

Project Report

On

“Multiple Client and Server ChatApplication using

Multicast in Java WindowBuilder”

B.Sc. in Information and Communications Engineering

Department of ECE

East West University,Dhaka

Bangladesh

Hasanuzzaman

Submitted By

Al MesbaSadab

ID: 2013-2-50-008 ID: 2013-3-50-014

Under the supervision of

Dr. Mohammad Arifuzzaman

Assistant Professor

Department of Electronics and Communications Engineering

East West University

Dept. of Electronics and Communications Engineering, East West University
i

ACKNOWLEDGEMENT

At first we wish to convey our cordial thanks and gratitude to almighty Allah for everything.

We would like to thank our parents and everyone else who has supported us all the way

through to complete the project program successfully and also to those who rendered their

cooperation in making this report.

 We would like to express our gratitude to our supervisor Dr. Mohammad Arifuzzaman,

Assistant Professor, Dept. of Electronics and Communications Engineering, East West

University for his guidance and support throughout this project work. His constant source of

inspiration to us throughout the period of this work.

We are grateful to Chairman, all faculty members of the Department of Electronics and

Communications Engineering as well as the concerned officials for their cooperation.

……………………….. ………………………..

Hasanuzzaman

ID: 2013-2-50-008

 Al Mesba Sadab

ID: 2013-3-50-014

Dept. of Electronics and Communications Engineering, East West University
ii

DECLARATION

We hereby declare that we carried out the work reported in this project in the Department

of Electronics and Communications Engineering, East West University, under the

supervision of Dr. Mohammad Arifuzzaman. We solemnly declare that to the best of

our knowledge, no part of this report has been submitted elsewhere for award of any

degree. All sources of knowledge used in this report have been duly acknowledged.

………………………..

Hasanuzzaman

 ID: 2013-2-50-08

..……………………..

Al Mesba Sadab

 ID: 2013-3-50-014

Dept. of Electronics and Communications Engineering, East West University
iii

CERTIFICATE

This is to certify that the project entitled “Multiple Client and Server Chat

Application using Multicast in Java WindowBuilder””, being submitted by

Hasanuzzaman and Al Mesba Sadab Department of Electronics and Communications

Engineering, East West University, Dhaka in partial fulfillment for the award of the

degree of Bachelor of Science in Information and Communications Engineering(ICE), is

a record of major project carried out by them. They have worked under my supervision

and guidance and have fulfilled the requirements which, to my knowledge, have

reached the requisite standard for submission of this project.

......……………………………….

Dr. Mohammad Arifuzzaman

Assistant Professor

Dept. of Electronics and Communications Engineering

Dept. of Electronics and Communications Engineering, East West University
iv

APPROVAL

This is to certify that the project entitled “Multiple Client and Server Chat

Application using Multicast in Java WindowBuilder” submitted to the respected

member of the faculty of Engineering for partial fulfillment of requirement for the degree

of Bachelor of Information and Communications Engineering(ICE) under complete

supervision of the undersigned.

Submitted by:

Hasanuzzaman

ID :2013-2-50-008

Al Mesba Sadab

 ID :2013-3-50-014

......………………………………. ………………………………….

Dr. Mohammad Arifuzzaman Dr. M. Mofazzal Hossain
Assistant Professor Chairperson & Associated Professor
Dept. of Electronics and Communications Engineering Dept. of Electronics and Communication Engineering

East West University East West University

Dept. of Electronics and Communications Engineering, East West University
v

Abstract

 This report presents a details overview in developing a client-server based chat application

using socket programming. The application is developed using Java programing. The

primary objective of this report is to present the principles behind socket programming and

the libraries available for socket programming applications in Java.

Dept. of Electronics and Communications Engineering, East West University

 Topic Page
Number

Chapter 1 INTRODUCTION 01

Chapter 2

SYSTEM ANALYSIS 02

2.1 System objective 02

2.2 System consideration 02

2.3 Operation concept and scenario 03

Chapter 3

SYSTEM SPECIFICATION 04

3.1 Hardware requirement 04

3.2 Software requirements 04

Chapter 4

DEVELOPMENT OF SOFTWARE 05

4.1 Socket overview 05

4.2 Project scope 06

4.2.1 Server 07

4.2.2 Development of server 07

4.2.3 Client 08

4.2.4 Development of client 09

4.3 The client server block diagram 10

Chapter 5

TCP AND UDP SOCKET PROGRAMING 11

5.1 A simple client program in Java 12

5.2 UDP socket programing 12

5.3 Multicast 15

Chapter 6

SYSTEM DESIGN DETAILS 17

6.1 GUI Module Name and Description

17

6.1.1 Design Alternatives

17

6.1.2 Design Details 17

6.2 Resolving Names Module Name and Description

17

6.3 Graphical User Interface

18

 6.4 Testing

18

Chapter 7

MAIN OVERVIEW OF THE WORK 19

7.1 The novelty of our project 22

7.2 Future work 22

Chapter 8

Conclusion 23

Reference 31

Table of Contents

Dept. of Electronics and Communications Engineering, East West University

1

CHAPTER 1

INTRODUCTION

ChattiŶg is a ŵethod of usiŶg teĐhŶology to ďƌiŶg people aŶd ideas ͞togetheƌ͟ despite of the

geographical barriers. The technology has been available for years but the acceptance it was quit

recent. Our project is an example of a multiple client chat server. It is made up of 2 applications the

ĐlieŶt appliĐatioŶ, ǁhiĐh ƌuŶs oŶ the useƌ’s PĐ aŶd seƌǀeƌ appliĐatioŶ, ǁhiĐh ƌuŶs oŶ aŶy PĐ oŶ the

network. To start chatting client should get connected to server. We will focus on TCP and UDP

socket connections which are a fundamental part of socket programming.

Keywords: sockets, client-server, Java network programming-socket functions, Multicasting etc.

2

CHAPTER 2

SYSTEM ANALYSIS

2.1 System Objectives

Communication over a network is one field where this tool finds wide ranging application. Chat

application establishes a connection between 2 or more systems connected over an intra-net or

ad-hoc. This tool can be used for large scale communication and conferencing in an organization

or campus of vast size, thus increasing the standard of co-operation. In addition, it converts the

complex concept of sockets to a user friendly environment. This software can have further

potentials, such as file, image transfer, identify of user locations and voice chatting options that

can be worked upon later. We are really working hard and soul to develop that application.



2.2 System Considerations

Approach:

The application has been designed using Java programing language in WindowBuilder (Windows

Application environment).

Methodology:

The user interacts with the tool using a GUI.

 The GUI operates in two forms, the List form & the chat form.

 The List form contains the names of all the systems connected to a network.

 The chat form makes the actual communication possible in the form of text.

3



2.3 Operational Concepts and Scenarios

Operation of the application based on the inputs given by the user:

 When the run button is clicked then the chat form is initialized with a connection

between the host and the client machine.

 Note: server must be started at first before a client start.

 Contains a rich textbox which send messages from one user to another

 Contains a textbox for messages to be written that is sent across the network.

 Contains a Send button.

 When the sent button is clicked, in the background, the text in the textbox is encoded

and sent as a packet over the network to the client machine. Here this message is

decoded and is shown in the rich textbox.

4

CHAPTER 3

SYSTEM SPECIFICATION

3.1 Hardware requirements

In hardware requirement we require all those components which will provide us the platform

for the development of the project. The minimum hardware required for the development of

this project is as follows—

Ram minimum 128 MB

Hard disk—minimum 5 GB

Processor- Pentium 3

These all are the minimum hardware requirement required for our project. We want to make

our project to be used in any. Type of computer therefore we have taken minimum

configuration to a large extent.128 MB ram is used so that we can execute our project in a least

possible RAM. Hard disk is used because project takes less space to be executed or stored.

Therefore, minimum hard disk is used. Others enhancements are according to the needs.

3.2 Software requirements

“oftǁaƌe’s ĐaŶ ďe defiŶed as pƌogƌaŵs ǁhiĐh ƌuŶ oŶ ouƌ Đoŵputeƌ .it act as petrol in the vehicle.

It provides the relationship between the human and a computer. It is very important to run

softǁaƌe to fuŶĐtioŶ the Đoŵputeƌ. Vaƌious softǁaƌe’s aƌe Ŷeeded iŶ this pƌojeĐt foƌ its

development.

 Operating system—Windows 7 and Java eclipse

5

CHAPTER 4

DEVELOPMENT OF SOFTWARE

4.1. Socket Overview

A socket is an object that represents a low level access point to the IP stack. This socket can be

opened or closed or one of a set number of intermediate states. A socket can send and receive

data down disconnection. Data is generally sent in blocks of few kilobytes at a time for

efficiency; each of these block are called a packet.

All packets that travel on the internet must use the Internet Protocol. This means that the source

IP address, destination address must be included in the packet. Most packets also contain a port

number. A port is simply a number between 1 and 65,535 that is used to differentiate higher

protocols. Ports are important when it comes to programming your own network applications

because no two applications can use the same port.

Packets that contain port numbers come in two flavors: UDP and TCP/IP. UDP has lower latency

than TCP/IP, especially on startup. Where data integrity is not of the utmost concerned, UDP can

prove easier to use than TCP, but it should never be used where data integrity is more important

than performance; however, data sent by UDP can sometimes arrive in the wrong order and be

effectively useless to the receiver. TCP/IP is more complex than UDP and has generally longer

latencies, but it does guarantee that data does not become corrupted when travelling over the

internet. TCP is ideal for file transfer, where a corrupt file is more unacceptable than a slow

download; however, it is unsuited to internet radio, where the odd sound out of place is more

acceptable than long gaps of silence.

A socket is simply an endpoint for communications between the machines. The Socket class can be

used to create a socket. Socket Programming is used for communication between machines using

a Transfer Control Protocol (TCP). It can be connectionless or connection-oriented. Server Socket

6

and Socket classes are used for connection-oriented socket programming. After creating a

connection, the server develops a socket object on its end of the connection. The server and client

now start communicating by writing to and reading from the socket. The client needs to know two

basic information, which are: Port number& IP address of server.

 Fig1: Server-Client general model

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new

socket bound to the same local port and also has its remote endpoint set to the address and port of

the client. It needs a new socket so that it can continue to listen to the original socket for

connection requests while tending to the needs of the connected client. On the client side, if the

connection is accepted, a socket is successfully created and the client can use the socket to

communicate with the server. The client and server can now communicate by writing to or reading

from their sockets

4.2 Project Scope

This project can be mainly divided into two modules:

1. Server

2. Client

This project is mainly depended on client/server model. The client requests the server and server

responses by granting the clients request. The proposed system should provide both of the

above features along with the followed ones:

7

4.2.1 server

A server is a computer program that provides services to other computer programs (and their

users) in the same or other computers. The computer that a server program runs in is also

frequently referred to as a server. That machine may be a dedicated server or used for other

purposes as well. Example Server, Database, Dedicated, Fileserver, Proxy Server, Web Server. The

server is alǁays ǁaitiŶg foƌ ĐlieŶt’s ƌeƋuests. The ĐlieŶts Đoŵe aŶd go doǁŶ ďut the seƌǀeƌ ƌeŵaiŶs

the same.

A server application normally listens to a specific port waiting for connection requests from a client.

When a connection request arrives, the client and the server establish a dedicated connection over

which they can communicate. During the connection process, the client is assigned a local port

number, and binds a socket to it. The client talks to the server by writing to the socket and gets

information from the server by reading from it. Similarly, the server gets a new local port number

(it needs a new port number so that it can continue to listen for connection requests on the original

port). The server also binds a socket to its local port and communicates with the client by reading

from and writing to it. The client and the server must agree on a protocol that is, they must agree

on the language of the information transferred back and forth through the socket. Normally, a

server runs on a specific computer and has a socket that is bound to a specific port number. The

server just waits, listening to the socket for a client to make a connection request.

4.2.2 Development of Server

The steps iŶǀolǀed iŶ estaďlishiŶg a soĐket oŶ the seƌǀeƌ side aƌe as folloǁs −

 Create a socket with the socket() system call.

 Bind the socket to an address using the bind() system call. For a server socket on the

Internet, an address consists of a port number on the host machine.

 Listen for connections with the listen() system call.

http://searchsoftwarequality.techtarget.com/definition/program
http://searchsoa.techtarget.com/definition/dedicated-server

8

 Accept a connection with the accept() system call. This call typically blocks the connection

until a client connects with the server.

 Send and receive data using the read() and write() system calls.

4.2.3 Client

On the client site the client knows the hostname of the machine on which the server is running and

the port number on which the server is listening. To make a connection request, the client tries to

rendezvous with the server on the server's machine and port. The client also needs to identify itself

to the server so it binds to a local port number that it will use during this connection. This is usually

assigned by the system.

Fig2:Client reguesting for connection to server

Fig3:Client requesting for connection to server

The model used for this project is the single server – multiple client models. The following

specifications must be implemented:

1. The server and client are two separate programs.

9

2. Multiple clients must be able to connect to a single server.

3. All input and output is via I/O Interface (GUI is Required)

4.2.4 Development of Client

The system calls for establishing a connection are somewhat different for the client and the server,

but both involve the basic construct of a socket. Both the processes establish their own sockets.

The steps involved in establishing a socket on the client side are as follows:

 Create a socket with the socket() system call.

 Connect the socket to the address of the server using the connect() system call.

 Send and receive data. There are a number of ways to do this, but the simplest way is to use

the read() and write() system calls.

 simple Client Program in Java

 The steps for creating a simple client program are:

1. Create a Socket Object:

Socket client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.

input = new DataInputStream(client.getInputStream());

output = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:

Receive data from the server: String line = input.readLine();

Send data to the server: output.writeBytes;͞Hello Hasanuzzaman\n͟Ϳ;

4. Close the socket when done:

 client.close();

10

4.3 The Client and Server Block Diagram

Fig4: Block diagram of client-server

11

CHAPTER 5

TCP AND UDP SOCKET PROGRAMMING

The two key classes from the java.net package used in creation of server and client programs

are:

 ServerSocket

 Socket

A server program creates a specific type of socket that is used to listen for client requests (server

socket), In the case of a connection request, the program creates a new socket through which it

will exchange data with the client using input and output streams.

1. Open the Server Socket:

ServerSocket server = new ServerSocket(PORT);

2. Wait for the Client Request:

Socket client = server.accept();

3.Create I/O streams for communicating to the client

DataInputStream input = new DataInputStream(client.getInputStream());

DataOutputStream output = new DataOutputStream(client.getOutputStream());

4.Perform communication with client

Receive from client: String line = input.readLine();

Send to client: output.writeBytes;͞Hello\n͟Ϳ;

5. Close socket:

client.close();

12

An example program illustrating creation of a server socket, waiting for client request, and then

Responding to a client that requested for connection by greeting it is given at appendix [A]

5.1 A simple Client Program in Java

The steps for creating a simple client program are:

1. Create a Socket Object:

Socket client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.

input = new DataInputStream(client.getInputStream());

output = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:

Receive data from the server: String line = is.readLine();

Send data to the server: os.writeBytes;͞Hello!Hasanuzzaman\n͟Ϳ;

4. Close the socket when done:

client.close();

An example program illustrating establishment of connection to a server and then reading a

message sent by the server and displaying it on the console is given at Appendix[A]

5.2 UDP SOCKET PROGRAMMING

The User Datagram Protocol is an unreliable, connectionless oriented protocol that uses an IP

address for the destination host and a port number to identify the destination application. The

UDP port number is distinct from any physical port on a computer such as a COM port or an I/O

port address. The UDP port is a 16-bit address that exists only for the purpose of passing certain

types of datagram information to the correct location above the transport layer of the protocol

stack.

A UDP datagram header consists of four (4) fields of two bytes each:

13

1. source port number

2. destination port number

3. datagram size

4. checksum

In order to use a UDP socket for network programming one has to follow the following steps as

shown in figure given below:

End point is a combination of IP address and port number. Endpoint objects allow us to easily

establish and communicate over TCP/IP network connections between client and server

processes, possibly residing on different hosts. Once a network connection is established

between a client and a server, the two can "talk" to each other by reading from and writing to

the connection.

The previous two example programs used the TCP sockets. As already said, TCP guarantees the

delivery of packets and preserves their order on destination. Datagram packets are used to

implement a connectionless packet delivery service supported by the UDP protocol. Each

message is transferred from source machine to destination based on information contained

within that packet. That means, each packet needs to have destination address and each packet

ŵight ďe ƌouted diffeƌeŶtly, aŶd ŵight aƌƌiǀe iŶ aŶy oƌdeƌ. PaĐket deliǀeƌy isŶ’t guaƌaŶteed. The

format of datagram packet is:

Figure 5: Format of datagram packet

14

Java supports datagram communication through the following classes:

 DatagramPacket

 DatagramSocket

The class DatagramPacket contains several constructors that can be used for creating packet

object. One of them is:

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

This constructor is used for creating a datagram packet for sending packets of length. Length to

the specified port number on the specified host. The message to be transmitted is indicated in

the first argument. The key methods of DatagramPacket class are: Returns the length of the

data to be sent or the length of the data received.

voidsetData(byte[] buf)

 Sets the data buffer for this packet.

voidsetLength(int length)

 Sets the length for this packet.

The class DatagramSocket supports various methods that can be used for transmitting or

receiving data a datagram over the network. The two key methods are:

 Sends a datagram packet from this socket.

void send(DatagramPacket p)

 Receives a datagram packet from this socket.

void receive(DatagramPacket p)

A siŵple UDP seƌǀeƌ pƌogƌaŵ that ǁaits foƌ ĐlieŶt’s ƌeƋuests aŶd theŶ aĐĐepts the ŵessage

(datagram) and sends back the same message is given below. Of course, an extended server

pƌogƌaŵ ĐaŶ ŵaŶipulate ĐlieŶt’s ŵessages/ƌeƋuest aŶd seŶd a Ŷeǁ ŵessage as a ƌesponse.

A corresponding client program for creating a datagram and then sending it to the above server

and then accepting a response is listed below. An example of TCP and UDP server client program

is given at Appendix[A].

15

5.3 Multicast

Multicast is the term used to describe communication where a piece of information is sent from

one or more points to a set of other points. Multicasting is the networking technique of

delivering the same packet simultaneously to a group of clients. In this case there is may be one

or more senders, and the information is distributed to a set of receivers. Multicasting is broader

than unicast, point-to-point communication but narrower and more targeted than broadcast

communication. Multicasting sends data from one host to many different hosts, but not to

everyone; the data only goes to clients that have expressed an interest by joining a particular

multicast group multicast socket that sends a copy of the data to a location (or a group of

locations) close to the parties that have declared an interest in the data. Several identical copies

of the data traverse the Internet; but, by carefully choosing the points at which the streams are

duplicated, the load on the network is minimized. One example of an application which may use

multicast is a video server sending out networked TV channels. Simultaneous delivery of high

quality video to each of a large number of delivery platforms will exhaust the capability of even a

high bandwidth network with a powerful video clip server. This poses a major salability issue for

applications which required sustained high bandwidth. One way to significantly ease scaling to

larger groups of clients is to employ multicasting networking IP multicast provides dynamic

many-to-many connectivity between a set of senders (at least 1) and a group of receivers. The

format of IP multicast packets is identical to that of unicast packets and is distinguished only by

the use of a special class of destination address (class D IPv4 address) which denotes a specific

multicast group. Since TCP supports only the unicast mode, multicast applications must use

the UDP transport protocol. Unlike broadcast transmission (which is used on some local area

networks), multicast clients receive a stream of packets only if they have previously elect to do

so (by joining the specific multicast group address). Membership of a group is dynamic and

controlled by the receivers (in turn informed by the local client applications). The routers in a

multicast network learn which sub-networks have active clients for each multicast group and

attempt to minimize the transmission of packets across parts of the network for which there are

no active clients. An example program of multicast is given at Appendix[A]

http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-address.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/tcp.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html

16

Fig6: A general view of multicasting

Multicast is a special feature of UDP protocol that enable programmer to send message to a

group of receivers on a specific multicast IP address and port. Multicast has advantage in this

scenario. Let us say we ǁaŶt to seŶd ͞Hello͟ ŵessage to ϭϬϬ Đoŵputeƌs oŶ ŵy

network. Peƌhaps, ŵy fiƌst solutioŶ is to seŶd the ͞Hello͟ ŵessage to each of them

via UDP or TCP. Consume a lot of processing power on sender as it needs to send to every

receiver, bandwidth flooding and the arrival time is not the same for every receiver.

Seeing this problem, we propose second solution by employing Multicast. Multicast runs over

UDP protocol [4]

Fig7: Multicasting using UDP protocol adopted from [4]

If the client wishes to receive multicast message, it must join the group with multicast IP

(224.2.2.3) and port 8888.

http://lycog.com/distributed-systems/udp-programming-java/
http://lycog.com/distributed-systems/tcp-programming-java/
http://lycog.com/wp-content/uploads/2011/03/multicast-overview.png
http://lycog.com/wp-content/uploads/2011/03/multicast-network.png

17

Chapter 6

SYSTEM DESIGN DETAILS

6.1 GUI Module Name and Description

This module deals ǁith the appliĐatioŶ’s iŶteƌfaĐe ǁith the eŶd useƌ.

6.1.1 Design Alternatives

 Java programming approach is used as the tool has been developed in window

Builder environment

6.1.2 Design Details

At a minimum, the following should be described -

a) Processing within module

We develop the user interface for the application through which the user interacts with the tool. It

consists of a main window and boxes which are displayed as per the menu selections made by the user.

b) Error checking

Errors occurring because of connection problems. Errors occurring due to incorrect input

by the user.

6.2 Resolving Names Module Name and Description

In this module the application resolves the names of the systems connected to a network. These

names are displayed in the form of a list. In this module the user communicates with the desired

user in the form of text. A connection is formed between the server and client with the help of

sockets which itself uses ports for packet data transfer. We show a windows form application

18

that makes communication graphic oriented and user friendly. Three GUI interfaces are captured

under this:

 Send Button

 When this button is pressed, the message in the textbox is displayed in the TextArea.

 Instant Buttons: Normally we need to type text to send to the end user, but this

features could help to send text immediately without typing.

6.3 Graphical User Interface

The user interface that the software provides to the user is interactive. It provides two different

forms, one for list of systems and the other for the actual text chatting.

Fig8: Some basic GUI components.

6.4 Testing

In this menu items were tested to ensure no functions has been missed out. This is done for the

smooth working of the project. This is done after the completion of system; all the queries were

carried out again to ensure that no errors have been introduced.

19

CHAPTER 7

MAIN OVERVIEW OF OUR WORK

In general, all of the machines on the Internet can be categorized as two types: servers and

clients

Single server should be able to chat simultaneously with multiple clients. In order to do this, we

will have to implement the server program using threads. Once a client program contacts a

server, the server process spawns a thread that will handle the client. The communication

between a client and its server thread will be like a single client-single server chatting

Application. A multicast chatting tool that will be used to communicate among a group of

processes. Each process should be able to send and receive any number of messages. The chat

tool should have the following functionalities:

Get the message from the user and send it to all the other processes belonging to the group. A

process can receive a copy of the message. Read the messages sent by any other process and

display the message to the user. Sever send message to the multiple client (at least 1) as well as

client can send message individually to the desired client. For doing this at first we need to start

the server and then client again if we press run then another client will be appeared which 2nd

client is. Thus way we can start multiple client window. Server can send the same message to all

of running client windows, similarly client can individually can sent message to the server.in this

work we have been developed some feature using java window Buildeƌ that typiĐally doesŶ’t

exist. The features are: -

 Developed an ID system for multiple clients. Each client will be assigned individual ID.

When client send any message to server then a window will ask to type his/her name.

This name will be printed at the server textArea with its message.

20

 Server and client will print the current time and date respect.

 When we send message by clicking Send button, beep tune to be hear that indicate

message has been send.

Figure 8:Interface of Server window

21

Figure10: Interface of Client window

 Developed some instant button that would help to send message more quickly without

typing that. The button here is OK, thank you, Bye, welcome etc. both of the client and

server side.it would help the user to send instant message.

 Developed message filtering system for some restricted adult words using array and

Boolean. If anyone can try to send any kind of restricted work, then instantly a warning

window will appear with a message of Sorry! Some restricted keyword got matched, you

ĐaŶ’t seŶd this ŵessage.

 Fig8: The warning message for restricted keywords

22

7.1 The Novelty our proposed work

The following features that does not exist yet that makes our apps different than any other

 Services: -

 Instant buttons

 The individual ID will prove identity whether he/she uses fake name or not

 Chat filtering

 User friendly and customization

7.2 Future work

There is always a room for improvements in any software package, however good and efficient it

may be done. But the most important thing should be flexible to accept further modification.

Right now we are just dealing with text communication. In future this software may be extended

to include features such as:

  Files transfer: this will enable the user to send files of different formats to others via the chat

application.

 Voice chat: this will enhance the application to a higher level where communication will be

possible via voice calling as in telephone.

 Video chat: this will further enhance the feature of calling into video communication.

23

CHAPTER 8

 Conclusion

We Developed network applications in Java by using sockets, threads, and Web services. These

software is portable, efficient, and easily maintainable for large number of clients. Our developed

web-based chatting software is unique in its features and more importantly easily customizable.

The java.net package provides a powerful and flexible set of classes for implementing network

applications. Typically, programs running on client machines make requests to programs on a

server Machine. These involve networking services provided by the transport layer. The most

widely used transport protocols on the Internet are TCP (Transmission control Protocol) and UDP

(User Datagram Protocol). TCP is a connection-oriented protocol providing a reliable flow of data

between two computers. On the other hand, UDP is a simpler message-based connectionless

protocol which sends packets of data known as datagrams from one computer to another with no

guarantees of arrival.

24

Appendix[A]

// SimpleServer.java: A simple server program.

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1254

ServerSocket s = new ServerSocket(1254);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF(“Hi there”);
// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

// SimpleClient.java: A simple client program.

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1254

Socket s1 = new Socket(“localhost”,1254);
// Get an input file handle from the socket and read the input

25

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit

dis.close();

s1In.close();

s1.close();

}

}

// UDPServer.java: A simple UDP server program.

import java.net.*;

import java.io.*;

public class UDPServer {

public static void main(String args[]){

DatagramSocketaSocket = null;

if (args.length< 1) {

System.out.println(“Usage: java UDPServer<Port Number>”);
System.exit(1);

}

try {

intsocket_no = Integer.valueOf(args[0]).intValue();

aSocket = new DatagramSocket(socket_no);

byte[] buffer = new byte[1000];

while(true) {

DatagramPacket request = new DatagramPacket(buffer,

buffer.length);

aSocket.receive(request);

DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(),request.getAddress(),

request.getPort());

aSocket.send(reply);

}

}

26

catch (SocketException e) {

System.out.println(“Socket: ” + e.getMessage());
}

catch (IOException e) {

System.out.println(“IO: ” + e.getMessage());
}

finally {

if (aSocket != null)

aSocket.close();

}

}

}

// UDPClient.java: A simple UDP client program.

import java.net.*;

import java.io.*;

public class UDPClient {

public static void main(String args[]){

// args give message contents and server hostname

DatagramSocketaSocket = null;

if (args.length< 3) {

System.out.println(

“Usage: java UDPClient<message><Host name><Port number>”);
System.exit(1);

}

try {

aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();

InetAddressaHost = InetAddress.getByName(args[1]);

intserverPort = Integer.valueOf(args[2]).intValue();

DatagramPacket request =

newDatagramPacket(m, args[0].length(), aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

27

System.out.println(“Reply: ” + new String(reply.getData()));
}

catch (SocketException e) {

System.out.println(“Socket: ” + e.getMessage());
}

catch (IOException e) {

System.out.println(“IO: ” + e.getMessage());
}

finally {

if (aSocket != null)

aSocket.close();

}

}

}

importjava.io.IOException;

importjava.net.DatagramPacket;

importjava.net.DatagramSocket;

importjava.net.InetAddress;

importjava.net.UnknownHostException;

public class MulticastSocketServer {

final static String INET_ADDR = "224.0.0.3";

final static int PORT = 8888;

public static void main(String[] args) throws

UnknownHostException, InterruptedException {

 // Get the address that we are going to connect to.

InetAddressaddr = InetAddress.getByName(INET_ADDR);

 // Open a new DatagramSocket, which will be used to send

the data.

try (DatagramSocketserverSocket = new DatagramSocket()) {

for (inti = 0; i< 5; i++) {

 String msg = "Sent message no " + i;

28

 // Create a packet that will contain the data

 // (in the form of bytes) and send it.

DatagramPacketmsgPacket = new DatagramPacket(msg.getBytes(),

msg.getBytes().length, addr, PORT);

serverSocket.send(msgPacket);

System.out.println("Server sent packet with msg: " + msg);

Thread.sleep(500);

 }

 } catch (IOException ex) {

ex.printStackTrace();

 }

 }

}

importjava.io.IOException;

importjava.net.DatagramPacket;

importjava.net.InetAddress;

importjava.net.MulticastSocket;

importjava.net.UnknownHostException;

public class MulticastSocketClient {

final static String INET_ADDR = "224.0.0.3";

final static int PORT = 8888;

public static void main(String[] args) throws

UnknownHostException {

 // Get the address that we are going to connect to.

InetAddress address = InetAddress.getByName(INET_ADDR);

 // Create a buffer of bytes, which will be used to store

 // the incoming bytes containing the information from the

server.

29

 // Since the message is small here, 256 bytes should be

enough.

byte[] buf = new byte[256];

 // Create a new Multicast socket (that will allow other

sockets/programs

 // to join it as well.

try (MulticastSocketclientSocket = new MulticastSocket(PORT)){

 //Joint the Multicast group.

clientSocket.joinGroup(address);

while (true) {

 // Receive the information and print it.

DatagramPacketmsgPacket = new DatagramPacket(buf, buf.length);

clientSocket.receive(msgPacket);

 String msg = new String(buf, 0, buf.length);

System.out.println("Socket 1 received msg: " + msg);

 }

 } catch (IOException ex) {

ex.printStackTrace();

 }

 }

}

30

Reference:

[1] https://github.com/hasanuzzaman2013/java_windowbuilder

[2] https://www.tutorialspoint.com/java/java_networking.htm

[2] http://cs.lmu.edu/~ray/notes/javanetexamples/

[3] http://www.javaworld.com/article/2077322/core-java/core-java-sockets-programming-in-java-a-

tutorial.html

[3]http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-1.5-UDP-and-Multicast-

Sockets.html

[5] https://www.tutorialspoint.com/unix_sockets/client_server_model.html

[4] https://examples.javacodegeeks.com/core-java/net/multicastsocket-net/java-net-multicastsocket-

example/

[5] http://www.buyya.com/java/Chapter13.pdf

[6] http://java-source.net/open-source/chat-servers

[7] https://fivedots.coe.psu.ac.th/~ad/jg/ch19/ch19.pdf

[8] https://gist.github.com/arbo77/3318971

[9] https://venturebeat.com/2016/06/15/sapho-apps-in-chat-are-the-future-of-work/

[10] https://www.lifewire.com/socket-programming-for-computer-networking-4056385

[11] http://www.javatpoint.com/socket-programming

[12] www.wikipedia.com

http://www.javaworld.com/article/2077322/core-java/core-java-sockets-programming-in-java-a-tutorial.htm
http://www.javaworld.com/article/2077322/core-java/core-java-sockets-programming-in-java-a-tutorial.htm
http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-1.5-UDP-and-Multicast-Sockets.html
http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-1.5-UDP-and-Multicast-Sockets.html
https://www.tutorialspoint.com/unix_sockets/client_server_model.html
https://examples.javacodegeeks.com/core-java/net/multicastsocket-net/java-net-multicastsocket-example/
https://examples.javacodegeeks.com/core-java/net/multicastsocket-net/java-net-multicastsocket-example/
http://www.buyya.com/java/Chapter13.pdf
http://java-source.net/open-source/chat-servers
https://fivedots.coe.psu.ac.th/~ad/jg/ch19/ch19.pdf
https://gist.github.com/arbo77/3318971
https://venturebeat.com/2016/06/15/sapho-apps-in-chat-are-the-future-of-work/
http://www.javatpoint.com/socket-programming

31

32

	declaration.pdf
	ACKNOWLEDGEMENT
	DECLARATION
	CERTIFICATE
	APPROVAL
	Hasanuzzaman
	Al Mesba Sadab
	Dr. Mohammad Arifuzzaman Dr. M. Mofazzal Hossain

	Abstract

