

EAST WEST UNIVERSITY

Motif Discovery Using Genetic Algorithm

Submitted By:

Al Muttakin

ID: 2013-2-60-005

Supervised By:

Dr. Mohammad Rezwanul Huq

Assistant Professor

Department of Computer Science and Engineering

East West University

A thesis paper submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering to the Department of

Computer Science and Engineering.

April 2017

i

Abstract

Motif discovery in unaligned DNA sequences is a challenging problem in computer science and

molecular biology. Finding a cluster of numerous similar subsequences in a set of biopolymer

sequences is evidence that the subsequences occur not by chance but because they share some

biological function. Motifs can be used to determine evolutionary and functional relationships.

Over the past few years, many motif discovery tools have been designed and make available to

public. In this paper, we represent an algorithm on motif discovery developed using Genetic

Algorithm (GA). Our algorithm is originally based on a popular motif finding algorithm “Finding

Motifs by Genetic Algorithm” (FMGA) developed by Falcon F.M Liu, with a handful of

modifications to get better result. In our approach, we try to find potential Motifs from a group of

promoter sequences of transcription start site (TSS). The Genetic operations such as mutation,

crossover is performed using position weight matrix to reserve the completely conserved position.

A rearrangement method is used to avoid the presence of a very stable local minimum. A

preprocessing function is used to relate randomly generated initial motifs with the promoter

sequences and a discursion function is used to minimize the computational time. We evaluated our

result based on a fitness score and occurrence frequency of a candidate motif in a group of

promoter sequence. Our approach give better result than the original FMGA algorithm which itself

showed superior result with comparison to two other Motif finding algorithm namely Multiple Em

for motif Elicitation (MEME) and Gibbs Sampler.

ii

Declaration

I hereby declare that; this thesis paper was done under the CSE497 and has not been submitted

elsewhere for requirement of any degree or any other region except for publication

Al Muttakin

ID: 2013-2-60-005

Department of Computer Science and Engineering

East West University

iii

Letter of Acceptance

This thesis paper is submitted by Al Muttakin, ID: 2013-2-60-005 to the Department of Computer

Science and Engineering, East West University, Dhaka, Bangladesh is accepted as satisfactory for

the partial fulfillment of the requirement for the degree of Bachelor of Science in Computer

Science and Engineering on April 9th, 2017.

1.

Dr. Mohammad Rezwanul Huq

 Assistant Professor (Supervisor)

 Department of Computer Science and Engineering

 East West University

 Dhaka, Bangladesh

2.

Dr. Ahmed Wasif Reza

 Associate Professor & Chairperson (Acting)

 Department of Computer Science and Engineering

 East West University

 Dhaka, Bangladesh

iv

Acknowledgement

First of all, I am grateful to Almighty Allah for my good health and wellbeing and patience that

were necessary to complete this book.

I wish to express my sincere thanks to Dr. Ahmed Wasif Reza, Associate Professor & Chairperson

(Acting), Department of Computer Science and Engineering, East West University, for providing

me with all the necessary facilities for this thesis.

I am also grateful to Dr. Mohammad Rezwanul Huq, Assistant Professor, Department of Computer

Science and Engineering, for supervising me on this thesis for past 8 months. I am extremely

thankful and indebted to him for sharing expertise, valuable guidance and encouragement extended

to me.

I take this opportunity to express gratitude to all of the Faculty members, Department of Computer

Science and Engineering, for their help and support. Their expertise and guidance helped me

throughout my study life and will help me to walk the path in future.

Finally, I would like to thank my parents for the unceasing encouragement, support and attention.

Without their support, I would never be able to complete my study successfully.

v

Table of Contents

Abstract i

Declaration ii

Letter of Acceptance iii

Acknowledgement iv

Table of Contents v

Contents vi

List of Figures viii

List of Tables ix

vi

Contents

Chapter 1 Introduction

1.1 Introduction --- 1

1.2 GA Overview -- 2

1.2.1 Selection --- 3

1.2.2 Mutation --- 3

1.2.3 Crossover -- 4

1.3 Objective -- 5

1.4 Related Terms and Issues --- 5

1.5 Outline --- 6

Chapter 2 Related Work

2.1 EM Methods -- 7

2.2 Gibbs Sampling Method -- 7

2.3 FMGA --- 8

2.3.1 Pseudocode -- 9

2.3.2 Flowchart --- 9

Chapter 3 Architecture of Proposed Algorithm

3.1 Method -- 10

3.2 Evaluation Criteria -- 10

3.2.1 Fitness Score Function --- 10

vii

3.2.2 Total Fitness Score --- 12

3.2.3 Occurrence Frequency --- 13

3.3 Proposed Algorithm --- 14

3.3.1 Pseudocode -- 15

3.3.2 Flowchart -- 17

3.4 Operations -- 18

3.4.1 Preprocessing --- 18

3.4.2 Mutation --- 19

3.4.3 Crossover -- 20

3.4.4 Rearrangement -- 20

3.4.5 Discursion --- 21

Chapter 4 Result Analysis and Comparison

4.1 Result analysis and Comparison -- 22

Chapter 5 Conclusion & Future Work

5.1 Concluding Remark --- 26

5.2 Future Work -- 27

 References

Appendix

viii

List of Figures

Figure 1: General Architecture of GA. --- 04

Figure 2: Data structures used in MDGA. -- 06

Figure 3: Flowchart of original FMGA algorithm. -- 09

Figure 4: Illustration of fitness score calculation. --

11

Figure 5: Illustration of TFS Calculation. ---

13

Figure 6: Illustration of Occurrence Frequency calculation. ------------------------------------- 14

Figure 7: Flowchart of MDGA. --

17

Figure 8: Illustration of generating position weight matrix. -------------------------------------- 18

Figure 9: Illustration of preprocessing. -- 19

Figure 10: Illustration of Mutation. --- 19

Figure 11: Illustration of Crossover. -- 20

Figure 12: Illustration of Rearrangement. --

21

ix

List of Tables

Table 1: Predicted motifs of MDGA (Group 1). --- 23

Table 2: Predicted motifs of MDGA (Group 2) --- 23

Table 3: Predicted motifs of MDGA (Group 3). -- 23

Table 4: Comparison between Predicted motifs of MDGA and FMGA (Group 1). ----------- 24

Table 5: Comparison between Predicted motifs of MDGA and FMGA (Group 2) ------------ 24

Table 6: Comparison between Predicted motifs of MDGA and FMGA (Group 3) ------------ 25

1

Chapter 1

Introduction

1.1 Introduction

The gene is the fundamental unit of inherited information in deoxyribonucleic acid (DNA), and is

defined as a section of base sequences that is used as a template for the copying process called

transcription. The main idea in gene expression is that every gene contains the information to

produce a protein. Gene expression begins with binding of multiple protein factors, known as

transcription factors, to enhancer and promoter sequences. Transcription factors regulate the gene

expression by activating or inhibiting the transcription machinery. Unraveling the mechanisms that

regulate gene expression is a major challenge in biology. An important task in this challenge is to

identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for

transcription factors. These binding sites are short DNA segments that are called motifs. Pattern

discovery in DNA sequences is one of the most challenging issues in computer science and

molecular biology nowadays.

So, in the simplest form, our problem is “Given a set of promoter sequences, whether we can detect

overrepresented motifs that are good candidate for being transcription factor binding sites or

carrying other biological meaning.” A DNA motif is defined as a nucleic acid sequence pattern

that has some biological significance such as being DNA binding sites for a regulatory protein,

i.e., a transcription factor. Normally, the pattern is fairly short (5 to 20 base pairs (bp) long) and is

known to recur in different genes or several times within a gene [1]. DNA motifs are often

associated with structural motifs found in proteins. Motifs can occur on both strands of DNA.

Transcription factors indeed bind directly on the double-stranded DNA. Sequences could have

zero, one, or multiple copies of a Motif.

Now the question that will comes in our mind is, why are we considering motif finding a problem?

This first step of gene expression, ‘transcription’, is finely regulated by a number of different

factors, among which ‘transcription factors’ (TFs) play a key role binding DNA near the

transcription start site of genes (in the ‘promoter’ region). The actual DNA region interacting with

and bound by a single TF (called TFBS) usually ranges in size from 8–10 to 16–20 bp. TFs bind

the DNA in a sequence-specific fashion, that is, they recognize sequences that are similar but not

identical, differing in a few nucleotides from one another. So, given a set of sequences, if we can

find an unknown pattern of m letters that occurs frequently in a group of sequences, a simple

2

enumeration of all m-letter patterns that appear in the sequences gives the solution. In the past,

binding sites were typically determined through rigorous experiments in the laboratories. That way

it was hard to find a potential candidate motif without any prior knowledge. But with the emerging

of computational methods, if we can develop an efficient algorithm that can predict potential motif

in DNA sequences without any prior knowledge rather by searching, we will be able to explore

deeper into the hidden massage in DNA.

With a view to solving this problem of motif discovery, a large number of algorithms are already

developed and applied to various motif models over past decades. Most of these algorithms are

designed to deduce motifs by considering the regulatory region (promoter) of several coregulated

genes from a single genome. It is assumed that co-expression of genes arises mainly from

transcriptional coregulation. As coregulated genes are known to share some similarities in their

regulatory mechanism, possibly at transcriptional level, their promoter regions might contain some

common motifs that are binding sites for transcription factors. In this paper, we represent a new

algorithm “Motif Discovery using Genetic Algorithm” (MDGA) that will consider a group of

promoter sequence of transcription start site of variable length from 800 bp to over 11000 bp and

create a number of candidate motif randomly from those sequences. Then after passing the

candidate motifs of first generation through a preprocessing, we will allow those candidate motifs

to evolve through genetic operations like mutation, crossover for a number of generation and look

for potential candidate motifs through all the generation of motifs that produced. To make it more

related to biological meaning, we also introduce a deletion process of comparatively weak motifs

that has no chance of further evolution. We also used the concept of two types of base pair (Purine

(A, G) and Pyridine (T, C)) [2] in the scoring factor as these two types of tends alter within

themselves during biological processes fairly frequently.

1.2 GA Overview

In computer science and operations research, a genetic algorithm (GA) [3] is a metaheuristic

inspired by the process of natural selection that belongs to the larger class of evolutionary

algorithms (EA) [4]. Genetic algorithms are commonly used to generate high-quality solutions to

optimization and search problems by relying on bio-inspired operators such as mutation, crossover

and selection. In a genetic algorithm, a population of candidate solutions (called individuals,

creatures, or phenotypes) to an optimization problem is evolved toward better solutions. Each

candidate solution has a set of properties (its chromosomes or genotype) which can be mutated

and altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other

encodings are also possible. The population size depends on the nature of the problem, but

typically contains several hundreds or thousands of possible solutions. Often, the initial population

is generated randomly, allowing the entire range of possible solutions (the search space).

3

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be

found. The general architecture of GA is illustrated in Figure 1. The common operators of GA are

as follows:

1.2.1 Selection

During each successive generation, a portion of the existing population is selected to breed a new

generation. Individual solutions are selected through a fitness-based process, where fitter solutions

(as measured by a fitness function) are typically more likely to be selected. Certain selection

methods rate the fitness of each solution and preferentially select the best solutions. Other methods

rate only a random sample of the population, as the former process may be very time-consuming.

The fitness function is defined over the genetic representation and measures the quality of the

represented solution. The fitness function is always problem dependent.

1.2.2 Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a

population of genetic algorithm chromosomes to the next. It is analogous to biological mutation.

Mutation alters one or more gene values in a chromosome from its initial state. In mutation, the

solution may change entirely from the previous solution. Hence GA can come to a better solution

by using mutation. Mutation occurs during evolution according to a user-definable mutation

probability. This probability should be set low. If it is set too high, the search will turn into a

primitive random search.

For different genome types, different mutation types are suitable. Some types of mutation are as

follows:

Bit string mutation: The mutation of bit strings ensues through bit flips at random positions.

Boundary mutation: This mutation operator replaces the genome with either lower or upper

bound randomly. This can be used for integer and float genes.

Non-Uniform mutation: The probability that amount of mutation will go to 0 with the next

generation is increased by using non-uniform mutation operator. It keeps the population from

stagnating in the early stages of the evolution. It tunes solution in later stages of evolution. This

mutation operator can only be used for integer and float genes.

Uniform mutation: This operator replaces the value of the chosen gene with a uniform random

value selected between the user-specified upper and lower bounds for that gene. This mutation

operator can only be used for integer and float genes.

4

Gaussian mutation: This operator adds a unit Gaussian distributed random value to the chosen

gene. If it falls outside of the user-specified lower or upper bounds for that gene, the new gene

value is clipped. This mutation operator can only be used for integer and float genes.

1.2.3 Crossover

In genetic algorithms, crossover is a genetic operator used to vary the programming of a

chromosome or chromosomes from one generation to the next. It is analogous to reproduction and

biological crossover, upon which genetic algorithms are based. Cross over is a process of taking

more than one parent solutions and producing a child solution from them. There are methods for

selection of the chromosomes. Two types of common crossover are as follows:

Single-point crossover: A single crossover point on both parents' organism strings is selected. All

data beyond that point in either organism string is swapped between the two parent organisms. The

resulting organisms are the children.

Two-point crossover: Two-point crossover calls for two points to be selected on the parent

organism strings. Everything between the two points is swapped between the parent organisms,

rendering two child organisms.

Figure 1: General Architecture of GA

5

1.3 Objective

The main objective of this thesis is to develop an algorithm for motif finding which can predict

potential motifs with higher occurrence frequency from a set of promoter sequence that can

regulate gene expression and be a good candidate for transcription factor binding site.

1.4 Related terms and Issues

Motif: A DNA motif is defined as a nucleic acid sequence pattern that has some biological

significance such as being DNA binding sites for a regulatory protein, i.e., a transcription factor.

Normally, the pattern is fairly short (5 to 20 base pairs (bp) long) and is known to recur in different

genes or several times within a gene.

Promoter Sequence: A consensus sequence is defined as the sequence that reflects the most

frequent base or amino acid at some position in a set of aligned DNA, RNA or protein sequences

such as binding sites. Consensus sequences often represent conserved functional domains.

Data, MDGA deals with: A group of promoter sequence of transcription start sites of a particular

genome.

Data Structure Used in MDGA: It uses 3 customized Data Structure

 WEIGHT_MATRIX: Store the position weight matrix of a candidate motif

 PATTERN: Store a particular motif, cross ponding fitness score, occurrence frequency,

matching percentage.

 GENERATION_INFO: Store all information of all the patterns of a particular

generation.

The data structures are defined in figure 2.

Framework and Programming language

 C++

 Windows Operating system

6

Figure 2: Data structures used in MDGA

1.5 Outline

The rest of the report is organized as follows. In Chapter 2 we described the related work on motif

finding in promoter sequences followed by the architecture of out proposed algorithm in Chapter

3. In Chapter 4 we analyze the result of our proposed algorithm and compare the result with the

result of FMGA. Finally, in Chapter 5, we make the concluding remarks and stated the future work

of our algorithm.

7

Chapter 2

Related Work

In this section, we will give a short overview of a few methods developed in past 2 decades that

successfully predicted candidate motifs.

2.1 EM Methods

EM for motif finding was introduced by Lawrence and Reilly [5] and it was an extension of the

greedy algorithm for motif finding by Hertz et [6]. It was primarily developed for protein motifs;

however, it can also be applied for DNA motif finding. No alignment of the sites is required and

the basic model assumption is that each sequence must contain at least one common site. The

uncertainty in the location of the sites is handled by employing the missing information principle

to develop an EM algorithm. This approach allows for the simultaneous identification of the sites

and characterization of the binding motifs. The MEME algorithm by Bailey and Elkan [7] extended

the EM algorithm for identifying motifs in unaligned biopolymer sequences. The aim of MEME

is to discover new motifs in a set of biopolymer sequences where little is known in advance about

any motifs that may be present. MEME incorporated three novel ideas for discovering motifs.

First, subsequences that actually occur in the biopolymer sequences are used as starting points for

the EM algorithm to increase the probability of finding globally optimum motifs. Second, the

assumption that each sequence contains exactly one occurrence of the shared motif is removed.

Third, a method for probabilistically erasing shared motifs after they are found is incorporated so

that several distinct motifs can be found in the same set of sequences, both when different motifs

appear in different sequences and when a single sequence may contain multiple motifs.

2.2 Gibbs Sampling Method

Gibbs sampler for motif finding developed by Lawrence [8]. They did not apply this algorithm to

DNA sequence but applied to protein sequence in the original article. Since one of the original

assumptions of this algorithm was that there exists at least one instance of a motif in every

sequence, the method is sometimes called the "site sampler". Gibbs sampler is a Markov Chain

Monte Carlo (MCMC) approach: "Markov-Chain", since the results from every step depends only

on the results of the preceding one like in EM. The statistical background of MCMC methods is

explained in the book by Liu [9] and that of Gibbs sampling in the article by Liu [10]. In this

algorithm, it is assumed that we are given a set of N sequences S1, S2, ……., SN and we seek within

8

each sequence mutually similar segments of specified width W. The algorithm maintains two

evolving data structures. The first is the pattern description, accompanied by an analogous

probabilistic description of the "background frequencies" p1, p2, ……, p20.

2.3 FMGA

Liu [11] developed the algorithm FMGA based on genetic algorithms (GAs) for finding potential

motifs in the regions located from the -2000 bp upstream to +1000 bp downstream of the

transcription start site. The mutation in GA is performed by using position weight matrices. to

reserve the completely conserved positions. The crossover is implemented with specially designed

gap penalties to produce the optimal child pattern. This algorithm also uses a rearrangement

method based on position weight matrices to avoid the presence of a very stable local minimum,

which may make it quite difficult for the other operators to generate the optimal pattern. The

authors reported that FMGA performs better in comparison to MEME and Gibbs sampler

algorithms. As we mentioned earlier, out algorithm is developed based on FMGA with some major

modification.

Among these methods, Gibbs sampler has the advantage of spending lower computation time.

MEME is superior to the other methods by its prediction accuracy, but has the drawback of taking

enormous computation time. In this paper, we propose a new approach based on genetic algorithm

to predict motifs. The predicted results obtained by using our approach are more accurate than that

of Gibbs sampler and spend less computation time than MEME. But FMGA operate on a limited

range of base pair (-2000 upstream to +1000 downstream) which make its scope limited to find

optimal motif with better fitness score and occurrence frequency. It has also a limitation of

operating on a smaller group of datasets. But our algorithm operates on a larger number of data set

and happens to predict better motif with higher score and occurrence frequency than the original

FMGA algorithm. Here we will provide the flowchart and the pseudocode of original FMGA

algorithm and all the operations of it will be discussed with the operations of MDGA on letter

chapter.

9

2.3.1 Pseudocode: FMGA

1. Initialization

2. Setting total number of iterations: M

3. Creating candidate motifs randomly: P1 ~ Pn

4. Import promoter sequences S1 ~ SL

5. While iteration number <= M

6. While predicted_motif_unchanged > K

7. Evaluating TFS for each candidate motif

8. Keeping the candidate motifs with the highest TFS as

 the new generations.

 //The remaining candidate motifs

 //are created by weighted wheel selection

9. Mutation using weight matrix to generate two parent

 patterns

10. Crossover with ambiguity codes penalties to select the

 best child pattern for next generation

11. Rearrangement of candidate motifs

12. Increasing iteration number by 1

13. Output predicted motifs and corresponding TFS

2.3.2 Flowchart: FMGA

 Figure 3: Flowchart of original FMGA algorithm

10

Chapter 3

Architecture of Proposed Algorithm

3.1 Method

Our method to predict motifs is to use a total fitness score function and occurrence frequency to

find the optimal motif using genetic algorithm. Apart from the original FMGA algorithm, we

introduced a new parameter in calculating the total fitness score on the basis of two types of base

pair purine and pyridine. Like the original FMGA, we also use the general genetic algorithm

framework and operators to serve as our basic architecture as sequence alignment by genetics

algorithm (SAGA) [12] did. In the original FMGA, they only considered IUPAC ambiguity base

pair [13] M, R, W, S, K, Y, N to calculate ambiguity code penalty. In the new algorithm, we also

include other ambiguity base pairs that includes V, H, D, B to calculate ambiguity codes penalties

to charge the scores of consensus sequences so that optimal motifs can be predicted more

efficiently. We also introduce a change in the crossover operator where we keep both the child to

be evaluated in the next generation. As a result, to keep the increasing number of candidate motif

in check, we introduced a discursion function which eliminate comparatively weak motifs from

each generation. And there by we removed the risk of a child that could be a better candidate motif,

to be eliminated. This is one the major region of getting superior result than the original FMGA.

3.2 Evaluation Criteria

We evaluated out proposed algorithm on the basis of two parameters. Total fitness score and

occurrence frequency. They are defined as follows:

3.2.1 Fitness Score Function

First let us consider the fitness score for a candidate motif in a single sequence. Given a motif

pattern, there may have several regions in the sequence that match the motif pattern and each has

a fitness score according to the fitness score function defined as follows:

11

Here, m is the index of sequences, i is the position within the motif, n is the index of motif patterns,

k is the length of motif pattern, j is number of matched regions in the sequence. For example, the

fitness score calculation of a motif P1 in a promoter sequence S1 is illustrated in the following

figure:

Figure 4: Illustration of fitness score calculation

In this case, we will take the fitness score of highest value. So finally, the fitness score function

for a single sequence can be given by

In the original FMGA algorithm alongside the base pairs A, T, G, C they used ambiguity base pair

M, R, W, S, Y, K into the calculation of fitness score. They redefined the fitness score function as

follows:

12

In our new algorithm, we take into consideration the two kind of base pair purine and pyridine as

they tend to convert into each other frequently. So, these two types of base are represented by

ambiguity base pair R (A, G) and Y (T, C). We also included the reaming ambiguity base pairs V,

H, B, D that were grouped with N in the original FMGA with a small weightage. Giving R, Y

more importance, we redefined out fitness score function as follows:

3.2.2 Total Fitness Score

Total fitness score of a motif is the summation of fitness score of best match from all the sequences.

It represents the score of motif in a particular generation. The total fitness score is defined as

follows:

For example, if we consider a candidate motif P1 and 5 promoter sequences S1 ~ S5 then the

calculation of total fitness score of the motif is illustrated in the following figure:

13

Figure 5: Illustration of TFS Calculation

3.2.3 Occurrence Frequency

In our new algorithm, we introduced a new parameter named occurrence frequency to evaluate our

candidate motifs. Occurrence frequency (OF) of a given motif is defined as the number of

sequences in a given dataset, in which, the candidate pattern matched completely with a

subsequence of the promoter sequence.

For example, if we consider a candidate motif P1 and 5 promoter sequences S1 ~ S5 then the

calculation of occurrence frequency of the motif is illustrated in the following figure:

14

Figure 6: Illustration of OF calculation

3.3 Proposed Algorithm

We introduce our new algorithm MDGA in this section. Data is selected with an 800 bp length to

over 11000 bp length from Transcription Start sites of different genome. In MDGA, the initial

motif patterns with the same pattern length are created randomly. The users can set the pattern

length. All the motif patterns will be different from the initial patterns after N-generation evolution.

Preprocessing the first generation make the randomly generated motifs more suitable for evolution.

Despite of starting with some randomly generated motifs, we preprocess the motifs and convert

into worst possible motifs and start evolving. Mutation using weight matrix speed up the time to

find potential motifs. During crossover unlike the original FMGA algorithm, we keep both the

child to be evaluated on the next generation with other candidate motifs. This is to avoid the

possibility of losing a globally potential motif. To check the increasing number of candidate motif,

we use the discursion function with a variable discursion factor. The flowchart of MDGA is

illustrated in Figure 7 and the pseudocode is given below.

15

3.3.1 Pseudocode: MDGA

MDGA(number_of_sequence)

1. input -> sequences;

2. input -> pattern_length;

3. input -> number_of_pattern_in_generation1;

4. for i <- 1 to number_of_pattern_in_generation1

5. pattern[i] <- generate_random_pattern;

6. present_gener_no <- 1

7. generation_no <- 1;

8. temp <- preprocess_generation1(present_gener);

9. present_gener.patterns <- temp.fst;

10. present_gener.unique_pattern <- temp.snd;

11. count_same_gen <- 0;

12. count_max_tfs <- 0;

13. while generation_no <= 50

14. if present_gener_no > 50

15. break;

16. for each pattern in present_gener

17. running_pat <- present_gener.patterns[i].pat;

18. present_gener.patterns[i].complete_match <- 0;

19. for each sequence in sequences

20. temp_pattern <- best_match_in_a_sequence

21. present_gener.best_matches[running_pat] <- temp_pattern

22. if temp_pattern.tfs == 1.0

23. present_gener.patterns[i].complete_match++;

24. present_gener.patterns[i].tfs <- calculate_total_fitness_score

25. present_gener.weight_matrix_all[running_pat] <-

generate_weight_matrix

26. present_gener.patterns[i].percentage <-

present_gener.patterns[i].complete_match/sequences.size

27. if count_same_gen == 5 or count_max_tfs == 4

28. for each pattern in present_gener

29. if present_gener.patterns[i].tfs < present_gener.max_tfs

30. running_pat <- present_gener.patterns[i].pat;

31. temp.pat <- rearrange_pattern

32. temp.tfs <- -1;

33. next_gener.patterns[i] <- temp

34. iteration_no++;

35. count_same_gen <- 0;

36. count_max_tfs <- 0;

37. else

38. present_gener.max_tfs <- calculate_max_tfs

39. present_gener.min_tfs <- calculate_min_tfs

40. present_gener.max_match <- calculate_max_match

41. for each pattern in present_gener

16

42. if present_gener.pattern[i].complete_match == 0

43. break;

44. best_patterns[i] <- present_gener.pattern[i]

45. present_gener <- discard_weak_patterns

46. present_gener.min_tfs <- calculate_min_tfs

47. for each pattern in present_gener

48. if present_gener.pattern[i].complete_match ==

present_gener.max_match and present_gener.pattern[i].complete_match > 0

49. next_gener.patterns <-

present_gener.pattern[i]

50. for each pattern in present_gener

51. if present_gener.patterns[i].complete_match <

present_gener.max_match or present_gener.patterns[i].complete_match == 0

52. present_gener.parents[running_pat] <- mutation

53. present_gener.children[running_pat] <- cross_over

54. temp.pat <-

present_gener.children[running_pat].first;

55. temp.tfs <- -1;

56. next_gener.patterns[i] <- temp

57. temp.pat <-

present_gener.children[running_pat].second;

58. temp.tfs <- -1;

59. next_gener.patterns[i] <- temp

60. if present_gener.unique_pattern == next_gener.unique_pattern

61. count_same_gen++

62. if present_gener.max_tfs == previous_gener.max_tfs

63. count_max_tfs++

64. present_gener_no++;

65. previous_gener <- present_gener;

66. present_gener <- next_gener;

67. print_patterns

17

3.3.2 Flowchart: MDGA

Figure 7: Flowchart of MDGA

18

3.4 Operations

The essential operations in MDGA are Preprocessing, Mutation, Crossover, Rearrangement and

Discursion that can speed up the algorithm at the same time predict better motif. We introduce the

operations as follows:

3.4.1 Preprocessing

After creating random motif at the beginning of the process we pass them through a preprocessing

mechanism to convert them into ambiguity code base pair sequence. This is because while creating

random motif, we have no idea about how the candidate motifs would be. After preprocessing, the

candidate motifs will be fairly related to the promoter sequences and eventually they evolve into

better candidate motif with high potential in later generations.

At the beginning of preprocessing, we generate position weight matrix of each pattern. The weight

matrix is generated from the best matched pattern from each sequence cross ponding to a particular

candidate motif. An illustration of creating a weight matrix is shown in figure 8.

Let us consider 5 best matched pattern of a candidate motif P1
 is given by, TGACGCA,

TGACGCA, AGACGCA, TGACACA and AGACGCA. The score in weight matrix is calculated

as the ratio of occurrences of corresponding base and the numbers of matched motifs. For example,

in column 1 of the table, the numbers of occurrences of A are 2, the numbers of matched motif

patterns are 5. So, the value is equal to 2/5 = 0.4.

Figure 8: Illustration of generating position weight matrix

After generating the weight matrix, we insert ambiguity code on the basis of values in the weight

matrix. The column with value 1 remain unchanged and the remaining base pair is changed into

ambiguity code based on occurrence of the cross ponding base pairs.

19

For example, considering the following weight matrix of a candidate P1, the illustration of

preprocessing is shown in the following figure:

Figure 9: Illustration of preprocessing

3.4.2 Mutation

The aim of mutation is to create two parent motifs from a candidate motif to speed up the process

of finding potential motif. It helps the crossover operation to create two child motifs for further

evolution.

The mutation is done based on the weight matrix of a candidate pattern. First, we keep the base

pair with value of 1 in a column unchanged and the rest of the base pairs are changed randomly.

In our algorithm, for the first parent we use the base pair cross ponding to maximum value in a

column. For the 2nd parent we use the base pair cross ponding to 2nd highest value in the column.

An illustration of mutation is as follows: Consider a weight matrix of a candidate patter P1

Figure 10: Illustration of Mutation.

20

3.4.3 Crossover

The aim of crossover is to create two child motifs from two parent motifs produced in mutation.

There are different kinds of crossover in biology. Here we will implement single point crossover.

First, we cut the two parent at the middle position. Then join left side of 1st parent with the right

side of 2nd parent to create the 1st child motif. Then the right side of 1st parent is joined with the

left side of 2nd parent to create the 2nd child motif. The illustration of crossover is shown in the

following figure:

Figure 11: Illustration of Crossover.

3.4.4 Reengagement

In MDGA, if the predicted motifs are unchanged for more than K generations (e.g., K = 5) or if

the max_occurrence_frequency remain unchanged for more than K generations, we rearrange the

motifs by converting the ambiguity codes to A, T, C and G according to the weight matrix. The

convention is to replace the ambiguity codes by the bases with the highest score in the

corresponding column of the weight matrix.

 If ambiguity code doesn’t exist in the candidate motif, then we alter the base pair in respective

positions based on the weight matrix. Given the position weight matrix candidate motif P1

= TGACGCA, an illustration rearrangement operation is as follows:

21

Figure 12: Illustration of Rearrangement.

3.4.5 Discursion

As we keeping both the child produced by crossover, the number of candidate motif will keep

multiplying in every generation. So, if we don’t take any measure in reducing the number of

candidate motif somehow, the calculation time of each generation will increase exponentially. To

minimize the time complexity, after keeping as much motifs as possible, we introduce a discursion

function associated by a discursion factor, in our algorithm. Initially the function will discard a

little amount of candidate motif that has a low TFS value and less occurrence frequency from each

generation. With the increase of candidate motif in each generation, the discursion factor will

adjust itself to keep the number of motifs low. At the least the discursion function will never let

the number of motifs to increase more than 4 times than the initial number of candidate motifs. To

avoid discarding any potential candidate motif, we avoid discarding any candidate motif that has

further chance of evolution through mutation and crossover.

22

Chapter 4

4.1 Result analysis and Comparison

We implemented our algorithm in C++ under windows operating system. The data source is

obtained from TSSDB website [14]. The test sequences are of length 800 bp to over 11000 bp

located around the origin of transcription start site. Three groups of genes are used to test our

system. Three sets of genes are as follows:

Group1: E2F1, E2F2, E2F3, E2F4, E2F5, E2F6

Group2: TGFB1 (transforming growth factor, beta 1), TGFB1I1, TGFB2, TGFB3, TGFBI,

TGFBR1, TGFBR2, TGFBR3, TGFBRAP1

Group3: (Tumor Suppressor Genes) BRCA1, BRCA2, CDKN1A, CDKN2A, CDKN2B,

CDKN2C, CDKN2D, E-cadherin (CDH1), E2F1, FABP3, FHIT, M6PR, IGF2R, NF2, NME1,

PTEN, TGFB1, TP53

There are in total 14 promoter sequence of different variant from Group 1. 17 sequences from

Group 2 and 49 sequences from Group 3. We set the lengths of motif patterns to be 7 and 13 to

test our algorithm. We set the initial number of randomly generated motifs for motif length 7 as

100, and motif length 13 as 75. For testing our algorithm, we let the candidate motif to be evolved

up to 50 generation and then evaluated our result.

To compare our algorithm with the original FMGA, we implemented it under the same

environment and language as ours and executed it on the same dataset up to 50 generations as ours.

Comparing with the original FMGA, our algorithm showed superior result and successfully find

more potential motif than the original FMGA algorithm. The detail result of our algorithm is

illustrated in Table 1 - Table 3. The comparison is shown in Table 4 - Table 6.

In the tables, the columns ‘Complete Match’ represent the number of promoter sequence in which

the cross ponding motif is found at least once. The column ‘Matching Percentage’ represent the

ratio of ‘Complete Match’ and total number of sequence, multiplied by 100. In the result tables in

our algorithm we showed top 3 predicted motifs with a higher ‘Matching Percentage.’

23

Motif Length Predicted Motifs TFS Complete

Match

Matching

Percentage

 AAGAAGT 14 14 / 14 100 %

7 GCAGCAG 14 14 / 14 100 %

 GAAGGAA 13.9286 13 / 14 92.8571 %

 ATGACATCACCAA 13.7308 8 / 14 57.1429 %

13 AAAGAAATACCAG 12.6385 3 / 14 21.4286 %

 CATTCAGGCACCT 12.0308 3 / 14 21.4286 %

Table 1: Predicted motifs of MDGA (Group 1)

Motif Length Predicted Motifs TFS Complete

Match

Matching

Percentage

 AAAAAAA 16.9286 16 / 17 94.1176 %

7 TTCTCCT 16.8571 16 / 17 94.1176 %

 GCCAGCC 16.8571 15 / 17 88.2353 %

 GAGAATTTTTTTC 15.0308 3 / 17 17.6471 %

13 GAGGGAGCCCCCT 14.7308 3 / 17 17.6471 %

 ATCATTTTTACCA 14.4769 3 / 17 17.6471 %

Table 2: Predicted motifs of MDGA (Group 2)

Motif Length Predicted Motifs TFS Complete

Match

Matching

Percentage

 AAAAAAA 47.9714 40 / 49 81.6327 %

7 TAAAAAA 48.1429 39 / 49 79.5918 %

 GCTGCTG 48.1143 39 / 49 79.5918 %

 TTTTTCTTTTTTT 44.0923 8 / 49 16.3265 %

13 GGGAGGAGGCTGA 43.6231 8 / 49 16.3265 %

 TCCCTTTTTATAT 42.4615 8 / 49 16.3265 %

Table 3: Predicted motifs of MDGA (Group 3)

24

Motif

Length

Algorithm Predicted Motif TFS Complete

Match

Matching

Percentage

Remark

7

MDGA AAGAAGT 14 14 / 14 100 % MDGA

Predicts

better

GCAGCAG 14 14 / 14 100 %

FMGA GCAGCAG 14 14 / 14 100 %

TTCCTGT 13.9286 13 / 14 92.8571 %

13

MDGA ATGACATCACCAA 13.7308 8 / 14 57.1429 % MDGA

Predicts

better

AAAGAAATACCAG 12.6385 3 / 14 21.4286 %

FMGA ATGTAACTCATGA 12.4231 3 / 14 21.4286 %

CTGCCTGAGCAAC 12.3846 3 / 14 21.4286 %

Table 4: Comparison between Predicted motifs of MDGA and FMGA (Group 1)

Motif

Length

Algorithm Predicted Motif TFS Complete

Match

Matching

Percentage

Remark

7

MDGA AAAAAAA 16.9286 16 / 17 94.1176 % MDGA

predicts

better

TTCTCCT 16.8571 16 / 17 94.1176 %

FMGA TTCTCCT 16.8571 16 / 17 94.1176 %

AGCTGTT 16.7857 14 / 17 82.3529 %

13

MDGA GAGAATTTTTTTC 15.0308 3 / 17 17.6471 % Similar

result GAGGGAGCCCCCT 14.7308 3 / 17 17.6471 %

FMGA TCTAAACAAAAAA 15.3462 3 / 17 17.6471 %

ATGAAATCATGTC 15.1923 3 / 17 17.6471 %

Table 5: Comparison between Predicted motifs of MDGA and FMGA (Group 2)

25

Motif

Length

Algorithm Predicted Motif TFS Complete

Match

Matching

Percentage

Remark

7

MDGA AAAAAAA 47.9714 40 / 49 81.6327 % MDGA

predicts

better

TAAAAAA 48.1429 39 / 49 79.5918 %

FMGA AAAAAAA 48.2143 40 / 49 81.6327 %

AAAGAAA 48 36 / 49 73.4694 %

13

MDGA TTTTTCTTTTTTT 44.0923 8 / 49 16.3265 % FMGA

predicts

better

GGGAGGAGGCTGA 43.6231 8 / 49 16.3265 %

FMGA TAAAAAAAAAAAA 46.3462 18 / 49 36.7347 %

TTTTTCTGTTTCT 44.5385 7 / 49 14.2857 %

Table 6: Comparison between Predicted motifs of MDGA and FMGA (Group 3)

From the above comparison we see that, out of 6 comparisons from 3 groups, MDGA shows better

result in 4 comparisons while shows similar result in 1 comparison. In group 2, for the motif length

7, MDGA predicted two motifs with 100% occurrence frequency that means those two motifs are

found in all the sequences in group 1. On the other hand, in on the same group of sequences,

FMGA predicted 1 motif with 100% occurrence frequency and another with 92% occurrence

frequency. For a motif length of 13, MDGA predicted a motif with over 57% occurrence frequency

while FMGA predicted a motif with over 21% occurrence frequency.

In group 2, for the motif length 7, MDGA predicted two motifs with over 94% occurrence

frequency. That means out of 17 sequences, those motifs are found in 16 of them. For the same

group of sequences, FMGA predicted one motif with 94% frequency and another with 82%

occurrence frequency. For motif length 13, Bothe the algorithm predicted motif with equal

occurrence frequency.

In group 3, for motif length 7, MDGA predicted one motif with around 82% occurrence frequency.

That means out of 49 sequences that motif is found in 40 sequences. MDGA predict the 2nd motif

with around 80% occurrence frequency which is found in 39 sequences. Here FMGA predicted a

motif with around 82% occurrence frequency which is on par with MDGA. But the 2nd motif

FMGA predicted have around 74% occurrence frequency with 36 complete match which is inferior

to MDGA. For pattern length 13, FMGA predicted a motif with around 37% occurrence frequency

and 18 complete match out of 49. While MDGA predicted a motif with over 16% occurrence

frequency and 8 complete match out of 49. Among all the test cases, this is the only one where

FMGA predicted better than MDGA. Here we can notice that, prediction becomes harder with the

increase of motif length and number of promote sequences.

26

Chapter 5

5.1 Concluding Remarks

From the results presented above, the performance of MDGA is better than the original FMGA

algorithm. We had shown that MDGA predicts better motif patterns than FMGA which itself is

superior to two other popular algorithm MM and Gibbs Sampler. FMGA can predict more potential

motifs than the other algorithms because the patterns are generated randomly during the operation

processes of GA. This characteristic is used to overcome the possible problems of local minimum.

But as the motifs are generated completely at random, so they have a very little chance of being

related to the given sequences. As a result, the algorithm loses efficiency. In our algorithm, after

generating random motifs, we preprocessed them on the basis of given sequences and make them

related to given sequences. So, it can predict motif more accurately. In FMGA they also removed

one child during the process of crossover. Now if both the children of a single motif are weaker,

on the other hand if both the children of another motif is stronger, in FMGA, it will lose a strong

child to a weak one. To come over this limitation, in our algorithm we keep both the children of

all the patterns of a single generation and evaluate them as a whole in the next generation. Due to

this reason, the number of candidate motifs increases in every generation which will increase the

computation time of MDGA. To overcome that problem, we introduced a discursion function to

keep the increasing number of candidate motifs in check. The discursion function is associated

with a discursion factor. Tuning of discursion factor affect the final result to a great extent. If we

keep the discursion factor high, that will increase the predicting accuracy of MDGA but will

increase the computation time proportionally. As for the initial number of randomly generated

candidate motifs, if we increase the number, that will give better result as well but will have the

same drawback. Genetic algorithm solves the optimal problem based on the biological

characteristics. It uses a simple way to cope with complex problems. In this paper, we had proposed

a new approach to predict motifs based on the genetic algorithm. A lot of biological messages are

hidden in promoter, and motif is one of the important messages. The motifs have the possibilities

to be the binding sites of transcription factors. If the motifs can be predicted accurately, the

biologists can then explore which transcription factors activate genes. In future MDGA can

contribute a lot in this sector.

27

5.2 Future Work

➢ In the future, we will try to implement MDGA in a distributed parallel computing system

to overcome the problem of a huge computation time. In that way, we will be able to extract

even better result from MDGA.

➢ In the process of crossover, we used the primary single point crossover. In future, we will

try to implement double point and uniform crossover to get even better result.

➢ At present MDGA can operate on only single strand DNA and RNA. In future, we will

extend MDGA to operate on double strand DNA and RNA and try to identify domains and

proteins.

28

References

[1] Rombauts S, Dehais P, Van Montagu M, Rouze P: PlantCARE, a plant cis acting regulatory

element database. Nucleic Acids Res 1999, 27:295-296.

[2] http://www.diffen.com/difference/Purines_vs_Pyrimidines (Accessed on 2.1.2017)

[3] https://en.wikipedia.org/wiki/Genetic_algorithm (Accessed on 11.12.2016)

[4] https://en.wikipedia.org/wiki/Evolutionary_algorithm (Accessed on 11.12.2016)

[5] Lawrence CE, Reilly AA: An expectation maximization (EM) algorithm for the identification

and characterization of common sites in unaligned biopolymer sequences. Proteins 1990, 7:41-

51.

[6] Hertz GZ, Hartzell GW, Stormo GD: Identification of consensus patterns in unaligned DNA

sequences known to be functionally related. Comput Appl Biosci 1990, 6:81-92.

[7] Bailey TL, Elkan C: Unsupervised learning of multiple motifs in biopolymers using

expectation maximization. Machine Learning 1995, 21:51-80.

[8] Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC: Detecting subtle

sequence signals: a Gibbs sampling strategy for multiple alignment. Science 1993, 262:208-214.

[9] Liu JS: Monte Carlo Strategies in Scientific Computing Springer Series in Statistics; 2001.

[10] Liu JS, Neuwald AF, Lawrence CE: Bayesian models for multiple local sequence alignment

and Gibbs sampling strategies. J Amer Statist Assoc 1995, 90:1156-1170.

[11] Liu FFM, Tsai JJP, Chen RM, Chen SN, Shih SH: FMGA: finding motifs by genetic

algorithm. Fourth IEEE Symposium on Bioinformatics and Bioengineering 2004:459.

[12] Cedric Notredame and Desmond G. Higgins, “SAGA: Sequence alignment by genetic

algorithm,” J. Nucleic Acids Research, 24, pp. 1515-1524, 1996.

[13] M. Scherf, A. Klingenhoff, T. Werner, “Highly Specific Localization of Promoter Regions

in Large Genomic Sequences by PromoterInspector: A Novel Context Analysis Approach,” J.

Mol. Biol. 297 (3), pp. 599-606, 2000.

[14] http://dbtss.hgc.jp/index.html (Accessed on 03.15.2017)

http://www.diffen.com/difference/Purines_vs_Pyrimidines
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Evolutionary_algorithm
http://dbtss.hgc.jp/index.html

29

Appendix

Source Code of Helper Functions

double calculate_fitness_score(string str, string pattern)
{
 double result = 0;

 for (int i = 0; i < pattern.sz; i++)
 {
 if (str[i] == pattern[i])
 {
 result += 1;
 }
 else
 {
 result += if_not_match(str[i], pattern[i]);
 }
 }

 return result/pattern.sz;
}

double calculate_total_fitness_score(vector<PATTERN> best_matches)
{
 double result = 0;

 for (int i = 0; i < best_matches.sz; i++)
 {
 result += best_matches[i].tfs;
 }

 return result;
}

double if_not_match(char base1, char base2)
{
 if ((base1 == base_pair[0] && base2 == base_pair[2]) || (base1 == base_pair[2]
&& base2 == base_pair[0]))
 {
 return 0.5;
 }
 else if ((base1 == base_pair[1] && base2 == base_pair[3]) || (base1 ==
base_pair[3] && base2 == base_pair[1]))
 {
 return 0.5;
 }
 else if ((base1 == base_pair[0] && base2 == base_pair[3]) || (base1 ==
base_pair[3] && base2 == base_pair[0]))
 {
 return 0.2;
 }

30

 else if ((base1 == base_pair[0] && base2 == base_pair[1]) || (base1 ==
base_pair[1] && base2 == base_pair[0]))
 {
 return 0.2;
 }
 else if ((base1 == base_pair[2] && base2 == base_pair[3]) || (base1 ==
base_pair[3] && base2 == base_pair[2]))
 {
 return 0.2;
 }
 else if ((base1 == base_pair[1] && base2 == base_pair[2]) || (base1 ==
base_pair[2] && base2 == base_pair[1]))
 {
 return 0.2;
 }
 else if (base2 == 'M' && (base1 == base_pair[0] || base1 == base_pair[3]))
 {
 return 0.2;
 }
 else if (base2 == 'R' && (base1 == base_pair[0] || base1 == base_pair[2]))
 {
 return 0.5;
 }
 else if (base2 == 'W' && (base1 == base_pair[0] || base1 == base_pair[1]))
 {
 return 0.2;
 }
 else if (base2 == 'S' && (base1 == base_pair[2] || base1 == base_pair[3]))
 {
 return 0.2;
 }
 else if (base2 == 'Y' && (base1 == base_pair[1] || base1 == base_pair[3]))
 {
 return 0.5;
 }
 else if (base2 == 'K' && (base1 == base_pair[1] || base1 == base_pair[2]))
 {
 return 0.2;
 }
 else if (base2 == 'V' && (base1 == base_pair[0] || base1 == base_pair[2] ||
base1 == base_pair[3]))
 {
 return 0.1;
 }
 else if (base2 == 'H' && (base1 == base_pair[0] || base1 == base_pair[1] ||
base1 == base_pair[3]))
 {
 return 0.1;
 }
 else if (base2 == 'D' && (base1 == base_pair[0] || base1 == base_pair[1] ||
base1 == base_pair[2]))
 {
 return 0.1;
 }

31

 else if (base2 == 'B' && (base1 == base_pair[1] || base1 == base_pair[2] ||
base1 == base_pair[3]))
 {
 return 0.1;
 }
 else if (base2 == 'N' && (base1 == base_pair[0] || base1 == base_pair[1] ||
base1 == base_pair[2] || base1 == base_pair[3]))
 {
 return 0.0;
 }
 else
 {
 return 0.0;
 }
}
char select_base_pair_from_weight_matrix(WEIGHT_MATRIX weight_matrix, int index)
{
 if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'A';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'T';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'G';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'C';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'N';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'D';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'H';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] > 0)
 {

32

 return 'V';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'B';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'M';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'R';
 }
 else if (weight_matrix.wm[0][index] > 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'W';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] == 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'S';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] == 0 && weight_matrix.wm[3][index] > 0)
 {
 return 'Y';
 }
 else if (weight_matrix.wm[0][index] == 0 && weight_matrix.wm[1][index] > 0 &&
weight_matrix.wm[2][index] > 0 && weight_matrix.wm[3][index] == 0)
 {
 return 'K';
 }
}

char select_base_pair_with_max_value(WEIGHT_MATRIX weight_matrix, int index)
{
 double mx = max4(weight_matrix.wm[0][index], weight_matrix.wm[1][index],
weight_matrix.wm[2][index], weight_matrix.wm[3][index]);

 for (int j = 0; j < 4; j++)
 {
 if (weight_matrix.wm[j][index] != mx)
 {
 weight_matrix.wm[j][index] = 0
 }
 }

 return select_base_pair_from_weight_matrix(weight_matrix, index);
}

33

char select_base_pair_without_max_value(WEIGHT_MATRIX weight_matrix, int index)
{
 double mx = max4(weight_matrix.wm[0][index], weight_matrix.wm[1][index],
weight_matrix.wm[2][index], weight_matrix.wm[3][index]);

 for (int j = 0; j < 4; j++)
 {
 if (weight_matrix.wm[j][index] == mx && mx != 1)
 {
 weight_matrix.wm[j][index] = 0;
 break;
 }
 }

 return select_base_pair_with_max_value(weight_matrix, index);
}

char select_base_pair_for_rearrangment(WEIGHT_MATRIX weight_matrix, int index, char
present_base_pair)
{
 double mx = max4(weight_matrix.wm[0][index], weight_matrix.wm[1][index],
weight_matrix.wm[2][index], weight_matrix.wm[3][index]);

 for (int j = 0; j < 4; j++)
 {
 if (mx != 1 && base_pair[j] == present_base_pair)
 {
 weight_matrix.wm[j][index] = 0;
 break;
 }
 }

 return select_base_pair_with_max_value(weight_matrix, index);
}

pair<string, string> cross_over(string parent1, string parent2, int incision_point)
{
 if (incision_point == 0)
 {
 incision_point = parent1.sz / 2;
 }

 string p1l, p1r, p2l, p2r, child1, child2;

 p1l.assign(parent1.bgn, parent1.bgn + incision_point);
 p1r.assign(parent1.bgn + incision_point, parent1.end);
 p2l.assign(parent2.bgn, parent2.bgn + incision_point);
 p2r.assign(parent2.bgn + incision_point, parent2.end);

 child1 = (p1l + p2r);
 child2 = (p2l + p1r);

 return make_pair(child1, child2);
}

34

pair<string, string> mutation(WEIGHT_MATRIX weight_matrix)
{
 string parent1, parent2;

 for (int i = 0; i < weight_matrix.wm[0].sz; i++)
 {
 parent1.psb(select_base_pair_with_max_value(weight_matrix, i));
 parent2.psb(select_base_pair_without_max_value(weight_matrix, i));
 }

 return make_pair(parent1, parent2);
}

string rearrange_pattern(WEIGHT_MATRIX weight_matrix,string running_pattern)
{
 string rearranged_pattern;

 for (int i = 0; i < pattern_length; i++)
 {
 rearranged_pattern.psb(select_base_pair_for_rearrangment(weight_matrix,
i,running_pattern[i]));
 }

 return rearranged_pattern;
}

string preprocess_pattern(WEIGHT_MATRIX weight_matrix)
{
 string preprocessed_pattern;

 for (int i = 0; i < weight_matrix.wm[0].sz; i++)
 {

 preprocessed_pattern.psb(select_base_pair_from_weight_matrix(weight_matrix,
i));
 }

 return preprocessed_pattern;
}

PATTERN best_match_in_a_sequence(string sequence, string pattern)
{
 double mx;
 PATTERN best_pattern;
 best_pattern.tfs = -1.0;

 for (int i = 0; i < sequence.sz - pattern.sz; i++)
 {
 string temp(sequence.bgn + i, sequence.bgn + i + pattern.sz);

 mx = calculate_fitness_score(temp, pattern);

 if (mx > best_pattern.tfs)
 {
 best_pattern.tfs = mx;

35

 best_pattern.pat = temp;
 }
 }

 return best_pattern;
}

PATTERN generate_random_pattern()
{
 PATTERN generated_pattern;

 for (int i = 0; i < pattern_length; i++)
 {
 int x = rand() % sequences.sz;
 int y = rand() % sequences[x].sz;

 generated_pattern.pat.psb(sequences[x][y]);
 }

 generated_pattern.tfs = -1;

 return generated_pattern;
}

pair<vector<PATTERN>,map<string,int>> preprocess_generation1(GENERATION_INFO
generation1)
{
 map<string, int> temp;
 PATTERN temppat;
 vector<PATTERN> preprocessed;

 for (int i = 0; i < generation1.patterns.sz; i++)
 {
 PATTERN temp_pattern;

 for (int j = 0; j < sequences.sz; j++)
 {
 temp_pattern = best_match_in_a_sequence(sequences[j],
generation1.patterns[i].pat);

 generation1.best_matches[generation1.patterns[i].pat].psb(temp_pattern);
 }

 generation1.weight_matrix_all[generation1.patterns[i].pat] =
generate_weight_matrix(generation1.best_matches[generation1.patterns[i].pat]);

 temppat.pat =
preprocess_pattern(generation1.weight_matrix_all[generation1.patterns[i].pat]);

 map<string, int>::iterator it;

 it = temp.find(temppat.pat);

 if (it == temp.end)
 {

36

 temppat.tfs = -1;
 preprocessed.psb(temppat);
 temp.insert(make_pair(temppat.pat, 1));
 }
 else
 {
 it->snd++;
 }
 }

 return make_pair(preprocessed,temp);
}

WEIGHT_MATRIX generate_weight_matrix(vector<PATTERN> all_matches)
{
 WEIGHT_MATRIX weight_matrix;
 int cnt_t, cnt_g, cnt_c, cnt_a;

 for (int i = 0; i < pattern_length; i++)
 {
 cnt_a = cnt_c = cnt_g = cnt_t = 0;

 for (int j = 0; j < all_matches.sz; j++)
 {
 if (all_matches[j].pat[i] == base_pair[0])
 {
 cnt_a++;
 }
 else if (all_matches[j].pat[i] == base_pair[1])
 {
 cnt_t++;
 }
 else if (all_matches[j].pat[i] == base_pair[2])
 {
 cnt_g++;
 }
 else if (all_matches[j].pat[i] == base_pair[3])
 {
 cnt_c++;
 }
 }

 weight_matrix.wm[0].psb((cnt_a*1.0) / (all_matches.sz*1.0));
 weight_matrix.wm[1].psb((cnt_t*1.0) / (all_matches.sz*1.0));
 weight_matrix.wm[2].psb((cnt_g*1.0) / (all_matches.sz*1.0));
 weight_matrix.wm[3].psb((cnt_c*1.0) / (all_matches.sz*1.0));

 }

 return weight_matrix;
}

GENERATION_INFO discard_weak_patterns(GENERATION_INFO present_gener, double
discarsion_factor)
{

37

 if (present_gener.number_of_pattern <= (2*number_of_pattern_in_generation1))
 {
 discarsion_factor = (present_gener.max_tfs - present_gener.min_tfs) /
2.5;
 }
 else
 {
 discarsion_factor = (present_gener.max_tfs - present_gener.min_tfs) / 7;
 }

 int cnt = 0;

 for (int i = 0; i < present_gener.patterns.sz;)
 {
 PATTERN running_pat = present_gener.patterns[i];

 if ((running_pat.tfs < present_gener.max_tfs - discarsion_factor &&
check_ambiguity(running_pat.pat)) || cnt >= 2*number_of_pattern_in_generation1)
 {
 map<string, vector<PATTERN> >::iterator it1;
 map<string, int>::iterator it2;
 map<string, WEIGHT_MATRIX>::iterator it3;

 it1 = present_gener.best_matches.find(running_pat.pat);

 if (it1 != present_gener.best_matches.end)
 {
 present_gener.best_matches.erase(it1);

 }
 it2 = present_gener.unique_pattern.find(running_pat.pat);

 if (it2 != present_gener.unique_pattern.end)
 {
 present_gener.unique_pattern.erase(it2);

 }

 it3 = present_gener.weight_matrix_all.find(running_pat.pat);

 if (it3 != present_gener.weight_matrix_all.end)
 {
 present_gener.weight_matrix_all.erase(it3);
 }

 present_gener.patterns.erase(present_gener.patterns.bgn + i);
 }
 else
 {
 i++;
 cnt++;
 }
 }

 return present_gener;}

