulator-

image, the label is +1 and for non-insulator image, label is -1. These values with label are saved

in certain format so that LIBSVM [12] can read, analyse and produce a classifier. We completed

the scaling of each attribute to the range between 0 and 1 before training procedure. Training

vectors are mapped into a higher dimensional space. LIBSVM finds a linear separating

hyperplane with the maximal margin in this higher dimensional space [21].

In the training, as kernel, we used radial basis function (RBF):

K (Fi; Fj) = exp (-γ ||Fi – Fj||2)

γ > 0: C > 0 is the penalty parameter of the error term. We set γ = .01; C = 8 for training. Since

the number of insulator images is not larger than the number of non-images, so we do not provide

any larger penalty for non-insulator image class than insulator image class using -w in LIBSVM.

Support vector machine performs an implicit mapping of data from lower to higher dimension

feature space. We use C-SVC type SVM.

53

For train data set, we need to use command mode. By extracting feature value and write it into

text file we directly use it into command mode but in our program, we use system call to use it.

For using command line at first, we keep the LIBSVM in our c drive or any other drive. In

LIBSVM there is a folder called window. Here, many exe files we see like svm-train.exe, svm-

predict.exe etc. We keep the text file into this folder which contains the training dataset.

First, we go to the command mode window then follow some procedure: -

• C:\Users\user> cd path

• C:\Users\user\libsvm\window> svm-train [options] training_set_file [model_file]

 LIBSVM training command shown below:

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 trainfile.txt

Or

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 trainFile.txt. scale [if we take our data into scale]

In Microsoft visual studio:

➢ system ("svm-train.exe -s 0 -c 8 -t 2 -g .01 trainFile")

This command gives us a model which We will use later, for classification.

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 -v 5 trainfile.txt

It will give a cross-validation result of 5-fold which means it divides training data set into 5 parts

where 4 parts used for train dataset and one part is used for test dataset.

parameters:

-s: C-SVC (if s=0, then the SVM type is C-SVC) only.

 -c: set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

 -t: radial basis function: exp(-gamma*|u-v|^2)

 -g: set gamma in kernel function (default 1/num_features)

 -v: Cross Validation Accuracy

3.2.4.3 Hard-negative mining

For each image and each possible scale and rotation in our training set, we apply the sliding

window technique and slide our window across the image. At each window, we compute our

HOG descriptors and apply our classifier. If your classifier (incorrectly) classifies a given

window as an insulator (and it will, there will absolutely be false-positives), we record false

positive image. This approach is called hard-negative mining [55].

54

Take the false-positive samples found during the hard-negative mining stage, put them into our

negative samples folder as a negative image and re-train our classifier using those hard-negative

samples. Often performance can be improved by re-training the object detector with a set of

negative examples that has been augmented with false-positives from an initial run of the object

detector. Intuitively, this makes a much better negative training set than the random patches

chosen initially. The gains in accuracy on subsequent runs of hard-negative mining tend to be

minimal.

3.2.5. Classification (Insulator Detection)

After completion of training successfully, we apply sliding window based technique to identify

and localize insulators in an image from our test image set. In this approach, we slide a rectangular

window with fixed width and height across an image from left-to-right and top-to-bottom. First,

we apply this technique in our original image then repeated on successively scaled copies of the

image. For each detected window(sub-image), we normally take that sub-image and convert it

into GRAY scale image as well as apply HOG to extract descriptors value and store them into

text file to classify. This process is repeated on full image as well as successively scaled copies

of the image so that objects can be detected at any size.

 (a) (b) (c)

Figure 3.21: (a) Scanning image with a fixed-size rectangular window (b) Sub-image defined

by the window (c) Apply HOG on sub-image

We apply this process in image with zero-degree rotation. After that we rotate the image and

apply all the techniques we used before. We increment the angle of rotation by 10-degree until

it reaches 360-degree. In rotated image, we apply sliding technique combined with image

pyramid. With fixed size rectangular window, we scan rotated image as well as for every sub-

window we calculate descriptors value and applying a classifier to detect that particular bounds

is our insulator or not.

55

 (a) 10-degree rotation in 100% size (b) sliding window in rotational image

Figure 3.22: Sliding window technique on rotated image with fixed detection window

After successfully applying sliding window we bound a window and extract HOG descriptors

value. And, save them into a single test instance text file. We use this text featured file to classify

insulator and non- insulator using svm-predict function of LIBSVM.

We write below code

➢ svm-predict.exe test_data test.model result.txt

parameters:

 test_data: HOG features value of a sub-image

 test.model: classifier

 result.txt: predicted label

Model has all necessary parameters for svmpredict.

If the variable classifier is greater than 0, we consider the instance as insulator.

Else, classifier < 0 and the instance is a non-insulator.

At each window, we compute HOG descriptors and apply our classifier. our classifier incorrectly

classifies a given window as an insulator which is absolutely be a false positive image. When we

complete our scanning, we get lots of false positive image so we apply hard-negative mining

approach. And, retrain our classifier with incorrectly classified image with negative samples.

Performance improved by re-training classifier with a set of negative examples that has been

augmented with false-positives from an initial run of the classifier.

56

Now, for each scale and rotation we apply the sliding window technique. At each window extract

HOG descriptors and apply our classifier. After classify our insulator, we record the bounding

box of the window. Those windows bounded our desire object.

3.6 Non- maximum suppression (NMS)

 The output had multiple detections of the same object. So, we applied non-maximum

suppression to remove redundant and overlapping bounding boxes.

Non-maximum suppression is used as an intermediate step in many computer vision algorithms.

Non-maximum suppression is often used along with edge detection algorithms. The image is

scanned along the image gradient direction, and if pixels are not part of the local maxima they

are set to zero. This has the effect of supressing all image information that is not part of local

maxima [56].

Approaches based on sliding windows [43-45] typically produce multiple windows with high

scores close to the correct location of objects. This is a consequence of the generalization ability

of object detectors, the smoothness of the response function and visual correlation of close-by

windows. This relatively dense output is generally not satisfying for understanding the content

of an image. As a matter of fact, the number of window hypotheses at this step is simply

uncorrelated with the real number of objects in the image. The goal of NMS is therefore to retain

only one window per group, corresponding to the precise local maximum of the response

function, ideally obtaining only one detection per object. Consequently, NMS also has a large

positive impaction performance measures that penalize double detections. [57]

The most common approach for NMS consists of a greedy iterative procedure [43, 44], which

we refer to as Greedy NMS. The procedure starts by selecting the best scoring window and

assuming that it indeed covers an object. Then, the windows that are too close to the selected

window are suppressed. Out of the remaining windows, the next top-scoring one is selected, and

the procedure is repeated until no more windows remain. This procedure involves defining a

measure of similarity between windows and setting a threshold for suppression. These definitions

vary substantially from one work to another, but typically they are manually designed. Greedy

NMS, although relatively fast, has a number of downsides. First, by suppressing everything

within the neighbourhood with a lower confidence, if two or more objects are close to each other,

all but one of them will be suppressed. Second, Greedy NMS always keeps the detection with the

highest confidence even though in some cases another detection in the surrounding might provide

57

a better fit for the true object. Third, it returns all the bounding-boxes which are not suppressed,

even though many could be ignored due to a relatively low confidence or the fact that they are

sparse in a sub-region within the image. [57]

Rather than greedy NMS method, there are multiple ways to remedy this problem. Triggs et al.

suggests to use the Mean-Shift algorithm to detect multiple modes in the bounding box space by

utilizing the (x, y) coordinates of the bounding box as well as the logarithm of the current scale

of the image. [55]

However, no matter what method of object detection we use, we will likely end up with multiple

bounding boxes surrounding the object we want to detect. In order to remove these redundant boxes,

we apply Non-Maximum Suppression.

Figure 3.23: Applying non-maximum suppression, correctly able to reduce

the number of bounding boxes

http://en.wikipedia.org/wiki/Mean-shift

58

Chapter 4

Experimental Result and Performance Analysis

In chapter 3, We discussed about the test of insulator detection based of Histogram Oriented

Gradient (HOG). Here, we perform a comprehensive experiment. The experimental result and

discusses focuses on the performance of the result analysis of the system which is divided into

several categories.

4.1 Experimental result

In this chapter we discuss about our experimental result on HOG and other feature extraction

method. The result and discussion focusses on the performance of our proposed method. In

section 4.1.1 and4.1.2 we discuss about the result of pole and insulator detection. In section 4.1.3

we discuss about the result of other feature extraction method.

4.1.1 Pole Detection result

We tested about 26 images to find out pole with x-axis threshold 5 pixels and variation in theta

±50 as an empirical value. In 26 images, we found pole in our best three lines in 25 images. We

draw the them into red, green and blue. We found pole in our first best line in 20 images, second

best in 4 images and last one in on image. We found no result in one image.

In total we got, 96.154% accuracy to find a pole in 26 images with three best coverage lines.

Table 4.1: Accuracy of pole detection with empirical value 5 pixels and theta ±50

Best Coverage Line

Total Image

Detected Pole

(26 image)

Accuracy

(First Line)

Line one

(Red)

26

20

80%

Line two

(Green)

26

4

16%

Line three

(Blue)

26

1

4.167%

59

Here, our first best line detects the pole so we don’t need to look for the pole in the other two

lines which is shown in Red color.

Figure 4.1: Detected pole shown in Red, Green and Blue (Three best lines)

We got no result in one image from 26 images. This happened because in that image all the

building’s corner counted as a line so when we calculate coverage area those lines were counted.

So, we need more pre-processed data from overcome this type of situation.

Figure 4.2: Non Pole Detection Image

60

4.1.2 Insulator result

To evaluate the performance of features, we ran various cross-validation test in LIBSVM. The

number of test classes are 2. In the first class, we have 215 images of insulator. In the second

class, there are 385 images of non-insulator. Features are taken from both classes. These features

are used for classification by the standard classifier of LIBSVM. So, the

performance of features is directly co-related to the performance of classifier.

Table 4.2: Accuracy of classifier for Radial Basis Function under different parameters

From Table 4.2 we see that for different gamma, cost and fold we got different results. For

gamma= .0001, cost= 512 and fold No.=5 we got the highest accuracy for classifier. And, other

results have variation in accuracy but we got better result in fold No. 5 as well as There is a little

difference between different folds’ results.

For better accuracy of classifier, we searched best value of γ; C through grid.py and easy.py

(Python program).

This programs do grid-search for γ; C in an interval, the instruction command in Windows.

Command Prompt is

➢ python grid.py Feature Value

➢ python easy.py Feature Value

Both command we can use for finding the best gamma and cost. Grid.py is only search for best

gamma and cost which maximize our classifier. And, easy.py does everything automatic from

data scaling to parameter selection. Both use Gnuplot for visualizing contour plot.

No.

Sample Size

Cost

Gamma

Cross Fold

Validation

Accuracy

1

600

512

.0001

5

99.5%

2

600

256

.0001

7

98.8333%

3

600

512

.0005

9

99.3333%

4

600

128

.005

20

99.1667%

5

600

64

.001

50

99.3333%

61

Figure 4.3: Contour plot of our data running in LIBSVM to find best gamma and cost

ROC - Receiver Operating Characteristics graphs are a useful technique for organizing

classifiers and visualizing their performance. [58]

The ROC curve of our classifier is

Figure 4.4: ROC curve of classifier

62

4.1.2.1 Visualize Experimental Result

Figure 4.5: Horizontal insulator detection

Figure 4.6: Angled insulator detection

63

4.2 Performance Analysis

In pole detection, with our x- axis threshold value 5 pixels and theta difference ±50 we got

96.154% accuracy to detect a pole in an image and our first best line detect 80% pole in 26

images. We try different threshold value and theta for our experiment. Below we shown the

comparison between different empirical values:

Table 4.3: Comparison between different empirical value

Figure 4.7: Comparison of different empirical value’s accuracy

96.154

92.308 92.308 92.308

90

91

92

93

94

95

96

97

Emperical Value 1 Emperical Value 2 Emperical Value 3 Emperical Value 4

accuracy chart

No.

Different empirical value

Total Image

Detected pole

(26 image)

Total Accuracy

1

Difference=5 pixels

Angle= 50

26

25

96.154%

2

Difference=3 pixels

Angle= 30

26

24

92.308%

3

Difference=5 pixels

Angle= 30

26

24

92.308%

4

Difference=5 pixels

Angle= 70

26

24

92.308%

64

The performance analysis module tests the proposed system with different feature value to detect

insulator using support vector machine. We used Local Binary Pattern(LBP) and LBP with HOG

to saw how they perform in insulator detection. The Results of LBP and LBP-HOG are shown

below:

Table 4.4: Accuracy of classifier for Radial Basis Function using LBP (images divided into

2×2) in SVM (LIBSVM) for different γ, C and V

No.

Sample Size

Cost

Gamma

Cross Fold

Validation

Accuracy

1

600

2

.00001

5

98.5%

2

600

8

.00002

7

97.5%

3

600

16

.00003

9

96.3333%

4

600

64

.00001

20

98.3333%

5

600

32

.00004

50

93.8333%

Table 4.5: Accuracy of classifier for Radial Basis Function using LBP (images divided into

2×4) in SVM (LIBSVM) for different γ, C and V.

No.

Sample Size

Cost

Gamma

Cross Fold

Validation

Accuracy

1

600

8

.00001

5

97.8333%

2

600

8

.00003

7

97.1667%

3

600

128

.000001

9

98.5%

4

600

64

.000009

20

97.3333%

5

600

32

.000003

50

98.1667%

65

Table 4.6: Accuracy of classifier for Radial Basis Function using LBP-HOG in SVM

(LIBSVM) for different γ, C and V

No.

Sample Size

Cost

Gamma

Cross Fold

Validation

Accuracy

1

600

8

.005

5

96.3333%

2

600

8

.007

7

95.5%

3

600

32

.005

9

95.3333%

4

600

64

.009

20

95.8333%

5

600

8

.003

50

96%

Table 4.7: Accuracy of classifier for Radial Basis Function using LBP-HOG (images

divided in 2×2) in SVM (LIBSVM) for different γ, C and V

No.

Sample Size

Cost

Gamma

Cross Fold

Validation

Accuracy

1

600

8

.008

5

96.5%

2

600

16

.01

7

96.3333%

3

600

8

.01

9

96.8333%

4

600

32

.009

20

96.3333%

5

600

8

.003

50

95.1667%

66

From our experiment we got different cross validation result for different feature. By dividing

images into (2×2) and images divided into 2×4 (LBP) we got accuracy of our classifier 98.5%

and 97.8333% in 5-fold cross validation. We used LBP and HOG feature together and got

accuracy 96.3333%. By dividing images into 2×2 using LBP-HOG feature together we got 96.5%

result in 5-fold cross validation. Compare to LBP and LBP-HOG LBP gives little better result

than LBP-HOG.

Table 4.8: Overall performance of different features accuracy

Feature

Cross Fold Validation

Accuracy

HOG

5

99.5%

LBP (2×2)

5

98.5%

LBP (2×4)

5

97.8333%

LBP-HOG

5

96.3333%

LBP-HOG (2×2)

9

96.8333%

67

Chapter 5

Conclusion

In this chapter we summarize the project work. Contribution of our proposed system presents in

section 5.1. The limitation of our system discuss in section 5.2. We make final concluding

remarks with few directions for future works and improvements in section 5.3.

5.1 Contribution of proposed system

In last, few years many works have been done in power line insulator detection and fix the

faultiness of insulator in the field of computer vision. Therefore, insulator detection is challenging

task in power line system.

we discuss, a computer vision based technique to detect power line insulator using support vector

machine using LIBSVM tool. As Electrical pole poses a great role to detect insulator so we detect

different types of electrical pole by using line detection approach.

From extracted data for insulator LIBSVM used to train the machine. These features are extracted

by using Histogram Oriented Gradient method that saved in a text file. The system trained by

SVM (LIBSVM tool) and tested by using sliding window technique with pyramid image. We

also apply rotational- invariant method to detect insulator at varying angle with the help of sliding

window technique. The result of our experiment is given overall satisfactory.

5.2 Limitation of the System

A major problem in detection of electrical pole is that if we have not found any pole in our best

three lines then we have to take another angle picture or considering other logic to detect. The

time complexity of our pole detection is O(n2). When we have lots of line then it took extra time

for grouping lines which is the drawback of our pole detection system. If there are lamp post or

other vertical object, then our system cannot compete with them as well as if there is high rise

building, our system detects extensive amount lines than system failed to detect pole.

Sliding window technique fail to take into account contextual cues as well as the window has a

68

fixed aspect ratio making it difficult for articulated insulators or insulators with large intra-class

variation. It is time consuming because it slides the image at a fixed amount. If sliding amount is

greater it cannot detect insulator. It searches at every possible scale and rotation so it took more

time to terminate. It detects lots of false positive which is time consuming for re-train the

classifier.

5.3 Future Work and Improvement

Rather than problem in pole detection improvement can be made by reducing false detection. We

take count on horizontal lines and try to make a cross which we see in the pole or may be two

horizontal lines along with vertical lines. We try to confide on the texture of the pole and other

objects but it does work properly. As well as we can take count on the width of the object. High

rise building line detection problem can be solved easily by this. Our next plan how could we

more accurately detect pole at low cost and reduce the time consumption.

When we took insulator image in our dataset we have not applied any pre-processing technique

to normalize the effect of illumination which is a major issue. Due to the different amount of

light, the intensity value of the image tends to vary a lot, thus it makes hard to produce consistent

result. When we re-sized images lots of information have been lost. We will apply faster sliding

window technique to boost slide onto the image fast. We also try to classify insulator without

using LIBSVM. We will try different classifier like-KNN, ANN Etc. to classify insulator. We

also hope that, HOG based feature will perform better in sophisticated machine learning

algorithms like Adaptive Boosting, Convolutional Neural Network [21].

In future, we plan to detect fault of the insulator and make our approach more robust in detect

insulator. In real life insulator faultiness or injury finding is more important. As we detected

insulator our next plan is to find out the faultiness of insulator which is a challenging task for

every researcher.

In spite of some problems in our proposed system, the performance of the technique can play a

significant role in terms of detection and memory.

69

References

[1] "Detection and classification of defects in ceramic insulators using RF antenna – IEEE Xplore

Document",Ieeexplore.ieee.org.

Available: http://ieeexplore.ieee.org/document/7873474/.

[2] http://or.nsfc.gov.cn/bitstream/00001903/151571/1/1000013766367.pdf.

[3] R. Gaur, "A Novel Analytical Approach For The Protection Of The Wireless

Network", Rroij.com.

Available:https://www.rroij.com/open-access/a-novel-analytical-approach-for-the-

protection-of-the-wireless-network-22-25.php?aid=37756.

[4] "Computer vision", ScienceDaily,

Available: https://www.sciencedaily.com/terms/computer_vision.htm.

[5] "Utility pole", En.wikipedia.org,

 Available: https://en.wikipedia.org/wiki/Utility_pole.

[6] "Image Analysis-Based Automatic Utility Pole Detection for Remote Surveillance - IEEE

Xplore Document", Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/document/7371267/.

[7] "Power Pole Detection Based on Graph Cut - IEEE Xplore Document", Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/abstract/document/4566577/.

[8] "Detection of Pole-like Objects from LIDAR Data - ScienceDirect", Sciencedirect.com,

Available: http://www.sciencedirect.com/science/article/pii/S187704281630595X.

[9] "Pole-like object detection and classification from urban point clouds - IEEE Xplore

Document",Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/document/7139615/. [Accessed: 15- Aug- 2017].

[10] "An optimal graph theoretic approach to data clustering: theory and its application to image

segmentation - IEEE Xplore Document", Ieeexplore.ieee.org,

 Available: http://ieeexplore.ieee.org/document/244673

 [11] "A new graph-theoretic approach to clustering and segmentation - IEEE Xplore

Document",Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/document/1211348/.

http://ieeexplore.ieee.org/document/244673

70

[12] "A Robust Insulator Detection Algorithm Based on Local Features and Spatial Orders for

Aerial Images - IEEE Xplore Document", Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/abstract/document/6979220/.

[13] http://cmp.felk.cvut.cz/cvww2014/papers/19/19.pdf.

[14] "Defects Detection of Glass Insulator Based on Color Image--《Power System Technology

》2011年01期", En.cnki.com.cn,

 Available: http://en.cnki.com.cn/Article_en/CJFDTotal-DWJS201101023.htm.

[15] L. Junfeng, L. Min and W. Qinruo, "A Novel Insulator Detection Method for Aerial Images".

[16] "A Method of Insulator Detection from Video Sequence - IEEE Xplore Document",

Ieeexplore.ieee.org, Available: http://ieeexplore.ieee.org/document/6495370/.

[17] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in:

Proc. of CVPR, 2001

[18] F. Crow, Summed-area tables for texture mapping, in: Proc. of SIGGRAPH, Vol.

18, 1984, pp. 207212

[19] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, in: European Conf. on Computational Learning Theory,

1994.

[20] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, Journal of Computer and System Sciences 55 (1) (1997)

119139

[21] Fahad Bin Mortuza, Kernel-Coefficient Based Feature For Face-Detection. 2017.

[22] "11.1 Classification Techniques", Wtlab.iis.u-tokyo.ac.jp,

Available: http://wtlab.iis.u-tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp11/cp11-1.htm.

[23] "An Introduction to Classification: Feature Selection", Improvedoutcomes.com,

Available:http://www.improvedoutcomes.com/docs/WebSiteDocs/Classification_and_Pred

iction/SLAM/An_Introduction_to_Classification.htm.

[24] "Introduction to Support Vector Machines — OpenCV 2.4.13.3 documentation", Docs.opencv.org,

Available:http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to

_svm.html.

[25] Vapnik, V. N., and Chervonenkis, A. Y. Theory of Pattern Recognition [in Russian].

71

Nauka, USSR, 1974.

[26] Cortes, C., and Vapnik, V. Support-Vector Networks. In Machine Learning (1995), vol.20,

pp. 273{297.

[27] http://www.bytefish.de/pdf/machinelearning.pdf.

[28] E. Osuna, R. Freund, F. Girosi, Training support vector machines: An application to face

detection, in: Proc. of CVPR, 1997

[29] B. Heisele, T. Poggio, M. Pontil, Face detection in still gray images, Tech. rep., Center for

Biological and Computational Learning, MIT, A.I. Memo 1687 (2000)

[30] S. Romdhani, P. Torr, B. Scholkopf, A. Blake, Computationally efficient face detection,

in: Proc. of ICCV, 2001

[31] M. Ratsch, S. Romdhani, T. Vetter, Efficient face detection by a cascaded support vector

machine using haar-like features, in: Pattern Recognition Symposium, 2004

[32] P. Wang, Q. Ji, Multi-view face detection under complex scene based on combined svms,

in: Proc. of ICPR, 2004. rep., Microsoft Research, MSRTR-2001-09 (2001)

[33] K. Hotta, View independent face detection based on combination of local and global

kernels, in: International Conference on Computer Vision Systems, 2007

[34] http://web.mit.edu/6.034/wwwbob/svm.pdf.

[35]http://www.cogsys.wiai.uniamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_

 Hofmann.pdf.

[36] "LIBSVM -- A Library for Support Vector Machines", Csie.ntu.edu.tw,

Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm

 [37] https://www.cs.cornell.edu/people/tj/publications/joachims_06a.pdf.

[38] A. Rosebrock, "Sliding Windows for Object Detection with Python and OpenCV

 PyImageSearch",PyImageSearch,

Available: http://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-

detection-with-python-and-opencv/.

[39] " Image Pyramids — OpenCV 2.4.13.3 documentation", Docs.opencv.org,

Available: http://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html.

[40A.Rosebrock,"Image Pyramids with Python and OpenCV PyImageSearch", PyImageSearch,

http://web.mit.edu/6.034/wwwbob/svm.pdf
http://www.cogsys.wiai.uniamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_
http://www.cogsys.wiai.uniamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_
https://www.csie.ntu.edu.tw/~cjlin/libsvm

72

Available:http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-

opencv/.

[41] "Electric Poles | Electrical4u", Electrical4u.com,

Available: https://www.electrical4u.com/electric-poles/.

[42] "Edge Detection - MATLAB & Simulink - MathWorks United Kingdom", Mathworks.com,

Available: https://www.mathworks.com/help/images/edge-detection.html.

[43] A. Rosebrock, "Zero-parameter, automatic Canny edge detection with Python and OpenCV

- PyImageSearch", PyImageSearch

Available: http://www.pyimagesearch.com/2015/04/06/zero-parameter-automatic-canny-

edge-detection-with-python-and-opencv/.

[44] C. Detection, "Canny Edge Detection", Opencvexamples.blogspot.com,

Available:http://opencvexamples.blogspot.com/2013/10/void-canny-inputarray-image-

outputarray.html.

[45] "eyantrainternship/eYSIP_2015_Marker_based_Robot_Localisation", GitHub,

Available:https://github.com/eyantrainternship/eYSIP_2015_Marker_based_Robot_Locali

sation/wiki/Line-Detection.

[46] "Implementing Hough Transform (Line Detection)", Sidekick.windforwings.com,

Available: http://sidekick.windforwings.com/2012/12/implementing-houghtransform.html.

[47] "Hough Line Transform — OpenCV 2.4.13.3 documentation", Docs.opencv.org,

Available:http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_li

nes.html.

[48] "Hough Line Transform — OpenCV-Python Tutorials 1 documentation", Opencv-python-

tutroals.readthedocs.io,

Available:http://opencvpythontutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py

_houghlines/py_houghlines.html.

[49] "Hough Line Transform — OpenCV 2.4.13.3 documentation", Docs.opencv.org,

Available:http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_li

nes.html.

[50]https://www.ndeed.org/EducationResources/HighSchool/Electricity/conductorsinsulators.ht

 m

[51] "Histograms of oriented gradients for human detection - IEEE Xplore

Document", Ieeexplore.ieee.org,

Available: http://ieeexplore.ieee.org/document/1467360/.

https://www.ndeed.org/EducationResources/HighSchool/Electricity/conductorsinsulators.ht
https://www.ndeed.org/EducationResources/HighSchool/Electricity/conductorsinsulators.ht

73

[52] "Histogram of Oriented Gradients — skimage v0.14dev docs", Scikit-image.org, 2017.

Available:http://scikitimage.org/docs/dev/auto_examples/features_detection/plot_hog.html

.

[53] David G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

Journal of Computer Vision, 60, 2 (2004), pp. 91-110

[54] S. Mallick, "Histogram of Oriented Gradients | Learn OpenCV", Learnopencv.com, 2017.

Available: http://www.learnopencv.com/histogram-of-oriented-gradients/.

[55] http://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/

[56] http://users.ecs.soton.ac.uk/msn/book/new_demo/nonmax/

[57] https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_01126.pdf

[58] https://www.mathworks.com/matlabcentral/fileexchange/19950-rocout=roc-varargin-

