
Cost and Energy Efficient Real Time Location

Tracking Android Application Framework

Submitted By

Saikat Kumar Sarkar

ID: 2012-1-60-016

Department of Computer Science and Engineering

East West University

Supervised By

Dr. Ahmed Wasif Reza

Associate Professor

Department of Computer Science and Engineering

East West University

Dhaka, Bangladesh

August, 2017

i

Declaration

This project has been submitted to the department of Computer Science and Engineering,

East West University in the partial fulfillment of the requirement for the degree of Bachelor of

Science in Computer Science and Engineering by us under the supervision of Dr. Ahmed Wasif

Reza, Associate Professor at Department of CSE at East West University under the course 'CSE

497’. We also declare that this thesis has not been submitted elsewhere for the requirement of

any degree or any other purposes. This thesis complies with the regulations of this University

and meets the accepted standards with respect to originality and quality. We hereby release this

thesis to the public. We also authorize the University or other individuals to make copies of this

thesis as needed for scholarly research.

Saikat Kumar Sarkar

ID: 2012-1-60-016

Department of Computer Science and Engineering

East West University.

ii

Letter of Acceptance

The project entitled “Cost and Energy Efficient Real Time Location Tracking Android

Application Framework” submitted by Saikat Kumar Sarkar, ID 2012-1-60-016 to the

department of Computer Science & Engineering, East West University, Dhaka 1212, Bangladesh

is accepted as satisfactory for partial fulfillments for the degree of Bachelor of Science in

Computer Science & Engineering in August 2017.

Board of Examiners

 1______________________________

 Dr. Ahmed Wasif Reza

 Associate Professor Supervisor

 Department of Computer Science and Engineering

 East West University, Dhaka, Bangladesh

2______________________________

 Dr. Md. Mozammel Huq Azad Khan

 Professor and Chairperson Chairperson

 Department of Computer Science and Engineering

 East West University, Dhaka, Bangladesh

iii

Acknowledgements

First of all, I am grateful to the Almighty God for establishing myself to complete this

project. I wish to express my sincere thanks and gratitude to my supervisor Dr. Ahmed Wasif

Reza, Associate Professor at Dept. of CSE for the continuous support during our thesis study and

related research, for his patience, motivation, and immense knowledge. His guidance helped us

in all the time of research and writing of the thesis. I shall always be grateful for having the

opportunity to study under him.

I am thankful to all of my teachers, Department of CSE, East West University. I am also

grateful to all of my primary and secondary school teachers who were my first teachers in my

life and initiator of my basic knowledge.

I would like to express my thanks to my parents for supporting us spiritually throughout

writing this project. And I am thankful to all my friends and colleagues. And at last I again

thanks to the creator for everything.

iv

Abstract

Object tracking systems plays a vital role in monitoring and surveillance systems. The main

target of location tracking systems is to provide object locations at real time with exact accuracy

using personalized setup and location sensitivities. Shipping industries at first developed tracking

systems to determine ship location at a given time. But those location data used to be stored in

local storage which is accessible only when the ship is arrived. But with the flow of time and

advancement of technology, now we want to know object location at real time. As the local

storage cannot provide real time data, we moved to server based systems for real time data

parsing. Today we have smart devices like android phones that can detect location data by itself.

But to share and monitor those data we need an online system. Here comes the server based

location tracking system. But many factors like battery consumption, data load cost, accuracy of

data make this system a bit complex. We have tried to solve these problems and improve existing

systems by proposing an android based framework that uses cloud services for real time data

storage and processing and firebase cloud messaging for device to device communication at real

time. We also propose a cost and energy efficient framework for android devices for location

tracking and data transmitting.

v

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 List of Figure vii

 List of Abbreviations viii

1 Introduction 01-04

1.1 Background 01

1.2 Problem Statements 02

1.3 Research objective 02-03

1.4 Thesis contribution 03

1.5 Thesis Organization 03-04

2 Existing System Review 05-08

2.1 Survey of Existing Systems 05-08

2.2 Summary 08

3 Project Methodology 09-23

3.1 Propose System 09-15

3.2 Algorithm and Pseudocodes 15-20

3.3 Performance Optimization 20-23

3.4 Implementation Sectors 23

3.5 Summery 23

vi

4 Results 24-25

5 Conclusion 26

5.1 Overall Conclusion 26

5.2 Future works 26

 References 27

vii

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

2.1 Existing location tracking architecture -I 06

2.2 Existing location tracking architecture -II 07

3.1 General architecture the proposed system 09

3.2 Overall architecture of proposed system 10

3.3 Location tracking architecture 11

3.4 Friend list processing architecture 12

3.5 Permissions accessed by application 13

3.6 Dependencies of application 13

3.7 User Registration Process 14

3.8 User Login Process 15

3.9 User Authentication database snapshot 15

3.10 Friend Request table snapshot 16

3.11 Friend Request Acceptance table snapshot 17

3.12 Location table snapshot 18

3.13 User table snapshot 19

3.14 Notification table snapshot 19

3.15 Cloud Function Console 20

3.16: Location accuracy constants 21

4.1 Application Map Screenshot 24

4.2 User online/ ofline 25

viii

LIST OF ABBREVIATIONS

GPS - Global Positioning System

GCM - Google Cloud Messaging

FCM - Firebase Cloud Messaging

JSON - JavaScript Object Notation

API - Application programming interface

REST - Machine learning

AI - Artificial Intelligence

IoT - Internet of Things

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Now a day’s real time location sharing systems have a huge impact on object tracking

and monitoring services. Tracking an object location which is moving and changing its

location continuously is not an easy job. Tracking these type of objects at real time makes

the job even harder. The main challenge is to collect location data at runtime. Manual input

system does not provide expected result.

But in the era of IoT, smart devices and cloud services this job is possible now. The

android devices have GPS and location sensors at can collect device location data. Many

location broadcasting system uses android devices to get user location. So, getting user

location at runtime without manual input is not hard now. But sharing that location at real

time increases the complexity.

At real time data transfer the main challenge lies in data receiving and transmitting

speed of server side. In location sharing system on android devices the second complexity

is location detection with less battery drain. The third complexity is to minimize the load

without compromising data quality.

In our proposed system we have tried to solve these complexities using cloud services,

asynchronous battery power monitoring system and effective data shrinking system.

2

1.2 PROBLEM STATEMENTS

We are going to propose an android application based real time object location sharing

system that drains less battery power, uses less data to share location and depends on only

one backend cloud server for storage and messaging.

Observing the existing systems, we have noticed several limitations like almost all

systems use GPS (Global Positioning System) and positioning sensors to locate the position

of an object. But the accuracy GPS is questionable if the object resides in a building,

surrounded by trees or there is an extreme atmospheric conditions such as geomagnetic

storms. The GPS based location tracking systems also drains large amount of battery power

of android devices. As real time location sharing demands high amount of data transfer, the

cost of data usages is a bit high.

Another drawback of many androids based real time location sharing systems is the

dependency on two different backend server, one backend app server for data storage and

logic implementations and another one cloud server for real time data sharing.

 So, we have tried to increase the accuracy of the object locations detection and provide

efficient battery power management and cost optimization technique.

1.3 PROJECT OBJECTIVES

I. To develop a real time location sharing android application that detects objects

locations with more accuracy.

3

II. To develop an efficient battery power consumption method for real time location

sharing android applications.

III. To decrease installation cost and data transfer rate

1.4 PROJECT CONTRIBUTIONS

I. We developed a real time location sharing android application that works in real life.

II. We have introduced a better location detection technique using Google API Client and

Fused Location API.

III. We have developed an AI that reads the battery percentage and chooses better location

detection plan at runtime

IV. We have developed a moderate method of JSON data parsing for FIREBASE cloud

platform that minimizes that data load.

V. We have introduced a cloud based single server management system as the backend of

the application.

1.4 PROJECT ORGANIZATION

The following is an overview of the contents of the chapter that presented in this

research:

Chapter 2: Chapter 2 provides an overview of the literature survey on existing real time

location sharing systems, location detection techniques, system installation process and

data transfer techniques.

Chapter 3: On chapter 3 we will discuss our proposed system architecture, describe the

4

proposed system, how it works and also give the algorithm and techniques related to

this project.

Chapter 4: On chapter 4 we will show the results of our android application.

Chapter 5 Chapter 5 is the concluding chapter that describes the summary of this thesis

which visualization by analysis and we also provide some recommendations for further

research and future works.

5

CHAPTER 2

EXISTING SYSTEM REVIEW

2.1 SURVEY OF EXISTING SYSTEMS

We can find a different type of implementations for real time location sharing android

based applications. Before describing in details we can concentrate on following point about

these systems,

I. Uses Android’s Location API to get object/ user location. The location API uses three type

of provider to get location and they are,

a) GPS_PROVIDER: This provider determines location using satellites.

b) NETWORK_PROVIDER: This provider determines location based on availability of cell

tower and WiFi access points.

c) PASSIVE_PROVIDER: This provider will return locations generated by other providers.

II. Uses a windows or Linux based backend servers to store, process and transmit data.

III. Mostly uses JSON format data for messaging

In our survey, we have found mainly two types of architecture. One of them uses single

backend server for storing, processing and transmitting data. The another one uses a cloud

server for messaging with the backend server for storage and processing. Another architecture

which is recently introduced is single cloud based backend server.

6

Single Backend Server:

Figure – 2.1: General architecture of single server based android application system

In this architecture the android devices collect location data using Location API in a

background service and send to a local server in JSON format using Rest API or WCF services. The data is

stored in a table including the user key. In a different table connection between all the users (Friend list)

is stored. In another background service the android devices continuously quires about any change on

their friend’s location table and on every location update the server transmits the location data to the

user’s friends list. The devices receive the updated location data and put a marker on the map.

The main drawback of this system is,

i. Sending and receiving data using Rest API is a bit slow. It requires 10-20 seconds, in worst

case 30 seconds to send and receive user location.

ii. The drawback of JSON format data is that though it is a fast data structure as it formats data

in key value pair, only value part of the data is usable, the key part of the data is an extra

whose role is to notify the actual point of the value.

iii. Excessive traffic at real time can overwhelm the server as it has to receive, process,

transmit the data. The server also needs extra bandwidth to provide real time

Application
Server

WCF/ Rest API

7

service.

Backend Server with Cloud Server:

Figure – 2.2: General architecture of backend Server with Cloud Server android application

system

In this architecture, like the previous one devices sends data to a server. The server is used for

storing, processing and logic implementation on data. Then instead of sending the data directly

to devices it sends the data to a cloud server in a bundle where each device is registered with a

unique key. Then the cloud server sends the data to corresponding devices. Though sending

data to a server is still slow but receiving data from cloud service is a bit faster.

 In reference [1], the authors proposed a system that collects location data using GPS

and stores it in local storage. It shows how the location data can be used in app location

tracking. In reference [2] the authors used backend server with php based web application as

admin panel to store user location and alert service. The system checks user location at real

time and if user enters into or exits from a restricted area, an alarm will be triggered.

Application
Server

WCF/ Rest API

GCM

Cloud

messaging

8

 In reference [3], the authors proposed system is same as described in Figure: 2.2. The

proposed system in reference [4] uses only cloud server to store vehicle location and tracking.

But the system does not care about power and cost optimization. In reference [5] the system

uses local server and cloud server for real time vehicle tracking using GPS.

2.2 SUMMARY

The part of literature review has clearly brought about the fundamental overview of the

existing location sharing systems, their architectures and drawbacks. There are many challenges

in implementing real time location sharing system like managing device battery power

consumption, decreasing data transfer rate or managing server side and increasing data

transfer speed. Our proposed system aims to provide a power and cost efficient android mobile

application architecture that depend only on cloud server.

9

CHAPTER 3

 PROJECT METHODOLOGY

3.1 PROPOSE SYSTEM

No Backend Server, only Cloud Server:

Figure – 3.1: General architecture of our proposed system

 In our proposed system we used only cloud based server for data storage, user

authentication, file sharing, location sharing and push messaging. It is a IoT based system where

at first user himself/ herself to the system using firebase cloud authentication. User can use

firebase cloud storage to store image, audio, video file. User can post single line status. A

background service independent of the application automatically collects and sends the

location data to server continuously maintaining a fixed interval. This interval changes with the

device battery percentage. A user can have only one account using an email address. Once user

Cloud Server

GCM

10

is logged in he/ she can share location, check which of his friends are online, make a friend list,

chat with them, check which of his friend is nearby on google map.

Figure – 3.2: Overall architecture of our proposed system

Log In

Register

email,
password

name, email,
address,

password

Firebase
Authentication

Success

Main Screen

Options Change

Profile

Change
Profile

Picture

Firebase
Storage Firebase

Database

Change

Status
Friend

Request

Firebase
Cloud Function

Send Friend
Request

Friend List

Firebase
Database Register

Friends

Share Location

get Location from

Device

Firebase
Database

Store
Location

Share Location

Receive Friend

Request

Firebase
Database

Request Push

notification

Start
Screen

11

IoT Based Location Tracking: The location tracking method of our proposed system is

device independent. A lot of existing system proposes that device has to let the application

running to get current location. But in our case if the user allows the application to collect

location data, it will start a background service which independent of application runtime. Once

the background location service starts, it will collect the location data in predefined interval and

push the data to cloud database. If friends of our current user are watching him on map, then

on each data change the server will invoke a data change notification and the data change

listener on friend’s device will use that notification to get location update and put a marker on

that location.

Figure – 3.3: Location tracking architecture of our proposed system

IoT Based Friend Request: Our friend request processing is also IoT based. The current

Get
Device

Location

GPS,
WiFi,

Passive
location

Uses

asynchronous,
device independent
background service

sends location data

in periodic interval

invokes data
change

notification only

to the user friends

12

user basically selects a user from the user list to send friend request. The integrated firebase

cloud agent in application collects the requesting and requested user id and sends it to cloud

server. The server generates a push notification for the requested user and sends it. The

firebase agent in requested user’s device receives the friend request and shows it as

notification. If the requested user accepts the friend request, their state changes to ͞friends͟.

Figure – 3.4: Friend requesting and accepting architecture of our proposed system.

Use Cases:

a) User registration and one-time login, user will not need to login again and again unless

he/ she logs out.

b) User authentication is managed in backend using cloud authentication on email and

password.

c) User can share his/ her current status and it will be shown at real time on his/ her

User

selects

Sends
Friend

Reques
t

another user
profile

User's Current State:
Request Sent

get
current user Id,
requested user

id

Reques

Change User
State To:

Request

Change User
State To:
Request

Declined

Firebase
Cloud

Function

Firebase
Database

Request
Push

Send Push
Notification

to Requested

User

Firebase
Database

Firebase
Database

13

profile.

d) User can send friend request, receive them, unfriend existing friend and decline friend

request.

e) If someone sends friend request to the user, he/ she will be notified by a push

notification.

f) User can share his/ her current location among friends.

g) User can watch his/ her friend’s current location and full path at real time.

h) User can use the one to one real time chat system for messaging.

i) User can send danger alert to his friends in case of emergency and ask for help.

j) It will be shown at real time weather the user is offline or online.

Permissions:

Figure – 3.5: Permissions accessed by the application

Application Level Dependencies:

14

Figure – 3.6: The Application level dependencies

Gradel Level Dependency:

compileSdkVersion 25

buildToolsVersion "25.0.2"

minSdkVersion 21

targetSdkVersion 25

 classpath 'com.google.gms:google-services:3.0.0'

plugin: 'com.google.gms.google-services'

Used Services:

i. Google Play services

ii. FCM (Firebase Cloud Messaging) services.

iii. Firebase cloud functions

iv. Firebase Realtime Database

v. Firebase Authentication

vi. Firebase Storage

vii. Google API Client

viii. Google Maps API

Allowed Android OS: Version 21 and above

Backend Server: Firebase

User Authentication:

 Registration: In case of registering to the system user has to provide name, email address,

local address/ locality and password. Once user is registered into the system a passive user id

will be generated and this id will always be used to identify user and access backend.

 Start Screen Registration
Screen

name, email,
address,

password
Firebase

Authorization Main Screen on

success

on failure

15

Figure – 3.7: User Registration Process

 Login: User has to provide email and password to login. Once the user is logged in, it is not

necessary to login every time unless user is logged out. The firebase authentication system

provides the user id which is synced with a device token that matches the user authenticity.

Figure – 3.8: User Login Process

 Database Snapshot:

Figure – 3.9: User Authentication database snapshot

3.2 ALGORITHM AND PSEUDOCODES

Friend Request Process: User generally selects a user profile to send friend request. The

database receives the request and checks that if there is any ͞friend_request͟ table. If no table

exists, it creates a table and two nodes under that table. In one node under the requested user

key it creates new node with the requesting user key. In another node it does the opposite.

16

Then Firebase uses cloud functions to send the requested user a notification about the friend

request.

Get user id from current user context

If(friend_requsest_table ! = null){

 Find user id node;

 Create a child node using requested user id

 Create a child node with key ͞request type͟

 Add value to key ͞sent͟

 If(requested user id exists in table){

 Find that node

 Create a child node using requesting user id

 Create a child node with key ͞request type͟

 Add value to key ͞received͟

} else {

 Add a node using requested user id

 Create a child node using requesting user id

 Create a child node with key ͞request type͟

 Add value to key ͞received͟

}

} else {

 Create friend_requsest_table

 Do above process

}

17

Figure – 3.10: Friend Request table snapshot

Friend Request Accepting Process: When user gets a friend request by notification, he can

accept the request or decline it. If user declines the request the nodes under friend request

table are deleted. If user accepts the friend request, then also the nodes under friend request

table is deleted and new table is created named ͞friends͟.

Get user id from current user context

If(friends_table ! = null){

 Find user id node;

 Create a child node using requested user id

 Create a child node with key ͞date͟

 Add value to key ͞device date and time͟

 If(requested user id exists in table){

 Find that node

 Create a child node using requesting user id

 Create a child node with key ͞date͟

 Add value to key ͞device date and time͟

} else {

 Add a node using requested user id

 Create a child node using requesting user id

 Create a child node with key ͞date͟

 Add value to key ͞device date and time͟

}

} else {

 Create friends_table

Do above process

}

18

Figure – 3.11: Friend Request Acceptance table snapshot

Getting Location Data and sending to server:

1. Used call back methods: GoogleApiClient.ConnectionCallbacks, , LocationListener

GoogleApiClient.OnConnectionFailedListener

2. Constants:

 Update Interval: After each interval location data will be retrieved

 Fastest Interval: On position changes of devices no update will be taken

before this interval

 Priority: It will determine the accuracy level of location data

 Smallest displacement: location will be updated if device crosses the

displacement distance.

3. API Used: LocationServices.FusedLocationApi

4. Related Methods:

 onConnected  System listens to location update

 onConnectionSuspended  request to reestablish google API client

connection

 onConnectionFailed  reports connection failure status

 onLocationChanged  returns current Latitude, Longitude, accuracy etc

5. A background service retrieves the location data, then pushes it to server periodically

specified by the constants in JSON format.

19

Figure – 3.12: Location table snapshot

Database Structure: User table contains user data in JSON format. It mainly saves user name,

address, email address, status, online status, unique device token etc.

Figure – 3.13: User table snapshot

Notification table contains the sent messages and the device Ids.

20

Figure – 3.14: Notification table snapshot

Cloud Function: The cloud function mainly adds the internal logic on database. Here we are

using cloud function to find out a user a profile, device token and send push notification.

Figure – 3.15: Cloud Function Console

3.3 PERFORMENCE OPTIMIZATIONS

Backend Optimizations:

 As we have discussed earlier in literature review the existing systems uses local

windows/ Linux based server to store, processing and transmit data, we can notice that a

backend application is also needed to implement logics on data. It generally requires 10

seconds to twenty seconds to complete a send and receive circle form android device which is

very low performance for real time communication.

 As real time communication needs huge data flow, local database can be

overwhelmed with data flow. Using cloud massaging service though decreases the send and

receive circle time to 10 -12 seconds, still it is not fast enough.

 Our system uses FIREBASE cloud database and hosting service provided by google.

It does not use any local storage to store and process user data. It authenticates users using

firebase authentication. Stores user data in firebase database. Stores user uploaded files in

firebase storage implements logic on data using firebase cloud function.

21

 The average completion time of a read write circle is 0.5-3 seconds. It does not need

any Rest API call for requesting data. Firebase can easily be integrated with android devices. As

it is a cloud service huge data processing is way faster than local servers.

Battery Power Consumption Optimization:

 One of the main drawback of android based location sharing system is that as GPS

highly depends on battery power, the power drain for sharing location is very high. So we

developed backend service system that continuously checks the battery level of the device and

chooses suitable location sharing options read battery status data.

 Here we need to describe the constant values. At first we can take a look at this

constants description provided by google.

Figure – 3.16: Google provided location accuracy constants

 So we have created an algorithm that reads the battery percentage in an

asynchronous service and chooses following plans,

 If battery power is greater than 70%

 Priority  HIGH_ACCURACY

 Update Interval  10 seconds

 Fastest Interval  5 seconds

 Displacement  10 meter

 If battery power is between 70% and 55%

 Priority  HIGH_ACCURACY

 Update Interval  15 seconds

 Fastest Interval  10 seconds

 Displacement  10 meter

22

 If battery power is between 55% and 30%

 Priority  BALANCED_POWER_ACCURACY

 Update Interval  15 seconds

 Fastest Interval  10 seconds

 Displacement  15 meter

 If battery power is between 30% and 15%

 Priority  BALANCED_POWER_ACCURACY

 Update Interval  20 seconds

 Fastest Interval  15 seconds

 Displacement  20 meter

Decreasing Data Transfer Load:

 Generally android applications communicate with server using JSON format data. The

JSON data is a key value paring data set. Let us take a look at a JSON set,

{

 ͞user_name͟: ͞Jhon Doe͟

 ͞latitude͟: ͞2.758486͟

 ͞longitude͟: ͞3.758496͟

 ͞status͟: ͞online͟

 ͞device_token͟: 8xcfsfgg

 ͞date͟ : 3.36 PM 2
nd

 August

}

 Here we can notice that we only need ͞Jhon Doe, 2.758486, 3.758496, online, 8xcfsfgg

, 3.36 PM 2
nd

 August͟ these data to process user location. But we also sending and receiving

͞user_name, latitude, longitude, status, device_token, date͟ these keys to find out the data

description. If each character is 1 byte then, here we send and receive

 Total =137 character * 1 byte = 137 byte

 Where,

 Data = 69 character * 1 byte = 69 byte

 Key = 68 character* 1 byte = 68 byte

23

So, if system updates location data in every 10 seconds and user uses real time location service

for 5 hours,

Then, total data send or receive =137*6*60*5 = 246600 byte = 1.9728 mb

Where usable data = 69 *6*60*5 = 124200 byte = 0.9936 mb

And data for key = 68 *6*60*5 = 122400 byte = 0.9792mb

In more general cases we observed that in JSON data parsing we send/ receive 20 -35% extra

data as key.

Firebase also stores data in JSON Format, but we have moderated the storage method.

As real time system accesses data very frequently, adding extra key data can cause huge data

cost. So we have formatted the in a fixed order and format.

 Order: name  latitude  longitude  status  device_token  date

 Data  Jhon Doe 2.456789 2.345672 online  85fbidls 3.45 pm 2
nd

 August

Formatted data:

{loc_data: Jhon Doe @ 2.456789 @ 2.345672 @ online @ 85fbidls @ 3.45 pm 2
nd

 August }

We are separating data using ͞@͟ sign. As the data is generated by device itself, no user

interaction is involved and the condition is to send all the field or do not send anything, there is

very less possibilities of order violation. At receiver end we split the string by ͞@͟ sign to find

desired data.

3.4 IMPLEMENTATION SECTORS

 Child and adult citizen monitoring

 Sharing location for seeking help in danger

 Sales service tracking

 Lost device tracking

 Biker race monitoring

 Creating Friend Jones

 Product delivery service tracking.

3.5 SUMMERY:

 In this project we have developed an android application framework that collects location

data at real time and sends to cloud database using the optimized procedures described at

chapter 3.3. It shares location at real time and other users can watch and monitor user’s

movement on google map.

24

 CHAPTER 4

RESULTS

a) b)

Figure – 4.1: a) Full path of user with current location

b) Only current location of user

25

 a) b)

Figure – 4.2: a) User Online, b) User Offline

a) b)

Figure – 4.3: a) User Profile, b) User friend List

26

CHAPTER 5

CONCLUSION

5.1 OVERALL CONCLUSION

In this project, we have developed energy and cost efficient android application

framework that uses firebase cloud services as backend and share location at real time. We

mainly tried to solve three problems, which are maintaining multiple backend server, excessive

power drain and extra data load of in JSON parsing. To solve the multiple backend problem, we

have proposed google provided firebase cloud platform for application backend. To solve the

power drain problem, we proposed a method that decides location accuracy update option on the

basis of battery power status. To solve to extra data parsing problem, we proposed a method to

use single key with multiple concatenated values. We installed our application in multiple

devices and it works as expected in all devices.

5.2 FUTURE WORKS

Every project has scope for further improvement and this project is no exception. We

have used firebase cloud functions to implement logics and conditions on data. As it is a new

service and still is under development process, it has some limitations. Using further

improvement of this platform geofencing, auto location alert, creating green zone, red zone

features can be added. We have not used alternative location tracking APIs except google APIs,

integrating other cloud services with this platform can be a better point to start improvement.

27

REFERENCES

[1] ENERGY-EFFICIENT LOCATION EASY TRACKING WITH ANDROID MOBILE PHONE BY USING

GPS by Rajamoses.R and Sarooraj.R.B , Global institute for Research and Education,

March-April, 2014.

[2] Real Time Location Tracking Application based on Location Alarm by Adnaan Ghadiyali,

Ankur Tiku, Sumeet Bandevar, Ruturaj Tengale , International Journal Of Engineering And

Computer Science ISSN:2319-7242 Volume 4 Issue 4 April 2015, Page No. 11352-11355

[3] Location tracking using Google Cloud Messaging on Android by Prof. C. J. Shelke1, Ms.

Grishma R. Bhokare2 , International Journal of Advanced Research in Computer and

Communication Engineering, Vol. 4, Issue 12, December 2015

[4] Android – A Cloud Computing for Vehicle Tracking System Using GPS by Mahalingam T. 1,

Jeevitha.R2., Shunmuganathan K.L. in International Journal of Computer Applications in

Engineering Sciences.

[5] Real Time Tracking of Complete Transport System Using GPS, by Mr. Nilesh Manganakar Mr.

Nikhil Pawar Mr. Prathamesh Pulaska in National Conference on New Horizons in IT - NCNHIT 2013.

