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Abstract 

 

Insulators are widely used in the power system to provide electrical insulation and 

mechanical support for high voltage transmission lines. Detecting and localizing the 

insulators automatically are very important to intelligent inspection, which are the 

prerequisites for fault diagnose. A method for insulator detection in the image of overhead 

transmission lines based on Histogram Oriented Gradient(HOG) is presented in this 

paper.    

 

Dividing our work into two phases- electrical pole detection and power line 

insulator detection. In the first context, present a line based approach for automated 

detection of electrical poles. The detection is performed by first applying edge detection 

algorithm. Then, Applying Probabilistic Hough Transform to extract line information 

from the image. We Prepare data by considering only vertical lines and a variation in 

angle of ±5-degree as an empirical value. Group the pre-processed data and find the 

coverage area by applying a Heuristic function. Take the best three coverage group which 

consists of lines that create three individual lines. In those best three lines at least one line 

detects a pole which maximize the coverage area. 

 

After detecting electrical pole, we go to the top of the pole and take a zoom in 

picture where we search for insulator. Before test the image we take different insulator 

and non-insulator images as our training Dataset. To train a classifier using support vector 

machine in its LIBSVM tools, extract HOG features of training Dataset. As classifier 

have been trained we apply Sliding-window object detection technique for identifying 

and localizing insulators in an image. The approach involves scanning the image with a 

fixed-size rectangular window. Extract HOG features of the sub-image defined by the 

window and apply classifier to check that the window bounds an insulator or not. The 

process is repeated on successively scaled copies of the image so that objects can be 

detected at any size. To detect angled insulator, rotate the image into 360-degree and 

apply sliding window technique with image pyramids to detect insulators at 

varying scales and locations in the image. Sliding window technique detects some non-

http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/
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insulator images as an insulator called false positive. To remove false positive Hard 

Negative Mining is applied and re-train classifier using those false positive samples which 

improve the performance of the classifier from an initial run of the classifier. Usually non-

maximal suppression is applied to the output to remove multiple detections of the same 

insulator.  

Experimental results showed that the method could extract the insulator from the 

image precisely, and it was suitable for many practical applications such as insulator fault 

diagnosis, insulator contamination grade determination and so on. Compare to the other 

Features like -LBP, experimental results indicate that HOG based feature detect insulator 

more effectively and accurately and detect insulators in different angle under complex 

background.  
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Chapter 1 

 

Introduction 

 

Monitoring the status of Insulators on power lines is one of the most important jobs in power 

system operation. Insulators play an important role in power system safe operation. It is usually 

used to fix the transmission lines. Since it has to bear high mechanical tension and high voltage, 

it is easily to be damaged. Defects in ceramic insulators like broken, cracked and punctured discs 

give rise to the initiation of partial discharge (PD) activities within the samples which will 

threaten the safety of the electric power [1]. Hence Inspecting the status of the insulators is needed 

to identify such defective samples as early as possible so that appropriate replacement strategies 

can be devised. 

To improve the efficiency of inspection, the traditional manual inspection technology is being 

replaced by new technology. Computer vision technology can quickly and efficiently detect 

defects of insulators, and greatly reduce the work load by automatically detecting and segmenting 

the power line insulators. The captured images often include various cluttered backgrounds such 

as mountains, rivers, grassland, and farmland thus, the processing of original images is 

complicated, which will easily lead to a wrong result [2]. 

In our project we, proposed a system that will detect the insulators and will help to detect faulty 

insulators more efficiently. 

 

1.1 Motivation 

 

The world economy is increasing day by day. With the economic growth, the demand for the 

power consumption has been increasing gradually. High voltage power lines and transmission 

systems become more and more important with the raising demand of energy. The distance over 

which electrical power is transmitted has been continuously increasing along with system voltage 

levels. This has led to a significant increase in the number of insulators in use on power lines. 

Insulators are used to isolate the naked power lines of the power transmission lines and to support 

the lines mechanically. Since the service life of the individual insulator making up these strings 

is difficult to predict, they must be tested periodically to maintain adequate line reliability at all 

times. It’s a challenge to test insulators periodically by using man power [3]. 
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Many paper has been published in recent years to reduce faultiness after detecting insulator using 

computer vision. They concentrate on insulator detection by using Deep Neural Network, Naïve 

Bayes classifier, support vector machine etc. Now, we want to use a new SVM tool called 

LIBSVM which will help in power line system by detecting insulator.   

 

1.2 Objective 

 

The objective of our work is to take computer vision technology one step forward in the sector 

of power lines by representing a computer vision based system to detect power line insulators. 

We are studying in power line insulator representation on histogram oriented gradient (HOG) to 

automatically detect insulator for finding its faultiness where a set of image’s features are trained 

by LIBSVM tool.  

We want to design a system that will help to detect the injury of insulator for monitoring the 

status as well as want to improve the diagnosis efficiency. we want to test the system using a set 

of positive and negative image to detect insulators more effectively and efficiently. We hope that 

our approach significantly outperforms in the power line system in term of both accuracy and 

efficiency. 

 

.1.3 System Procedure 

 

In our work, we proposed a computer vision based approach to detect power line insulator. We 

divided our work into two phases. In the first phase, we detected electrical pole and in the second 

phase, we detected insulators associated with electrical poles. 

 

First, we took a close picture in a certain region where we would find a pole. To detect pole first, 

we extracted lines from the image. To do that we applied canny to find edge of the image and 

then applied Hough Transform to extract lines. As pole is a vertical object so we took lines only 

which were vertical. In real life, poles are not always vertical, sometimes it seems skewed so we 

took a variation in angle of ±5-degree for grouping lines. After that extracted lines are grouped 

in such way so that their end point stays close. After grouping, we calculated the coverage area 

of each group by using a Heuristic function. we selected the best three groups whose coverage 

area were maximum. As groups were consisting of lines so we found the best coverage lines that 

cover the most area in the image. In those best three lines we had our electrical pole. 
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In the second phase, we looked for the top of the pole as well as took a zoom picture and this is 

our test image. To classify insulator from test image we trained a classifier with a set of insulator 

image and non-insulator image using LIBSVM by extracting feature value based on Histogram 

Oriented Gradient (HOG).  

 

Utilizing both a sliding window and an image pyramid we were able to detect insulators in images 

at various scales and locations. We applied Hard-negative mining to remove false positives and 

used non-maximal suppression method to the output for removing multiple detections of the same 

Insulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14  

Pole Detection: Procedure 

 

 

 

 

Figure 1.1: Pole Detection Procedure 
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Insulator Detection: Procedure 

 

 

 

 

Figure 1.2: Insulator Detection Procedure 
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Chapter 2 

 

Existing Work review 

 

As a scientific discipline, computer vision is concerned with the theory and technology for 

building artificial systems that obtain information from images or multi-dimensional data. A 

significant part of artificial intelligence deals with planning or deliberation for system which can 

perform mechanical actions such as moving a robot through some environment. This type of 

processing typically needs input data provided by a computer vision system, acting as a vision 

sensor and providing high-level information about the environment and the machine [4]. 

In this chapter, we discuss about the pole detection and insulator detection early work. We discuss 

the pole related existing work in section 2.1 and insulator related work in section in 2.2. We 

discuss Rigid kernel based detection of viola-jones work in section 2.3. The classification 

methods and related processes which we used in our proposed system that describe in section 

2.4. 

2.1 Existing work On Pole  

A electrical pole or utility is used to support overhead power lines and various other public 

utilities, such as electrical cable, fibre optic cable, and related equipment such as transformers, 

insulator and street lights. It can be referred to as a transmission pole or power pole depending 

on its application. Electrical wires and cables are routed overhead on utility poles as an 

inexpensive way to keep them insulated from the ground and out of the way of people and 

vehicles. Electrical poles can be made of wood, metal, concrete, or composites like fiberglass. 

They are used for two different types of power lines; sub-transmission lines which carry higher 

voltage power between substations, and distribution lines which distribute lower voltage power 

to customers [5]. 

There are many approaches to detect pole like Image Analysis-Based approach [6], Graph Cut 

approach [7], LIDAR Data based approach [8], urban point clouds approach [9], Analysis-

Based approach focuses on the shape of the pole. Graph cut for image segmentation [10,11] is 

a newly developing graph based image segmentation technique. Other approaches also describe 

different method for detecting pole. 

 

 

https://en.wikipedia.org/wiki/Overhead_power_line
https://en.wikipedia.org/wiki/Electrical_cable
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Distribution_transformer
https://en.wikipedia.org/wiki/Street_light
https://en.wikipedia.org/wiki/Fiberglass
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2.1.1 Image Analysis-Based Approach 

 

From the remote surveillance video of any wide disaster area that is fairly long, it is important to 

extract key frames that contain specific component structures of the power grid. The key frames 

can then be analyzed for possible damage to the specific structure. In his context, they present an 

algorithm for automated detection of utility poles. Specifically, they show robust detection of 

poles in frames of videos available from various sources. The detection is performed by first 

extracting 2D shapes of poles as analytically defined geometric shape, quadrilateral, whose edges 

exhibit noise corruption. A pole is then detected as a shape-based template, where one long 

rectangular trapezium, is perpendicularly intersected by at least one trapezium representing a 

cross arm that suspends the conductors. Via testing and comparison, their algorithm is shown to 

be more robust as compared to other approaches, especially against highly variable background. 

They believe such detection, with limited false negatives, will form stepping stone towards future 

detection of damages in utility poles [6]. 

2.1.2 Graph Cut Approach 

A precise detection is essential to inspect the defects of a power pole. In the paper, they propose 

a novel approach to detect the power pole object from images. Graph cut for image segmentation 

is a newly developing graph based image segmentation technique. It is effective but takes huge 

computation burden. The proposed approach combines prior knowledge with graph cut into 

detection. Firstly, it locates the rough region of the power pole to obtain two restricted regions 

based on prior rules. Then, a traditional graph cut framework is used in the restricted regions to 

improve the precision of segmentation. Experimental results verify its efficiency and accuracy 

[7]. 

2.1.3 LIDAR Databased approach 

The paper presents a novel approach for detection of pole-like objects from LIDAR data. The 

designed method uses directional vector to detect pole-like structures in unordered point clouds. 

A new segmentation algorithm is presented as well. The segmentation is designed to overcome 

a common problem found in LIDAR data of urban environments, where a lot of poles are 

connected together with various types of wires. The method is tested on real world point clouds 

captured during mobile mapping process [8]. 

 

 



18  

2.1.4 Urban point clouds approach 

This approach focuses on detecting and classifying pole-like objects from point clouds obtained 

in urban areas. To achieve the goal, they propose a system consisting of three stages: localization, 

segmentation and classification. The localization algorithm based on slicing, clustering, pole seed 

generation and bucket augmentation takes advantage of the unique characteristics of pole-like 

objects and avoids heavy computation on the feature of every point in traditional methods. Then, 

the bucket-shaped neighbourhood of the segments is integrated and trimmed with region growing 

algorithms, reducing the noises within candidate’s neighbourhood. Finally, we introduce a 

representation of six attributes based on the height and five-point classes closely related to the 

pole categories and apply SVM to classify the candidate objects into 4 categories, including 3 

pole categories light, utility pole and sign, and the non-pole category. The performance of our 

method is demonstrated through comparison with previous works on a large-scale urban dataset 

[9]. 

 

2.2 Existing Work On Insulator  

Transmission and distribution system leak overhead line of the by chance current cannot flow, so 

that the line from the Earth, the Insulator is used for the line. Insulator plays an important role in 

system operation. Transmission line insulators are devices used to contain, separate or support 

electrical conductors on high voltage electricity supply networks. Transmission insulators come 

in various shapes and types, including individual or strings of disks, line posts or long rods. They 

are made of polymers, glass and porcelain--each with different densities, tensile strengths and 

performing properties in adverse conditions. 

 

There are many approaches to detect power line insulator like- Local Features and Spatial Orders 

approach [12], local gradient-based descriptors approach [13], color image based approach [14], 

visual attention mechanism [15], Profile projection approach [16]. 

 

2.2.1 Local Features and Spatial Orders approach 

The detection of targets with complex backgrounds in aerial images is a challenging task. In their 

work, they propose a robust insulator detection algorithm based on local features and spatial 

orders for aerial images. First, they detect local features and introduce a multiscale and multi 

featured descriptor to represent the local features. Then, they get several spatial orders features 

by training these local features, it improves the robustness of the algorithm. Finally, through a 

coarse-to-fine matching strategy, they eliminate background noise and determine the region of 
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insulators. they test their method on a diverse aerial image set. The experimental results 

demonstrate the precision and robustness of our detection method, and indicate the possible use 

of their method in practical applications [12]. 

 

 

2.2.2 Local Gradient-Based Descriptors Approach 

 

This approach is based on discriminative training of local gradient-based descriptors and a 

subsequent voting scheme for localization. Further, they introduce an automatic extraction of the 

individual insulator caps and check them for faults by using a descriptor with elliptical spatial 

support. They demonstrate their approach on an evaluation set of 400 real-world insulator images 

captured from a helicopter and evaluate our results with respect to a manually created ground-

truth. The performance of their insulator detector is comparable to other state-of-the-art object 

detectors [13]. 

 

2.2.3 Color Image Based Approach 

 

Helicopter patrol inspection system has been applied to diagnose the insulator injuries of 

overhead transmission lines. This method is proposed to improve the diagnosis efficiency. Firstly, 

the statistical information of blocked image, the form of connected domain and the characteristics 

of edge chain code are utilized to recognize the area where the defective glass insulator locates; 

then by use of sliding window histogram statistic and histogram matching judgment, the damaged 

region of glass insulator is recognized. The proposed method is suitable to real-time detection in 

field environment, and it can diagnose the injury of insulator under a certain light variation range 

and background complexity [14].  

2.2.4 Visual Attention Mechanism 

 

This detection method based on visual attention mechanism. Firstly, the local and global saliency 

for the aerial images were calculated. Secondly, the local and global saliency maps 

were combined together to get the final saliency map. Thirdly, the saliency region was extracted 

from the saliency map and the non-insulator region was excluded by a pro-processing method. 

Lastly, the saliency map was converted into binary map and the insulator was separated from the 

background by adding the binary map to the original image. Experimental results showed that 
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the method could extract the insulator from the aerial image precisely, and it was suitable for 

many practical applications such as insulator fault diagnosis, insulator contamination grade 

determination and so on [15]. 

 

2.2.5 Profile Projection Approach 

Unlike previous texture-based approach, in this approach they directly search insulators location 

in the images by using Profile projection. For overcoming the negative effect of image noise on 

object detection, they pre-process insulators image by thresholding method. To make insulators 

detection more effective and efficient, they design a tilt correction method based on principal 

component analysis. The correction enables their method to derive accurate feature extraction 

curve from insulators image, then they extract five features from the feature curve, which are 

related to the number of binary sequence and the normalized variance of the binary sequence 

length. After obtaining the insulators feature from an image, they apply SVM to identify 

insulators with the five features [16]. 

 

2.3 Rigid kernel based detection  

In this section, we discuss detection algorithms that are based on learning a set of rigid kernels. 

In this class of algorithms, learning rigid templates and boosted cascades of classifiers are used. 

The Viola-Jones detection algorithm is the prime example, which also motivated many 

researchers in detection. Another line of research on rigid templates, which currently gains 

momentum, is based on Deep Convolutional Neural Networks (DCNNs). 

 

2.3.1 The Viola-Jones Face Detector 

 

The seminal work by Viola and Jones [17] had the most impact in the 2000s.The Viola-Jones 

detection method has three ideas that made it fast: the integral image, classifier learning with 

AdaBoost, and the attentional cascade. The first major development was achieved by the seminal 

work of Viola and Jones [17] on boosting based detection, which was the first algorithm that 

made face detection practically feasible in real-world applications. Today it is widely applied in 

photo organization software. Research in face detection has progressed significantly in the 

direction of providing algorithms that are able to detect faces as well as other objects like 

insulator. Modern detection algorithms have benefited from various methods, algorithms and 

features. structure. 
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2.3.1.1 The Integral Image 

 

The integral image (summed area table) algorithm, computes quickly and efficiently the sum of 

values in a rectangle subset of a grid. It was introduced to the computer graphics field in [18]. 

 

2.3.1.2 AdaBoost Learning:  

 

Boosting method finds a highly accurate hypothesis by combining many weak hypotheses, each 

with moderate accuracy. The AdaBoost (Adaptive Boosting) algorithm is generally considered 

as the first step towards more practical boosting algorithms [19,20]. 

 

2.3.1.3 The Cascade Structure:  

 

The cascade is an important component of Viola-Jones detector. This boosted classifier can be 

built that reject most of the negative sub-windows while keeping almost all the positive examples. 

Majority of the sub-windows will be rejected in early stages of the detector, making the detection 

process extremely efficient. The process of classifying a sub-window forms a degenerate decision 

tree, which is called a cascade. It was presented in [17]. The cascade structure also has an impact 

on the training process. There are billions of negative examples needed to train a high-

performance face detector. To handle the huge amount of negative training examples, the Viola-

Jones face detector [17] used a bootstrap process. At each node, a threshold was manually chosen. 

A partial classifier was used to scan the negative example set to find more unelected negative 

examples for the training of the next node. Each node is trained independently, as if the previous 

nodes does not exist. One argument behind such a process is to force the addition of some 

nonlinearity in the training process, which could improve the overall performance. However, 

recent works showed that it is actually beneficial not to completely separate the training process 

[16] of different nodes, the cascade is constructed manually. That is, the number of weak 

classifiers and the decision threshold for early rejection at each node are both manually specified. 

This is a non-trivial task. If the decision thresholds were set too aggressively, the final detector 

will be very fast, but the overall detection rate may be affected. On the other hand, if the decision 

thresholds are set very conservatively, most sub-windows will need to pass through many nodes, 

making the detector very slow. Combined with the limited computational resources available in 

the early 2000s, it is no wonder that training a good face detector can take months of fine-tuning [21]. 
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2.4 Insulator classification: 

Classification of remotely sensed data is used to assign corresponding levels with respect to 

groups with homogeneous characteristics, with the aim of discriminating multiple objects from 

each other within the image. The level is called class. Classification will be executed on the base 

of spectral or spectrally defined features, such as density, texture etc. in the feature space. It can 

be said that classification divides the feature space into several classes based on a decision rule 

[22]. 

In many cases, classification will be undertaken using a computer, with the use of mathematical 

classification techniques. Various classification techniques will be compared with the training 

data, so that an appropriate decision rule is selected for subsequent classification. Depending up 

on the decision rule, all pixels are classified in a single class. There are two methods of pixel by 

pixel classification and per-field classification, with respect to segmented areas.  

Popular techniques are as follows. 

• Multi-level slice classifier 

• Minimum distance classifier 

• Maximum likelihood classifier 

• Other classifiers such as fuzzy set theory and expert systems 

There are several types of classification- Categorical (Nominal): Classification of entities into 

particular categories, Ordinal: Classification of entities in some kind of ordered relationship, 

Adjectival or Predicative: Classification based on some quality of an entity. And Cardinal: 

Classification based on a numerical value. [23] 

Classifiers are different algorithms or data structure to perform classification. The most 

commonly use classifiers are support vector machine, Neural Network, Naïve Bayes classifier, 

Decision tree, K-nearest Neighbours etc. Now-a days, Deep learning is most popular for 

classification. In our work, we have used support vector machine to train and detect insulator.  
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2.4.1   SVM (Support Vector Machine) 

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating 

hyperplane. In other words, given labelled training data (supervised learning), the algorithm 

outputs an optimal hyperplane which categorizes new examples. [24] 

Support Vector Machines were first introduced by Vapnik and Chervonenkis in [25]. The core 

idea is to find the optimal hyperplane to separate a dataset, while there are theoretically infinite 

hyperplanes to separate the dataset. A hyperplane is chosen, so that the distance to the nearest 

data point of both classes is maximized. The points spanning the hyperplane are the Support 

Vectors, hence the name Support Vector Machines [26,27]. 

 

 

                                               Figure 2.1: Maximum Margin Classifier 

Due to their superior performance in general machine learning problems, they have also become 

a very popular approach for detection [28,29]. However, the detection speed of SVM based face 

detectors was generally slow. Thus, various schemes have been proposed to speed up the process. 

For instance, in [30] a method that computes a reduced set of vectors from the original support 

vectors was proposed. These reduced set vectors are then tested against the test example 

sequentially, making early rejections possible. In [31], detection speed was further improved by 

approximating the reduced set vectors with rectangle groups, gaining another 6-fold speedup. A 

hierarchy of SVM classifiers with different resolutions in order to speed up the overall system 

was applied. The early classifiers were at low resolution, say, 3×3 and 5×5 pixels, which can be 

computed very efficiently to prune negative examples. Multiview detection has also been 

explored with SVM based classifiers.  
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A cascade of SVMs were first trained through bootstrapping. The remaining positive and 

negative examples were then randomly partitioned to train a set of SVMs, whose outputs were 

then combined through majority voting. In [33] a single SVM for Multiview detection was used, 

and relied on the combination of local and global kernels for better performance. No experimental 

results were given in [32, 33] to compare the proposed methods with existing schemes on 

standard data sets, hence it is unclear whether these latest SVM based detectors can outperform 

those learned through boosting. 

Support Vectors: Input vectors that just touch the boundary of the margin (street) – circled 

below, there are 3 of them (or, rather, the ‘tips’ of the vectors. Here, we are the actual support 

vectors, v1, v2, v3, instead of just the 3 circled points at the tail ends of the support vectors. D 

denotes 1/2 of the street ‘width. [34] 

  

Figure 2.2: Support Vectors 

2.4.1.1 Definition 

Define a hyperplane H such that:                 

W*xi +b ≥ +1 when yi=+1 

W*xi +b ≤ -1 when yi=-1                            

H1 and H2 are the planes: 

H1: W*xi +b ≥ +1 when yi=+1 

H2: W*xi +b ≤ -1 when yi= -1 

The points on the planes H1 and H2 are the tips of the Support Vectors [35]. 
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The plane H0 is the median in between, where w•xi+b =0 

d+ = the shortest distance to the closest positive point 

d- = the shortest distance to the closest negative point 

 

The margin (gutter) of a separating hyperplane is d+  +  d– 

 

The optimization algorithm to generate the weights proceeds in such a way that only the 

support vectors determine the weights and thus the boundary [34], 

 

Figure 2.3: Support Vector Moves to The Decision Boundary 

 

Form of equation defining the decision surface separating the classes is a hyperplane of the 

form: wTx + b = 0 where        

    – w is a weight vector 

    – x is input vector 

    – b is bias 

We can write 

• wTx + b > 0 for di = +1 

• wTx + b < 0 for di = –1 

We want a classifier (linear separator) with as big a margin as possible. Recall the distance 

from a point (x0, y0) to a line: Ax+By+c = 0 is: |Ax0 +By0 +c|/sqrt (A2+B2), so, the distance 

between H 0 and H1 is then: 

|w•x+b|/||w||=1/||w||, so the total distance between H1 and H2 is thus: 2/||w|| [34]. 
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In order to maximize the margin, we thus need to minimize ||w||. With the condition that there 

are no data points between H1 and H2: 

    xi•w+b ≥ +1 when yi =+1…. (i) 

    xi•w+b ≥ –1 when yi =–1 …. (ii) 

(i) & (i) Can be combined into: Vi(xi•w) ≥ 1 [34] 

 

2.4.1.2 Non-linear SVM 

 

The idea is to gain linearly separation by mapping the data to a higher dimensional space. The 

following set can’t be separated by a linear function, but can be separated by a quadratic one. 

 

 
Figure 2.4: Non-linear Data separation 

The kernel trick is used for classifying non-linear datasets. It works by transforming data points 

into a higher dimensional feature space with a kernel function, where the dataset can be separated 

again. The linear classifier relies on inner product between vectors K(xi,xj) = xi
Txj. If every data 

point is mapped into high dimensional space via some transformation Φ:  x → φ(x), the inner product 

becomes: K(xi,xj) = φ(xi) 
T

φ(xj) . kernel function corresponds to an inner product into some feature 

space [35]. 

Some Commonly used kernel functions:  

• Linear: K(xi,xj)= xi 
Txj 

• Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)p 

• Gaussian (radial-basis function network): K(xi,xj)= 2

2
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ji

e

xx 
                      



27  

 

Figure 2.5: kernel trick 

 

Figure 2.6: Non Linear SVMs 2 –Gaussian Kernel 

2.4.1.3 Overfitting by SVM 

 

 

 

 

 

 

 

 

Figure 2.7: Overfitting Problem 

=
=

A well-known problem with machine learning methods is overtraining. This means that we 

have learned the training data very well, but we cannot classify unseen examples correctly. 

Every point is a support vector too much freedom to bend to fit the training data – no 

generalization. In fact, SVMs have an ‘automatic’ way to avoid such issues. [ Vapnik, 1995.] 

We add a penalty function for mistakes made after training by over-fitting: recall that if one 

over-fits, then one will tend to make errors on new data. This penalty function can be put into 

the quadratic programming problem directly [34]. 
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2.4.2 LIBSVM: 

LIBSVM is a simple, easy-to-use, and efficient software for SVM classification and regression 

[36]. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM 

regression, and nu-SVM regression. It also provides an automatic model selection tool for C-

SVM classification. In LIBSVM training vectors xi are mapped into a higher (maybe infinite) 

dimensional space by the function φ. SVM finds a linear separating hyperplane with the maximal 

margin in this higher dimensional space. C > 0 is the penalty parameter of the error term. 

Furthermore, K(xi; xj) ≡ φ(xi)Tφ(xj) is called the kernel function. Though new kernels are being 

proposed by researchers [36]. 

 

Following procedures are done by LIBSVM: Transform data to the format of an SVM package, 

conduct simple scaling on the data, Consider the RBF kernel, Use cross-validation to find the 

best parameter C and γ, Use the best parameter C and γ to train the whole training set5.LIBSVM 

includes the following methods [36]: 

svm_type: 

• C_SVC n-class classification (n ≥ 2), allows imperfect separation of classes with penalty 

multiplier C for outliers. 

• NU_SVC n-class classification with possible imperfect separation. Parameter nu (in the 

range 0 … 1, the larger the value, the smoother the decision boundary) is used instead of 

C. 

• ONE_CLASS one-class SVM. All the training data are from the same class, SVM builds 

a boundary that separates the class from the rest of the feature space. 

• EPS_SVR regression. The distance between feature vectors from the training set and the 

fitting hyper-plane must be less than p. For outliers, the penalty multiplier C is used. 

• NU_SVR regression; nu is used instead of p. 

LIBSVM uses a decomposition method for classification [37]. It used in a simple working set 

selected which lead to a faster convergence for different and difficult cases. Parameters in 

LIBSVM are 

• svm_type: C_SVC, NU_SVC, ONE-CLASS, EPS_SVR, NU_SVR 
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• kernel_type: linear: d(x; y) = x · y == (x; y) ,polynomial: d(x; y) = (gamma ∗ (x · y) + 

coef0)degree ,RBF: d(x; y) = exp(-gamma∗ |x - yj2),sigmoid: d(x; y) = 

tanh(gamma∗(x·y)+coef0),precomputed kernel 

• C, nu, p Parameters in the generalized SVM optimization problem. 

• lass_weights Optional weights, assigned to particular classes. They are multiplied by C 

and thus affect the misclassification penalty for different classes. The larger weight, the 

larger penalty on misclassification of data from the corresponding class. 

• term_criteria Termination procedure for iterative SVM training procedure (which solves 

a partial case of constrained quadratic optimization problem) 

▪ type is either CV_TERMCRIT_ITER or CV_TERMCRIT_ITER 

▪ max_iter is the maximum number of iterations in training. 

▪ epsilon is the error to stop training. 

 

2.4.2.1 Cross-validation and Grid-search 

There are two parameters for an RBF kernel: C and γ. It is not known beforehand 

which C and γ are best for a given problem; consequently, some kind of model selection 

(parameter search) must be done. The goal is to identify good (C; γ) so that the 

classifier can accurately predict unknown data (i.e. testing data). Note that it may 

not be useful to achieve high training accuracy (i.e. a classifier which accurately 

predicts training data whose class labels are indeed known).  

A common strategy is to separate the data set into two parts, of which one is considered unknown. 

The prediction accuracy obtained from the unknown" set more precisely reflects the performance 

on classifying an independent data set. An improved version of this procedure is known as cross-

validation. In v-fold cross-validation, we first divide the training set into v subsets of equal size. 

Sequentially one subset is tested using the classifier trained on the remaining v - 1 subsets. Thus, 

each instance of the whole training set is predicted once so the cross-validation accuracy is the 

percentage of data which are correctly classified [36]. 

The cross-validation procedure can prevent the overfitting problem. We use a grid-search" on C 

and γ using cross-validation. Various pairs of (C; γ) values are tried and the one with the best 

cross-validation accuracy is picked. We found that trying exponentially growing sequences of C 
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and γ is a practical method to identify good parameters (for example, C = 2-5; 2-3… 215, γ = 2-15; 

2-13… 23). The grid-search is straightforward but seems naive. In fact, there are several advanced 

methods which can save computational cost by, for example, approximating the cross-validation 

rate. After “grid-search” the best (C; γ) is found, the whole training set is trained again to generate 

the final classifier [36].  

 

  

Figure 2.8: grid search in LIBSVM (image curtesy: Chih-Chung Chang and Chih-Jen Lin) 

 

2.4.3 Sliding window 

 
Sliding windows play an integral role in object classification, as they allow us to localize 

exactly “where” in an image an object resides. Utilizing both a sliding window and an image 

pyramid we are able to detect objects in images at various scales and locations [38]. The approach 

involves scanning the image with a fixed-size rectangular window and applying a classifier to 

the sub-image defined by the window. Successively scaled copies of the image we apply sliding 

window technique for identifying and localizing objects. A sliding window is rectangular region 

of fixed width and height that “slides” across an image. 

https://www.csie.ntu.edu.tw/~cjlin/index.html
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Figure 2.9: Example of the sliding window approach 

For each of these windows, we normally take the window region and apply HOG to determine if 

the window has an object that interests us. Combined with image pyramids we can create image 

classifiers that can recognize objects at varying scales and locations in the image. These 

techniques, while simple, play an absolutely critical role in object detection and image 

classification [38].  

Usually non-maximal neighbourhood suppression is applied to the output to remove multiple 

detections of the same object after apply sliding approach classification. We apply this technique 

not only on scaled based image but also rotation with pyramid image. We rotate image then we 

apply sliding technique with that fixed window for every scaled copy and continue rotating until 

we rotate the image in 360-degree. Hence, sliding window technique posses a great contribution 

for identifying and localizing objects in an image. 

 

2.4.4 Pyramid Image 

An image pyramid is a collection of images - all arising from a single original image - that are 

successively down sampled until some desired stopping point is reached. [39]. An “image 

pyramid” is a multi-scale representation of an image. Utilizing an image pyramid allows us 

to find objects in images at different scales of an image. And when combined with a sliding 

window we can find objects in images in various locations. At the bottom of the pyramid we 

have the original image at its original size (in terms of width and height). And at each 

subsequent layer, the image is resized (subsampled). [40] 

http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/
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Figure 2.10: Example of Pyramid image. At each layer image is downsized  

(image curtesy: Adrian Rosebrock page) 

The image is progressively subsampled until some stopping criterion is met, which is normally 

minimum size has been reached and no further subsampling needs to take place. 

There are two common kinds of image pyramids: 

• Gaussian pyramid: Used to downsample images 

• Laplacian pyramid: Used to reconstruct an upsampled image from an image lower in 

the pyramid (with less resolution) [39] 

In our project to construct image pyramids we utilize C++ with OpenCV. As a convention, we 

took a zoom picture so we Perform downsampling. First, we reduce our image by 25% every 

time. Using a scale factor of 1.3333, 2, and 4, only 4 layers have been generated. 

 

 

                                       
                   100%                                                              75%                                     50%               

Figure 2.11: Multi Layer images 
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Hence, we are using the HOG descriptor for object classification so we do not use smoothing 

since smoothing tends to hurt classification performance. 

In general, there is a trade-off between performance and the number of layers that we generate. 

The smaller the scale factor is, the more layers need to create and process — but this also gives 

an image classifier a better chance at localizing the object we want to detect in the image. 

A larger scale factor will yield less layers, and perhaps might hurt our object classification 

performance; however, we have obtained much higher performance gains since we will have less 

layers to process. 
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Chapter 3 

Proposed System Discussion                                                                                                                                                 

In this chapter we describe our proposed system to detect pole and insulator. First, we describe 

pole detection in section 3.1. In section 2 we describe insulator detection process. 

 

3.1 Pole Detection 

For carrying of overhead line, wooden poles, concrete poles, steel poles and rail poles are used. 

Which poles are to be used, depend on the importance of load, location and place, cost effect of 

such construction, including maintenance cost, and keeping its profit element in mind. In low 

voltage line for all phases, natural and earth single pole line is used. [41] 

We have found insulator on the top of the pole so it was important for us to detect electrical pole 

first to find to insulator. 

 

3.1.1 Methodologies 

A electrical pole is a column or post used to support overhead power lines and various other 

public utilities, such as electrical cable, fibre optic cable, and related equipment such 

as transformers and insulator. Electrical wires, cables and insulators are routed overhead on 

utility poles as an inexpensive way to keep them insulated from the ground and out of the way of 

people and vehicles. [wiki]. As we found insulator on the top of the electrical pole so before 

detecting insulator first we had to detect pole. First we took a close picture in a certain area where 

an electrical pole can be founded. Then we try to extracted lines from the image. To do that we 

applied edge detection algorithm to find out the edge of the image. After that, we applied Hough 

line transform to extract lines. Next. we discard all the horizontal lines. As pole is a vertical object 

so we took lines only which angle, θ is 900 and -900. In real life, we see that pole is not always 

vertical, we see sometimes it skewed so took a variation in angle of ±50 (900> θ >=85 and -85 => 

θ >-900) as an empirical value. After extracted the lines, we grouped the lines in a way so that 

their end point stays closer. After finished the grouping we calculated the coverage area for every 

group by using heuristic function. We took three best group which were consists of lines. In this 

three best lines we had our pole.  

https://en.wikipedia.org/wiki/Column
https://en.wikipedia.org/wiki/Overhead_power_line
https://en.wikipedia.org/wiki/Electrical_cable
https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Distribution_transformer
https://en.wikipedia.org/wiki/Street_light
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3.1.1 Edge detection 

In an image, an edge is a curve that follows a path of rapid change in image intensity. Edges are 

often associated with the boundaries of objects in a scene. Edge detection is used to identify the 

edges in an image. To find edges, we can use the edge function. This function looks for places in 

the image where the intensity changes rapidly, using one of these two criteria: Places where the 

first derivative of the intensity is larger in magnitude than some threshold and Places where the 

second derivative of the intensity has a zero crossing [42]. 

We use canny in our project to find to the edges. Canny is the most powerful edge detection 

method. It is different from other edge detection methods that detects strong and weak edges.  

The Canny edge detection algorithm can be broken down into 5 steps: 

▪ Smooth the image using a Gaussian filter to remove high frequency noise. 

 

▪ Compute the gradient intensity representations of the image 

 

▪ Apply non-maximum suppression to remove “false” responses to edge detection 

 

▪ Apply thresholding using a lower and upper boundary on the gradient values 

 

▪ Track edges using hysteresis by suppressing weak edges that are not connected to strong 

edges. [43] 

 

OpenCV puts all the above in single function and the function signature looks like this: 

C++: Canny (InputArray image, OutputArray edges, double threshold1, double threshold2, int 

apertureSize=3, bool L2gradient=false ) 

C: void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int 

aperture_size=3 ) 

We use the second one to find out the edges. First argument is our input image. Second is the 

output edge map; it has the same size and type as input image. Third and fourth arguments are 

our minVal and maxVal respectively for the hysteresis procedure. Last, argument is aperture size. 

It is the size of Sobel kernel used for find image gradients. By default, it is 3 [44]. 

First, we convert the image into gray scale image and then we apply canny function. 

Canny function in OpenCV we have used:  

Canny (src, dst, 50, 200, 3); 

https://www.mathworks.com/help/images/ref/edge.html
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                                   ( a )                                           ( b )    

Figure 3.1: (a) Original Image (b) Detected Edge after using canny 

3.1.3 Line detection: 

Hough lines transform The Hough transform is a feature extraction technique. The purpose of the 

technique is to find imperfect instances of objects within a certain class of shapes by a voting 

procedure. It means that in general, a line can be detected by finding the number of intersections 

between curves [45].  

We will see how Hough transform works for line detection using the HoughLine transform 

method. To apply the Transform, first an edge detection pre-processing is desirable. 

Hough transform is based on the fact that a line in the x-y cartesian coordinate system can be 

mapped onto a point in the rho-theta space. [46] 

 

Figure 3.2: Polar system 

 

Hough Transforms, we will express lines in the Polar system. Hence, a line equation can be 

written as: 

    y= −
𝑐𝑜𝑠θ 

𝑠𝑖𝑛θ 
𝑥  + 

𝑟

𝑠𝑖𝑛θ 
 

Arranging the terms: r = x sin θ +y sin θ 
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when we see a point on an image, and we are not sure whether or not it belongs to a line like 

structure in the image, we just go ahead and plot a point for all possible lines that can pass 

through that point. That would result in a sinusoidal curve in the rho-theta space. [46]  

 

Figure 3.3: Sinusoidal curve in the rho-theta space 

If the point actually does belong to a line, the actual rho-theta coordinate in the rho-theta plane 

will be reinforced by all points that belong to the line. 

 

Figure 3.4: Intensity curve of the reinforcement strength 

If we plot an intensity curve of the reinforcement strength (number of curves that cross a point in 

the rho-theta space), we can see peaks at the values that correspond to possible lines. These points 

can be isolated and picked up by applying a threshold value. [46] 

OpenCV already has an implementation of the Hough transform: 

a. The Standard Hough Transform 

▪ It consists in pretty much what we just explained in the previous section. It gives 

you as result a vector of couples  

▪ In OpenCV it is implemented with the function HoughLines 

 

 

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlines#houghlines
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b. The Probabilistic Hough Line Transform 

▪ A more efficient implementation of the Hough Line Transform. It gives as output 

the extremes of the detected lines  

▪ In OpenCV it is implemented with the function HoughLinesP [47] 

 

3.1.3.1 Probabilistic Hough Transform 

In the Hough transform, you can see that even for a line with two arguments, it takes a lot of 

computation. Probabilistic Hough Transform is an optimization of Hough Transform we saw. It 

doesn’t take all the points into consideration, instead take only a random subset of points and that 

is sufficient for line detection. Just we have to decrease the threshold. See below image which 

compare Hough Transform and Probabilistic Hough Transform in Hough space. [48] 

 

 

Figure 3.5: Compare Hough Transform and Probabilistic Hough Transform in Hough space 

(Image Courtesy: Franck Bettinger’s home page ) 

OpenCV implementation is based on Robust Detection of Lines Using the Progressive 

Probabilistic Hough Transform by Matas, J. and Galambos, C. and Kittler, J.V. The function used 

is  

C++: void HoughLinesP(InputArray image,OutputArray lines,double rho, double theta, 

int threshold, double minLineLength=0, doublemaxLineGap=0 ) 

 

 

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp
http://phdfb1.free.fr/robot/mscthesis/node14.html
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Parameters:  

▪ image – 8-bit, single-channel binary source image. The image may be modified by   the 

function 

▪ lines – Output vector of lines. Each line is represented by a 4-element 

vector  , where  and  are the ending points of each 

detected line segment. 

▪ rho: The resolution of the parameter  in pixels. We use 1 pixel. 

▪ theta: The resolution of the parameter  in radians. We use 1 degree (CV_PI/180) 

▪ threshold: The minimum number of intersections to “detect” a line 

▪ minLinLength: The minimum number of points that can form a line. Lines with less than 

this number of points are disregarded. 

▪ maxLineGap: The maximum gap between two points to be considered in the same line 

[49] 

 

3.1.4 Grouping lines: 

After applied probabilistic Hough transform we got a vector of [x0, y0, x1, y1] with lots of line. 

But, all the lines were not needed for grouping. So, we discarded the horizontal lines first then 

we took the vertical lines. It was known that always pole was not found vertical sometimes it 

founded skewed. So, we granted angle 900 and -900 as well as we also allowed which lines angle 

is between 900> θ >=85 and -85 => θ >-900. We allowed an empirical value of 50 in the angle. 

We use this formula to find out the angle: 

Angle, θ = tan-1(
Δy

Δx
) = tan-1(m) Where, m = 

Δy

Δx
 is the slope of the line. 

For grouping lines, first we had to check if the lines were in correct order or not. If not, then we 

pre-processed the lines. First, we checked first end point every line’s two and rearranged the 

values according every line’s first end point. 

Next. we arbitrarily choose a line from all the lines as a first line in one group. we did it for every 

time for grouping. For the first group we selected a line as group’s first line. From the first line’s 

first end point we calculated the distance of all line’s first end point and store them as well as 

find the minimum distance. The minimum distance line in respect to the first line is our candidate 

for the next line. We took an empirical value of 5 pixels as a threshold1. We took the average of 

previously detected line’s x-axis difference which is our threshold2. if our candidate line’s and 

first line’s x-axis difference is less or equal to threshold1 and threshold2 then went to the next 

step. Next step we checked that was our candidate line’s first endpoint y-value is less than our 
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first line’s first endpoint. If all the requirement fulfilled, then we granted candidate line to enter 

into that group.  And, candidate line was our nest first line whom we have found out the next 

line’s in that particular group. In this way we continued the whole process until all the line’s not 

grouped. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Left-Top: Canny edge detected image, Right-Top: Extracted lines, Left-Bottom: 

vertical lines with ±50, Right-Bottom: Grouped lines (shown in different colour) 

3.1.5 Coverage area: 

After finished the grouping, we had the grouped data for finding out how much a line cover in 

the image. By finding out the coverage we could find out which group of lines covered most of 

the area in the image.  So, to find out the coverage we applied a heuristic. First, we calculated the 

length of that group which was consist lines. After that we calculated every single line’s distance. 

And, finally we multiplied the length with the total distance. This is our heuristic.  

first, we had find out the length of a group. We took the first and last line of the group. And, 
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measured the difference between first line’s first end point y value and last line’s last endpoint y 

value. 

Hence, length, l = (y0 – y1) [y0= first line first end point’s y-axis, y1=last line last end point’s y-axis] 

We did that for all the group.After we calculated the total distance. In a group, there were more 

than one lines. First, we calculated the last and first end point’s difference of a line and took the 

absolute value of it. We did it for all the lines in a group. After that we added them up all which 

gave the total distance.  

Hence, total distance, d = |d1|+ |d2 | + |d3| + … + |dn| 

 Coverage area= length * total distance  

  = l * d  

 

   

   

                                                                     Figure 3.7: calculate length and distance 

Now, we had the coverage area for all the group. We pick the best three coverage group. This 

three groups had the possibility to be a pole. The first one had a better possibility to be a pole if 

it misses then the next one had. If the first two missed, then we had to look for the third one was 

that a pole or not.  

 

 

Figure 3.8: Final result (pole detect) 

 

d1 

d2 

d3 

l 
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3.2 Insulator detection 

 

Insulators are materials that have just the opposite effect on the flow of electrons. They do not let 

electrons flow very easily from one atom to another. Insulators are materials whose atoms have 

tightly bound electrons. These electrons are not free to roam around and be shared by neighboring 

atoms It is a device that used to contain, separate or support electrical conductors on high voltage 

electricity supply networks. It protects us from the dangerous effects of electricity flowing 

through conductors. [50] So, insulator detection is important to find out its faultiness and reduce 

time consumption and risk as well as increase diagnosis efficiency. 

 

3.2.1 Methodologies 

 
Insulator detection poses a vital role in inspection of faulty insulators which is the most common 

problems in power line transmission networks. It is a computer vision based method that will 

detect power line insulator which automatically analyses the images. To detect insulator 

perceiving insulator features are very important. We take lots of positive and negative image in 

a uniform manner to extract features from them. We used Microsoft visual studio using openCV 

to extract the features from those datasets. By using this feature, we trained the computer in 

LIBSVM tool to detect insulator. After training, we used Sliding-window object detection 

technique for identifying and localizing insulators in an image. It scans image with a fixed-size 

rectangular window. Then, extracting features of that window(sub-image) and applying SVM to 

classify that the sub-window bounds an insulator. The process is repeated on successively scaled 

copies of the image so that insulators can be detected at any size.We rotate the image with 100 

increments from 00 to 3600 as well as we apply sliding window technique and repeat the process 

on successively scaled copies to detect insulators at any size. By using negative mining, we 

reduce the detection of false positive rate. After that non-maximal neighborhood suppression is 

applied to the output to remove multiple detections of the same insulator. 

 

3.2.2 Histogram oriented gradient 

Detection in images is a challenging task owing to their variable appearance and the wide range 

of poses that they can adopt. The first need is a robust feature set that allows the insulator form 

to be discriminated cleanly, even in cluttered backgrounds under difficult illumination.  The issue 

of feature sets for human detection, showing that locally normalized Histogram of Oriented 

Gradient (HOG) descriptors provide excellent performance relative to other existing feature sets 

[51]. 
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3.2.2.1 Feature descriptor 

A feature descriptor is a representation of an image or an image patch that simplifies the image 

by extracting useful information and throwing away extraneous information. Typically, a feature 

descriptor converts an image of size width x height x 3 (channels) to a feature vector / array of 

length n. In the case of the HOG feature descriptor, the input image is of size 64 x 128 x 3 and 

the output feature vector is of length 3780 [51]. Hence, HOG descriptor can be calculated for 

other sizes. the feature vector is not useful for the purpose of viewing the image. But, it is very 

useful for tasks like image recognition and object detection. The feature vector produced by these 

algorithms when fed into an image classification algorithm like Support Vector Machine (SVM) 

produce good results. Good features extracted from an image should be able to tell the difference 

between one object and other objects. In the HOG feature descriptor, the distribution (histograms) 

of directions of gradients (oriented gradients) are used as features. Gradients (x and y derivatives) 

of an image are useful because the magnitude of gradients is large around edges and corners 

(regions of abrupt intensity changes) and we know that edges and corners pack in a lot more 

information about object shape than flat regions. 

Compute a Histogram of Oriented Gradients (HOG) by [52] 

• (optional) global image normalisation 

• computing the gradient image in x and y 

• computing gradient histograms 

• normalising across blocks 

• flattening into a feature vector 

 

The first stage applies an optional global image normalisation equalisation that is designed 

to reduce the influence of illumination effects. In practice, we use gamma (power law) 

compression, either computing the square root or the log of each colour channel. Image 

texture strength is typically proportional to the local surface illumination so this compression 

helps to reduce the effects of local shadowing and illumination variations. 

The second stage computes first order image gradients. These capture contour, silhouette 

and some texture information, while providing further resistance to illumination variations. 

The locally dominant colour channel is used, which provides colour invariance to a large 

extent. Variant methods may also include second order image derivatives, which act as 
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primitive bar detectors - a useful feature for capturing, e.g. bar like structures in bicycles 

and limbs in humans.  

This gradient can easily have achieved by filtering the image with the following kernels. 

 

Figure 3.9: Horizontal and Vertical gradients filtering kernel 

We can also achieve the same results, by using Sobel operator in OpenCV with kernel size 1. 

Next, we can find the magnitude and direction of gradient using the following formula 

  g=√gx2 +  gy2   

   θ = tan-1(
gy

gx
) 

By using OpenCV, the calculation can be done using the function cartToPolar. 

 

 

Figure 3.10. Left: Absolute value of x-gradient. Centre: Absolute value of y-gradient. Right: 

Magnitude of gradient (image curtesy: Satya Mallick Blog) 

The luminance gradient is calculated at each pixel. The luminance gradient is a vector with 

magnitude m and orientation θ represented by the change in the luminance. 

The equation is: 

 m (x, y) =√((L(x + 1, y) − L(x − 1, y)) 2+((L(x, y + 1) − L(x, y − 1))2 

 

Where, L is the luminance of pixel. 



(x,y)  tan1 L(x,y 1)  L(x,y 1)

L(x 1,y)  L(x 1,y)










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The third stage aims to produce an encoding that is sensitive to local image content while 

remaining resistant to small changes in pose or appearance. The adopted method pools 

gradient orientation information locally in the same way as the SIFT [53] feature. The image 

window is divided into small spatial regions, called “cells”. For each cell, we accumulate a 

local 1-D histogram of gradient or edge orientations over all the pixels in the cell. This 

combined cell-level 1-D histogram forms the basic “orientation histogram” representation. 

Each orientation histogram divides the gradient angle range into a fixed number of 

predetermined bins. The gradient magnitudes of the pixels in the cell are used to vote into 

the orientation histogram. 

8×8 cells 9-bin histogram looks like this [54]:  

 

 

Figure 3.11: 9-bin histogram 

The fourth stage computes normalisation, which takes local groups of cells and contrast 

normalises their overall responses before passing to next stage. Normalisation introduces 

better invariance to illumination, shadowing, and edge contrast. It is performed by 

accumulating a measure of local histogram “energy” over local groups of cells that we call 

“blocks”. The result is used to normalise each cell in the block. Typically, each individual 

cell is shared between several blocks, but its normalisations are block dependent and thus 

different. The cell thus appears several times in the final output vector with different 

normalisations. This may seem redundant but it improves the performance. We refer to the 

normalised block descriptors as Histogram of Oriented Gradient (HOG) descriptors.  

The final step collects the HOG descriptors from all blocks of a dense overlapping grid of 

blocks covering the detection window into a combined feature vector for use in the window 

classifier. 

 

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#id4
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3.2.3 Feature extraction method:  

In order to extract feature (values) from an image first, we convert the original image into a 

gray scale image. Before gray scaling we cropped the image from the selected area then resized 

the image into a fixed aspect ratio of 8:3. The image patch is 128×48 which ratio is 8:3 and 

ready for calculating the HOG descriptor. 

 

           resized          

                              Cropped image                                                         128×48 

 

Figure 3.12: Prepare image to calculate the HOG descriptor 

 

To calculate a HOG descriptor, we need to first calculate the horizontal and vertical gradients; 

after all, we want to calculate the histogram of gradients. We can achieve the results, by 

using Sobel operator in OpenCV with kernel size 1.   

gx = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=1) 

gy = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=1) 

we can find the magnitude and direction of gradient using the following formula: 

 g = √gx2 +  gy2   

   θ = tan-1(
gy

gx
) 

At every pixel, the gradient has a magnitude and a direction. The magnitude of gradient at a pixel 

is the maximum of the magnitude of gradients of the three channels, and the angle is the angle 

corresponding to the maximum gradient. 

In next step, the image is divided into 8×8 cells and a histogram of gradients is calculated for 

each 8×8 cells. The histogram is essentially a vector (or an array) of 9 bins ( numbers ) 

corresponding to angles 0, 20, 40, 60 … 160.  the angles are between 0 and 180 degrees instead 

of 0 to 360 degrees. These are called “unsigned” gradients because a gradient and it’s negative 

are represented by the same numbers [54].  Next step is to create a histogram of gradients in these 

8×8 cells. The histogram contains 9 bins corresponding to angles 0, 20, 40 … 160. 
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Figure 3.13: 8×8 cells of HOG 

We are looking at magnitude and direction of the gradient of the 8×8 patch. A bin is selected 

based on the direction, and the vote (the value that goes into the bin ) is selected based on the 

magnitude. Let’s first focus on the pixel encircled in blue. It has an angle (direction) of 80 degrees 

and magnitude of 2. So, it adds 2 to the 5th bin. The gradient at the pixel encircled using red has 

an angle of 10 degrees and magnitude of 4. Since 10 degrees is half way between 0 and 20, the 

vote by the pixel splits evenly into the two bins. 

    

Figure 3.14: Magnitude and Direction look up table (image curtesy: Satya Mallick Blog) 

 If the angle is greater than 160 degrees, it is between 160 and 180, and we know the angle wraps 

around making 0 and 180 equivalents [54]. So, in the example below, the pixel with angle 165 

degrees contributes proportionally to the 0-degree bin and the 160-degree bin.  

we created a histogram based on the gradient of the image. Let’s say we have an RGB color 

vector [ 128, 64, 32]. The length of this vector is . This is also 

called the L2 norm of the vector. Dividing each element of this vector by 146.64 gives us a 

normalized vector [0.87, 0.43, 0.22] [54] . 

No, we simply normalize the 9×1 histogram the same way we normalized the 3×1 vector. A 
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16×16 block has 4 histograms which can be concatenated to form a 36 x 1 element vector and it 

can be normalized just the way a 3×1 vector is normalized. The window is then moved by 8 pixels 

and a normalized 36×1 vector is calculated over this window and the process is repeated. 

To calculate the final feature vector for the entire image patch, the 36×1 vectors are concatenated 

into one giant vector.  

There are 15 horizontals and 5 verticals positions making a total of 15 x 5 = 75 positions. 

Each 16×16 block is represented by a 36×1 vector. So, when we concatenate them all into one 

giant vector we obtain a 36×75 = 2700-dimensional vector. 

 

We use GPU based HOGDescriptor in openCV for extracting the feature from the image. We 

have a compute function in OpenCV to extract Descriptors values. 

HOGDescriptor function in OpenCV is 

Gpu: HOGDescriptor (Size win_size=Size(64, 128), Size block_size=Size(16, 16), 

Size block_stride=Size(8, 8), Sizecell_size=Size(8, 8), int nbins=9, 

double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, 

bool gamma_correction=true, intnlevels=DEFAULT_NLEVELS) 

where  

• win_size – Detection window size. Align to block size and block stride. 

• block_size – Block size in pixels. Align to cell size. Only (16,16) is supported for now. 

• block_stride – Block stride. It must be a multiple of cell size. 

• cell_size – Cell size. Only (8, 8) is supported for now. 

• nbins – Number of bins. Only 9 bins per cell are supported for now. 

• win_sigma – Gaussian smoothing window parameter. 

• threshold_L2hys – L2-Hys normalization method shrinkage. 

• gamma_correction – Flag to specify whether the gamma correction preprocessing is 

required or not. 

• nlevels – Maximum number of detection window increases. 

 

We set the HOGDescriptor function parameter according to our program. We set window size 

(128×48) , block size (16 × 16). Block stride or overlapping (8×8) , cell size (8×8) and number 

of bins 9.  

This function computes the hog features  

 Compute (image, descriptors, winStride, padding, locations) 

Which give us the descriptors value. We set padding and winStride to (0,0). 

By applying this we get 2700 descriptors value. And, we use this function for every image to 

extract feature. After find, the value we save them into a text file to train the system. We have 
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libsvm training procedure so we have to format the file according to lib-svm. The format looks 

like  

+1 1:0.117419 2:0.0915074 3:0.0575953 4:0.0183482 5:0.0274423 6:0.0192094 7:0.177189 

8:0.17299 9:0.143298 10:0.129288 11:0.0972997 12:0.0313414 13:0.00684788 …………... 

+1: represents the positive image.  

 

Figure 3.15: Left: original positive image, Right: Extracted HOG feature visualization  

 

3.2.4 Alternative feature extraction method 

Rather than HOG there are other methods too which extract feature from the image one of this 

is Local Binary Pattern (LBP). 

We use OpenCV in C++ for extracting the feature from the image. We implement the local 

Binary Pattern (LBP) method by a code on every image. The code is implemented in C++ 

language. Now, we explain the LBP method which applying in code. We are applying the LBP 

count from row 2 and column 2. It assigns 3×3 neighbourhood of each pixel with the center 

pixel value and the result is considering as a binary number which is calculated by clockwise 

way. This way it is applicable for the image for every pixel. An example is given below for 

LBP calculation [55] 

 

 

 

 

 

 

 

 

Figure 3.16: The first step in constructing a LBP is to take the 8-pixel neighborhood 

surrounding a center pixel and threshold it to construct a set of 8 binary digits 
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Figure 3.17: 8-bit binary Decimal value 

 

 

 

  

 

 

 

 

                     

 

 

                         Input Image                                                                      Output LBP Image 

 

Figure 3.18: Calculated LBP value stored into output array 

 

We compared each pixel with its 8 neighbors where which pixel is greater than the center pixel 

then it encoded with 1 otherwise with 0. Then we converted those binaries encoded to decimal 

number in clock wise order. After calculating all values in this way then we count the pixel values 

range are within 0 to 255. For other variation in encoded values, we follow same procedure, but 

those values saved another file. 

 

We divide the whole image first in such way (here 2×2) that full image divided equally. We count 

the pixel values of every divided part (which in number 4) ranged to 0 to 255. This process will 

be followed for every image. We also divide the image into 2×4 where image not equally divided. 

And, we also have to count the pixel value of all 8 part in range of 0 to 255. 
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Figure 3.19: Left: An insulator image divided into 2×2 sub-regions, Right: An insulator image 

divided into 2×4 sub-regions 

For an image, we count the pixel value from 0 to 255 that save count 1 to 256 positions to a text 

file in libsvm tool format. This is for non-divided image. For dividing image, we count pixel 

value for every partition from 0 to 255 and save count 1 to 256 positions. For the second portion 

the count value increase which starts from 257 and represents how many zeros count in that 

portion. The other portions counting value of same image will be increase same way. For the 2×2 

divided image we found 1024 values and 2×4 divided image we found 2048 values. For 2×2 

divided image we have four portion in that for every portion we get 1364 value from 0 to 255. 

We count them as how many zeros or ones in them like this. And, we store them into a file in 

libsvm format start with 1. For first portion we have 256 values and we store them in 1 to 256 as 

well as for the other portion we have also 256 values and we start store them from 257 which 

represent the count value of zeros.   

Text file format is given bellow: 

256:971 257:2 258:0 259:0 260:0 261:0 262:0 263:1 264:2 265:2 266:0 267:0 268:0 269:1  

1013:0 1014:0 1015:0 1016:1 1017:9 1018:1 1019:0 1020:6 1021:1 1022:3 1023:5 1024:1173 

Here, the value we have found after counted is our feature value as like here in 256 we have the 

value of 971 which is the value of zeros. And, 1024 is the value of 255 as we counted 1173 in the 

fourth portion. 

We run this process for all the image in our dataset and save the counted value in the text file. 

 

3.2.4 Training For Insulator Detection 

 

3.2.4.1 Image Data-set: 

For training, we used cropped version of the insulator images. First, we cropped down insulator 

from different images. As all the insulator are not horizontal some are rotated so we fixed them. 

And, make sure that all the insulator in the same uniform manner. We not only take the insulator 

but also take insulator with some part wire or other parts of the power line that cover insulator. 

There are almost 215 insulators which is counted as our positive dataset. All the positive images 
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have a fixed aspect ratio of 8:3. So, when we train our data we resized images into (128×48) so 

that they maintain the ratio. We also used 385 non-insulator images in training to define the non-

insulator class. This non-insulator images are our negative sample. We also resized our negative 

samples into (128×48) so that they maintain aspect ratio. Totally, we have 600 positive and 

negative images in our dataset [21].  

 

 

Figure 3.20: positive image dataset 

 

3.2.4.2 Training Using LIBSVM 

After taking all the images into GRAY scale we apply HOG for each insulator and non-insulator 

image we obtain feature values to construct a feature-vector. Each image is of size 128 × 48. As 

our window is 128 × 48, block size is 16×16, block overlapping 8×8, cell size 8×8 and bins are 

9. 16×16 block means it will take 4 cells which has 9 bins individually. So, from our calculation 

the descriptors value should be 4×9×15×5= 2700. So, after applying HOG on our image we also 

got 2700 descriptors value. We apply HOG on every image and get training feature vector xi. 

These feature vectors were saved in a text file with a label as a training file. For an insulator-

image, the label is +1 and for non-insulator image, label is -1. These values with label are saved 

in certain format so that LIBSVM [12] can read, analyse and produce a classifier. We completed 

the scaling of each attribute to the range between 0 and 1 before training procedure. Training 

vectors are mapped into a higher dimensional space. LIBSVM finds a linear separating 

hyperplane with the maximal margin in this higher dimensional space [21].  

In the training, as kernel, we used radial basis function (RBF): 

K (Fi; Fj) = exp (-γ ||Fi – Fj||2)  

γ > 0: C > 0 is the penalty parameter of the error term. We set γ = .01; C = 8 for training. Since 

the number of insulator images is not larger than the number of non-images, so we do not provide 

any larger penalty for non-insulator image class than insulator image class using -w in LIBSVM. 

Support vector machine performs an implicit mapping of data from lower to higher dimension 

feature space. We use C-SVC type SVM. 
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For train data set, we need to use command mode. By extracting feature value and write it into 

text file we directly use it into command mode but in our program, we use system call to use it. 

For using command line at first, we keep the LIBSVM in our c drive or any other drive. In 

LIBSVM there is a folder called window. Here, many exe files we see like svm-train.exe, svm-

predict.exe etc. We keep the text file into this folder which contains the training dataset. 

First, we go to the command mode window then follow some procedure: - 

• C:\Users\user> cd path 

• C:\Users\user\libsvm\window> svm-train [options] training_set_file [model_file] 

 LIBSVM training command shown below: 

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 trainfile.txt 

Or 

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 trainFile.txt. scale [ if we take our data into scale] 

 

In Microsoft visual studio: 

➢ system ("svm-train.exe -s 0 -c 8 -t 2 -g .01 trainFile") 

This command gives us a model which We will use later, for classification. 

➢ svm-train.exe -s 0 -c 8 -t 2 -g .01 -v 5 trainfile.txt 

It will give a cross-validation result of 5-fold which means it divides training data set into 5 parts 

where 4 parts used for train dataset and one part is used for test dataset. 

parameters: 

-s: C-SVC (if s=0, then the SVM type is C-SVC) only. 

    -c: set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) 

    -t: radial basis function: exp(-gamma*|u-v|^2) 

    -g: set gamma in kernel function (default 1/num_features) 

    -v: Cross Validation Accuracy 

 

3.2.4.3 Hard-negative mining 

For each image and each possible scale and rotation in our training set, we apply the sliding 

window technique and slide our window across the image. At each window, we compute our 

HOG descriptors and apply our classifier. If your classifier (incorrectly) classifies a given 

window as an insulator (and it will, there will absolutely be false-positives), we record false 

positive image. This approach is called hard-negative mining [55]. 
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Take the false-positive samples found during the hard-negative mining stage, put them into our 

negative samples folder as a negative image and re-train our classifier using those hard-negative 

samples. Often performance can be improved by re-training the object detector with a set of 

negative examples that has been augmented with false-positives from an initial run of the object 

detector. Intuitively, this makes a much better negative training set than the random patches 

chosen initially. The gains in accuracy on subsequent runs of hard-negative mining tend to be 

minimal. 

3.2.5. Classification (Insulator Detection) 

 

After completion of training successfully, we apply sliding window based technique to identify 

and localize insulators in an image from our test image set. In this approach, we slide a rectangular 

window with fixed width and height across an image from left-to-right and top-to-bottom. First, 

we apply this technique in our original image then repeated on successively scaled copies of the 

image. For each detected window(sub-image), we normally take that sub-image and convert it 

into GRAY scale image as well as apply HOG to extract descriptors value and store them into 

text file to classify. This process is repeated on full image as well as successively scaled copies 

of the image so that objects can be detected at any size. 

 

                                

                          (a)                                                      (b)                                                      (c)      

 

Figure 3.21: (a) Scanning image with a fixed-size rectangular window (b) Sub-image defined 

by the window (c) Apply HOG on sub-image 

 

We apply this process in image with zero-degree rotation. After that we rotate the image and 

apply all the techniques we used before.  We increment the angle of rotation by 10-degree until 

it reaches 360-degree. In rotated image, we apply sliding technique combined with image 

pyramid. With fixed size rectangular window, we scan rotated image as well as for every sub-

window we calculate descriptors value and applying a classifier to detect that particular bounds 

is our insulator or not. 
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       (a) 10-degree rotation in 100% size                       (b) sliding window in rotational image

  

Figure 3.22: Sliding window technique on rotated image with fixed   detection window 

 

After successfully applying sliding window we bound a window and extract HOG descriptors 

value. And, save them into a single test instance text file. We use this text featured file to classify 

insulator and non- insulator using svm-predict function of LIBSVM.  

We write below code 

 

➢ svm-predict.exe test_data test.model result.txt 

parameters: 

        test_data: HOG features value of a sub-image 

        test.model: classifier 

        result.txt: predicted label 

 

Model has all necessary parameters for svmpredict.  

If the variable classifier is greater than 0, we consider the instance as insulator. 

Else, classifier < 0 and the instance is a non-insulator. 

 

At each window, we compute HOG descriptors and apply our classifier. our classifier incorrectly 

classifies a given window as an insulator which is absolutely be a false positive image. When we 

complete our scanning, we get lots of false positive image so we apply hard-negative mining 

approach. And, retrain our classifier with incorrectly classified image with negative samples. 

Performance improved by re-training classifier with a set of negative examples that has been 

augmented with false-positives from an initial run of the classifier.  
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Now, for each scale and rotation we apply the sliding window technique. At each window extract 

HOG descriptors and apply our classifier. After classify our insulator, we record the bounding 

box of the window.  Those windows bounded our desire object.  

3.6 Non- maximum suppression (NMS) 

 The output had multiple detections of the same object. So, we applied non-maximum 

suppression to remove redundant and overlapping bounding boxes. 

Non-maximum suppression is used as an intermediate step in many computer vision algorithms. 

Non-maximum suppression is often used along with edge detection algorithms. The image is 

scanned along the image gradient direction, and if pixels are not part of the local maxima they 

are set to zero. This has the effect of supressing all image information that is not part of local 

maxima [56]. 

Approaches based on sliding windows [43-45] typically produce multiple windows with high 

scores close to the correct location of objects. This is a consequence of the generalization ability 

of object detectors, the smoothness of the response function and visual correlation of close-by 

windows. This relatively dense output is generally not satisfying for understanding the content 

of an image. As a matter of fact, the number of window hypotheses at this step is simply 

uncorrelated with the real number of objects in the image. The goal of NMS is therefore to retain 

only one window per group, corresponding to the precise local maximum of the response 

function, ideally obtaining only one detection per object. Consequently, NMS also has a large 

positive impaction performance measures that penalize double detections. [57] 

The most common approach for NMS consists of a greedy iterative procedure [43, 44], which 

we refer to as Greedy NMS. The procedure starts by selecting the best scoring window and 

assuming that it indeed covers an object. Then, the windows that are too close to the selected 

window are suppressed. Out of the remaining windows, the next top-scoring one is selected, and 

the procedure is repeated until no more windows remain. This procedure involves defining a 

measure of similarity between windows and setting a threshold for suppression. These definitions 

vary substantially from one work to another, but typically they are manually designed. Greedy 

NMS, although relatively fast, has a number of downsides. First, by suppressing everything 

within the neighbourhood with a lower confidence, if two or more objects are close to each other, 

all but one of them will be suppressed. Second, Greedy NMS always keeps the detection with the 

highest confidence even though in some cases another detection in the surrounding might provide 
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a better fit for the true object. Third, it returns all the bounding-boxes which are not suppressed, 

even though many could be ignored due to a relatively low confidence or the fact that they are 

sparse in a sub-region within the image. [57] 

Rather than greedy NMS method, there are multiple ways to remedy this problem. Triggs et al. 

suggests to use the Mean-Shift algorithm to detect multiple modes in the bounding box space by 

utilizing the (x, y) coordinates of the bounding box as well as the logarithm of the current scale 

of the image. [55] 

However, no matter what method of object detection we use, we will likely end up with multiple 

bounding boxes surrounding the object we want to detect. In order to remove these redundant boxes, 

we apply Non-Maximum Suppression. 

 

 

Figure 3.23: Applying non-maximum suppression, correctly able to reduce  

the number of bounding boxes 

 

 

 

 

 

http://en.wikipedia.org/wiki/Mean-shift
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Chapter 4  

 

Experimental Result and Performance Analysis 

In chapter 3, We discussed about the test of insulator detection based of Histogram Oriented 

Gradient (HOG). Here, we perform a comprehensive experiment. The experimental result and 

discusses focuses on the performance of the result analysis of the system which is divided into 

several categories.  

  

4.1 Experimental result 

 

In this chapter we discuss about our experimental result on HOG and other feature extraction 

method. The result and discussion focusses on the performance of our proposed method. In 

section 4.1.1 and4.1.2 we discuss about the result of pole and insulator detection. In section 4.1.3 

we discuss about the result of other feature extraction method.  

 

4.1.1 Pole Detection result  

We tested about 26 images to find out pole with x-axis threshold 5 pixels and variation in theta 

±50 as an empirical value. In 26 images, we found pole in our best three lines in 25 images. We 

draw the them into red, green and blue. We found pole in our first best line in 20 images, second 

best in 4 images and last one in on image. We found no result in one image. 

In total we got, 96.154% accuracy to find a pole in 26 images with three best coverage lines. 

Table 4.1:  Accuracy of pole detection with empirical value 5 pixels and theta ±50 

 
Best Coverage Line 

 

Total Image 

 

Detected Pole 

(26 image) 

 

Accuracy 

(First Line) 

 

Line one 

(Red) 

 

26 

 

20 

 

80% 

 

Line two 

(Green) 

 

26 

 

4 

 

16% 

 

Line three 

(Blue) 

 

26 

 

1 

 

4.167% 
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Here, our first best line detects the pole so we don’t need to look for the pole in the other two 

lines which is shown in Red color. 

 

 

Figure 4.1: Detected pole shown in Red, Green and Blue (Three best lines) 

 

We got no result in one image from 26 images. This happened because in that image all the 

building’s corner counted as a line so when we calculate coverage area those lines were counted. 

So, we need more pre-processed data from overcome this type of situation. 

 

 

Figure 4.2: Non Pole Detection Image 
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4.1.2 Insulator result 

 

To evaluate the performance of features, we ran various cross-validation test in LIBSVM. The 

number of test classes are 2. In the first class, we have 215 images of insulator. In the second 

class, there are 385 images of non-insulator. Features are taken from both classes. These features 

are used for classification by the standard classifier of LIBSVM. So, the 

performance of features is directly co-related to the performance of classifier. 

 

Table 4.2: Accuracy of classifier for Radial Basis Function under different parameters 

 

From Table 4.2 we see that for different gamma, cost and fold we got different results. For 

gamma= .0001, cost= 512 and fold No.=5 we got the highest accuracy for classifier. And, other 

results have variation in accuracy but we got better result in fold No. 5 as well as There is a little 

difference between different folds’ results. 

For better accuracy of classifier, we searched best value of γ; C through grid.py and easy.py 

(Python program).  

This programs do grid-search for γ; C in an interval, the instruction command in Windows. 

Command Prompt is 

➢ python grid.py Feature Value 

➢ python easy.py Feature Value 

Both command we can use for finding the best gamma and cost. Grid.py is only search for best 

gamma and cost which maximize our classifier. And, easy.py does everything automatic from 

data scaling to parameter selection. Both use Gnuplot for visualizing contour plot. 

 

No. 

 

Sample Size 

 

Cost 

 

Gamma 

 

Cross Fold 

Validation 

 

Accuracy 

 

1 

 

600 

 

512 

 

.0001 

 

5 

 

99.5% 

 

2 

 

600 

 

256 

 

.0001 

 

7 

 

98.8333% 

 

3 

 

600 

 

512 

 

.0005 

 

9 

 

99.3333% 

 

4 

 

600 

 

128 

 

.005 

 

20 

 

99.1667% 

 

5 

 

600 

 

64 

 

.001 

 

50 

 

99.3333% 
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Figure 4.3: Contour plot of our data running in LIBSVM to find best gamma and cost 

 

ROC - Receiver Operating Characteristics graphs are a useful technique for organizing 

classifiers and visualizing their performance. [58] 

The ROC curve of our classifier is 

 

Figure 4.4: ROC curve of classifier 
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4.1.2.1 Visualize Experimental Result 

Figure 4.5: Horizontal insulator detection 

 

 

Figure 4.6: Angled insulator detection 
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4.2 Performance Analysis 

In pole detection, with our x- axis threshold value 5 pixels and theta difference ±50 we got 

96.154% accuracy to detect a pole in an image and our first best line detect 80% pole in 26 

images. We try different threshold value and theta for our experiment. Below we shown the 

comparison between different empirical values: 

 

Table 4.3:  Comparison between different empirical value 

 

 

 

 
 

 
Figure 4.7: Comparison of different empirical value’s accuracy 

 

96.154

92.308 92.308 92.308

90

91

92

93

94

95

96

97

Emperical Value 1 Emperical Value 2 Emperical Value 3 Emperical Value 4

accuracy chart 

 

No. 

 

Different empirical value 

 

Total Image 

 

Detected pole 

(26 image) 

 

Total Accuracy 

 

 

1 

 

Difference=5 pixels 

Angle= 50 

 

26 

 

25 

 

96.154% 

 

2 

 

Difference=3 pixels 

Angle= 30 

 

26 

 

24 

 

92.308% 

 

3 

Difference=5 pixels 

Angle= 30 

 

26 

 

24 

 

92.308% 

 

4 

Difference=5 pixels 

Angle= 70 

 

26 

 

24 

 

92.308% 
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The performance analysis module tests the proposed system with different feature value to detect 

insulator using support vector machine. We used Local Binary Pattern(LBP) and LBP with HOG 

to saw how they perform in insulator detection. The Results of LBP and LBP-HOG are shown 

below: 

 

Table 4.4: Accuracy of classifier for Radial Basis Function using LBP (images divided into 

2×2) in SVM (LIBSVM) for different γ, C and V 

 

 
No.  

 

Sample Size 

 

Cost  

 

Gamma 

 

Cross Fold 

Validation 

 

Accuracy 

 

1 

 

600 

 

2 

 

.00001 

  

5 

 

98.5% 

 

2 

 

600 

 

8 

 

.00002 

 

7 

 

97.5% 

 

3 

 

600 

 

16 

 

.00003 

 

9 

 

96.3333% 

 

4 

 

600 

 

64 

 

.00001 

 

20 

 

98.3333% 

 

5 

 

600 

 

32 

 

.00004 

 

50 

 

93.8333% 

 

 

Table 4.5: Accuracy of classifier for Radial Basis Function using LBP (images divided into 

2×4) in SVM (LIBSVM) for different γ, C and V. 

 
No.  

 

Sample Size 

 

Cost  

 

Gamma 

 

Cross Fold 

Validation 

 

Accuracy 

 

1 

 

600 

 

8 

 

.00001 

  

5 

 

97.8333% 

 

2 

 

600 

 

8 

 

.00003 

 

7 

 

97.1667% 

 

3 

 

600 

 

128 

 

.000001 

 

9 

 

98.5% 

 

4 

 

600 

 

64 

 

.000009 

 

20 

 

97.3333% 

 

5 

 

600 

 

32 

 

.000003 

 

50 

 

98.1667% 
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Table 4.6: Accuracy of classifier for Radial Basis Function using LBP-HOG in SVM 

(LIBSVM) for different γ, C and V 

 

 
No.  

 

Sample Size 

 

Cost  

 

Gamma 

 

Cross Fold 

Validation 

 

Accuracy 

 

1 

 

600 

 

8 

 

.005 

  

5 

 

96.3333% 

 

2 

 

600 

 

8 

 

.007 

 

7 

 

95.5% 

 

3 

 

600 

 

32 

 

.005 

 

9 

 

95.3333% 

 

4 

 

600 

 

64 

 

.009 

 

20 

 

95.8333% 

 

5 

 

600 

 

8 

 

.003 

 

50 

 

96% 

 

 

 

Table 4.7: Accuracy of classifier for Radial Basis Function using LBP-HOG (images 

divided in 2×2) in SVM (LIBSVM) for different γ, C and V 

 

 
No.  

 

Sample Size 

 

Cost  

 

Gamma 

 

Cross Fold 

Validation 

 

Accuracy 

 

1 

 

600 

 

8 

 

.008 

  

5 

 

96.5% 

 

2 

 

600 

 

16 

 

.01 

 

7 

 

96.3333% 

 

3 

 

600 

 

8 

 

.01 

 

9 

 

96.8333% 

 

4 

 

600 

 

32 

 

.009 

 

20 

 

96.3333% 

 

5 

 

600 

 

8 

 

.003 

 

50 

 

95.1667% 
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From our experiment we got different cross validation result for different feature. By dividing 

images into (2×2) and images divided into 2×4 (LBP) we got accuracy of our classifier 98.5% 

and 97.8333% in 5-fold cross validation. We used LBP and HOG feature together and got 

accuracy 96.3333%. By dividing images into 2×2 using LBP-HOG feature together we got 96.5% 

result in 5-fold cross validation. Compare to LBP and LBP-HOG LBP gives little better result 

than LBP-HOG. 

 

 

Table 4.8: Overall performance of different features accuracy 

 

 

Feature 

 

Cross Fold Validation 

 

Accuracy 

 

HOG 

 

5 

 

99.5% 

 

LBP (2×2) 

 

5 

 

98.5% 

 

LBP (2×4) 

 

5 

 

97.8333% 

 

LBP-HOG 

 

5 

 

96.3333% 

 

LBP-HOG (2×2) 

 

9 

 

96.8333% 
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Chapter 5 

 

Conclusion 

In this chapter we summarize the project work.  Contribution of our proposed system presents in 

section 5.1. The limitation of our system discuss in section 5.2. We make final concluding 

remarks with few directions for future works and improvements in section 5.3. 

 

5.1 Contribution of proposed system 

 

In last, few years many works have been done in power line insulator detection and fix the 

faultiness of insulator in the field of computer vision. Therefore, insulator detection is challenging 

task in power line system.  

we discuss, a computer vision based technique to detect power line insulator using support vector 

machine using LIBSVM tool. As Electrical pole poses a great role to detect insulator so we detect 

different types of electrical pole by using line detection approach. 

From extracted data for insulator LIBSVM used to train the machine. These features are extracted 

by using Histogram Oriented Gradient method that saved in a text file. The system trained by 

SVM (LIBSVM tool) and tested by using sliding window technique with pyramid image. We 

also apply rotational- invariant method to detect insulator at varying angle with the help of sliding 

window technique. The result of our experiment is given overall satisfactory.  

 

5.2 Limitation of the System 

 

A major problem in detection of electrical pole is that if we have not found any pole in our best 

three lines then we have to take another angle picture or considering other logic to detect. The 

time complexity of our pole detection is O(n2). When we have lots of line then it took extra time 

for grouping lines which is the drawback of our pole detection system. If there are lamp post or 

other vertical object, then our system cannot compete with them as well as if there is high rise 

building, our system detects extensive amount lines than system failed to detect pole.   

Sliding window technique fail to take into account contextual cues as well as the window has a 
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fixed aspect ratio making it difficult for articulated insulators or insulators with large intra-class 

variation. It is time consuming because it slides the image at a fixed amount. If sliding amount is 

greater it cannot detect insulator. It searches at every possible scale and rotation so it took more 

time to terminate. It detects lots of false positive which is time consuming for re-train the 

classifier.  

 

5.3 Future Work and Improvement 

 

Rather than problem in pole detection improvement can be made by reducing false detection. We 

take count on horizontal lines and try to make a cross which we see in the pole or may be two 

horizontal lines along with vertical lines. We try to confide on the texture of the pole and other 

objects but it does work properly. As well as we can take count on the width of the object. High 

rise building line detection problem can be solved easily by this. Our next plan how could we 

more accurately detect pole at low cost and reduce the time consumption. 

When we took insulator image in our dataset we have not applied any pre-processing technique 

to normalize the effect of illumination which is a major issue. Due to the different amount of 

light, the intensity value of the image tends to vary a lot, thus it makes hard to produce consistent 

result. When we re-sized images lots of information have been lost. We will apply faster sliding 

window technique to boost slide onto the image fast. We also try to classify insulator without 

using LIBSVM. We will try different classifier like-KNN, ANN Etc. to classify insulator. We 

also hope that, HOG based feature will perform better in sophisticated machine learning 

algorithms like Adaptive Boosting, Convolutional Neural Network [21]. 

In future, we plan to detect fault of the insulator and make our approach more robust in detect 

insulator. In real life insulator faultiness or injury finding is more important. As we detected 

insulator our next plan is to find out the faultiness of insulator which is a challenging task for 

every researcher. 

In spite of some problems in our proposed system, the performance of the technique can play a 

significant role in terms of detection and memory. 
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